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Abstract We prove that if X is a compact, oriented, connected 4-dimensional smooth man-
ifold, possibly with boundary, satisfying χ(X) �= 0, then there exists a natural number C
such that any finite group G acting smoothly and effectively on X has an abelian subgroup
A generated by two elements which satisfies [G : A] ≤ C and χ(X A) = χ(X). Further-
more, if χ(X) < 0 then A is cyclic. This answers positively, for any such X , a question of
Étienne Ghys. We also prove an analogous result for manifolds of arbitrary dimension and
non-vanishing Euler characteristic, but restricted to pseudofree actions.

Mathematics Subject Classification 57S17 · 54H15

1 Introduction

1.1 Statement of the results

In this paper we prove two results on smooth finite group actions on compact, connected
manifolds with non-vanishing Euler characteristic, and possibly with boundary. Our main
result is on actions on 4-dimensional manifolds:

Theorem 1.1 Let X be a compact, orientable, connected 4-dimensional smooth manifold,
possibly with boundary, satisfying χ(X) �= 0. There exists a natural number C such that any
finite group G acting smoothly and effectively on X has an abelian subgroup A satisfying
[G : A] ≤ C and χ(X A) = χ(X). Furthermore, if χ(X) > 0 then A can be generated by 2
elements, and if χ(X) < 0 then A is cyclic.

This work has been partially supported by the (Spanish) MEC Project MTM2012-38122-C03-02.

B Ignasi Mundet i Riera
ignasi.mundet@ub.edu

1 Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona,
Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-015-1530-8&domain=pdf


26 I. Mundet i Riera

To put Theorem 1.1 in context, recall the following classic theorem of Camille Jordan
(see [12] and [4,20] for modern proofs).

Theorem 1.2 (Jordan) For any natural number n there is some constant Jn such that any
finite subgroup G ⊂ GL(n, R) has an abelian subgroup A satisfying [G : A] ≤ Jn .

Let us say that a group G is Jordan if there is some constantC such that any finite subgroup
G ⊆ G has an abelian subgroup A satisfying [G : A] ≤ C (this terminology was introduced
a few years ago by Popov [24]). It is easy to deduce from Jordan’s theorem, Peter–Weyl’s
theorem, and the existence and uniqueness up to conjugation of maximal compact subgroups,
that any finite dimensional Lie group with finitely many connected components is Jordan.

In the mid 1990s, Ghys [7] raised the question of whether the diffeomorphism group of
any compact manifold is Jordan. This question appeared in print in [6, Question 13.1].

The first statement of Theorem 1.1 gives a positive answer to Ghys’s question for compact
connected orientable 4-manifolds with nonzero Euler characteristic. Using the arguments in
Subsection 2.3 of [20], one can deduce from Theorem 1.1 that the diffeomorphism groups of
compact connected nonorientable 4-manifolds with nonzero Euler characteristic are Jordan
(in both cases connectedness is not a crucial property, as long as the manifolds are compact
and hence have finitely many connected components).

There are other cases in which Ghys’s question is known to have an affirmative answer.
In [20] it was proved that if a compact connected n-dimensional manifold X admits one-
dimensional integral cohomology classes α1, . . . , αn whose product is nonzero then Diff(X)

is Jordan. This applies for example to tori T n of arbitrary dimension. Zimmermann [30]
proved, usingPerelman’s proof ofThurston’s geometrization conjecture, that if X is a compact
3-manifold then Diff(X) is Jordan.

In [21] it was proved that Diff(Sn) and Diff(Rn) are Jordan for any n; the paper [21] also
proves that if X is compact and has nonzero Euler characteristic then Diff(X) is Jordan. It
should be noted that [21] uses a result of A. Turull and the author [23] which is based on the
classification of finite simple groups (CFSG). In contrast, the present paper only uses very
basic and standard techniques of finite transformation groups. Note on the other hand that
the part of Theorem 1.1 which refers the the fixed point set of the abelian group does not
follow from the results in [21].

Roughly one year after the first version of this paper appeared as a preprint [22], Csikós
et al. [3] proved that Diff(T 2 × S2) is not Jordan, thus giving the first example of a compact
manifold whose diffeomorphism group is not Jordan (previously Popov [25] had given a
noncompact 4-dimensional example). It seems to be an interesting question to understand
which compact 4-manifolds have Jordan diffeomorphism group (the author does not know
any counterexample which is not an S2-fibration over T 2).

Using more sophisticated methods than the present paper, McCooey has proved in [15,16]
very strong restrictions on finite groups acting effectively and homologically trivially on
general compact, oriented, connected and closed 4-manifolds satisfying χ �= 0. In particular,
the main theorem in [15] implies that if X is a compact simply connected 4-manifold then
Diff(X) is Jordan. The paper [16] contains results on actions on non simply connected
compact 4-manifolds, but these results require, besides the homological triviality of the
action, some technical restrictions on the manifold, or on the finite group which acts on it, or
on the action, so they do not seem to apply to all actions of finite groups on closed 4-manifolds
with nonzero Euler characteristic.

For other results, implying a positive answer to Ghys’s question for 4-manifolds with
vanishing first homology and b2 ≤ 2, see e.g., [9,17,18,29].

The following is an immediate consequence of Theorem 1.1.

123



Finite group actions on 4-manifolds with nonzero Euler… 27

Corollary 1.3 Let X be a compact, oriented, connected 4-dimensional smooth manifold,
possibly with boundary, satisfying χ(X) �= 0. There exist constants C,C ′ with the following
properties.

(1) Any finite group acting effectively on X can be generated by C elements.
(2) For any action of a finite group G on X there exists some point x ∈ X whose isotropy

group satisfies [G : Gx ] ≤ C ′.

Using group theoretical results based on the CFSG, one can prove the first part of the
previous corollary for any compact manifold X . Since to the best of the author’s knowledge
this has not appeared in the literature, we briefly explain the argument.1 By the main result
in [14], there exists an integer r such that, for any prime p, any elementary p-group acting
effectively on X has rank at most r . Suppose that � is a p-group acting effectively on X ;
let �0 be a maximal abelian normal subgroup of �. The action by conjugation identifies
�/�0 with a subgroup of Aut(�0). Since �0 can be generated by at most r elements, the
Gorchakov–Hall–Merzlyakov–Roseblade lemma (see e.g., Lemma 5 in [26]) implies that
�/�0 can be generated by at most r(5r − 1)/2 elements. Hence � can be generated by at
most r(5r + 1)/2 elements. According to a theorem proved independently by Guralnick and
Lucchini [8,13], if all Sylow subgroups of a finite group G can be generated by at most
k elements, then G itself can be generated by at most k + 1 elements (both [8] and [13]
use the CFSG). Hence any finite group acting effectively on X can be generated by at most
r(5r + 1)/2 + 1 elements.

Our second result is analogous to the first one. Whereas the class of manifolds to which it
applies is much wider, it is limited to pseudofree actions. (Recall that an action of a group G
on a manifold X is pseudofree if for any nontrivial g ∈ G the fixed points of g are isolated.)

