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Abstract We show that under certain conditions, a nontrivial Riemannian submersion from
positively curved four manifolds does not exist. This gives a partial answer to a conjecture
due to Fred Wilhelm. We also prove a rigidity theorem for Riemannian submersions with
totally geodesic fibers from compact four-dimensional Einstein manifolds.

1 Introduction

A smooth map π : (M, g) → (N , h) is a Riemannian submersion if π∗ is surjective and
satisfies the following property:

gp(v,w) = hπ(p)(π∗v, π∗w)

for any v,w that are tangent vectors in T Mp and perpendicular to the kernel of π∗.
A fundamental problem in Riemannian geometry is to study the interaction between

curvature and topology. A lot of important work has been done in this direction. In this paper
we study a similar problem for Riemannian submersions:

Problem Explore the structure of π under additional curvature assumptions of (M, g).

When (M, g) has constant sectional curvature, we have the following classification results
([8,23,24]).

Theorem 1.1 Let π : (Mm, g) → (N , h) be a nontrivial Riemannian submersion (i.e. 0 <

dimN < dimM)with connectedfibers,where (Mm , g) is compact andhas constant sectional
curvature c.
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166 X. Chen

1. If c < 0, then there is no such Riemannian submersion.
2. If c = 0, then locally π is the projection of a metric product onto one of its factors.
3. If c > 0 and Mm is simply connected , thenπ ismetrically congruent to theHopf fibration,

i.e, there exist isometries f1: Mm → S
m and f2: N → P(K) such that p f1 = f2π , where

p is the standard projection from S
m to projective spaces P(K).

However, very little is known about the structure ofπ if (M, g) is not of constant curvature.
In this paper we consider two different curvature conditions:

1. (M, g) has positive sectional curvature.
2. (M, g) is an Einstein manifold.

When (M, g) has positive sectional curvature, we have the following important conjecture
due to Fred Wilhelm.

Conjecture 1 Let π : (M, g) → (N , h) be a nontrivial Riemannian submersion, where
(M, g) is a compact Riemannian manifold with positive sectional curvature. Then dim(F) <

dim(N ), where F is the fiber of π .

By Frankel’s theorem [7], it is not hard to see that Conjecture 1 is true if at least two
fibers of π are totally geodesic. In fact, since any two fibers do not intersect with each other,
Frankel’s theorem implies that 2 dim(F) < dim(M). Hence dim(F) < dim(N ). If all
fibers of π are totally geodesic, we have the following stronger result which is due to Florit
and Ziller [6]. See also Propositions 2.4, 2.5 in [27].

Proposition 1.2 Let π : (M, g) → (N , h) be a nontrivial Riemannian submersion such that
all fibers of π are totally geodesic, where (M, g) is a compact Riemannian manifold with
positive sectional curvature. Then dim(F) < ρ(dim(N ))+1, where F is any fiber of π and
ρ(n) is the maximal number of linearly independent vector fields on Sn−1.

Notice that we always have ρ(dim(N )) + 1 ≤ dim(N ) − 1+ 1 = dim(N ) and equality
holds if and only dim(N ) = 2, 4 or 8.

Remark 1 It would be very interesting to know whether one can replace dim(F) < dim(N )

by dim(F) < ρ(dim(N )) + 1 in Conjecture 1. It would be the Riemannian analogue of
Toponogov’s Conjecture (page 1727 in [19]) and would imply that dim(N ) must be even
(In fact, if dim(N ) is odd, then ρ(dim(N )) = 0. Hence dim(F) < ρ(dim(N )) + 1 implies
dim(F) = 0 and hence π is trivial, contradiction). In particular, there would be no Rie-
mannian submersion with one-dimensional fibers from even-dimensional manifolds with
positive sectional curvature.

When dim(M) = 4, Conjecture 1 is equivalent to the following conjecture.

