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Abstract We consider the Calderón–Zygmund kernels Kα,n(x) = (x2n−1
i /|x |2n−1+α)di=1

in R
d for 0 < α ≤ 1 and n ∈ N. We show that, on the plane, for 0 < α < 1, the capacity

associated to the kernels Kα,n is comparable to the Riesz capacity C 2
3 (2−α), 32

of non-linear
potential theory. As consequences we deduce the semiadditivity and bilipschitz invariance
of this capacity. Furthermore we show that for any Borel set E ⊂ R

d with finite length the
L2(H1�E)-boundedness of the singular integral associated to K1,n implies the rectifiability
of the set E . We thus extend to any ambient dimension, results previously known only in the
plane.

1 Introduction and statement of the results

In this paper we continue the program started in [3] and [4] where an extensive study of the
kernels x2n−1

i /|x |2n, n ∈ N, was performed in the plane. We explore the kernels Kα,n(x) =
(K i

α,n(x))
d
i=1 in R

d , where

K i
α,n(x) = x2n−1

i

|x |2n−1+α
,

for 0 < α ≤ 1, n ∈ N, in connection to rectifiability and their corresponding capacities.
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436 V. Chousionis, L. Prat

For compact sets E ⊂ R
2, we define

γ n
α (E) = sup |〈T, 1〉|, (1.1)

the supremum taken over those real distributions T supported on E such that for i = 1, 2,
the potentials K i

α,n ∗ T are in the unit ball of L∞(R2). For n = 1 and α = 1 the capacity
γ 1
1 coincides with the analytic capacity, modulo multiplicative constants (see [26]) and it is

worth mentioning that for α = 1 and n ∈ N it was proved in [4] that γ n
1 is comparable to

analytic capacity. Recall that the analytic capacity of a compact subset of the plane is defined
by

γ (E) = sup | f ′(∞)|,
the supremum taken over the analytic functions on C\E such that | f (z)| ≤ 1 for z ∈ C\E .
Analytic capacity may be written as (1.1) interchanging the real by complex distributions
and the vectorial kernel Kα,n by the Cauchy kernel. Therefore, our set function γ n

α can be
viewed as a real variable version of analytic capacity associated to the vector-valued kernel
Kα,n .

There are several papers where similar capacities have been studied; inR
d , for 0 < α < 1,

it was discovered in [22] that compact sets with finite α−dimensional Hausdorff measure
have zero γ 1

α capacity (for the case of non-integer α > 1 one has to assume some extra
regularity assumptions on the set, see [22] and [23]). This is in strong contrast with the
situation where α ∈ Z (in this case α−dimensional smooth hypersurfaces have positive γ 1

α

capacity, see [15], where they showed that if E lies on a Lipschitz graph, then γ 1
d−1(E) is

comparable to the (d − 1)−Hausdorff measure Hd−1(E)). In [24] the semiadditivity of the
γ 1
α was proven for 0 < α < d in R

d .
For s > 0, 1 < p < ∞ and 0 < sp ≤ 2, the Riesz capacity Cs,p of a compact set

K ⊂ R
2, is defined as

Cs,p(K ) = sup
μ

μ(K )p, (1.2)

where the supremum runs over all positive measures μ supported on K such that

Is(μ)(x) =
∫

dμ(x)

|x − y|2−s

satisfies ‖Is(μ)‖q ≤ 1, where as usual q = p/(p − 1). The capacity Cs,p plays a central
role in understanding the nature of Sobolev spaces (see [2] Chapter 1, p. 38).

In [16] it was surprisingly shown that inR
d for 0 < α < 1, the capacities γ 1

α andC 2
3 (d−α), 32

are comparable. In this paper we extend themain result from [16] on the plane by establishing
the equivalence between γ n

α , 0 < α < 1, n ∈ N and the capacity C 2
3 (2−α), 32

of non-linear
potential theory. Our first main result reads as follows:

Theorem 1.1 For each compact set K ⊂ R
2, 0 < α < 1 and n ∈ N we have

c−1 C 2
3 (2−α), 32

(E) ≤ γ n
α (E) ≤ c C 2

3 (2−α), 32
(E).

where c is a positive constant depending only on α and n.

On the plane and for α ∈ (1, 2) the equivalence of the above capacities is not known.
In [9] it was shown that, in R

d , for 0 < α < d and n = 1, the first inequality in Theorem
1.1 holds (replacing C 2

3 (2−α), 32
by C 2

3 (d−α), 32
). The question concerning the validity of the

inequality γ n
α (E) � C 2

3 (d−α), 32
(E) for all non integer α ∈ (0, d) and n ∈ N remains open.
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Theorem 1.1 has some interesting consequences. As it is well known, sets with positive
capacity Cs,p have non finite Hausdorff measure H2−sp . Therefore, the same applies to γ n

α ,
for 0 < α < 1 and n ∈ N. Hence as a direct corollary of Theorem 1.1 one can assert that γ n

α

vanishes on sets with finite Hα measure. On the other hand, since Cs,p is a subadditive set
function (see [2], p. 26), γ n

α is semiadditive, which means that given compact sets E1 and
E2

γ n
α (E1 ∪ E2) ≤ C(γ n

α (E1) + γ n
α (E2)),

for some constant C depending on α and n. In fact γ n
α is countably semiadditive.

Another consequence of Theorem 1.1 is the bilipschitz invariance of γ n
α , meaning that for

bilipschitz homeomorphisms of R
2, φ : R

2 → R
2, namely

L−1|x − y| ≤ |φ(x) − φ(y)| ≤ L|x − y| x, y ∈ R
2

one has

γ n
α (E) ≈ γ n

α (φ(E)).

The fact that analytic capacity is bilipschitz invariant was a very deep result in [27], see also
[10] and [11].

All advances concerning analytic capacity in the last 40years, [5,14,26,27], go through
the deep geometric study of the Cauchy transform which was initiated by Calderon in [1].
In particular it was of great significance to understand what type of geometric regularity
does the L2(μ)-boundedness of the Cauchy transform impose on the underlying measure μ.
From the results of David, Jones, Semmes and others, soon it became clear that rectifiability
plays an important role in the understanding of the aforementioned problem. Recall that
n-rectifiable sets in R

d are contained, up to an Hn-negligible set, in a countable union of
n-dimensional Lipschitz graphs. Mattila, Melnikov and Verdera in [14] proved that whenever
E is an 1-Ahlfors-David regular set that the L2(H1�E)-boundedness of the Cauchy transform
is equivalent to E being 1-uniformly rectifiable. A set E is called 1-Ahlfors-David regular,
or 1-AD-regular, if there exists some constant c such that

c−1r ≤ H1(B(x, r) ∩ E) ≤ c r for all x ∈ E, 0 < r ≤ diam(E).

Uniform rectifiability is a influential notion of quantitative rectifiability introduced by David
and Semmes, [6] and [7]. In particular a set E is 1-uniformly rectifiable if it 1-AD regular and
is containted in an 1-AD regular rectifiable curve. Legér in [12] proved that if E has positive
and finite length and the Cauchy transform is bounded in L2(H1�E) then E is rectifiable.
It is a remarkable fact that the proofs of the aforementioned results depend crucially on a
special subtle positivity property of the Cauchy kernel related to an old notion of curvature
named after Menger. Given three distinct points z1, z2, z3 ∈ C their Menger curvature is

c(z1, z2, z3) = 1

R(z1, z2, z3)
, (1.3)

where R(z1, z2, z3) is the radius of the circle passing through x, y and z. Melnikov in [19]
discovered that the Menger curvature is related to the Cauchy kernel by the formula

c(z1, z2, z3)
2 =

∑
s∈S3

1

(zs2 − zs1)(zs3 − zs1)
, (1.4)

where S3 is the group of permutations of three elements. It follows immediately that the
permutations of the Cauchy kernel are always positive. Further implications of this identity
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438 V. Chousionis, L. Prat

related to the L2-boundedness of the Cauchy transform where illuminated by Melnikov and
Verdera in [20].

While the Cauchy transform is pretty well understood in this context, very few things are
know for other kernels. The David-Semmes conjecture, dating from 1991, asks if the L2(μ)-
boundedness of the operators associated with the n-dimensional Riesz kernel x/|x |n+1,
suffices to imply n-uniform rectifiabilty. For n = 1 we are in the case of the Cauchy trans-
form discussed in the previous paragraph. The conjecture has been very recently resolved by
Nazarov, Tolsa and Volberg in [21] in the codimension 1 case, that is for n = d − 1, using a
mix of different deep techniques some of them depending crucially on n being d − 1. The
conjecture is open for the intermediate values n ∈ (1, d − 1) Recently in [3] the kernels
x2n−1
i /|x |2n, x ∈ R

2, n ∈ N, were considered and it was proved that the L2-boundedness of
the operators associated with any of these kernels implies rectifiability. These are the only
known examples of convolution kernels not directly related to the Riesz kernels with this
property. In this paper we extend this result to any ambient dimension d .