Theorem 1.4 Let X be a compact connected manifold, possibly with boundary, with nonzero
Euler characteristic. There exists a natural number C such that, if a finite group G acts
pseudofreely, smoothly and effectively on X, then G has an abelian subgroup A satisfying
[G : A] ≤ C and χ(X A) = χ(X), and A can be generated by [dim X/2] elements.

This theorem is certainly far from answering Ghys’s question for the manifolds to which
it applies, since the restriction to pseudofree actions is very strong. A complete proof that
these manifolds have Jordan diffeomorphism group appears in [21]. The reason we include
this theorem in this paper is that the proof of Theorem 1.4 serves as a toy model for the proof
of Theorem 1.1 (note that the proof in [21] uses the CFSG, while the arguments we use to
prove Theorem 1.4 are completely elementary; in fact, the proof of Theorem 1.4 is similar
to a standard proof of the Hurwitz bound on the size of automorphism groups of Riemann
surfaces of genus ≥2, see [5, §V.1.3]).

1.2 Conventions, notation, and contents

By a natural number we understand a strictly positive integer. The symbol ⊂ is reserved
for strict inclusion. All manifolds in this paper will implicitly be assumed to be smooth and
possibly with boundary, and all group actions on manifolds will be smooth. If G is a group
and S1, . . . , Sr are subsets of G, 〈S1, . . . , Sr 〉 denotes the subgroup of G generated by the
elements of S1, . . . , Sr . When we say that a group G can be generated by d elements we
mean that there are elements g1, . . . , gd ∈ G, not necessarily distinct, which generate G. If

1 I thank A. Jaikin and E. Khukhro for explaining this argument to me.
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28 I. Mundet i Riera

a group G acts on a set X we denote the stabiliser of x ∈ X by Gx , and for any subset S ⊆ G
we denote XS = {x ∈ X | S ⊆ Gx }. If g ∈ G we write Xg for X {g}.

We will systematically use this convention: when we say that some quantity is A-bounded
we mean that that quantity is bounded above by a function depending only on A; here A can
either be a number, a manifold (then the upper bound depends on the diffeomorphism class
of A), or a tuple of objects. This will hopefully make the reading lighter, but it will naturally
prevent us from keeping track of the precise value of the bounds we obtain. In any case, due
to the elementary nature of our arguments, the bounds that can be deduced are very likely
far from optimal.

We close this introductionwith a description of the contents of the paper. Section 2 contains
several unrelated results which will be used in the subsequent sections. Section 3 contains
the proof of Theorem 1.4. Section 4 contains the proof of Theorem 1.1. The last two sections
contain some auxiliary results which are used in the proof of Theorem 1.1: Sect. 5 gathers
some results on finite group actions on surfaces (in particular, Lemma 5.3 is the analogue of
Theorem 1.1 for surfaces), and Sect. 6 contains some results on finite abelian groups actions
on compact 4-manifolds and on C-rigid actions.

2 Preliminaries

2.1 Linearizing group actions

The following result is well known (see e.g., [21, Lemma 2.1]). It implies that the fixed point
set of any (smooth) finite group action on a manifold with boundary is a neat submanifold
in the sense of [10, §1.4].

Lemma 2.1 Let a finite group G act smoothly on a manifold X, and let x ∈ XG. The tangent
space Tx X carries a linear action of G, defined as the derivative at x of the action on X,
satisfying the following properties.

(1) There exist neighborhoods U ⊂ Tx X and V ⊂ X, of 0 and x resp., such that:

(a) if x /∈ ∂X then there is a G-equivariant diffeomorphism φ : U → V ;
(b) if x ∈ ∂X then there is G-equivariant diffeomorphism φ : U ∩ {ξ ≥ 0} → V , where

ξ is a nonzero G-invariant element of (Tx X)∗ such that Ker ξ = Tx∂X.

(2) If the action of G is effective and X is connected then the action of G on Tx X is effective,
so it induces an inclusion G ↪→ GL(Tx X).

Lemma 2.2 Let a finite group G act smoothly on a connected manifold X, and assume that
XG �= ∅. Then G has an abelian subgroup A of X-bounded index.

Proof Let x ∈ XG . By (2) in Lemma 2.1 there is an embeddingG ↪→ GL(Tx X). The lemma
follows from Theorem 1.2 applied to the image of this embedding. ��
Lemma 2.3 Let a finite group G act smoothly and preserving the orientation on a connected
oriented manifold X. For any γ ∈ G, any connected component of the fixed point set Xγ is
a neat submanifold of even codimension in X.

Proof Combine Lemma 2.1 and the fact that for any A ∈ SO(n, R) the difference n −
dimKer(A−Id) is even (note that Xγ is not necessarily connected, so itmay have components
of different dimensions). ��
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2.2 Finite group actions and cohomology

In the following two lemmas we denote by b j (Y ; k) the j th Betti number of a space Y with
coefficients in a field k.

Lemma 2.4 Let � be a finite cyclic group acting on a compact manifold X and let γ ∈ �

be a generator. We have

χ(X�) =
∑

j

(−1) j Tr(H j (γ ) : H j (X; Q) → H j (X; Q)). (1)

In particular, if the action of � on H∗(X; Q) is trivial, then χ(X�) = χ(X). In general,

|χ(X�)| ≤
∑

j

b j (X; Q). (2)

Proof Formula (1) is classic, see Exercise 3 in [28, Chap III, 6.17]. To prove (2) note that,
since γ has finite order, all the eigenvalues of H j (γ ) : H j (X; Q) → H j (X; Q) have
modulus one, so |Tr(H j (γ ) : H j (X; Q) → H j (X; Q))| ≤ b j (X; Q). ��

Lemma 2.5 Let � � Zp act on a manifold X. Then

∑

j

b j (X
�; Fp) ≤

∑

j

b j (X; Fp).

Proof This is [1, Theorem III.4.3]. ��
2.3 CT and CTO actions

We say that the action of a group G on a manifold X is cohomologically trivial (CT for
short) if the induced action of G on H∗(X; Z) is trivial. If X is orientable, then we say that
the action is CTO if it is CT and orientation preserving (this makes sense without having to
specify an orientation, because a CT action preserves connected components). Of course, if
X is closed and orientable then CT implies CTO, but for manifolds with boundary this is not
the case.

Lemma 2.6 For any compact manifold X and any finite group G acting on X there is a
subgroup G0 ⊆ G such that [G : G0] is X-bounded and the action of G0 on X is CTO.