Conjecture 2 There is no nontrivial Riemannian submersion from any compact four mani-
fold (M4, g) with positive sectional curvature.

In fact, suppose there exists such a Riemannian submersion π : (M4, g) → (N , h). Then
Conjecture 1 would imply dim(N ) = 3. Hence the Euler number of M4 is zero. On the
other hand, since (M4, g) has positive sectional curvature, H1(M4,R) = 0 by Bochner’s
vanishing theorem ([17], page 208). By Poincaré duality, the Euler number of M4 is positive.
Contradiction.

Let π : (M, g) → (N , h) be a Riemannian submersion. We say that a function f defined
on M is basic if f is constant along each fiber. A vector field X on M is basic if it is horizontal
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and is π-related to a vector field on N . In other words, X is the horizontal lift of some vector
field on N . Let H be the mean curvature vector field of the fibers and A be the O’Neill tensor
of π . We denote by ‖A‖ the norm of A, i.e., ‖A‖2 = ∑

i, j ‖AXi X j‖2, where {Xi } is a local
orthonormal basis of the horizontal distribution of π . The next theorem gives a partial answer
to Conjecture 2.

Theorem 1.3 There is no nontrivial Riemannian submersion from any compact four mani-
fold with positive sectional curvature such that either ‖A‖ or H is basic.

We emphasize that in Conjecture 1 the assumption that (M, g) has positive sectional
curvature can not be replaced by (M, g) has positive sectional curvature almost everywhere,
namely, (M, g) has nonnegative sectional curvature everywhere and has positive sectional
curvature on an open and dense subset of M . Such counterexamples were firstly constructed
byM. Kerin in [15]. In fact, he constructed Riemannian metrics on M13 = (S7 × S7)/S1 and
N 11 = (S7 × S7)/S3 with positive sectional curvature almost everywhere. Equipped with
these metrics, there exist Riemannian submersions M13 → CP

3 and N 11 → S4 such that in
each case thefibre is S7.Hereweprovide a newcounterexample. Let g be themetric on S2×S3

constructed byWilking [25] which has positive sectional curvature almost everywhere. Then
by a theorem of Tapp [20], g can be extended to a nonnegatively curved metric g̃ on S2 ×R

4

such that (S2× S3, g) becomes the distance sphere of radius 1 about the soul. By Proposition
5.1 below, we get a Riemannian submersion π : (S2 × S3, g) → (S2, h), where h is the
induced metric from g̃ on the soul S2. This example together with Kerin’s examples show
that in Conjecture 1 the assumption that (M, g) has positive sectional curvature can not be
replaced by (M, g) has positive sectional curvature almost everywhere.

Riemannian submersions are also important in the study of compact Einstein manifolds,
for example, see [3]. Our next theorem gives a complete classification of Riemannian sub-
mersions with totally geodesic fibers from compact four-dimensional Einstein manifolds.

Theorem 1.4 Suppose π : (M4, g) → (N , h) is a Riemannian submersion, where (M4, g)
is a compact four-dimensional Einstein manifold. If all fibers of π are totaly geodesic and
have dimension 2, then locally π is the projection of a metric product B2(c)×B2(c) onto one
of the factors, where B2(c) is a two-dimensional compact manifold with constant curvature
c.

If the dimension of the fibers of π is 1 or 3 (all fibers are not necessarily totally geodesic),
then the Euler number of M4 is zero. By a theorem of Berger [2,14], (M4, g) must be flat.
Hence by a theorem of Walschap [23], locally π is the projection of a metric product onto
one of the factors.

2 Preliminaries

In this section we recall some definitions and facts on Riemannian submersions which will
be used in this paper. We refer to [16] for more details.