For n ∈ N and E ⊂ R
d with finite length we consider the singular integral operator

Tn = (T i
n )di=1 where formally

T i
n ( f )(x) =

∫
E
K i
1,n(x − y) f (y)dH1(y) (1.5)

and

K i
1,n(x) = x2n−1

i

|x |2n , x = (x1, . . . , xd) ∈ R
d\{0}.

We extend Theorem 1.2 and Theorem 1.3 from [3] to any dimension d . Our result reads as
follows.

Theorem 1.2 Let E ⊂ R
d be a Borel set such that 0 < H1(E) < ∞,

(1) if Tn is bounded in L2(H1�E), then the set E is rectifiable.
(2) if moreover E is 1-AD-regular then Tn is bounded in L2(H1�E) if and only if E is

1-uniformly rectifiable.

The plan of the paper is the following. In Sect. 2 we outline the proof of Theorem 1.1
which is based on two main technical ingredients: positivity of the quantity obtained when
symmetrizing the kernel K i

α,n and the fact that our kernel localizes in the uniform norm. In
Sect. 3 we state all the necessary Propositions involving the permutations of the kernels Kα,n .
Due to their technical nature we have included the proofs of these results in an “Appendix”.
Section 4 is devoted to the proof of the Localization Theorem for our potentials. In Sect. 5
we complete the proof of the main theorem showing that γ n

α is comparable to C 2
3 (2−α), 32

.
Finally in Sect. 6 we elaborate how Theorem 1.2 follows from our symmetrization results
involving the permutations of the kernels K1,n and [3].

2 Sketch of the proof of Theorem 1.1

Our proof of Theorem 1.1 rests on two steps:
First step. The first step is the analogue of the main result in the paper [26], that is, the

equivalence between the capacities γ n
α and γ n

α,+, where for compact sets K ⊂ R
2,

γ n
α,+(K ) = supμ(K ),
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the supremum taken over those positive measures μ with support in K whose vector-valued
potential Kα,n ∗μ lies on the unit ball of L∞(R2, R

2) (see also [16,17,24] and [4] for related
results). Clearly, the quantity γ n

α is larger or equal than γ n
α,+. The reverse inequality can be

obtained following Tolsa’s approach in [26], which is based on two main technical points,
the first one is the symmetrization of the kernels K i

α,n , n ∈ N, 0 < α ≤ 1, i = 1, 2, and the
second one is a localization result for K i

α,n , i = 1, 2.
In Sect. 3, we deal with the symmetrization process for our kernels. We prove, not only

the positivity but the explicit description of the quantity obtained when symmetrizing the
kernels K i

α,n , for 0 < α ≤ 1. This will allow us to study the L2-boundedness of the operators
with kernel K i

α,n .
The localization result needed in our setting is written in Sect. 4. Specifically, we prove

that there exists a positive constant C such that, for each compactly supported distribution T
and for each coordinate i , we have

∥∥∥K i
α,n ∗ ϕQT

∥∥∥∞ ≤ C
∥∥∥K i

α,n ∗ T
∥∥∥∞ , (2.6)

for each square Q and each ϕQ ∈ C∞
0 (Q) satisfying ‖ϕQ‖∞ ≤ C , ‖∇ϕQ‖∞ ≤ l(Q)−1

and ‖�ϕQ‖∞ ≤ l(Q)−2, where l(Q) denotes the sidelength of the cube Q. Once the sym-
metrization and (2.6) is at our disposal, Tolsa’s machinery applies straighforwardly as was
already explained in [16, Section 2.2].

Second step. Once step 1 is performed, i.e. the comparability between the capacities γ n
α

and γ n
α,+, we complete the proof of the main theorem showing that γ n

α,+ is equivalent to
C 2

3 (2−α), 32
in Sect. 5.

3 Permutations of the kernels Kα,n

For any three distinct x, y, z ∈ R
d , we consider the symmetrization of the kernels K i

α,n :

piα,n(x, y, z) = K i
α,n(x − y) Ki

α,n(x − z) + K i
α,n(y − x) Ki

α,n(y − z)

+ K i
α,n(z − x) K i

α,n(z − y).
(3.7)

We prove that the permutations piα,n(x, y, z), n ∈ N and 0 < α < 1 behave like the
inverse of the largest side of the triangle determined by the points x, y, z to the power 2α.
We also prove a comparability result of the permutations with Menger curvature when α = 1
which is essential in order to extend the rectifiabilty results from [3]. It is an interesting fact
that our proofs also depend on Heron’s formula of Euclidean geometry. In order to enhance
readability we chose to include the rather lengthy proofs of the following propositions in an
“Appendix”.

Proposition 3.1 Let 0 < α < 1 and x, y, z be three distinct points in R
d . For 1 ≤ i ≤ d we

have
A(n, d, α) M2n

i

L(x, y, z)2α+2n ≤ piα,n(x, y, z) ≤ B(n, d, α)

L(x, y, z)2α
(3.8)

where Mi = max{|yi − xi |, |zi − yi |, |zi − xi |}, L(x, y, z) denotes the length of the largest
side of the triangle determined by the three points x, y, z and A(n, d, α), B(α, n) are some
positive constants depending only on d, α, n.
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440 V. Chousionis, L. Prat

We also consider

pα,n(x, y, z) =
d∑

i=1

piα,n(x, y, z). (3.9)

Proposition 3.1 allows us to prove the following:

Corollary 3.2 Let 0 < α < 1 and x, y, z be three distinct points in R
d . Then the following

holds
A(n, d, α)

L(x, y, z)2α
≤ pα,n(x, y, z) ≤ B(n, d, α)

L(x, y, z)2α

where L(x, y, z) denotes the length of the largest side of the triangle determined by the three
points x, y, z and A(n, d, α), B(n, d, α) are some positive constants depending on n, and
n, d, α respectively.

Proof For 1 ≤ i ≤ d set Mi = max{|yi − xi |, |zi − yi |, |zi − xi |}. Without loss of generality
assume thatM1 = max{Mi : 1 ≤ i ≤ d}. ThenM1 is comparable to L(x, y, z). The corollary
follows from Proposition 3.1. ��

For any two distinct points x1, x2 ∈ R
d we denote by Lx1,x2 the line which contains them

and for any two lines L1 and L2 we denote by �(L1, L2) the smallest angle between L1 and
L2.

Proposition 3.3 For any three distinct points x, y, z ∈ R
d and i = 1, . . . , d,

(i) pi1,n(x, y, z) ≥ 0 and vanishes if and only if x, y, z are collinear or the three points lie
on a (d − 1)-hypersurface perpendicular to the i axis, that is xi = yi = zi .

(ii) If Vj = {x j = 0} and �(Vj , Lx,y) + �(Vj , Lx,z) + �(Vj , Ly,z) ≥ θ0 > 0, then
∑
i �= j

pi1,n(x, y, z) ≥ C(θ0)c(x, y, z)
2.

4 Growth conditions and localization

4.1 Growth conditions

Recall that for a compactly supported distribution T with bounded Cauchy potential

|〈T, ϕQ〉| =
∣∣∣∣
〈
T,

1

π z
∗ ∂ϕQ

〉∣∣∣∣ =
∣∣∣∣
〈
1

π z
∗ T, ∂ϕQ

〉∣∣∣∣
≤ 1

π

∥∥∥∥1z ∗ T

∥∥∥∥∞
‖∂ϕQ‖L1(Q) ≤ 1

π

∥∥∥∥1z ∗ T

∥∥∥∥∞
l(Q),

whenever ϕQ satisfies ‖∂ϕQ‖L1(Q) ≤ l(Q).

We want to deduce a similar growth condition for the case of having bounded T ∗ K i
α,n ,

i = 1, 2, potentials. This is crucial in obtaining the localization result in Lemma 4.4. The
above written argument is based on the fact that one can recover f using the formula f =
(1/π)∂ f ∗ 1/z. Therefore, we need an analogous reproduction formula for the kernels K i

α,n ,
i = 1, 2. In [22] (Lemma 3.1) a reproduction formula for xi/|x |1+α , 0 < α < 1, in R

d was
found. In our current setting, the kernels depend on n ∈ N hence the arguments are more
technically involved.
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Lemma 4.1 If a function f has continuous derivatives up to order two, then it is repre-
sentable in the form

f (x) = (ϕ1 ∗ K1)(x) + (ϕ2 ∗ K2)(x), x ∈ R
2, (4.10)

where for i = 1, 2,

ϕi = Si (� f ) ∗ xi
|x |3−α

:= (
c� f + S̃i (� f )

) ∗ xi
|x |3−α

,

for some constant c and Calderón–Zygmund operators S̃1 and S̃2.

