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Abstract Let E/F be a quadratic extension of p-adic fields. We prove that every smooth irre-
ducible ladder representation of the group G L, (E) which is contragredient to its own Galois
conjugate, possesses the expected distinction properties relative to the subgroup GL, (F).
This affirms a conjecture attributed to Jacquet for a large class of representations. Along the
way, we prove a reformulation of the conjecture which concerns standard modules in place
of irreducible representations.
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1 Introduction

Let E/F be a quadratic extension of p-adic fields. Denote the group G, = GL,(E). Let
g > g* be the Galois involution on G, relative to the extension E/F. Denote H, = G| =
GL,(F). We study the H,-invariant functionals on admissible representations of G,. In
particular, we are interested to know whether a non-zero such functional exists for a given
representation. In this case we will say that the representation is distinguished.

Let n denote the quadratic character of F* related to the extension E/F. We will call
an admissible G,,-representation n-distinguished, if a non-zero H,, n(det)-equivariant func-
tional exists on it.

It is long known ([5]) that a distinguished irreducible smooth representation 7 of G,, must
satisfy mV¥ = 77, where the left-hand side of the equation is the contragredient representation,
while the right-hand side is the twist induced on representations by the involution . The
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prediction, that certain variations of the converse implication should hold, are often referred
to as Jacquet’s conjecture. Let us formulate it as a general principle.

An irreducible smooth representation of G, which satisfies' mV = 7%, should be either
distinguished or n-distinguished.

In general this formulation is evidently false. As a counter-example, one can choose an 7-
distinguished irreducible supercuspidal representation p of G2, and look on the representation
1 x p of G3, where 1 is the trivial representation of £ and the multiplication is in the sense
of parabolic induction.

Yet, for significant large families of irreducible representations the principle above was
indeed shown to hold. All discrete series are such, as proved by Kable in [9]. Matringe’s
results in [14] implied the same for certain other unitarizable representations, including the
so-called Speh representations.

In this work, we extend the validity of Jacquet’s conjecture to the class of ladder represen-
tations, which was introduced by Lapid and Minguez in [10]. This wide family of irreducible
representations of G, includes discrete series and Speh representations as special cases.

Theorem A (Theorems 4.3 and 4.6) A ladder representation of G,, which satisfiest"¥ = 7™
is either distinguished or n-distinguished. Moreover, a proper ladder representation of G,
cannot be both distinguished and n-distinguished.

The second statement of the theorem is again an expected property which was previously
established for discrete series and Speh representations.

The precise statements of Theorems 4.3 and 4.6 go further by fully characterizing dis-
tinction and n-distinction of ladder representations from the combinatorial properties of the
defining data of the representation.

For the proof of Theorem A, we turn to the class of reducible admissible representa-
tions of G, called standard modules. These are representations constructed by parabolically
inducing a tempered representation « of a Levi subgroup M < G,, twisted by an unramified
character « of M chosen from a certain cone. A standard module is uniquely defined by the
triple (M, «, o). Recall that the Langlands classification describes each irreducible smooth
representation 7 of G, as a unique irreducible quotient of a standard module X' (7).

Thus, studying invariant functionals on an irreducible representation can be done by
constructing such functionals on the corresponding standard module, and then determining
whether they factor through the irreducible quotient. Such methods were explored in [4] for
studying distinction relative to unitary subgroups (in place of our H,).

Note, that an irreducible smooth representation 7 is generic, if and only if, the standard
module X () is irreducible (equivalently, # = X' (;r)). We propose and prove the follow-
ing reformulation of Jacquet’s conjecture for all smooth irreducible representations, which
coincides with the original formulation on generic representations.

Theorem B (Corollary 3.5 and Lemma 3.10) Suppose that 7w is a smooth irreducible repre-
sentation of G, whose standard module X (1) is distinguished. Then, 7" = " holds.

Conversely, let T be a smooth irreducible distinguished representation of G, of pure type,
i.e. the supercuspidal support of 7 is contained in the set {p ® |det |} : n € Z} for some
supercuspidal representation p. If 1V = 7" holds, then the standard module X (1) is either
distinguished or n-distinguished.

! Sometimes an additional assumption is added which requires the central character of 7 to be trivial on F*.
Note, that the counter-example below remains valid with this assumption.
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This result is then further extended in Theorem 3.11 to a description of the same situation
without the assumption on pure type. It again can be seen to coincide with a known statement
([13, Theorem 5.2]) when dealing with generic representations.

The feature which makes ladder representations approachable to our discussion is Theorem
1 of [10]. It states that when an irreducible 7 is a ladder representation, the kernel of the
quotient map ¥ () — 7 can itself be described in terms of standard modules. Thus, in order
to claim that an invariant functional on X'(;r) factors through the quotient, it is enough to
know it must vanish on the standard modules which generate the above kernel. This is the
method by which we manage to deduce Theorem A from Theorem B.