Let π : (M, g) → (N , h) be a Riemannian submersion. Then π induces an orthogonal
splitting T M = H⊕V , where V is tangent to the fibers andH is the orthogonal complement
of V . We write Z = Zh + Zv for the corresponding decomposition of Z ∈ T M . The O’Neill
tensor A is given by

AXY = (∇XY )v = 1

2
([X, Y ])v,
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168 X. Chen

where X, Y ∈ H and are π -related to some vector field on N , respectively.
Fix X ∈ H, define A∗

X by

A∗
X : V → H

V 	→ −(∇V X)h .

Then A∗
X is the dual of AX .

Define the mean curvature vector field H of π by

H =
∑

i

(∇Vi Vi )
h,

where {Vi }ki=1 is any orthonormal basis of V and k = dimV .
Define the mean curvature form ω of π by

ω(Z) = g(H, Z),

where Z ∈ T M . It is clear that iVω = ω(V ) = 0 for any V ∈ V .
We say that a function f defined on M is basic if f is constant along each fiber. A vector

field X on M is basic if it is horizontal and is π -related to a vector field on N . In other words,
X is the horizontal lift of some vector field on N . A differential form α on M is called to be
basic if and only iVα = 0 and LVα = 0 for any V ∈ V , where LVα is the Lie derivative of
α.

The set of basic forms of M , denoted by �b(M), constitutes a subcomplex

d: �r
b(M) → �r+1

b (M)

of the De Rham complex�(M). The basic cohomology of M , denoted by H∗
b (M), is defined

to be the cohomology of (�b(M), d).

Proposition 2.1 The inclusion map i : �b(M) → �(M) induces an injective map

H1
b (M) → H1

DR(M).

Proof See pages 33–34, Proposition 4.1 in [22]. 
�

3 Proof of Theorem 1.3

Let (Mm, g) be anm-dimensional compactmanifoldwith positive sectional curvature,m ≥ 4
and (N 2, h) be a 2-dimensional compact Riemannian manifold. Now we are going to prove
the following theorem which implies Theorem 1.3.

Theorem 3.1 There is no Riemannian submersion π : (Mm, g) → (N 2, h) such that

1. the Euler numbers of the fibers are nonzero and
2. either ‖A‖ or H is basic.

Remark 2 If Conjecture 1 is true, then there would be no Riemannian submersion
π : (Mm, g) → (N 2, h), where (Mm, g) has positive sectional curvature and m ≥ 4.

Before we prove Theorem 3.1, we firstly show how to derive Theorem 1.3. The proof is
by contradiction. Suppose there exists a nontrivial Riemannian submersion π : (M4, g) →
(N , h) such that either ‖A‖ or H is basic, where (M4, g) is a compact four manifold with
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Riemannian submersions from compact four manifolds 169

positive sectional curvature. Since (M4, g) has positive sectional curvature, H1(M4,R) = 0
by Bochner’s vanishing theorem ([17], page 208). By Poincaré duality, χ(M4) = 2+b2(M4)

is positive. By a theorem of Hermann [13], π is a locally trivial fibration. Then χ(M4) =
χ(N )χ(F), where F is any fiber of π . It follows that dim(N ) = 2 and χ(F) is nonzero
(hence all fibers have nonzero Euler numbers), which is a contradiction by Theorem 3.1.

The proof of Theorem 3.1 is again by contradiction. Suppose π : (Mm, g) → (N 2, h) is a
Riemannian submersion satisfying the conditions in Theorem 3.1. By passing to its oriented
double cover, we can assume that N 2 is oriented. The idea of the proof of Theorem 3.1 is
to construct a nowhere vanishing vector field (or line field) on some fiber of π , which will
imply the Euler numbers of the fibers are zero. Contradiction.

Since (M, g) has positive sectional curvature, by Theorem 1.3 in [23], ‖A‖ can not be
identical to zero on M . Hence there exists p ∈ M such that ‖A‖(p) 
= 0.

If ‖A‖ is basic, then ‖A‖ 
= 0 at any point on Fp , where Fp is the fiber at p. Let X, Y
be any orthonormal oriented basic vector fields in some open neighborhood of Fp . Then
‖AXY‖2 = 1

2‖A‖2 
= 0 at any point on Fp . Define a map s by

s: Fp → T Fp

x 	→ AXY

‖AXY‖ (x).