Once Lemma 4.1 is available, we obtain the desired growth condition for our compactly
supported distribution T with bounded potentials K i

α,n ∗ T , i = 1, 2:

|〈T, ϕQ〉| =
∣∣∣∣
〈
T, K1 ∗ S1(�∂1ϕQ) ∗ 1

|x |1−α
+ K2 ∗ S2(�∂2ϕQ) ∗ 1

|x |1−α

〉∣∣∣∣

≤
2∑

i=1

∣∣∣∣
〈
Si (K

i
α,n ∗ T ),�∂iϕQ ∗ 1

|x |1−α

〉∣∣∣∣

≤
2∑

i=1

∥∥∥Si (K i
α,n ∗ T )

∥∥∥
BMO

∥∥∥∥�∂iϕQ ∗ 1

|x |1−α

∥∥∥∥
H1(R2)

≤ C l(Q)α,

(4.11)

whenever ϕQ satisfies the conditions∥∥∥∥�∂iϕQ ∗ 1

|x |1−α

∥∥∥∥
H1(R2)

≤ l(Q)α, for i = 1, 2. (4.12)

Observe that the penultimate inequality in (4.11) comes from the fact that Calderón–
Zygmund operators send L∞ to BMO. Recall that a function f ∈ H1(R2) if and only if
f ∈ L1(R2) and all its Riesz transforms R j , 1 ≤ j ≤ 2, (the Calderón–Zygmund operators
with Fourier multiplier ξ j/|ξ |) are also in L1(R2). The norm of H1(R2) is defined as

‖ f ‖H1(R2) = ‖ f ‖L1(R2) +
2∑
j=1

‖R j ( f )‖L1(R2).

We now formulate a definition. We say that a distribution T has growth α provided that

Gα(T ) = sup
ϕQ

|〈T, ϕQ〉|
l(Q)α

< ∞,

where the supremum is taken over all ϕQ ∈ C∞
0 (Q) satisfying the normalization inequalities

(4.12) (see also [17] and [24], for similar conditions). The normalization in the H1 norm
is the right condition to impose, as will become clear later on. Recall that a positive Radon
measure has growth α provided μ(B(x, r)) ≤ Crα , for x ∈ R

2 and r ≥ 0. For positive
Radon measures μ in R

2 the preceding notion of α growth is equivalent to the usual one.
Notice that from (4.11), if T is a compactly supported distributionwith bounded potentials

K1 ∗ T and K2 ∗ T , then T has growth α.
For the proof of Lemma 4.1 we need to compute the Fourier transform of the kernels

K i
α,n(x) = x2n−1

i /|x |2n−1+α , 1 ≤ i ≤ 2, n ∈ N, 0 < α < 1 (see Lemma 12 in [4] for the
case α = 1).
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Lemma 4.2 For 1 ≤ i ≤ 2, n ∈ N and 0 < α < 1,

̂K i
α,n(ξ) = c

ξi

|ξ |2n+1−α
p(ξ1, ξ2),

for some homogeneous polynomial p(ξ1, ξ2) of degree 2n − 2 with no non-vanishing zeros
and some positive constant c := c(α, n).

To prove Lemma 4.2, the following identity is vital.

Lemma 4.3 For n ∈ N and 0 ≤ l ≤ n − 1,

l+1∑
k=1

(−1)k
(1 − α)(3 − α) · · · (2k − 1 − α)

2n−k (2k − 1)! (l + 1 − k)! = − (1 − α)α(α + 2)(α + 4) . . . (α + 2(l − 1))

2n−1−l (2l + 1)! .

Proof Consider the polynomial

p(α) =
l+1∑
k=1

(−1)k
(1 − α)(3 − α) . . . (2k − 1 − α)

2n−k (2k − 1)! (l + 1 − k)! . (4.13)

It follows immediately that α = 1 is a root of p. In the following we will show that
0,−2,−4, . . . ,−2(l − 1) are also roots of p. For j = 0, 1, . . . , l − 1

p(−2 j) =
l+1∑
k=1

(−1)k
(1 + 2 j)(3 + 2 j) . . . (2k − 1 + 2 j)

(2k − 1)!2n−k(l + 1 − k)!

= 1

1 · 3 . . . (2 j − 1)

l+1∑
k=1

(−1)k
(2k + 2 j)!

(2k − 1)!2n−k(l + 1 − k)!2k+ j (k + j)!

= 1

1 · 3 . . . (2 j − 1) 2n+ j

l+1∑
k=1

(−1)k
2k(2k + 1) . . . (2k + 2 j)

(k + j)!(l + 1 − k)!

= 1

1 · 3 . . . (2 j − 1) 2n+ j

·
l+1∑
k=1

(−1)k
2 j+1k · (k + 1) . . . (k + j) (2k + 1)(2k + 3) . . . (2k + 2 j − 1)

(k − 1)!k · (k + 1) . . . (k + j) (l + 1 − k)! .

Hence

p(−2 j) = 1

1 · 3 . . . (2 j − 1) 2n−1

l+1∑
k=1

(−1)k
(2k + 1)(2k + 3) . . . (2k + 2 j − 1)

(k − 1)! (l + 1 − k)!

= 1

1 · 3 . . . (2 j − 1) 2n−1

l+1∑
k=1

j∑
i=0

(−1)kci ki

(k − 1)! (l + 1 − k)!

= 1

1 · 3 . . . (2 j − 1) 2n−1

j∑
i=0

ci

l+1∑
k=1

(−1)kki

(k − 1)! (l + 1 − k)!
Therefore in order to prove that −2 j, j = 0, . . . , l − 1 are roots of p it suffices to show that

l+1∑
k=1

(−1)kki

(k − 1)! (l + 1 − k)! = −
l∑

m=0

(−1)m(m + 1)i

m! (l − m)! = 0
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for i = 0, . . . , j . This will follow immediately if we show that for any l ≥ 1

l∑
m=0

(−1)mmi

m! (l − m)! = 0 (4.14)

for i = 0, . . . , j . We will prove (4.14) by induction. For i = 0 we have that for any l ≥ 1

l∑
m=0

(−1)m

m! (l − m)! = 1

l!
l∑

m=0

(
l

m

)
(−1)m = (1 − 1)l

l! = 0.

We will now assume that for any l ≥ 1

l∑
m=0

(−1)mmi

m! (l − m)! = 0 (4.15)

for i = 0, . . . , j − 1. Then by (4.15),

l∑
m=0

(−1)mm j

m! (l − m)! =
l∑

m=1

(−1)mm j−1

(m − 1)! (l − m)!

=
l−1∑
N=0

(−1)N+1(1 + N ) j−1

N ! (l − 1 − N )!

=
l−1∑
N=0

(−1)N+1 ∑ j−1
i=0

( j−1
i

)
Ni

N ! (l − 1 − N )!

=
j−1∑
i=0

(
j − 1

i

) l−1∑
N=0

(−1)N+1Ni

N ! (l − 1 − N )!
= 0.

Hence we have shown that

p(α) = C(l)(1 − α)α(α + 2) · · · (α + 2(l − 1)).

Plugging this into (4.13) we see that−C(l) is the coefficient of the greatest degree monomial
of the polynomial in (4.13), that is,

C(l) = −coefficient of αl+1 = − (−1)l+1(−1)l+1

(2l + 1)! 2n−l−1 = − 2l+1

2n(2l + 1)! .

��

Proof of lemma 4.2 Without loss of generality fix i = 1. Notice that for some constant c,

̂K i
α,n(ξ) = c ∂2n−1

1 |ξ |2n−3+α.

To compute ∂2n−1
1 |x |β , for β = 2n − 3 + α, we will use the following formula from [13]:

L(∂)En =
n−1∑
k=0

1

2k k! �k L(x)

(
1

r

∂

∂r

)2n−1−k

En(r),
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444 V. Chousionis, L. Prat

where r = |x | and L(x) = x2n−1
1 . First notice that for 0 ≤ k ≤ n − 1, we have

�k(x2n−1
1 ) =

(
2n − 1

2k

)
(2k)! x2n−2k−1

1 ,

and one can check that(
1

r

∂

∂r

)m

rβ = β(β − 2) · · · (β − 2m + 2)rβ−2m .

Therefore for En = |x |β and β = 2n − 3 + α,

∂2n−1
1 |x |β =

n−1∑
k=0

(
2n−1

2k

)
(2k)!
2kk! x

2n−2k−1
1 β(β − 2) · · · (β − 2(2n−1−k)+2)rβ−2(2n−1−k)

= x1
|x |4n−2−β

(2n − 1)!β(β − 2) · · · (β − 2(n − 2))

·
n−1∑
k=0

x2(n−k−1)
1 |x |2k

(2n − 1 − 2k)! 2k k! (β − 2(2n − 2 − (n − 1))) · · · (β−2(2n−2−k))

=c(n)
x1

|x |2n+1−α

n−1∑
k=0

x2(n−k−1)1 |x |2k
(2n−1−2k)! 2k k! (−1+α)(−3+α) · · · (−2(n−k)+1+α).