The paper is organized as follows. Section 2 brings into our setting some known tools
for studying distinction problems. The foremost tool is the geometric lemma of Bernstein—
Zelevinsky which is long-known to serve as the Mackey theory of admissible representations.
It allows us to study invariant functionals on induced representations through distinction
properties of the inducing data. On top of that, our main tool for producing functionals on
induced representations is the Blanc—Delorme theory developed in [3]. Their method, adapted
to our needs in Proposition 2.3, can construct a desired functional by taking a continuation
of an analytic family of integrals.

Section 3 deals with the proof of both implications of Theorem B. We present each
standard module as a multiplication, in the sense of parabolic induction, of essentially square-
integrable representations. We then can state arguments of a combinatorial nature, such as
Lemma 3.3, about the structure of the space of invariant functionals on a standard module.
The first implication of Theorem B, which is also the crucial step for the proof of Theorem A,
follows from this key lemma. We also deduce a multiplicity one theorem (Proposition 3.6)
for Hy-invariant functionals on a large class of (possibly reducible) standard modules.

The second implication is shown by obtaining the existence of invariant functionals from
the Blanc—Delorme theory.

Finally, Sect. 4 deals with ladder representations. We show the deduction of Theorem A
from Theorem B as described above. Theorem 4.2 further resolves between distinction and
n-distinction of a proper ladder representation, in terms of the inducing data of its standard
module.

For the last part of Theorem A (Theorem 4.6), the additional tool of Gelfand—Kazhdan
derivatives needs to be introduced. The idea, which traces back to [7,9], is that distinction
of a given smooth irreducible representation implies the distinction of at least one of its
derivatives. Using this in combination with the derivative data of ladder representations,
which was obtain in [10], allows us to contradict the possibility of distinction of certain
representations.

2 Distinction of induced representations

We will write representations of a locally compact totally disconnected group G as (w, V), or
simply as 7, where V is a complex vector space and 7 : G — GL(V) is a homomorphism.
The representation (rr, V) is called (smooth) admissible if the stabilizer of each vector in V
is an open subgroup of G and for every compact open subgroup K < G, the space of vectors
in V invariant under K is of finite dimension.

Given an admissible representation (;r, V) of G, and a character « of H,, we say that a
functional £ on V is (H,, a)-equivariant if £(w (h)v) = a(h)€(v) forall h € H,, v € V. If
such 7 (not necessarily irreducible) has a non-zero (H,,, «)-equivariant functional on it, we
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1114 M. Gurevich

will say that 7 is a-distinguished. Note, that n will sometimes be implicit in our notation.
We will say that  is distinguished, if it is 1-distinguished.

For an admissible representation 7 of G,, we denote by 7" its contragredient represen-
tation. Also, denote by " its Galois twist, that is, 77 (g) = w(g"), forall g € G,.

Given a character 8 of G,, we will often write 7 for the tensor product representation
B ®mof G,.

2.1 Consequences of the geometric lemma

Any standard Levi subgroup of G, is of the form M = M ,... m,) = Gy X -+ X G, <
Gy (Zf-:l m; = n), with the obvious diagonal embedding. If oy, ..., o; are admissible
representations of G, ..., G, respectively, we denote by o7 X - - - x 0; the representation
of G, constructed by normalized parabolic induction. In other words, the M-representation
0 =01 ® --- ® o; is naturally lifted to P, where M € P C G, is the standard parabolic
subgroup corresponding to M. Then,

O] X +++ X 0y = indg”(ﬁi,/zcr),
where 8 p is the modular character of P and ind denotes the (non-normalized) induction func-
tor of smooth representations from the subgroup P < G,. For an admissible representation
7 of G,, we denote by ry g, (r) the representation of M which is the normalized Jacquet
module of 7. See, for example, [2, Section 2.3] for the definitions of induction of smooth
representations and the Jacquet module.

First, we would like to deal with distinction properties of representations of G, that are
parabolically induced from a standard Levi subgroup. Let us fix one such subgroup M < G,
and its corresponding parabolic subgroup P for the rest of this section. We will need a
convenient description of the double cosets space P\G,/H,.

Let W denote the Weyl group of G, realized as Ng,(T)/T, where T is the diagonal
maximal torus of G,. Set WY = {w € W : wMw™' = M}, and its normal subgroup
War = Ny (T)/ T, which is the Weyl group of M. There is a natural mapping py : WY —

St, whose kernel is Wy, . Here S; is the permutation group on {1, ..., 7}. It will sometimes be
convenient to have the notation Jp; = {1, ..., t} and refer to the image of pjs as permutations
onJuy.

Let W[M] C W be the set of representatives of minimal length for the double cosets
space Wy \W/Wy,. Let Wo[M] C W[M] denote the subset of involutions inside it. By [8,
Proposition 20] there is a bijection between W>[M] and P\G,/H,. Explicitly, each P — H,
double coset has a representative n for which & = n7n~! belongs to the normalizer Ng, (T).
The representative can be chosen so that the projection of £ to W will fall inside W[ M] (see
also [8, Lemma 19]). The resulting involutive permutation is uniquely defined by the double
coset. See also [13, Section 3] for an equivalent description of the double cosets in different
terms.