Let Z ,W be another orthonormal oriented basic vector fields. Then Z = aX + bY and
W = cX + dY , ad − bc > 0. Then

AZW = (ad − bc)AXY.

Hence s does not depend on the choice of X, Y . Then s is a nowhere vanishing vector field
on Fp . Thus the Euler number of Fp is zero. Contradiction.

If H is basic, the construction of such nowhere vanishing vector field (or line field) is
more complicated. Under the assumption that H is basic, we firstly construct a metric ĝ
on Mm such that π : (Mm, ĝ) → (N 2, h) is still a Riemannian submersion and all fibers
are minimal submanifolds with respect to ĝ. Of course, in general ĝ can not have positive
sectional curvature everywhere. However, the crucial point is that there exists some fiber F0
such that ĝ has positive sectional curvature at all points on F0. Pick any fiber F1 which is
close enough to F0. Then using the Synge’s trick, we construct a continuous codimension
one distribution on F1. Thus the Euler number of F1 is zero. Contradiction.

Now we are going to explain the proof of Theorem 3.1 in details. We firstly need the
following lemmas:

Lemma 3.2 Suppose ω is the mean curvature form of a Riemannian submersion from com-
pact Riemannian manifolds. If ω is a basic form, then it is a closed form.

Proof See page 82 in [22] for a proof. 
�
Lemma 3.3 Suppose π : (Mm, g) → (N , h) is a Riemannian submersion such that H is
basic, where (Mm, g) is a compact Riemannian manifold with positive sectional curvature.
Then there exists a metric ĝ on Mm such that π : (Mm, ĝ) → (N , h) is still a Riemannian
submersion and all fibers are minimal submanifolds with respect to ĝ. Furthermore, there
exists some fiber F0 such that ĝ has positive sectional curvature at all points on F0.

Proof The idea is to use partial conformal change of metrics along the fibers, see also page
82 in [22]. Let ω be the mean curvature form of π . Since H is basic, ω is a basic form.
Then ω is closed by Lemma 3.2. So [ω] defines a cohomological class in H1

b (Mm). Because
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(Mm, g) has positive sectional curvature, H1
DR(Mm) = 0 by Bochner’s vanishing theorem

([17], page 208). By Proposition 2.1, we see that H1
b (Mm) = 0. Then there exists a basic

function f globally defined on Mm such that ω = d f . Define f̂ = f − maxp∈Mm f (p).

Then maxp∈Mm f̂ (p) = 0 and ω = d f̂ . Let λ = e f̂ and define

ĝ = (λ
2
k gv) ⊕ gh,

where k = dim(Mm) − dim(N ), gv/gh are the vertical/horizontal components of g, respec-
tively.

Since the horizontal components of g remains unchanged, π : (Mm, ĝ) → (N , h) is still
a Riemannian submersion. Now we compute the mean curvature form ω̂ associated to ĝ.
Let {Vi }ki=1 be vertical vector fields satisfying g(Vi , Vj ) = δ

j
i . With respect to ĝ, the mean

curvature vector field are given by Ĥ = (
∑k

i=1 ∇̂V̂i
V̂i )h , where V̂i = λ

− 1
k Vi and ∇̂ is the

Levi-Civita connection associated to ĝ. For any basic vector field X , we have

ω̂(X) = ĝ(Ĥ , X) = ĝ

(
k∑

i=1

∇̂V̂i
V̂i , X

)

.