Therefore

∂2n−1
1 |x |β = c(n)

x1
|x |2n+1−α

n−1∑
k=0

akx
2(n−k−1)
1 |x |2k, (4.16)

where

ak = (−1)n−k (1 − α)(3 − α) · · · (2(n − k) − 1 − α)

(2n − 1 − 2k)! 2k k!
We claim that the homogeneous polynomial of degree 2n − 2 in (4.16), namely,

p(x1, x2) =
n−1∑
k=0

akx
2(n−k−1)
1 |x |2k, (4.17)

has negative coefficients. Notice that

p(x) =
n−1∑
k=0

ak x2(n−k−1)
1 (x21 + x22 )

k =
n−1∑
k=0

k∑
j=0

ak

(
k

j

)
x2(n−k+ j−1)
1 x2(k− j)

2

=
n−1∑
l=0

b2l x
2l
1 x2(n−1−l)

2 ,

where for 0 ≤ l ≤ n − 1,

b2l =
l+1∑
k=1

an−k

(
n − k

l + 1 − k

)
=

l+1∑
k=1

(−1)k(1 − α)(3 − α) · · · (2k − 1 − α)

(2k − 1)! 2n−k (l + 1 − k)! (n − l − 1)! .

Applying now Lemma 4.3, we get that the coefficients b2l , 0 ≤ l ≤ n − 1, of the polynomial
p are negative. ��

123



Some Calderón–Zygmund kernels and their relations to Wolff… 445

Now we are ready to prove the reproduction formula that will allow as to obtain the
localization result that we need.

Proof of Lemma 4.1 By lemma 4.2, the Fourier transform of (4.10) is

f̂ (ξ) = ϕ̂1(ξ)
ξ1

|ξ |3−α

p(ξ1, ξ2)

|ξ |2n−2 + ϕ̂2(ξ)
ξ2

|ξ |3−α

p(ξ2, ξ1)

|ξ |2n−2 ,

where p is some homogeneous polynomial of degree 2n − 2 with no non-vanishing zeros.

Define the operators R1, R2 associated to the kernels r̂1(ξ1, ξ2) = p(ξ1, ξ2)

|ξ |2n−2 and

r̂2(ξ1, ξ2) = r̂1(ξ2, ξ1) respectively. Since p is a homogeneous polynomial of degree 2n− 2,
it can be decomposed as

p(ξ1, ξ2) =
n−1∑
j=0

p2 j (ξ1, ξ2)|ξ |2n−2−2 j ,

with p2 j being homogeneous harmonic polynomials of degree 2 j (see [25, Section 3.1.2, p.
69]). Hence, the operators Ri , i = 1, 2, can be written as

Ri f = c f + p.v.
�(x/|x |)

|x |2 ∗ f, (4.18)

for some constant c and � ∈ C∞ with zero average. Therefore, by [8, Theorem 4.15, p.
82] the operators Ri , 1 ≤ i ≤ 2, are invertible operators and the inverse operators, say
Si have the same form as Ri . This means that the operators Si , i = 1, 2,, with kernels

ŝ1(ξ1, ξ2) = |ξ |2n−2

p(ξ1, ξ2)
and ŝ2(ξ1, ξ2) = ŝ1(ξ2, ξ1) respectively, can be written as in (4.18).

Finally, setting

ϕi = Si (� f ) ∗ xi
|x |3−α

for i = 1, 2, finishes the proof of the Lemma. ��
4.2 Localization

In what follows, given a square Q, ϕQ will denote an infinitely differentiable function sup-
ported on Q and such that ‖ϕQ‖∞ ≤ C , ‖∇ϕQ‖∞ ≤ l(Q)−1 and ‖�ϕQ‖∞ ≤ l(Q)−2.

The localization lemma presented in the following is an extension of Lemma 14 in [4] for
0 < α < 1.

Lemma 4.4 Let T be a compactly supported distribution in R
2 with growth α, 0 < α <

1, such that (x2n−1
i /|x |2n−1+α) ∗ T ∈ L∞(R2) for some n ∈ N and 1 ≤ i ≤ 2. Then

(x2n−1
i /|x |2n−1+α) ∗ ϕQ ∈ L∞(R2) and

∥∥∥∥∥
x2n−1
i

|x |2n−1+α
∗ ϕQT

∥∥∥∥∥∞
≤ C

(∥∥∥∥∥
x2n−1
i

|x |2n−1+α
∗ T

∥∥∥∥∥∞
+ Gα(T )

)
,

for some positive constant C.

The next lemma states a sufficient condition for a test function to satisfy the normalization
conditions in (4.12).
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446 V. Chousionis, L. Prat

Lemma 4.5 Let fQ be a test function supported on a square Q, satisfying ‖� fQ‖L1(Q) ≤ C.

Then, ∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
H1(R2)

≤ l(Q)α, for i = 1, 2.

Proof of Lemma 4.5 We have to show that for i = 1, 2,∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

≤ l(Q)α (4.19)

and ∥∥∥∥R j (�∂i fQ) ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

≤ l(Q)α, j = 1, 2, (4.20)

where R j , j = 1, 2, is the j-th component of the Riesz operator with kernel x j/|x |3.∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

=
∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1(2Q)

+
∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1((2Q)c)

= A + B.

We estimate first the term A. By taking one derivative from f to the kernel, using Fubini
and the fact that ‖� fQ‖L1 ≤ C , we obtain

A =
∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1(2Q)

≤
∫
2Q

∫
Q

|� fQ(x)|
|x − y|2−α

dxdy ≤ Cl(Q)α.

To estimate term B we bring the Laplacian from fQ to the kernel |x |α−1 and then use
Fubini, the Cauchy-Schwartz inequality and a well known inequality of Maz’ya, [18, 1.1.4,
p. 15], and [18, 1.2.2, p. 24] , stating that ‖∇ fQ‖2 ≤ C‖� fQ‖1. Hence,∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
L1((2Q)c)

≤ C
∫

(2Q)c

∫
Q

|∂i fQ(x)|
|x − y|3−α

dxdy

≤ C ‖∇ fQ‖L1(Q) l(Q)α−1 ≤ C ‖∇ fQ‖2 l(Q)α ≤ C l(Q)α,

the last inequality coming from the hypothesis ‖� fQ‖L1 ≤ C . This finishes the proof of
(4.19). To prove (4.20), we remark that,

x j
|x |3 ∗ 1

|x |1−α
= c

x j
|x |2−α

, (4.21)

for some constant c. This can be seen by computing the Fourier transform of the above
kernels. Using this fact, we obtain that∥∥∥∥R j (�∂i fQ) ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

=
∥∥∥∥�∂i fQ ∗ x j

|x |3 ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

= c

∥∥∥∥�∂i fQ ∗ x j
|x |2−α

∥∥∥∥
L1(R2)

≤ Cl(Q)α,

where the last integral can be estimated in an analogous way as (4.19). This finishes the proof
of (4.20) and the lemma. ��

For the proof of Lemma 4.4 we need the following preliminary lemma.
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Lemma 4.6 Let T be a compactly supported distribution in R
2 with growth α. Then, for

each coordinate i , the distribution (x2n−1
i /|x |2n−1+α) ∗ϕQT is an integrable function in the

interior of 1
4Q and∫

1
4 Q

∣∣∣∣∣
(

x2n−1
i

|x |2n−1+α
∗ ϕQT

)
(y)

∣∣∣∣∣ dy ≤ C Gα(T ) l(Q)2,

where C is a positive constant.

For α = 1 the proof Lemma 4.6 can be found in [4]. In R
d , for n = 1 and 0 < α < d , the

proof is given in [24]. Although the scheme of our proof is the same as in the papers cited
above, several difficulties arise due to the fact that we are considering more general kernels,
namely kernels involving non-integer indexes α and n ∈ N.

For the rest of the section we will assume, without loss of generality, that i = 1 and we
will write K1(x) = x2n−1

1 /|x |2n−1+α .

Proof of Lemma 4.6 We will prove that K1 ∗ ϕQT is in L p(2Q) for each p in 1 ≤ p < 2.
Indeed, fix any q satisfying 2 < q < ∞ and call p the dual exponent, so that 1 < p < 2.
We need to estimate the action of K1 ∗ ϕQT on functions ψ ∈ C∞

0 (2Q) in terms of ‖ψ‖q .
We clearly have

〈K1 ∗ ϕQT, ψ〉 = 〈T, ϕQ(K1 ∗ ψ)〉.
We claim that, for an appropriate positive constant C , the test function

fQ = ϕQ(K1 ∗ ψ)

C l(Q)
2
p −α‖ψ‖q

satisfies the normalization inequalities (4.12) in the definition of Gα(T ). Once this is proved,

by the definition of Gα(T ) we get that |〈K1 ∗ ϕQT, ψ〉| ≤ C l(Q)
2
p ‖ψ‖q Gα(T ), and

therefore ‖K1 ∗ ϕQT ‖L p(2Q) ≤ C l(Q)
2
p Gα(T ). Hence

1

| 14Q|
∫

1
4 Q

|(K1 ∗ ϕQT )(x)| dx ≤ 16
1

|Q|
∫
Q

|(K1 ∗ ϕQT )(x)| dx

≤ 16

(
1

|Q|
∫
Q

|(K1 ∗ ϕQT )(x)|p dx
) 1

p

≤ C Gα(T ),

which proves Lemma 4.6.
Notice that since�(ϕQ(K1∗ψ) is not in L1(Q), to prove the claim, we cannot use Lemma

4.5. Therefore we have to check that, for i = 1, 2,∥∥∥∥�∂i fQ ∗ 1

|x |1−α

∥∥∥∥
H1(R2)

≤ C l(Q)α.