Proof Since X is compact, it has finitely many components, so any group acting on X has a
subgroup of X -bounded index which acts preserving connected components and orientation
preservingly. Furthermore, the cohomology of X is finitely generated as an abelian group.
Let T ⊆ H∗(X; Z) be the torsion. A classic result of Minkowski states that, given any
integer k, the size of any finite subgroup of GL(k; Z) is k-bounded (see [19,27]). So if G is
a finite group acting on X , there is a subgroup G ′ ⊆ G of X -bounded index whose action on
H∗(X; Z)/T is trivial. There is also a subgroup G ′′ ⊆ G ′ of index at most |Aut(T )| which
acts trivially on T . Let F := H∗(X; Z)/T . In terms of a splitting H∗(X; Z) � F ⊕ T , the
action of G ′′ on H∗(X; Z) is through lower triangular matrices with ones in the diagonal, so
it factors through the group Hom(F, T ), which is finite; hence, there is a subgroup G0 ⊆ G ′′
of index at most |Hom(F, T )| whose action on H∗(X; Z) is trivial. ��
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30 I. Mundet i Riera

3 Pseudofree actions: proof of Theorem 1.4

3.1 The singular set and its projection to the orbit space

Consider an arbitrary action of a finite group G on a compact manifold X . Recall that the
singular set of the action of G on X is

SX =
⋃

g∈G\{1}
Xg = {x ∈ X | Gx �= {1}}, (3)

Let π : X → Y := X/G denote the projection to the orbit space, and let SY := π(SX ).

Lemma 3.1 The cohomologies of the spaces Y , SX and SY are finitely generated abelian
groups, so χ(Y ), χ(SX ) and χ(SY ) are well defined. Furthermore, we have

χ(X) − χ(SX ) = |G|(χ(Y ) − χ(SY )).

Proof Let (C, φ) be a G-regular triangulation of X . This means that C is a a G-regular
finite simplicial complex (in the sense of Definition 1.2 of [2, Chapter III]—note that the G-
regularity of C implies that C/G is a simplicial complex) and φ : X → |C| is a G-equivariant
homeomorphism. Regular triangulations always exist: the second barycentric subdivision of
an arbitrary equivariant triangulation of X (which exists e.g., by [11]) is automatically regular
(see Proposition 1.1 in [2, Chapter III]).

The quotient C/G is a simplicial complex and the homeomorphism φ : X → |C| descends
to a homeomorphism φY : Y → |C/G| (here we use the homeomorphism |C|/G � |C/G|
described at the end of Section 1 in [2, Chapter III]). Hence H∗(Y ; Z) is a finitely generated
abelian group, so χ(Y ) is well defined. Let C′ = {σ ∈ C | Gσ �= {1}}. The regularity of C
implies that φ(SX ) = |C′| andφY (SY ) = |C′/G|, which imply thatχ(SX ) andχ(SY ) are well
defined. Since Euler characteristics can be computed counting simplices in triangulations,
we have

χ(X) − χ(SX ) =
∑

σ∈C\C′
(−1)dim σ , χ(Y ) − χ(SY ) =

∑

[σ ]∈(C/G)\(C′/G)

(−1)dim σ .

Since G acts freely on C\C′ (and, of course, preserving dimensions), we have

∑

σ∈C\C′
(−1)dim σ = |G|

⎛

⎝
∑

[σ ]∈(C/G)\(C′/G)

(−1)dim σ

⎞

⎠ ,

which proves the lemma. ��
3.2 Proof of Theorem 1.4

Consider a pseudofree effective action of a finite group G on a compact connected manifold
X with nonzero Euler characteristic. By Lemma 2.6 we may replace G by a subgroup of
X -bounded index and assume that G acts trivially on H∗(X; Z). By Lemma 2.4, for any
γ ∈ G\{1} the set Xγ consists of χ(X) points. This implies, if χ(X) < 0, that G = {1}, so
Theorem 1.4 is true in this case.

Let us assume for the rest of the proof that χ := χ(X) is positive. Denote for convenience
d = |G|. Since SX = ⋃

γ∈G\{1} Xγ ,

|SX | ≤ (d − 1)χ.
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Let Y = X/G. By [28, Chap II, Prop 9.13] we have H∗(X; Q)G � H∗(Y ; Q), so χ(Y ) = χ .
Lemma 3.1 gives

|SY | = (d − 1)χ + |SX |
d

≤ 2(d − 1)χ

d
≤ 2χ.

This implies that the number r of G-orbits in SX is at most 2χ . Let d/a1, . . . , d/ar be
the number of elements of the G-orbits in SX , and assume that a1 ≥ · · · ≥ ar . Then
|SX | = ∑

d/a j , so Lemma 3.1 implies that

d

χa1
+ · · · + d

χar
− 1 = d(r − χ)

χ
.

The following lemma implies that d/(χa1) is (χ, r)-bounded, hence X -bounded.

Lemma 3.2 Suppose that d, e1, . . . , el , a are positive integers satisfying: e1 ≥ · · · ≥ el ,
each e j divides d, and

d

e1
+ · · · + d

el
− 1 = dt

a
. (4)

for some integer t . Then d/e1 is (a, l)-bounded.

Proof Consider for any (l, a) ∈ N
2 the set S(l, a) ⊂ N

l+1 × Z consisting of tuples
(d, e1, . . . , el , t) satisfying (4), e1 ≥ · · · ≥ el and e j |d for each j . Define D : N × N → N

recursively as follows: D(1, a) := a and D(l, a) := max{D(l − 1, aj) | 1 ≤ j ≤ al} for
each l > 1. In fact D(l, a) = D(l − 1, a2l).

We prove that for any (d, e1, . . . , el , t) ∈ S(l, a)we have e1 ≥ d/D(l, a) using induction
on l. For the case l = 1, suppose that (d, e1, t) ∈ S(1, a) and let d = e1g, where g ∈ N.
Rearranging (4) we deduce that g divides a, which implies g ≤ a, so e1 = d/g ≥ d/a =
d/D(1, a). Now assume that l > 1 and that the inequality has been proved for smaller values
of l. Let (d, e1, . . . , el , t) ∈ S(l, a). Since each e j divides d , we have d/e j ≥ 1 for each j ,
so the left hand side in (4) is positive. This implies that t ≥ 1. Using e1 ≥ · · · ≥ el we can
estimate d/a ≤ ld/el , so 1 ≤ el ≤ al. Furthermore, (4) implies

d

e1
+ · · · + d

el−1
− 1 = dt

a
− d

el
= d(tel − a)

ael
,

so (d, e1, . . . , el−1, tel −a) belongs to S(l−1, aj) for some 1 ≤ j ≤ al. Using the induction
hypothesis we deduce that e1 ≥ d/D(l − 1, aj) ≥ d/D(l, a). ��

Let x ∈ SX be one of the points whoseG-orbit has d/a1 elements. Then [G : Gx ] = d/a1
is X -bounded. By Lemma 2.2 there is an abelian subgroup Ga ⊆ Gx of X -bounded index.
Since Ga is abelian and can be identified with a subgroup of GL(dim X, R) (see the proof
of Lemma 2.2) it follows that there exists a subgroup Gb ⊆ Ga of (dim X)-bounded index
which can be generated by [dim X/2] elements. Let γ ∈ Gb be any nontrivial element. Since
XGb ⊆ Xγ and Xγ consists of χ points, the subgroup A ⊆ Gb fixing each element of Xγ

satisfies [Gb : A] ≤ χ ! and γ ∈ A. The latter implies X A ⊆ Xγ so X A = Xγ . Since A is a
subgroup of an abelian subgroup which can be generated by [dim X/2] elements, A can also
be generated by [dim X/2] elements. Finally, the index [G : A] is X -bounded, so the proof
of Theorem 1.4 is complete.
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32 I. Mundet i Riera

4 Proof of Theorem 1.1

4.1 Basic idea of the proof: C-rigid actions

Let G be a finite group acting effectively on a compact, connected and oriented 4-manifold
X satisfying χ(X) �= 0. Roughly speaking, the proof of Theorem 1.1 is based, as the proof
of Theorem 1.4, on estimating the Euler characteristic of the singular set SX = ⋃

g∈G\{1} Xg

and deducing the existence of some point x ∈ X whose stabilizer has X -bounded index
[G : Gx ].