By the Koszul ′s f ormula, we get

2ω̂(X) = V̂i ĝ(V̂i , X) + V̂i ĝ(X, V̂i ) − Xĝ(V̂i , V̂i )

+ ĝ([V̂i , V̂i ], X) − ĝ([V̂i , X ], V̂i ) − ĝ([V̂i , X ], V̂i )
= − Xĝ(V̂i , V̂i )) − 2ĝ([V̂i , X ], V̂i )
= − Xg(Vi , Vi ) − 2λ

2
k g

([
λ

− 1
k Vi , X

]
,λ

− 1
k Vi

)

= − Xg(Vi , Vi ) − 2g([Vi , X ], Vi ) + 2λ
1
k X (λ

− 1
k )g(Vi , Vi )

= − Xg(Vi , Vi ) − 2g([Vi , X ], Vi ) − 2 dlogλ(X).

On the other hand, by the Koszul ′s f ormula again, we get

2ω(X) = 2g(H, X) = −Xg(Vi , Vi ) − 2g([Vi , X ], Vi ).
So we get

2ω̂(X) = 2ω(X) − 2 dlogλ(X).

Hence

ω̂ = ω − dlogλ = ω − d f̂ = 0.

It follows that all fibers of π are minimal submanifolds with respect to ĝ.

Let e2φ(p) = λ
2
k (p), p ∈ Mm . Then

ĝ = e2φgv ⊕ gh .

Note for any p ∈ Mm , 0 < e2φ(p) ≤ 1. Moreover, we have maxp∈Mme2φ(p) = 1. Let
p0 ∈ Mm such that e2φ(p0) = 1 and F0 be the fiber of π passing through p0. Since f is a
basic function on Mm , e2φ is also basic. Then e2φ ≡ 1 on F0, which will play a crucial role
for our purpose. Of course, in general ĝ can not have positive sectional curvature everywhere.
However, we will see that ĝ still has positive sectional curvature at all points on F0. (The
reader should compare it to the following fact: Let ĥ = e2 f h be a conformal change of h,
where h is a Riemannian metric on M with positive sectional curvature. Then ĥ still has
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positive sectional curvature at those points where f attains its maximum value.) This can be
seen by the results of Chapter 2 in [10], in particular 2.1.23–2.1.25 in page 52. We provide
some details here. Let ∇, R/∇̂, R̂ be the Levi-Civita connection and curvature tensor with
respect to g/ĝ. Given a nonzero vertical vector V and horizontal vector X , by 2.1.19 in page
51 or 2.1.24 in page 52 in [10], we have

e−2φ ĝ(R̂(X, V, V ), X) = g(R(X, V, V ), X) − (1 − e2φ)g(A∗
XV, A∗

XV )

+ 2g(∇φ, X)g(X, B(V, V )) − (Hessφ(X, X) + g(∇φ, X)2)g(V, V ),

where B is the second fundamental form of the fibers and Hessφ is the Hessian of φ with
respect to g. Since e2φ attains its maximum value 1 at all points on F0, we see ∇φ ≡ 0 and
Hessφ(X, X) ≤ 0 on F0. Then we get

e−2φ ĝ(R̂(X, V, V ), X) ≥ g(R(X, V, V ), X) > 0.

Adapting the above argument to other tangent planes, one can check that ĝ has positive
sectional curvature at all points on F0. 
�

Now we can give a proof of Theorem 3.1 under the assumption that H is basic. We prove
it by contradiction. Let π : (Mm, g) → (N 2, h) be a Riemannian submersion such that H
is basic and the fibers have nonzero Euler numbers, where (Mm, g) has positive sectional
curvature andm ≥ 4. By Lemma 3.3, there exists a metric ĝ on Mm such that π : (Mm, ĝ) →
(N 2, h) is still a Riemannian submersion and all fibers of π are minimal submanifolds
with respect to ĝ. Furthermore, there exists some fiber F0 such that ĝ has positive sectional
curvature at all points in F0. Let r be a fixed positive number such that the normal exponential
map of F0 is a diffeomorphism when restricted to the tubular neighborhood of F0 with radius
r . By continuity of sectional curvature, there exists ε, 0 < ε < r such that ĝ has positive
sectional curvature at the ε neighborhood of F0. Choose another fiber F1 such that 0 <