This is equivalent to checking conditions∥∥∥∥�∂i
(
ϕQ(K1 ∗ ψ)

) ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

≤ C l(Q)
2
p ‖ψ‖q (4.22)

and ∥∥∥∥R j (�∂i
(
ϕQ(K1 ∗ ψ)

)
) ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

≤ C l(Q)
2
p ‖ψ‖q (4.23)

for i, j = 1, 2.
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By Fubini and Hölder,∫
Q

|(K1 ∗ ψ)(y)|dy ≤
∫
2Q

|ψ(z)|
∫
Q

dydz

|z − y|α ≤ C‖ψ‖ql(Q)
2
p +2−α

. (4.24)

In the same way one can obtain∫
Q

|(∂i K1 ∗ ψ)(y)|dy ≤
∫
2Q

|ψ(z)|
∫
Q

dydz

|z − y|1+α
≤ C‖ψ‖ql(Q)

2
p +1−α

, i = 1, 2.

(4.25)
To check (4.22) we compute first the L1-norm in (2Q)c by bringing all derivatives to the
kernel |x |α−1, using Fubini and (4.24). Then∥∥∥∥�∂i

(
ϕQ(K1 ∗ ψ)

) ∗ 1

|x |1−α

∥∥∥∥
L1((2Q)c)

≤ C
∫
Q

|(K1 ∗ ψ)(y)|
∫

(2Q)c

dxdy

|y − x |4−α

≤ C‖ψ‖ql(Q)
2
p .

(4.26)

Now we are left to compute the L1-norm in 2Q of the integral in (4.22). For this, we bring
the Laplacian to the kernel |x |α−1. Since for i = 1, 2, we clearly have ∂i

(
ϕQ(K1 ∗ ψ)

)
) =

∂iϕQ(K1 ∗ ψ) + ϕQ∂i (K1 ∗ ψ), adding and substracting some terms to get integrability, we
get ∥∥∥∥�∂i

(
ϕQ(K1 ∗ ψ)

) ∗ 1

|x |1−α

∥∥∥∥
L1(2Q)

≤ C
∫
2Q

∣∣∣∣
∫
Q

(ϕQ(y) − ϕQ(x))(∂i K1 ∗ ψ)(y)

|y − x |3−α
dy

∣∣∣∣ dx

+ C
∫
Q

|ϕQ(x)|
∣∣∣∣
(

�∂i K1 ∗ ψ ∗ 1

|y|1−α

)
(x)

∣∣∣∣ dx

+ C
∫
Q

∣∣∣∣
∫
Qc

ϕQ(x)(∂i K1 ∗ ψ)(y)

|y − x |3−α
dy

∣∣∣∣ dx

+ C
∫
2Q

∣∣∣∣
∫
Q

(∂iϕQ(y) − ∂iϕQ(x))(K1 ∗ ψ)(y)

|y − x |3−α
dy

∣∣∣∣ dx

+ C
∫
Q

|∂iϕQ(x)|
∣∣∣∣
(

�K1 ∗ ψ ∗ 1

|y|1−α

)
(x)

∣∣∣∣ dx

+ C
∫
Q

∣∣∣∣
∫
Qc

∂iϕQ(x)(K1 ∗ ψ)(y)

|y − x |3−α
dy

∣∣∣∣ dx
= A1 + A2 + A3 + A4 + A5 + A6,

(4.27)

the last identity being a definition for Al , 1 ≤ l ≤ 6.
The mean value theorem, Fubini and (4.25), give us

A1 ≤ Cl(Q)−1
∫
Q

|(∂i K1 ∗ ψ)(y)|
∫
2Q

1

|y − x |2−α
dx dy ≤ C‖ψ‖ql(Q)

2
p .

The same reasoning but using (4.24) instead of (4.25), give us A4 ≤ C‖ψ‖ql(Q)
2
p .

We deal now with term A2. By Lemma 4.2, taking Fourier transform of the convolution
�∂i K1 ∗ ψ ∗ 1

|y|1−α , one sees that

̂
(

�∂i K1 ∗ ψ ∗ 1

|y|1−α

)
(ξ) = c

ξiξ1 p(ξ1, ξ2)

|ξ |2n ψ̂(ξ).
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Therefore, since the homogeneous polynomial ξiξ1 p(ξ1, ξ2), of degree 2n, has no non-
vanishing zeros, by [8, Theorem4.15,p.82], we obtain that(

�∂i K1 ∗ ψ ∗ 1

|y|1−α

)
(x) = cψ + cS0(ψ)(x),

for some constant c and some smooth homogeneous Calderón–Zygmund operator S0.
Now using Hölder’s inequality and the fact that Calderón–Zygmund operators preserve

Lq(R2), 1 < q < ∞, we get A2 ≤ Cl(Q)2/p‖ψ‖q .
To estimate A3, notice that ϕQ is supported on Q, therefore

A3 ≤ C
∫
Q

∣∣∣∣
∫
3Q\Q

(ϕQ(x) − ϕQ(y))(∂i K1 ∗ ψ)(x)

|y − x |3−α
dy

∣∣∣∣ dx

+ C
∫
Q

|ϕQ(x)|
∫

(3Q)c

|(∂i K1 ∗ ψ)(y)|
|y − x |3−α

dy dx = A31 + A32.

For A31 we use the mean value theorem and argue as in the estimate of A1. We deal now
with A32:

A32 ≤ C
∫
Q

∫
(3Q)c

1

|y − x |3−α

∫
2Q

|ψ(z)|
|z − y|1+α

dz dy dx

≤ Cl(Q)−1−α‖ψ‖1
∫
Q

∫
(3Q)c

1

|y − x |3−α
dy dx

≤ Cl(Q)−1−α‖ψ‖ql(Q)
2
p l(Q)1+α = Cl(Q)

2
p ‖ψ‖q ,

using Hölder’s inequality. To estimate terms A5 and A6, one argues in a similar manner, we
leave the details to the reader. This finishes the proof of (4.22).

We are still left with checking that condition (4.23) holds. Notice that by (4.21),∥∥∥∥R j (�∂i
(
ϕQ(K1 ∗ ψ)

)
) ∗ 1

|x |1−α

∥∥∥∥
L1(R2)

= c

∥∥∥∥�∂i
(
ϕQ(K1 ∗ ψ)

) ∗ x j
|x |2−α

∥∥∥∥
L1(R2)

= B1 + B2,

where B1 and B2 denote the above L1 norm in (2Q)c and in 2Q respectively. To estimate
B1 we transfer all derivatives to the kernel x j/|x |2−α and argue as in (4.26). The estimate of
B2 follows the same reasoning as (4.27). ��

For the reader’s convenience, we repeat the main points of the proof of the localization
lemma, for more details see [4].

Proof of Lemma 4.4 Let x ∈ ( 32Q)c. Since |(K1 ∗ ϕQT )(x)| = l(Q)−α|〈T, l(Q)αϕQ(y)
K1(x − y)〉|, by (4.11) and Lemma 4.5, the required estimate of the L∞−norm of the
function K1 ∗ ϕQT is equivalent to checking that fQ(y) = l(Q)αϕQ(y)K1(x − y) satisfies
‖� fQ‖L1(Q) ≤ C , which is easily seen to hold for this case.

If x ∈ 3
2Q, the boundedness of ϕQ and T ∗ K1 implies that

|(K1 ∗ ϕQT )(x)| ≤ |(K1 ∗ ϕQT )(x) − ϕQ(x)(K1 ∗ T )(x)| + ‖ϕQ‖∞‖K1 ∗ T ‖∞.

We consider now ψQ ∈ C∞
0 (R2) such that ψ ≡ 1 in 2Q, ψ ≡ 0 in (4Q)c, ‖ψQ‖∞ ≤ C ,

‖∇ψQ‖∞ ≤ Cl(Q)−1 and ‖�ψQ‖∞ ≤ Cl(Q)−2. Set K x
1 (y) = K1(x − y). Then,

|(K1 ∗ ϕQT )(x) − ϕQ(x)(K1 ∗ T )(x)| ≤ |〈T, ψQ(ϕQ − ϕQ(x))K x
1 〉|

+ ‖ϕQ‖∞|〈T, (1 − ψQ)K x
1 〉| = A + B.

(4.28)
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In fact, for the first term in the right hand side of (4.28) to make sense, one needs to
resort to a standard regularization process, whose details may be found in [17, Lemma12]
for example.