However, estimating in a useful way χ(SX ) for general actions is much more difficult
than in the case of pseudofree actions. If the action is trivial in cohomology (which we may
assume, replacing G by a subgroup of X -bounded index) then χ(Xg) = χ(X) for every
g ∈ G, but to compute χ(SX ) (say, using the inclusion–exclusion principle) one needs to
control the numbers χ(Xg1 ∩· · ·∩ Xgk ) for different g1, . . . , gk ∈ G, and there is no general
formula for this quantity.2

To circumvent this difficulty we replace the singular set SX by a set S′
X ⊂ X whose Euler

characteristic is much easier to compute and which is in some sense a uniform approximation
of SX ; by the latter wemean that there exist X -bounded constants, 1 < C1 ≤ C2, independent
of G, such that the isotropy group of any point in S′

X (resp. in the complementary of S′
X ) has

at least C1 (resp. at most C2) elements. The actual definition of S′
X uses the notion of C-rigid

subgroup of G, which we next explain (see Sect. 6 for more details).
Let C be a natural number. We say that the action of a subgroup A ⊆ G is C-rigid if

A is abelian and for any subgroup A′ ⊆ A satisfying [A : A′] ≤ C we have X A′ = X A.
Sometimes, abusing terminology, we simply say that A is C-rigid. The following two trivial
properties of C-rigidity will be implicitly used in our arguments. First, if C ≤ C ′ and A ⊆ G
is a C ′-rigid subgroup then A is also C-rigid. Second, if A ⊆ G is C-rigid, and A0 ⊆ A is a
subgroup, then A0 is C0-rigid for any C0 such that C0[A : A0] ≤ C .

In Sect. 6 we prove the following properties for any finite group action G on X :

(a) there exists some X -bounded constant Cχ such that for any Cχ -rigid subgroup A ⊆ G
we have χ(X A) = χ(X) �= 0 and each connected component of X A is even dimensional
(Lemma 6.5);

(b) for any C there exists a (C, X)-bounded constant �C such that any abelian subgroup
A ⊆ G has a C-rigid subgroup A0 ⊆ A satisfying [A : A0] ≤ �C (Lemma 6.4); more
precisely, �C will denote the minimal number with that property, and this implies that
�C is a nondecreasing function of C .

To define S′
X we take a suitable X -bounded number C and we set S′

X = ⋃
A X A, where A

runs over the set of nontrivial C-rigid subgroups of G. This is an approximation of SX in the
previous sense: property (b) and Jordan’s theorem guarantees that if x ∈ X\S′

X then Gx can
not be too big, whereas the definition of rigidity implies that if A is nontrivial and C-rigid
then |A| > C , from which we deduce that if x ∈ S′

X then |Gx | > C .
The actual definition of C is given in formula (5) below. The reader should think of C as

a big but X -bounded number. The choice of C guarantees that each connected component of
S′
X has the same Euler characteristic as X . The action of G on X induces an action on the set

of connected components of S′
X , and we will prove that the number of G-orbits of connected

components of S′
X is X -bounded (Lemma 4.6). From this we will deduce, using the same

2 However, for some restricted classes of groups acting on X one can study in detail the topology of the
singular set; in the case of minimal non-abelian groups, this is done in [15,16], and it is the crucial ingredient
of the proofs.
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Finite group actions on 4-manifolds with nonzero Euler… 33

arithmetic arguments as in the proof of Theorem 1.4, that there is some point in X satisfying
[G : Gx ] ≤ C ′, where C ′ is X -bounded.

4.2 Details of the proof

The next three paragraphs are devoted to proving some useful properties of rigid group
actions. The proof of Theorem 1.1 is in Sect. 4.2.4.

4.2.1 J4-rigid groups

Here J4 refers to the constant in Jordan’s Theorem 1.2 for n = 4.

Lemma 4.1 Suppose that G is a finite group acting on X and that A1, A2 ⊆ G are abelian
subgroups satisfying X A1 ∩ X A2 �= ∅. If A1 is J4-rigid then there is a subgroup A′

2 ⊆ A2

such that [A2 : A′
2] ≤ J4 and A′

2 preserves X
A1 .

Proof Let � = 〈A1, A2〉 ⊆ G. Since X� = X A1 ∩ X A2 �= ∅, Lemma 2.2 implies that there
exists an abelian subgroup H ⊆ � satisfying [� : H ] ≤ J4. Since [A1 : A1 ∩ H ] ≤ J4 and
A1 is J4-rigid, we have X A1 = X A1∩H . Let A′

2 = A2 ∩ H . Then [A2 : A′
2] ≤ J4. Finally,

since H is abelian the action of A′
2 ⊆ H on X preserves X A1∩H = X A1 . ��

4.2.2 The constant C

Define, for any compact manifold Y , the following numbers

b+(Y ) :=
∑

j≥0

max{b j (Y ; Fp) | p prime}, b−(Y ) :=
∑

j≥0

min{b j (Y ; Fp) | p prime}

and denote by S(X) the set of diffeomorphism classes of compact connected surfaces 

satisfying b−() ≤ b+(X). Abusing language, we will sometimes say that a surface belongs
to S(X) meaning that its diffeomorphism type belongs to S(X). Note that S(X) is never
empty, as it always contains S2.

By Lemma 5.3 (which is the analogue for surfaces of Theorem 1.1), for any compact
surface there exists a-bounded natural numberC() such that any finite group G acting
effectively on has an abelian subgroup A satisfying [G : A] ≤ C() and χ(A) = χ().
The classification theorem of compact connected surfaces implies that

Csurf = max{C() |  compact surface,  ∈ S(X)}
is finite and X -bounded. This is well defined because S(X) �= ∅, and we have Csurf ≥ 1.

By Lemma 6.2 there is some X -bounded constant C f such that for any finite abelian
subgroup A acting on X the fixed point set X A has at most C f connected components.
Recall that Cχ denotes an X -bounded constant with the property that if a finite group G
acts effectively on X and A ⊆ G is any Cχ -rigid subgroup then χ(X A) = χ(X) and each
connected component of X A is even dimensional (see Lemma 6.5). Let

Cδ = max{Cχ ,C f Csurf }.
The following lemma shows part of the significance of the number Cδ .