d̂(F0, F1) < ε, where d̂(F0, F1) is the distance between F0 and F1 with respect to ĝ. Since
π : (Mm, ĝ) → (N 2, h) is a Riemannian submersion, F0 and F1 are equidistant. On the other
hand, since 0 < d̂(F0, F1) < ε, then for any point q ∈ F1, there is a unique point p ∈ F0
such that d̂(p, q) = d̂(F0, F1). Let L = d̂(p, q) and γ : [0, L] → Mm, γ (0) = p, γ (L) = q
be the unique minimal geodesic with unit speed realizing the distance between p and q . Let
V ⊆ Tq(Mm) be the subspace of vectors v = X (L) where X is a parallel field along γ such
that X (0) ∈ Tp(F0). Then

dim(V ∩ Tq(F1)) = dim(V ) + dim(Tq(F1)) − dim(V + Tq(F1))

≥ (m − 2) + (m − 2) − (m − 1) = m − 3.

We claim that dim(V ∩Tq(F1)) = m−3. If not, then dim(V ∩Tq(F1)) = m−2. Let Xi , i =
1, · · ·m − 2, be orthonormal parallel fields along γ such that Xi (0) ∈ Tp(F0), Xi (L) ∈
Tq(F1). For each i , choose a variation fi (s, t) of γ such that fi (s, 0) ∈ F0, fi (s, L) ∈ F1
for small s and ∂ fi (0,t)

∂s = Xi (t). By construction, Ẋi (t) = ∇̂γ̇ Xi (t) = 0 for all t , where

∇̂ is the Levi-Civita connection with respect to ĝ. By the second variation formula, for
i = 1, · · ·m − 2, we have

1

2

d2Ei (s)

ds2 |s=0
=

∫ L

0
(ĝ(Ẋi , Ẋi ) − R̂(Xi , γ̇ , γ̇ , Xi ))dt

+ ĝ(B̂1(Xi , Xi ), γ̇ )(L) − ĝ(B̂0(Xi , Xi ), γ̇ )(0)

= −
∫ L

0
R̂(Xi , γ̇ , γ̇ , Xi )dt + ĝ(B̂1(Xi , Xi ), γ̇ )(L) − ĝ(B̂0(Xi , Xi ), γ̇ )(0),
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172 X. Chen

where Ei (s) = ∫ L
0 ĝ( ∂ fi (s,t)

∂t ,
∂ fi (s,t)

∂t )dt , R̂ is the curvature tensor of ĝ and B̂ j is the second
fundamental form of Fj with respect to ĝ, j = 0, 1.

Since F0 and F1 are minimal submanifolds in (Mm, ĝ), we have

m−2∑

i=1

B̂ j (Xi , Xi ) = 0, j = 0, 1.

Then

1

2

m−2∑

i=1

d2Ei (s)

ds2 |s=0
= −

m−2∑

i=1

∫ L

0
R̂(Xi , γ̇ , γ̇ , Xi )dt.

Since ĝ has positive sectional curvature at the ε neighborhood of F0 and 0 < d̂(F0, F1) < ε,
we see that R̂(Xi , γ̇ , γ̇ , Xi ) < 0. Hence

1

2

m−2∑

i=1

d2Ei (s)

ds2 |s=0
< 0.

Then there exists some i0 such that
d2Ei0 (s)

ds2 |s=0
< 0, which contradicts that γ is a minimal

geodesic realizing the distance between F0 and F1. So dim(V ∩ Tq(F1)) = m − 3. Since
dim(Tq(F1)) = m−2, then V ∩Tq(F1) is a codimension one subspace of Tq(F1). Since q is
arbitrary on F1, by doing the same construction as above for any q , then we get a continuous
codimension one distribution on F1. Thus the Euler number of F1 is zero. Contradiction.