The estimate of the term A is a consequence of the α−growth of the distribution (see
(4.11)) and Lemma 4.5, because the mean value theorem implies that fQ = l(Q)αψQ(ϕQ −
ϕQ(x))K x

1 satisfies ‖� fQ‖1 ≤ C .
We turn now to B. ByLemma4.6, there exists a Lebesgue point of K1∗ψQT , x0 ∈ Q, such

that |(K1∗ψQT )(x0)| ≤ CGα(T ). Then |(K1∗(1−ψQ)T )(x0)| ≤ C(‖K1∗T ‖∞+Gα(T )),
which implies

B ≤ C |〈T, (1 − ψQ)(K x
1 − K x0

1 )〉| + C(‖K1 ∗ T ‖∞ + Gα(T )).

To estimate |〈T, (1 − ψQ)(K x
1 − K x0

1 )〉|, we decompose R
2\{x} into a union of rings

N j = {z ∈ R
2 : 2 j l(Q) ≤ |z − x | ≤ 2 j+1 l(Q)}, j ∈ Z,

and consider functions ϕ j in C∞
0 (R2), with support contained in

N∗
j = {z ∈ R

2 : 2 j−1 l(Q) ≤ |z − x | ≤ 2 j+2 l(Q)}, j ∈ Z,

such that ‖ϕ j‖∞ ≤ C , ‖∇ϕ j‖∞ ≤ C (2 j l(Q))−1, ‖�ϕ j‖∞ ≤ C (2 j l(Q))−2 and
∑

j ϕ j =
1 on R

2 \ {x}. Since x ∈ 3
2Q the smallest ring N∗

j that intersects (2Q)c is N∗−3. Therefore
we have

|〈T, (1 − ψQ)(K x
1 − K x0

1 )〉| =
∣∣∣∣∣∣
〈
T,

∑
j≥−3

ϕ j (1 − ψQ)(K x
1 − K x0

1 )

〉∣∣∣∣∣∣

≤
∣∣∣∣∣∣
〈
T,

∑
j∈I

ϕ j (1 − ψQ)(K x
1 − K x0

1 )

〉∣∣∣∣∣∣
+

∑
j∈J

|〈T, ϕ j (K
x
1 − K x0

1 )〉|,

where I denotes the set of indices j ≥ −3 such that the support of ϕ j intersects 4Q and J
denotes the remaining indices, namely those j ≥ −3 such that ϕ j vanishes on 4Q. Notice
that the cardinality of I is bounded by a positive constant.

Set
g = C l(Q)α

∑
j∈I

ϕ j (1 − ψQ) (K x
1 − K x0

1 ),

and for j ∈ J

g j = C 2 j (2 j l(Q))α ϕ j (K
x
1 − K x0

1 ).

We leave it to the reader to verify that the test functions g and g j , j ∈ J , satisfy the
normalization inequalities (4.12) in the definition of Gα(T ) for an appropriate choice of the
(small) constant C (In fact one can check that the condition in Lemma 4.5 holds for these
functions). Once this is available, using the α growth condition of T we obtain

|〈T, (1 − ψQ)(K x
1 − K x0

1 )〉| ≤ Cl(Q)−α|〈T, g〉| + C
∑
j∈J

2− j (2 j l(Q))−α|〈T, g j 〉|

≤ C Gα(T ) + C
∑
j≥−3

2− j Gα(T ) ≤ C Gα(T ),

which completes the proof of Lemma 4.4. ��
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5 Relationship between the capacities γ n
α and non linear potentials

This section will complete the proof of Theorem 1.1 by showing the equivalence between
the capacities γ n

α,+ and C 2
3 (2−α). 32

.
For our purposes, the description of Riesz capacities in terms of Wolff potentials is more

useful than the definition of Cs,p in (1.2). The Wolff potential of a positive Radon measure
μ is defined by

Wμ
s,p(x) =

∫ ∞

0

(
μ(B(x, r))

r2−sp

)q−1 dr

r
, x ∈ R

2,

The Wolff Energy of μ is

Es,p(μ) =
∫
R2

Wμ
s,p(x)dμ(x).

A well known theorem of Wolff (see [2], Theorem 4.5.4, p. 110) asserts that

C−1 sup
μ

1

Es,p(E)p−1 ≤ Cs,p(E) ≤ C sup
μ

1

Es,p(E)p−1 , (5.29)

the supremum taken over the probability measures μ supported on E . Here C stands for a
positive constant depending only on s, p and the dimension.

To understand the relationship between the capacities γ n
α and non linear potentials, we

need to recall the characterization of these capacities in terms of the symmetrization method.
Let μ be a positive measure and 0 < α < 1. For x ∈ R

2 set,

p2α,n(μ)(x) =
∫∫

pα,n(x, y, z)dμ(y)dμ(z),

Mαμ(x) = sup
r>0

μ(B(x, r))

rα

and

Uμ
α,n(x) = Mαμ(x) + p2α,n(μ)(x).

We denote the energy associated to this last potential by

Eα,n(μ) =
∫
R2

Uμ
α,n(x)dμ(x).

Notice that Corollary 3.2 states that for any n ∈ N, given three distinct points x, y, z ∈ R
2,

pnα(x, y, z) ≈ p1α(x, y, z). Hence, for any n ∈ N

Eα,n(μ) ≈ Eα,1(μ). (5.30)

Recall from [16, Lemma 4.1], that for a compact set K ⊂ R
2 and 0 < α < 1,

γ 1
α,+(K ) ≈ sup

μ

1

Eα,1(μ)
,

the supremum taken over the probability measures μ supported on K . Adapting the proof
of Lemma 4.1 in [16] to our situation [using the reproduction formula from Lemma 4.1 and
(4.11)], we get that

γ n
α,+(K ) ≈ sup

μ

1

Eα,n(μ)
,
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where the supremum is taken over the probability measures μ supported on K .
The explanation given in Step 1 of Sect. 2 implies that

γ n
α (K ) ≈ γ n

α,+(K ),

hence we deduce that

γ n
α (K ) ≈ sup

μ

1

Eα,1(μ)
.

Lemma 4.2 in [16] shows that for any positive Radon measure μ, the energies Eα,1(μ) and
E 2

3 (2−α), 32
(μ) are comparable. Now, Wolff’s inequality (5.29), with s = 2(2 − α)/3 and

p = 3/2, (see the proof of the main Theorem in [16, p.221]) finishes the proof of Theorem
1.1.

6 Rectifiability and L2-boundedness of Tn

Recalling (3.7) and (3.9) for any Borel measure μ we define

p1,n(μ) =
∫∫∫

p1,n(x, y, z)dμ(x)dμ(y)dμ(z). (6.31)

The following lemma relates the finiteness of p1,n to the L2(μ)-boundedness of the operator
Tn

Lemma 6.1 Let μ be a continuous positive Radon measure in R
d with linear growth. If the

operator Tn is bounded in L2(μ) then there exists a constant C such that for any ball B,∫∫∫
B3

p(x, y, z)dμ(x)dμ(y)dμ(z) ≤ Cdiam(B).

The proof of Lemma 6.1 can be found in [14, Lemma 2.1]. There it is stated and proved
for the Cauchy transform but the proof is identical in our case. When p1,n(x, y, z) is replaced
by the square of the Menger curvature c(x, y, z), recall (1.3) and (1.4), the triple integral in
(6.31) is called the curvature of μ and is denoted by c2(μ). A famous theorem of David and
Léger [12], which was also one of the cornerstones in the proof of Vitushkin’s conjecture by
David in [5], states that if E ⊂ R

d has finite length and c2(H1�E) < ∞ then E is rectifiable.
Here we obtain the following generalization of the David-Leger Theorem.

Theorem 6.2 Let E ⊂ R
d be a Borel set such that 0 < H1(E) < ∞ and p1,n(H1�E) < ∞,

then the set E is rectifiable.

Remarks about the proof of Theorems 1.2 and 6.2 We first note that statement (1) of Theo-
rem 1.2 follows immediately from Lemma 6.1 and Theorem 6.2. Theorem 6.2 was earlier
proved in [3] for d = 2. We stress that the constraint d = 2 in [3, Theorem 1.2(i)] is essen-
tially used in the proofs of [3, Proposition 2.1] and [3, Lemma 2.3] which only go through
in the plane. Nevertheless in no other instance the arguments in [3] depend on the ambient
space being 2-dimensional. Proposition 3.3 bypasses this issue by using completely different
reasoning, and generalizes [3, Proposition 2.1] and [3, Lemma 2.3] in Euclidean spaces of
arbitrary dimension. Furthermore it removes the assumption of the triangles with comparable
sides which was also essential in the proofs of [3, Proposition2.1] and [3, Lemma 2.3]. With
Proposition 3.3 at our disposal we obtain (i) by following the arguments from [3, Sections
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3–7] without any changes. In several cases in [3, Sections 3–6] there are references to several
components from [12] but this does not create any problem, since the proof in [12] holds for
any R

d .
The proof of (ii) from Theorem 1.2 follows, as in (i), by Proposition 3.3 and [3, Section

8], as the arguments there do not depend on the dimension of the ambient space.