Lemma 4.2 Let G be a finite group acting on X in a CTO way, and let A1, A2 ⊆ G be
Cδ-rigid subgroups. If the intersection A1 ∩ A2 is nontrivial then X A1 ∩ X A2 �= ∅.
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Proof Let a ∈ A1 ∩ A2 be a nontrivial element. Since the action of G is CTO, by Lemma 2.4
we have χ(Xa) = χ(X) and by Lemma 2.3 each connected component of Xa is even
dimensional. Choose a connected component Y ⊆ Xa satisfying χ(Y ) �= 0. The group Ai

preserves Xa , and the subgroup A′
i ⊆ Ai preserving Y satisfies [Ai : A′

i ] ≤ C f . Since

Ai is Cδ-rigid we have X A′
i = X Ai . If Y is a point then ∅ �= Y ⊆ X A′

1 ∩ X A′
2 , hence

X A1 ∩ X A2 �= ∅. If Y is a surface then Y ∈ S(X) (Lemma 5.1) so by Lemma 5.3 the group
� = 〈A′

1, A
′
2〉 (which acts on Y ) has an abelian subgroup A ⊆ � of index [� : A] ≤ Csurf and

satisfying χ(Y A) = χ(Y ) �= 0, so Y A �= ∅. We have X A′
i∩A = X Ai because of Cδ-rigidity

so

X A1 ∩ X A2 ⊆ X� ⊆ X A ⊆ X A′
1∩A ∩ X A′

2∩A

implies X A1 ∩ X A2 = X A, and X A �= ∅ because Y A ⊆ X A. ��
Let�δ be the X -bounded number, given by Lemma 6.4, with the property that any abelian

finite group A acting on X has a Cδ-rigid subgroup A0 of index at most �δ . Define the
following constant:

C := max{Cχ , J4 C f Csurf , J4 �δ, 2 J4}. (5)

The expression in the right hand side is redundant, since �δ can not be smaller than Cχ ; we
include the constant Cχ inside the maximum for clarity.

4.2.3 Properties of C-rigid groups

In the following two lemmas we prove that C-rigid subgroups of finite groups acting on X
have particularly nice properties.

Lemma 4.3 Suppose that G is a finite group acting on X and that A1, A2, A3 ⊆ G are
C-rigid subgroups satisfying X A1 ∩ X A2 �= ∅ �= X A1 ∩ X A3 . Then X A2 ∩ X A3 �= ∅.
Proof ByLemma 4.1 there exist subgroups A′

2 ⊆ A2 and A′
3 ⊆ A3 satisfying [A j : A′

j ] ≤ J4
such that both A′

2 and A′
3 preserve X

A1 . Let� = 〈A′
2, A

′
3〉 ⊆ G. Since A1 isCχ -rigid, there is

a connected component Y ⊆ X A1 such that χ(Y ) �= 0. Since X A1 has at most C f connected
components, the subgroup �′ ⊆ � preserving Y satisfies [� : �′] ≤ C f . The subvariety Y
is even dimensional, so it is either a point or an element of S(X) (Lemma 6.1). In the first
case we have Y ⊆ X A′

2∩�′ ∩ X A′
3∩�′ = X A2 ∩ X A3 , the second equality following from

[A j : A′
j ∩ �′] ≤ C ( j = 2, 3) and rigidity. If Y ∈ S(X) then by Lemma 5.3 there is a

subgroup �′′ ⊆ �′ satisfying [�′ : �′′] ≤ Csurf and χ(Y�′′
) = χ(Y ) �= 0, so Y�′′ �= ∅. So

Y�′′ ⊆ X A′
2∩�′′ ∩ X A′

3∩�′′ = X A2 ∩ X A3 , again because of [A j : A′
j ∩ �′′] ≤ C and rigidity.

��
Lemma 4.4 Suppose that G is a finite group acting on X and that A1, . . . , Ar ⊆ G are
C-rigid subgroups (with r arbitrary) satisfying X A1 ∩ X A j �= ∅ for every j . Let Z :=
X A1 ∩ · · · ∩ X Ar . Then there is a Cδ-rigid subgroup A ⊆ G such that Z = X A. In particular
(since Cδ ≥ Cχ ), χ(Z) = χ(X) (so Z �= ∅), every connected component of Z is even
dimensional, and Z has at most C f connected components.

Proof We first prove that Z �= ∅. Assume that r ≥ 2, otherwise the claim is trivial. The
proof of the claim is very similar to that of the previous lemma. For every j ≥ 2 there
exists a subgroup A′

j ⊆ A j satisfying [A j : A′
j ] ≤ J4 such that A′

j preserves X A1 . Let
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� = 〈A′
2, . . . , A

′
r 〉 ⊆ G. Let Y ⊆ X A1 be a connected component such that χ(Y ) �= 0.

The subgroup �′ ⊆ � preserving Y satisfies [� : �′] ≤ C f . If Y is a point then setting

A′′
j := A′

j ∩�′ we have Y ⊆ X A′′
2 ∩· · ·∩ X A′′

r and [A j : A′′
j ] ≤ C , so by rigidity X A′′

j = X A j

for every j , which implies that Z = X A′′
1 ∩ · · · ∩ X A′′

r , and we are done. If Y ∈ S(X) then
there is a subgroup �′′ ⊆ �′ satisfying [�′ : �′′] ≤ Csurf and χ(Y�′′

) = χ(Y ) �= 0, so
Y�′′ �= ∅. Setting A′′

j := A′
j ∩ �′′ we have Y�′′ ⊆ X A′′

2 ∩ · · · ∩ X A′′
r and [A j : A′′

j ] ≤ C , and
the proof is finished as in the case where Y is a point.

Let T = 〈A1, . . . , Ar 〉 ⊆ G. We have XT = Z �= ∅, so by Lemma 2.2 there is an abelian
subgroup H ⊆ T of index at most J4. By Lemma 6.4 there is a Cχ -rigid subgroup Hχ ⊆ H

satisfying [H : Hχ ] ≤ �χ . Let A′
j = A j ∩ Hχ . Then [A j : A′

j ] ≤ C , so X A j = X A′
j for

every j because A j is C-rigid. Thus

Z = X� ⊆ XHχ ⊆ X A′
1 ∩ · · · ∩ X A′

r = Z ,

which implies Z = XHχ . Hence A := Hχ has the desired property. ��

4.2.4 The sets F and H and the proof of Theorem 1.1

Recall our assumptions: G is a finite group acting effectively on a compact, oriented and
connected 4-manifold X satisfying χ(X) �= 0. By Lemma 2.6 we may (and do) replace G
by a subgroup of X -bounded index whose action on X is CTO. Let C be the constant defined
in (5) above. Define the following collection of (not necessarily connected) submanifolds of
X :

F = {X A | A ⊆ G, A is nontrivial andC-rigid}.
The action of G on X induces an action on F, since g X A = XgAg−1

for any g ∈ G and
A ⊆ G is C-rigid if and only if gAg−1 is. Let≈ be the relation between elements of F which
identifies F, F ′ ∈ F whenever F ∩ F ′ �= ∅. By Lemma 4.3 this is an equivalence relation.
Let

H := F/≈ .

The action of G on F preserves the relation ≈, so it descends to an action on H.
We are going to prove in Lemma 4.6 below that |H/G| is X -bounded. Before that, we

introduce some notation and a preliminary result (Lemma 4.5). For any H ∈ H define

XH :=
⋂

F∈F, [F]=H

F.