4 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Suppose π : (M4, g) → (N 2, h) is a Riemannian sub-
mersion with totally geodesic fibers, where (M4, g) is a compact four-dimensional Einstein
manifold. We are going to show that the A tensor of π vanishes and then locally π is the
projection of a metric product onto one of the factors. We firstly need the following lemmas:

Lemma 4.1 Let π be a Riemannian submersion with totally geodesic fibers from compact
Riemannian manifolds, then all fibers are isometric to each other.

Proof See [13]. 
�
Lemma 4.2 Suppose π : (M4, g) → (N 2, h) is a Riemannian submersion with totally geo-
desic fibers, where (M4, g) is a compact four-dimensional Einstein manifold. Let c1, c2 be
the sectional curvature of (F2, g|F2) and (N 2, h), respectively, where g|F2 is the restriction
of g to the fibers F2. Let Ric(g) = λg for some λ. Then

(i) 2c1 + ‖A‖2 = 2λ;
(ii) 2c2 ◦ π − 2‖A‖2 = 2λ;
(iii) ‖A‖2 = 2

3 (c2 ◦ π − c1),

where ‖A‖2 = ‖A∗
XU‖2 + ‖A∗

XV ‖2 + ‖A∗
YU‖2 + ‖A∗

Y V ‖2. Here X, Y/U, V is an ortho-
normal basis of H/V , respectively.

Proof See page 250, Corollary 9.62 in [3]. For completeness, we give a proof here.
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Let U, V /X, Y are orthonormal basis of V/H, respectively. Then by O’Neill’s formula
([16]) , we have

λ = Ric(U,U ) = c1 + ‖A∗
XU‖2 + ‖A∗

YU‖2;
λ = Ric(V, V ) = c1 + ‖A∗

XV ‖2 + ‖A∗
Y V ‖2;

λ = Ric(X, X) = c2 ◦ π − 3‖AXY‖2 + ‖A∗
XU‖2 + ‖A∗

XV ‖2;
λ = Ric(Y, Y ) = c2 ◦ π − 3‖AXY‖2 + ‖A∗

YU‖2 + ‖A∗
Y V ‖2.

On the other hand, by direct calculation, we see that 2‖AXY‖2 = ‖A‖2. Hence
2c1 + ‖A‖2 = 2λ;
2c2 ◦ π − 2‖A‖2 = 2λ;
‖A‖2 = 2

3
(c2 ◦ π − c1).


�

By Lemmas 4.1 and 4.2, we see that c1, ‖A‖ are constants on M4 and c2 is a constant on
N 2.

Fix p ∈ M4. Locally we can always choose basic vector fields X, Y such that X, Y is
an orthonormal basis of the horizontal distribution. At point p, since the image of A∗

X is
perpendicular to X and dimV = dimH = 2, A∗

X must have nontrivial kernel. Then there
exists some v ∈ V such that ‖v‖ = 1 and A∗

X (v) = 0. Extend v to be a local unit vertical
vector field V and choose U such that U, V is a local orthonormal basis of V .

Lemma 4.3

A∗
XV (p) = 0;
A∗
Y V (p) = 0.

Proof We already see A∗
XV (p) = A∗

X,p(v) = 0. Since A∗ is the dual of A, at point p, we
have

A∗
Y V = g(A∗

Y V, X)X = g(V, AY X)X

= − g(V, AXY )X = −g(A∗
XV, Y )X = 0.