Acknowledgments We would like to thank Joan Mateu and Xavier Tolsa for valuable conversations during
the preparation of this paper.

Appendix 1: Proofs of Propositions 3.1 and 3.3

For simplicity we let n odd. Then for 0 < α ≤ 1

K i
α,n(x) = xni

|x |n+α
, x = (x1, . . . , xd) ∈ R

d\{0}.

Proof of Proposition 3.1 Write a = y − x and b = z − y; then a + b = z − x . Without loss
of generality we can assume that |a| ≤ |b| ≤ |a + b|. A simple computation yields

piα,n(x, y, z)

= Ki
α,n(x − y) Ki

α,n(x − z) + K i
α,n(y − x) Ki

α,n(y − z) + K i
α,n(z − x) K i

α,n(z − y)

= Ki
α,n(−a) K i

α,n(−a − b) + K i
α,n(a) K i

α,n(−b) + K i
α,n(a + b) K 1

α,n(b)

= K i
α,n(a + b)K i

α,n(a) + K i
α,n(a + b)K i

α,n(b) − K i
α,n(a)K i

α,n(b)

= (ai + bi )nani |b|n+α + (ai + bi )nbni |a|n+α − ani b
n
i |a + b|n+α

|a|n+α|b|n+α|a + b|n+α
.

(1.32)
If aibi = 0 the proof is immediate. Take for example ai = 0. Then we trivially obtain

piα,n(x, y, z) = b2ni
|b|n+α|a + b|n+α

≈ M2n
i

L(x, y, z)2α+2n . (1.33)

To prove the upper bound inequality in (3.8) we distinguish two cases.
Case aibi > 0 : Without loss of generality assume ai > 0 and bi > 0. In case ai < 0 and

bi < 0,

(ai + bi )
nani |b|n+α + (ai + bi )

nbni |a|n+α − ani b
n
i |a + b|

= (|ai | + |bi |)n |ai |n |b|n+α + (|ai | + |bi |)n |bi |n |a|n+α − |ai |n |bi |n |a + b|n+α

and thus it can be reduced to the case where both coordinates are positive.
Notice that since |a| ≤ |b| ≤ |a + b|, ai ≤ |a| and 0 < α < 1,

piα,n(x, y, z) = (ai + bi )nbni
|b|n+α|a + b|n+α

+ ani
(
(ai + bi )n |b|n+α − bni |a + b|n+α

)
|a|n+α|b|n+α|a + b|n+α

≤ 1

|b|α|a + b|α + (ai + bi )n − bni
|a|α|a + b|n−α
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≤ 1

|b|α|a + b|α + aα
i

|a|α
∑n

k=1

(n
k

)
ak−α
i bn−k

i

|b|n+α

≤ 1

|b|α|a + b|α +
∑n

k=1

(n
k

)|a|k−α|b|n−k

|b|n+α

≤ 1

|b|α|a + b|α + B(n)|b|n−α

|b|n+α
≤ B(n, α)

|a + b|2α ,

where the last inequality comes from |a+b| ≤ 2|b|,which follows from the triangle inequality
and the fact that |a| ≤ |b|.

Case aibi < 0 : Without loss of generality we can assume that ai < 0, bi > 0 and
bi ≤ |ai |, the other cases follow analogously by interchanging the roles of ai and bi .

piα,n(x, y, z) = (|ai | − bi )n |ai |n |b|n+α − (|ai | − bi )nbni |a|n+α + |ai |nbni |a + b|n+α

|a|n+α|b|n+α|a + b|n+α

≤ (|ai | − bi )n |ai |n |b|n+α + |ai |nbni |a + b|n+α

|a|n+α|b|n+α|a + b|n+α

≤ |a|2n(|b|n+α + |a + b|n+α)

|a|n+α|b|n+α|a + b|n+α
= |a|n−α

(
1

|a + b|n+α
+ 1

|b|n+α

)

≤ 22α + 1

|a + b|2α .

since b1 ≤ |a1|, 0 < |a1| − b1 < |a1| < |a| and |a| ≤ |b| ≤ |a + b|.
We now prove the lower bound estimate in (3.8).
Case aibi > 0 : As explained in the proof of the upper bound inequality the proof can be

reduced to the case when ai > 0 and bi > 0. Setting t = |b|/|a| in (1.32) and noticing that
|a + b|/|a| ≤ 1 + t we get

piα,n(x, y, z)≥
ani (ai + bi )ntn+α − bni a

n
i (1 + t)n+α + bni (ai + bi )n

|b|n+α|a + b|n+α
:= f1(t)

|b|n+α|a + b|n+α
.

(1.34)
Then it readily follows that the unique zero of

f ′
1(t) = ani (n + α)(tn+α−1(ai + bi )

n − bni (1 + t)n+α−1)

is

t∗ = 1(
ai
bi

+ 1
) n

n+α−1 − 1
> 0.

Moreover f1 attains its minimum at t∗ because f ′
1(0) = −(n+α)ani b

n
i and limt→∞ f ′

1(t) =
limt→∞((bi + ai )n − bni )t

n+α−1 = +∞.
We first consider the case when t∗ > 1. Then we deduce that

0 <
ai
bi

< 2
n+α−1

n − 1 < 1, (1.35)

the last inequality coming from α < 1. Therefore ai < bi . Setting s = ai/bi we obtain

f1(t) = b2ni
(
sn(1 + s)ntn+α − sn(1 + t)n+α + (s + 1)n

)
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and it follows easily that

f1(t
∗) = b2ni (1 + s)n

(
1 − sn

((s + 1)
n

n+α−1 − 1)n+α−1

)
.

A direct computation shows that the function

g1(s) = 1 − sn(
(s + 1)

n
n+α−1 − 1

)n+α−1

is decreasing. Then, by (1.35), g1 attains its minimum at s = 2
n+α−1

n − 1. Therefore

f1(t) ≥ f1(t
∗) ≥ b2ni

(
1 −

(
2

n+α−1
n − 1

)n) := b2ni A1(n, α) (1.36)

and since α < 1, A1(n, α) > 0.
We now consider the case when t∗ ≤ 1 and notice that as t ≥ 1 we have f1(t) ≥ f1(1).

As before for s = min{ai , bi }/max{ai , bi }
f1(t) ≥ f1(1) = ani (ai + bi )

n − ani b
n
i 2

n+α + bni (ai + bi )
n

= (ai + bi )
n(max{ai , bi })n

(
sn −

(
s

s + 1

)n

2n+α + 1

)

:= (ai + bi )
n(max{ai , bi })ng2(s).

(1.37)

It follows easily that the only non-zero root of

g′
2(s) = nsn−1

(
1 − 2n+α

(1 + s)n+1

)

is

s∗ = 2
n+α
n+1 − 1.

Since α ∈ (0, 1), then 2
n+α−1

n − 1 < s∗ < 1. Furthermore notice that g′
2(2

n+α−1
n − 1) < 0

and g′
2(1) > 0. Hence g2 attains its minimum at s∗. Therefore

g2(s) ≥ g2(s
∗) =

(
2

n+α
n+1 − 1

)n (
1 − 2n+α

2
(n+α)n
n+1

)
+ 1

= 1 −
(
2

n+α
n+1 − 1

)n+1 := A2(n, α) > 0,

(1.38)

the positivity of the constant A2(n, α) coming from inequality α < 1. Therefore (1.34)
together with (1.36), (1.37) and (1.38) imply that

piα,n(x, y, z) ≥ A(n, α)
M2n

i

L(x, y, z)2n+2a , (1.39)

for some positive constant A(n, α). Hence we have finished the proof when ai bi > 0.
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Case ai bi < 0 : Setting t = |b|/|a| and using (1.34) we get that

piα,n(x, y, z) = 1

|b|n+α|a + b|n+α
(ani (ai + bi )

ntn+α − bni a
n
i (1 + t)n+α + bni (ai + bi )

n)

≥ 1

|b|n+α|a + b|n+α
(ani (ai + bi )

ntn+α − bni a
n
i t

n+α + bni (ai + bi )
n)

:= f2(t)

|b|n+α|a + b|n+α
.

(1.40)
Notice that f2 is an increasing function because a2i + aibi > aibi and n is odd:

f ′
2(t) = (n+α)tn+α−1(ani (ai + bi )

n − ani b
n
i )=(n + α)tn+α−1((a2i + aibi )

n − ani b
n
i ) > 0.

Therefore since t ≥ 1 we have that

f2(t) ≥ f2(1) = (ani + bni )(ai + bi )
n − bni a

n
i .