Then {XH | H ∈ H} is a collection of disjoint (not necessarily connected) submanifolds of
X . By Lemma 4.4 we have χ(XH ) = χ(X) �= 0, all connected components of XH are even
dimensional, and XH has at most C f connected components (recall that C f is defined a few
lines before Lemma 4.2).

We denote by GH ⊆ G the isotropy group of each element H ∈ H. The action of GH on
X preserves XH . Let

G(H) = {g ∈ G | ∃Y ⊂ X such thatY is a connected component of XH and of Xg}.
Note that unlike GH the subset G(H) is not a subgroup of G.

Lemma 4.5 There exist an X-bounded number C1 such that for any H ∈ H satisfying
|GH | > C1 we have |G(H)| ≥ |GH |/(2C1).
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Proof Choose a connected component Y ⊆ XH satisfying χ(Y ) �= ∅. Since XH has at most
C f connected components there is a subgroup G ′

H ⊆ GH whose action on XH preserves Y
and such that [GH : G ′

H ] ≤ C f . Recall that Y is even dimensional.
Suppose that Y consists of a unique point y ∈ X . Then G ′

H ⊆ Gy , so |Gy | ≥ |G ′
H | ≥

|GH |/C f . By Jordan’s Theorem 1.2 there is an abelian subgroup B ⊆ Gy satisfying [Gy :
B] ≤ J4. Since B acts linearly on Ty X there is a splitting Ty X = L1 ⊕ L2 where L1, L2

are 2-dimensional linear subspaces of Ty X preserved by the action of B. Let Bj ⊆ B be the
subgroup fixing all vectors of L j . We prove that |B1| ≤ |B|/3. If this were not true, then
the subgroup G1 ⊆ Gy fixing all vectors of L1 would satisfy [Gy : G1] ≥ 2 J4. For any
C-rigid subgroup A ⊆ Gy ⊆ G we would have X A = X A∩G1 since [A : A ∩ G1] ≤ [Gy :
G1] ≤ 2 J4 ≤ C , which would imply by Lemma 2.1 that Ty X A contains L1. But since y is
an isolated point of XH , there must exist some nontrivial C-rigid subgroup A ⊆ G such that
L1 � Ty X A, a contradiction. Hence |B1| ≤ |B|/3, and for the same reason |B2| ≤ |B|/3.
Now B\(B1 ∪ B2) ⊆ G(H) so |G(H)| ≥ |B\(B1 ∪ B2)| ≥ |B|/3 ≥ |Gy |/(3 J4) ≥
|GH |/(3 J4 C f ).

Now suppose that dim Y = 2 so that Y ∈ S(X). By Lemma 5.3 there is a subgroup
G ′′

H ⊆ G ′
H such that χ(YG ′′

H ) = χ(Y ) �= 0 and such that [G ′
H : G ′′

H ] ≤ Csurf . We have

XG ′′
H �= ∅, so by Lemma 2.2 there is an abelian subgroup A ⊆ G ′′

H such that [G ′′
H : A] ≤ J4.

By Lemma 6.4 there exists an X -bounded number � with the property that A has a C-rigid
subgroup A0 ⊆ A satisfying [A : A0] ≤ �. Let

C ′
1 := C f Csurf J4 �.

Then [GH : A0] ≤ C ′
1. If |GH | > C ′

1 then A0 is nontrivial, so X A0 is an element of F. Since

∅ �= YG ′′
H ⊆ X A0 , the ≈-class of X A0 is H , hence XH ⊆ X A0 . Since Y is 2-dimensional

and all connected components of X A0 are even dimensional, it follows that A0\{1} ⊆ G(H).
Since A0 �= {1} we have |G(H)| ≥ |A0\{1}| ≥ |A0|/2 ≥ |GH |/(2C ′

1).
Hence setting C1 := max{C ′

1, 3 J4 C f } the lemma holds true. ��
Lemma 4.6 |H/G| ≤ C1 + 2C1C f .

Proof Choose for each H ∈ H a Cδ-rigid subgroup A(H) ⊆ G such that XH = X A(H). If
H �= H ′ are elements ofH, then since X A(H) ∩ X A(H ′) = ∅ we have A(H) ∩ A(H ′) = {1}
by Lemma 4.2. Consequently, |H| = s ≤ |G|. Let

Hsmall = {H ∈ H | |GH | ≤ C1}, Hbig = {H ∈ H | |GH | > C1}.
Both subsets Hsmall,Hbig ⊆ H are G-invariant. Each G-orbit in Hsmall has at least |G|/C1

elements, so the bound |Hsmall| ≤ |H| ≤ |G| implies thatHsmall contains at most C1 orbits,
i.e., |Hsmall/G| ≤ C1. To estimate the number of orbits in Hbig we use the following:

|G| · |Hbig/G| =
∑

H∈Hbig

|GH | ≤ 2C1

∑

H∈Hbig

|G(H)| ≤ 2C1C f |G|.

The equality follows from a simple counting argument, the first inequality follows from
Lemma 4.5, and the second inequality follows from the fact that the submanifolds {XH } are
disjoint and that for any g ∈ G the number of connected components of Xg is at most C f .
Dividing both extremes by |G| we deduce |Hbig/G| ≤ 2C1C f which combined with the
estimate on |Hsmall/G| proves the lemma. ��

For any H ∈ H let

YH =
⋃

F∈F, [F]=H

H.
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By Lemma 4.4 and the inclusion–exclusion principle, we have χ(YH ) = χ(X). Let
H1, . . . , Hr ∈ H be representatives of the orbits of the action of G on H. Let

d = |G|
and let e j = |GHj |. Since for different H, H ′ ∈ H we have YH ∩ YH ′ = ∅, we have

χ

(
⋃

F∈F
F

)
=

(
d

e1
χ(YH1) + · · · + d

er
χ(YHr )

)
= χ(X)

(
d

e1
+ · · · + d

er

)
. (6)

Lemma 4.7 The difference χ(X) − χ
(⋃

F∈F F
)
is divisible by d/a, where a is an X-

bounded divisor of d.

Proof Let � be the same X -bounded number as in the proof of Lemma 4.5. Let x ∈ X .
If |Gx | > J4 � then, by Jordan’s Theorem 1.2 and Lemma 6.4, there is a nontrivial C-
rigid subgroup A ⊆ Gx , so x ∈ X A ⊆ ⋃

F∈F F . So the isotropy group of any point in
X\⋃

F∈F F has at most J4 � elements. Now take a G-regular triangulation of X (see the
proof of Lemma 3.1). The regularity of the triangulation implies that the isotropy group
of any simplex is contained in the isotropy group of any of its points. Hence each orbit of
simplexes in X\⋃

F∈F F has size d/e, where e is a divisor of d and e ≤ J4 �, so e divides
a := GCD(d, (J4 �)!). Now χ(X) − χ

(⋃
F∈F F

)
can be computed as the alternate sum of

numbers of simplexes in each dimension which are not contained in
⋃

F∈F F . Grouping the
simplexes in G-orbits, the result follows immediately. ��

Combining the previous lemma with (6) we obtain the following equality:

d

e1
+ · · · + d

er
− 1 = dt

a
,

where t is an integer and a is an X -bounded divisor of d . By Lemma 4.6, r is also X -
bounded. We can assuming (reordering if necessary) that e1 ≥ · · · ≥ er . Lemma 3.2 gives
|GH1 | = e1 ≥ d/K for some constant K depending only on r and a, so K is X -bounded. It
follows that [G : GH1 ] = d/e1 ≤ K is X -bounded.