�

Since all fibers of π are totally geodesic, by O’Neill’s formula ([16]), we see that K (X,U ) =
‖A∗

XU‖2 . Because (M4, g) is Einstein, at point p, we have

λ = Ric(U,U ) = c1 + ‖A∗
XU‖2 + ‖A∗

YU‖2;
λ = Ric(V, V ) = c1 + ‖A∗

XV ‖2 + ‖A∗
Y V ‖2;

Combined with Lemma 4.3, we see that λ = c1 and ‖A∗
XU‖2(p) = 0, ‖A∗

YU‖2(p) = 0.
Then ‖A‖2(p) = 0. Hence ‖A‖2 ≡ 0 on M4 and c1 = c2. Let c = c1 = c2. Then locally π

is the projection of a metric product B2(c) × B2(c) onto one of the factors, where B2(c) is
a two-dimensional compact manifold with constant curvature c.
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5 Conjecture 1 and the Weak Hopf Conjecture

In this section we point out several interesting corollaries of Conjecture 1.
Suppose (E, g) is a complete, open Riemannian manifold with nonnegative sectional

curvature. By a well known theorem of Cheeger and Gromoll [4], E contains a compact
totally geodesic submanifold 
, called the soul, such that E is diffeomorphic to the normal
bundle of
. Let
r be the distance sphere to
 of radius r . Then for small r > 0, the induced
metric on 
r has nonnegative sectional curvature by a theorem of Guijarro and Walschap
[11]. In [9], Gromoll and Tapp proposed the following conjecture:

Weak Hopf Conjecture Let k ≥ 3. Then for any complete metric with nonnegative sec-
tional curvature on Sn ×R

k , the induced metric on the boundary of a small metric tube about
the soul can not have positive sectional curvature.

The case n = 2, k = 3 is of particular interest since the metric tube of the soul is
diffeomorphic to S2 × S2.

Recall that a map between metric spaces f : X → Y is a submetry if for all x ∈ X and
r ∈ [0, r(x)] we have that f (B(x, r)) = B( f (x), r), where B(p, r) denotes the open metric
ball centered at p of radius x and r(x) is some positive continuous function. If both X and Y
are Riemannian manifolds, then f is a Riemannian submersion of class C1,1 by a theorem
of Berestovskii and Guijarro [1].

Proposition 5.1 Suppose
 is a soul of (E, g), where (E, g) is a complete, open Riemannian
manifold with nonnegative sectional curvature. If the induced metric on 
r has positive
sectional curvature at some point for some r > 0, then there is a Riemannian submersion
from 
r to 
 with fibers Sl−1, where l = dim(E) − dim(
).

Proof In fact, by a theorem of Guijarro and Walschap in [12], if 
r has positive sectional
curvature at somepoint, the normal holonomygroupof
 acts transitively on
r . ByCorollary
5 in [26], we get a submetry π : (E, g) → 
×[0,+∞)with fibers Sl−1, where
×[0,+∞)

is endowed with the product metric. Then π : (π−1(
 × (0,+∞)), g) → 
 × (0,+∞) is
also a submetry. By a theorem of Berestovskii and Guijarro in [1], π is a C1,1 Riemannian
submersion. Then
r = π−1(
×{r}) andπ : 
r → 
 is also aC1,1 Riemannian submersion
with fibers Sl−1, where 
r is endowed with the induced metric from (E, g). 
�

Proposition 5.2 When k > n, Conjecture 1 implies Weak Hopf Conjecture.

Proof Suppose for some complete metric g on Sn×R
k with nonnegative sectional curvature,

the induced metric on 
r has positive sectional curvature for some r > 0, where 
 is a soul.
Since Sn × R

k is diffeomorphic to the normal bundle of 
, we see that 
 is a homotopy
sphere and dim(
) = n. By Proposition 5.1, we get a Riemannian submersion from
r to


with fibers Sk−1, where
r is endowedwith the inducedmetric from g and hence has positive
sectional curvature. Since k > n, we see k − 1 ≥ n, which is impossible if Conjecture 1 is
true for C1,1 Riemannian submersions. 
�

Remark 3 If the question in Remark 1 after Proposition 1.2 has a positive answer, then by
Proposition 5.1 again, any small metric tube about the soul can not have positive sectional
curvature when the soul is odd-dimensional. This would give a solution to a question asked
by Tapp in [21].
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