We assume that |bi | ≥ |ai |, the case where |bi | < |ai | can be treated in the exact same
manner. We first consider the case where ai > 0 and bi < 0. Let

h(r) = (r − |bi |)n(rn − |bi |n) + rn |bi |n .
Then

h′(r) = n
(
(r − |bi |)n−1(rn − |bi |n) + rn−1((r − |bi |)n + |bi |n)

)
.

Notice that

h′(|bi |/2) = 0.

Furthermore

h′(r) > 0 for |bi |/2 < r ≤ |bi |.
To see this notice that since 0 < |bi | − r < r , then (|bi | − r)n−1 < rn−1.Therefore since
rn − |bi |n < 0

h′(r) > n(rn−1(rn − |bi |n) + rn−1((r − |bi |)n + |bi |n)) = nrn−1(rn − (|bi | − r)n) > 0.

With an identical argument one sees that h′(r) < 0 for 0 < r ≤ |bi |/2. Hence it follows that,
for 0 < r ≤ |bi |,

h(r) ≥ h(|bi |/2) ≥ |bi |2n
2n

.

Since ai ∈ (0, |bi |] we get that f2(1) ≥ |bi |2n
2n and by (1.40)

piα,n(x, y, z) ≥ 2−n b2ni
|b|n+α|a + b|n+α

≥ A3(n)
M2n

i

L(x, y, z)2n+2α . (1.41)

The case where ai < 0 and bi > 0 is very similar. In this case instead of the function h
we consider the function l(r) = (r + bi )n(rn + bni ) − rnbni for −|bi |/2 ≤ x < 0 and we
show that in that range,

l(r) ≥ l(−|bi |/2) ≥ b2ni /2n .
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Therefore as ai ∈ [−|bi |, 0), f2(1) ≥ |bi |2n
2n and we obtain from (1.40)

piα,n(x, y, z) ≥ 2−n b2ni
|b|n+α|a + b|n+α

≥ A3(n)
M2n

i

L(x, y, z)2n+2α . (1.42)

Therefore the proof of the lower bound follows by (1.39), (1.41) and (1.42). ��
Remark 1 Notice that in the proof of the lower bound inequality when aibi < 0, we do not
make use of the fact that α < 1. Therefore (1.41) and (1.42) remain valid in the case where
α = 1.

Proof of Proposition 3.3 For simplicity we let pi1,n := pin for i = 1, . . . , d . Let a = y −
x, b = z − y then a + b = z − x and without loss of generality we can assume that
|a| ≤ |b| ≤ |a + b| = 1. In case xi = yi = zi , then trivially by (1.32), pin(x, y, z) = 0.
Hence we can assume that ai �= 0 or bi �= 0 and, by (1.32), for α = 1 , assuming without
loss of generality that bi �= 0, we get

pin(x, y, z) =
(ai + bi )nbni

((
ai
bi

)n |b|n+1 + |a|n+1 − ani
(ai+bi )n

)

|a|n+1|b|n+1 . (1.43)

If the points x, y, z are collinear then the initial assumption |a| ≤ |b| ≤ |a + b| implies
that |a| + |b| = |a + b|. Furthermore b = λa for some λ �= 0. We provide the details in the
case when λ > 0 as the remaining case is identical. We have by (1.43)

pin(x, y, z) =
(ai + λai )nλnani

(( 1
λ

)n
λn+1|a|n+1 + |a|n+1 −

(
1

1+λ

)n)

|a|n+1|b|n+1

= a2ni λn
(
((1 + λ)|a|)n+1 − 1

)
|a|n+1|b|n+1

= a2ni λn

|a|n+1|b|n+1 ((1 + λ)|a| − 1)
n∑
j=0

((1 + λ)|a|) j = 0

because (1 + λ)|a| − 1 = |a| + |b| − 1 = 0.
We will now turn our attention to the case when the points x, y, z are not collinear. We

will consider several cases.
Case aibi > 0. As in the proof of Proposition 3.8 we only have to consider the case when

ai , bi > 0. We first consider the subcase 0 < |a| ≤ |b| < |a + b| = 1.
Setting w = ai/bi in (1.43) we get

pin(x, y, z) = (ai + bi )nbni
|a|n+1|b|n+1 f (w)

with

f (w) = wn |b|n+1 + |a|n+1 −
(
1 + 1

w

)−n

.

Notice that the only non-vanishing admissible root of the equation

f ′(w) = nwn−1

(
|b|n+1 −

(
1

w + 1

)n+1
)

= 0
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is w = |b|−1 − 1. Furthermore it follows easily that

lim
w→0+ f (w) = |a|n+1 > 0 and lim

w→+∞ f (w) = +∞

hence f : (0,∞) → R attains its minimum at |b|−1 − 1. After a direct computation we get
that

f (|b|−1 − 1) = |a|n+1 − (1 − |b|)n+1.

We can now write,

|a|n+1 − (1 − |b|)n+1 = |a|n+1

(
1 −

(
1 − |b|

|a|
)n+1

)

= |a|n+1
(
1 − 1 − |b|

|a|
) n∑

j=0

(
1 − |b|

|a|
) j

= |a|n(|a| − 1 + |b|)
n∑
j=0

(
1 − |b|

|a|
) j

.

Therefore

pin(x, y, z) ≥ (ai + bi )nbni
|a|n+1|b|n+1 |a|n(|a| − 1 + |b|)

n∑
j=0

(
1 − |b|

|a|
) j

. (1.44)

Recall that, by Heron’s formula, the area of the triangle determined by x, y, z ∈ R
d is

given by

area(Tx,y,z) = 1

2

√
|a + b|2|a|2 −

( |a + b|2 + |a|2 − |b|2
2

)2

,

where a = y − x, b = z − y and a + b = z − x . Hence

16 area(Tx,y,z)
2 = (2|a + b||a| − (|a + b|2 + |a|2

−|b|2))(2|a + b||a| + |a + b|2 + |a|2 − |b|2).
Plugging this identity into Menger’s curvature formula we get

c2(x, y, z) = 16 area(Tx,y,z)2

|a|2|b|2|a + b|2

= (2|a + b||b| − |a + b|2 − |a|2 + |b|2)(2|a + b||b| + |a + b|2 + |a|2 − |b|2)
|a|2|b|2|a + b|2

= (|b|2 − (|a + b| − |a|)2)((|a| + |a + b|)2 − |b|2)
|a|2|b|2|a + b|2

= (|b|−|a+b|+|a|)(|b|+|a+b|−|a|)(|a|+|a+b|−|b|)(|b|+|a+b|+|a|)
|a|2|b|2|a+b|2

and since we are assuming |a + b| = 1,

c2(x, y, z) = (|b| + |a| − 1)(|b| + 1 − |a|)(|a| + 1 − |b|)(|b| + 1 + |a|)
|a|2|b|2 . (1.45)
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By (1.44) and (1.45) we get that

pin(x, y, z) ≥ (ai + bi )nbni
|a|n+1|b|n+1

|a|n |a|2|b|2
(|b| + 1 − |a|)(|a| + 1 − |b|)(|b| + 1 + |a|)

n∑
j=0

(
1 − |b|

|a|
) j

c2(x, y, z)≥ b2ni |a||b|
|b|n(|b|+1−|a|)(|a|+1−|b|)(|b| + 1 + |a|)c

2(x, y, z),

the last inequality coming from ai +bi ≥ bi and the fact that the sum above is >1. Using the
triangle inequality, 1 = |a + b| ≤ |a| + |b|, and the fact that 1 = |a + b| ≤ 2|b|, we obtain

pin(x, y, z) ≥ b2ni
12|b|n c

2(x, y, z) ≥ c(n)
b2ni
|b|2n c

2(x, y, z).

To complete the proof in case aibi > 0, we are left with the situation |b| = |a + b| = 1.
By (1.43)

pin(x, y, z) =
(ai + bi )nbni

((
ai
bi

)n + |a|n+α −
(

ai
ai+bi

)n)

|a|n+α
≥ (ai + bi )

nbni ≥ b2ni ,

because ai
bi

>
ai

ai+bi
and thus

(
ai
bi

)n
>

(
ai

ai+bi

)n
. Hence

pin(x, y, z) ≥ b2ni
|b|2n |b|−2 �

b2ni
|b|2n c

2(x, y, z).

Case aibi < 0. It follows from Remark 1 [see (1.42) with α = 1].
Case ai bi = 0. Since we have assumed that b �= 0 we have that ai = 0 and by (1.33),

with α = 1, we are done.
Therefore we have shown that whenever x, y, z are not collinear and they do not lie in the

hyperplane xi = yi = zi , then pin(x, y, z) > 0. This finishes the proof of (i). Furthermore,
we have shown that if this is the case, then

pin(x, y, z) ≥ C(n)
b2ni
|b|2n c

2(x, y, z). (1.46)

For the proof of (ii) notice that since�(Vj , Ly,z) ≥ θ0 there exists some coordinate i0 �= j
such that

|bi0 | = |yi0 − zi0 | ≥ C(θ0)|y − z| = C(θ0)|b|,
hence (ii) follows by (1.46). ��
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