By the arguments in the proof of Lemma 4.5, there is a subgroupG2 ⊆ GH1 of X -bounded
index such that XG2

H1
�= ∅. By Lemma 2.2 and Lemmas 6.4 and 6.5 there exists an abelian

subgroup A ⊆ G2 of X -bounded index such that χ(X A) = χ(X), and A can be generated by
2 elements. If χ(X) < 0 then, since χ(X A) < 0, there is at least one connected component of
X A which is a surface. If ⊆ X A is one such component and x ∈ , then the linearization of
the action of A near x gives an embedding A ↪→ GL(Tx X/Tx) preserving the orientation
and a metric (see Lemma 2.1), so we may identify A with a subgroup of SO(2, R); hence A
is cyclic.

Since [G : A] is X -bounded, the proof of Theorem 1.1 is now complete.

5 Finite groups acting on surfaces

In this section we consider finite group actions on surfaces. The main result is Lemma 5.3,
which is the analogue in two dimensions of Theorem 1.1.

Lemma 5.1 Let  be a compact connected surface. For any finite abelian group A acting
on  the number of connected components of A is -bounded.
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Proof It clearly suffices to consider nontrivial actions. So let A be a finite abelian group acting
on  and assume that there is an element a ∈ A acting nontrivially on . We distinguish
two possibilities.

If all connected components of a are zero dimensional then, by (2) in Lemma 2.4 we
have |a | = χ(a) ≤ b(; Q) := ∑2

j=0 b j (; Q). Since A ⊆ a , the result follows.
Now assume that a contains some one-dimensional component. Any such component

is (diffeomorphic to) either a circle or a closed interval. For j = 0, 1 let a
j ⊆ a denote

the union of the connected components whose Euler characteristic is j . By (2) in Lemma 2.4
we have |π0(

a
1 )| ≤ b(; Q). Let us now bound |π0(

a
0 )|, which is equal to the number

of circles in a . The fact that a has a codimension one connected component implies, by
(1) in Lemma 2.1, that a has order 2. Let 〈a〉 = {1, a}. Then ′ := /〈a〉 is a surface with
corners, so it is homeomorphic to a surface with boundary. We may bound

χ(′) = (χ() + |π0
(
a

1

) |)/2 ≥ χ()/2

using an A-regular triangulation on  (see the proof of Lemma 3.1) and computing Euler
characteristics in terms of counting simplices. As a topological surface,′ is the complemen-
tary in a compact connected surface S of finitely many disjoint open discs; χ(′) is equal to
χ(S)minus the number of discs, and the latter can be identified with |π0(∂′)|. By the classi-
fication of compact connected surfaces we have χ() ≤ 2; this gives χ(′) ≤ 2−|π0(∂′)|
or, equivalently,

|π0(∂′)| ≤ 2 − χ(′)

Each connected component of a
0 contributes to a connected component of ∂′. We deduce

that |π0(
a
0 )| ≤ 2 − χ()/2.

To complete the argument in this case, note that A ⊆ a . This implies that A contains
at most as many one-dimensional connected components as a , so we only need to bound
the number of zero dimensional connected components (i.e., the isolated points) of A.
Each isolated point in A is either an isolated point in a or belongs to a one-dimensional
connected component of a . Since we have a bound on |π0(

a)|, it suffices to bound
uniformly the number of isolated points in A which can belong to a given one-dimensional
component ofa . If Y ⊆ a is one such component and Y contains an isolated point ofA,
then the action of A on a preserves Y and we can identify A ∩ Y with the fixed point set
of the action of A on Y . To finish the proof it suffices to check that Y A contains at most 2
points. Let g ∈ A be an element acting nontrivially on Y . Then Y g is a finite set of points, and
|Y g| ≤ b0(Y ; Q) + b1(Y ; Q) ≤ 2 by (2) in Lemma 2.4. Since Y A ⊆ Y g , the result follows.

��
Lemma 5.2 For any compact connected surface  and any finite abelian group A acting
on  there is an abelian subgroup A0 ⊆ A such that [A : A0] is -bounded and χ(A0) =
χ().

Proof Let  be a compact connected surface, and let an abelian group A act on . By
Lemma 2.6 there exists a subgroup A′ ⊆ A whose action on  is CT and [A : A′] is
-bounded. If the action of A′ on  is trivial, then we set A0 := A′ and we are done.
Otherwise, there exists some a ∈ A′ acting nontrivially on . By Lemma 2.4, χ(a) =
χ(). By Lemma 5.1 the number of connected components of a is -bounded. It follows
that there exists a subgroup A0 ⊆ A of-bounded index whose action ona preserves each
connected component and is orientation preserving on each component of a . We claim
that χ(A0) = χ(a). To prove this, it suffices to check that for any connected component
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Y ⊆ a we have χ(Y ) = χ(Y A0). But each such Y is a closed manifold of dimension at
most 1, so χ(Y ) = χ(Y A0) follows fromLemma 2.4 and the fact that A0 acts on Y preserving
the orientation. ��
Lemma 5.3 For any compact connected surface  and any finite group G acting effectively
on then there is an abelian subgroup A ⊆ G whose index [G : A] is-bounded and which
satisfies χ(A) = χ().

Proof In view of Lemma 5.2 it suffices to check that, for any compact connected surface ,
any finite group acting effectively on  has an abelian subgroup of -bounded index. To
prove this, suppose first that ∂ is empty. If  is orientable, then the lemma is Theorem 1.3
in [20] (if furthermore χ() �= 0 then it also follows from Theorem 1.4 and Lemma 2.3 of
the present paper). If  is not orientable, then the arguments of Section 2.3 in [20] allow to
deduce the lemma from the orientable case. Now suppose that ∂ is nonemtpy, say with k
connected components. Let a finite group G act on . Replacing G by a subgroup of index
at most k, we can assume that G fixes one connected component Y ⊂ ∂. Considering the
restriction of the action to Y we get a morphism of groups G → Diff(Y ) which we claim to
be injective. This follows from the fact that a finite order diffeomorphism of  which is the
identity on Y is automatically the identity on the whole , which in turn is a consequence of
(1.b) in Lemma 2.1. So to finish the proof we need to prove that a finite subgroup of Diff(S1)
has an abelian subgroup of uniformly bounded index. This the simplest case of Theorem 1.4
in [20], but it can also be proved directly observing that, since all metrics in S1 are isometric
up to rescaling, choosing an invariant metric on S1 gives an embedding of the group in a
dihedral group. ��

6 C-rigid group actions on 4-manifolds

In this section we prove some facts on finite group actions on compact 4-manifolds and on
rigidity that were used in Sect. 4 when proving Theorem 1.1.

6.1 Bounding the number of components of fixed point sets

The following notation, which is recalled for convenience, was defined in Sect. 4.2.2. For any
space Y with finitely generated homologywe set b+(Y ) := ∑

j≥0 max{b j (Y ; Fp) | p prime}
and b−(Y ) := ∑

j≥0 min{b j (Y ; Fp) | p prime}. For any 4-dimensional oriented manifold
X we denote by S(X) the set of diffeomorphism classes of compact connected surfaces 

such that b−() ≤ b+(X).

Lemma 6.1 Let X be a 4-dimensional compact connected orientedmanifold X, and let H be
a group acting nontrivially on X preserving the orientation. The connected components of X H

are neat submanifolds of dimensions 0, 1 or 2. Any two-dimensional connected component
of X H is diffeomorphic to an element of S(X).

Proof That XH is a (not necessarily connected) neat submanifold of X follows from (1.b)
in Lemma 2.1. By Lemma 2.3, for any h ∈ H the connected components of Xh are zero or
two-dimensional; hence, the dimension of any connected component of XH is at most two. To
prove the last statement, suppose that Y ⊂ XH is a two-dimensional connected component.
Let h ∈ H be an element acting nontrivially; replacing h by a power hr we may assume that
the diffeomorphism of X induced by the action of h has primer order. Since the connected
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components of Xh have dimension at most 2, the inclusion XH ⊂ Xh implies that Y is a
connected component of Xh . Then, by Lemma 2.5, b−(Y ) ≤ b+(X), so Y is diffeomorphic
to an element of S(X). ��
Lemma 6.2 For any compact 4-dimensional oriented manifold X and any finite abelian
group A acting on X the number of connected components of X A is X-bounded.

Proof Let X be a 4-dimensional oriented manifold. Let A be a finite abelian group acting
on X . If the action of A is trivial then there is nothing to prove. Otherwise, let a ∈ A be
an element acting nontrivially on X through a diffeomorphism of order p, where p is any
prime. By Lemma 2.5 we have

∑

j

b j (X
a; Fp) ≤

∑

j

b j (X; Fp) ≤ b+(X),

so Xa has at most b+(X) connected components, and each connected component Y ⊆ Xa

satisfies b−(Y ) ≤ b+(X). Since X A ⊆ Xa , it suffices to prove that for connected component
of Xa contains an X -bounded amount of connected components of X A. By Lemma 2.3 the
connected components of Xa are either points or surfaces. Of course each isolated point in
Xa contains at most one connected component of X A. Now suppose that Y ⊆ Xa is a surface.
Then Y is diffeomorphic to some element of S(X). If Y ∩ Xa = ∅, then there is nothing
to prove. Otherwise, the action of A on Xa leaves Y fixed. By Lemma 5.1, the number of
connected components of Y A i Y -bounded. Since Y is diffeomorphic to an element of S(X),
the argument is finished using the classification of compact surfaces, which implies that for
every N the set of diffeomorphism types of compact surfaces  satisfying b−() ≤ N is
finite. ��
Lemma 6.3 For any compact 4-dimensional oriented manifold X, and any chain of inclu-
sions ∅ �= Y1 � Y2 � · · · � Yr of neat3 submanifolds of X satisfying |π0(Y j )| ≤ k for each

j , we have r ≤
(
5 + k
5

)
.

Proof This is a particular case of Lemma 7.1 in [21]. ��
6.2 Definition and basic results on C-rigid abelian group actions

Let A be a finite group acting on a compact 4-manifold X and let C be a natural number.
Recall (see Sect. 4.1) that (the action of) A is said to be C-rigid if A is abelian and for any
subgroup A0 ⊆ A satisfying [A : A0] ≤ C we have X A0 = X A.

Lemma 6.4 Let X be a compact connected 4-manifold. For any natural number C there
exists a (C, X)-bounded constant � such that any finite abelian group A acting on X has a
subgroup of index at most � whose action on X is C-rigid.

Proof By Lemma 6.2 there is an X -bounded constant C f such that for any finite abelian
group A acting on X the fixed point set X A has at most C f connected components. Let

C ′ :=
(
5 + C f

5

)
. We prove that � := CC ′−1 has the stated property. Let A be a finite

abelian group acting on X in a CTO way and assume by contradiction that no subgroup of A
of index at most � is C-rigid. Then we may construct recursively a sequence of subgroups

3 See [10, §1.4] for the definition of neat submanifold.
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A =: A0 ⊃ A1 ⊃ · · · ⊃ AC ′ satisfying [Ai : Ai+1] ≤ C and X Ai ⊂ X Ai+1 for each i ;
indeed, once A0, A1, . . . , Ai , i < C ′, have been constructedwe have [A : Ai ] ≤ Ci ≤ CC ′−1

so by our initial assumption on A the group Ai is notC-rigid; hence, we may pick a subgroup
Ai+1 ⊂ Ai such that [Ai : Ai+1] ≤ C and X Ai ⊂ X Ai+1 . By Lemma 6.2, each X Ai has at
most C f connected components, so we obtain a contradiction with Lemma 6.3. ��
Lemma 6.5 Let X be a compact connected 4-manifold. There exists an X-bounded constant
Cχ such that any finite abelian group A acting on X in a Cχ -rigid way satisfies χ(X A) =
χ(X) and each connected component of X A is even dimensional.

Proof It suffices to prove that any finite abelian group A acting on X has a subgroup A′ of
X -bounded index such that χ(X) = χ(X A′

) and each connected component of X A′
is even

dimensional. So suppose that A is a finite abelian group acting on X . By Lemma 2.6 we may
take a subgroup A1 ⊆ A of X -bounded index whose action on X is CTO. If A1 acts trivially
on X then we set A′ := A1 and we are done. Otherwise there exists some a ∈ A1 whose
action on X is nontrivial. By Lemma 2.4 χ(Xa) = χ(X) and by Lemma 6.2 the number
of connected components of Xa is X -bounded. Hence the subgroup A2 ⊆ A1 preserving
each connected component of Xa and whose action on each connected component of Xa is
orientation preserving has X -bounded index [A1 : A2]. By Lemma 5.2, Lemma 6.1, and the
classification of compact surfaces, there is a subgroup A3 ⊆ A2 of X -bounded index such
that for every two-dimensional connected component Y of Xa we have χ(Y A3) = χ(Y ). We
may clearly assume that a ∈ A3. Since the action of A3 on each two-dimensional connected
component Y ⊆ Xa is orientation preserving, Y A3 is even dimensional. For every zero-
dimensional connected component Y ⊆ Xa we obviously have χ(Y A3) = χ(Y ). Since a
acts on X preserving the orientation, each connected component of Xa has dimension 0 or 2,
by Lemma 2.3. It then follows, as in the proof of Lemma 5.2, that χ(X A3) = χ(Xa) = χ(X)

and that each connected component of X A is even dimensional. ��
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