It follows easily from Hilbert’s Theorem 90 that for some d € T,d*&d 1= mTdn)~!
is in fact a permutation matrix (consists only of 1 and O entries). Thus, for each w € W,[M],
we fix a representative 7,, of the associated P — H, double coset, for which 1 1, lisa
permutation matrix (given by w).

An element w € W,[M] and the double coset associated with it will be called M-
admissible if w € WM. Applying pys, we see that the M-admissible double cosets are
in natural correspondence with involutive permutations € on J, for which m¢;) = m; holds
for all i € Jp. The rest of the double cosets can still be described in similar terms, but by
descending to a smaller Levi subgroup. Namely, for w € W[M], we need to observe the
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On a local conjecture of Jacquet, ladder... 1115

subgroup M (w) := M N wMw~! which must be a standard Levi subgroup for G,. Note,
that each w € Wo[M] C Whr[M (w)] is M (w)-admissible.

Looking at any inclusion L € M = My, ... m,) of standard Levi subgroups, we can
describe L as M, with y = (l11,...,lig, ..., i1, ..., lys,) and Z;[:I lij = m;, for all i.
With this in mind, we give another natural enumeration of the blocks of L as pairs

Jew={GJ) i=1....t, j=1...,5)
with the lexicographical ordering. Naturally, the ordered set J;, as is identified with J;, by
sending (i, j) to S4_! s + j.

Given w € W>[M], we have a description of €, := puy(w)(w) as an involution on
IM@w) = IMw),m- It must satisfy the rule that foreach 1 <i <tand1 < j <k < s,
if €,(i, j) = (], j)), €w(i, k) = (i}, k'), then i{ < i}. In fact, going over all standard Levi
subgroups L € M and all involutions € of J;, ., which satisfy the above condition and for
which l¢;, j) = ; j holds for all (i, j) € J., p, would give a full description of W>[M].

For each w € W)[M], we define the subgroup M™ := M N 1y, H,,nl;l, and similarly for
PY. Note, that,

MY =Mw)" = {(8)iciyw € MW) : ge,i) = &f }-

Suppose that o is an admissible representation of M. Let (7, V) be the representation

parabolically induced from o to G,. For w € W)[M], let us define the H,-representation
Nw

V() = ind:{",Pn . (8;,/ 2(r| Pw) , where ()™ denotes the conjugation functor that

transfersa PN n,;, Hyny, !_representation into a M ! Py N H,-representation. Mackey theory

(proved in the Geometric Lemma of [2]) gives a filtration of & by H,-sub-representations

{0} =V C V) C--- C V= V,insuchaway thateach subquotient V; /V;_1, i = 1,...,k

is isomorphic to V,, (;r) for some enumeration (w;) of W>[M].

The above geometric decomposition allows us to study the invariant functionals on 7 in
terms of distinction properties of certain Jacquet modules of o.

Lemma 2.1 Let w € Wa[M] be an involution, and suppose that the Jacquet module
"M (w),m(0) is a pure tensor representation, that is,

rM(w),M(U) = ®i€3M(w)Ui~

Let § C Jm(w) be a choice of representatives for the orbits of €, on Jp(w) (i.e. one index
out of {i, €, (i)} belongs to §, for all i € Jp(w)). Then,

Homp, Wy (), C)
= (®iegzew(i)=iH0mH,,,i (0i, (C)) ® (®ie3:eu,(i);éiH0mei (o], 06:}(,'))) .
Proof By [4, Lemma 6.4]% we deduce that
Homp, Vy (), C) = Hompw (¥ prw),m(0), C).

Now, from the description of M™ it follows that,

Hom pyw (rywy,m(0), C) = (®ie3 cew(iy=iHomp,, (0i, (C))

® (®ies : ew(i);ﬁiHom[ ](Gi ® Oey (i) (C)) .

(gfsg)EGmi XGmGwU)

2 The proof in [4] adapts the results of [11] to its own setup. In particular, their Wp[M] is defined differently.
Yet, going through the same proof verbatim with our definitions would give the same result for our setting.
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1116 M. Gurevich

The second term of the tensor product is evidently built from spaces of invariant pairings
between o and o¢,, ;). O

Finally we will need the following simple fact about induction and distinguished repre-
sentations.

Lemma 2.2 ([6, Proposition 26] or [15, Lemma 6.4]) Suppose that M = My, ,...m,) < G»
is a standard Levi subgroup. Let o; be a distinguished admissible representation of G,;, for
all1 <i <t.Then, 1 =01 X --- X 0y is distinguished.

2.2 Blanc-Delorme theory

For the standard Levi subgroup M = M, ...,
variety X of unramified characters of M. That is, X consists of characters of the form v
v ®- .. @v*, where v is the character (of any G, ) given by the formula v(g) = | det(g)|E,
and A = (Aq, ..., A;) € C'. The natural covering map C' — X equips X with a structure of
an affine algebraic variety isomorphic to ((CX )t. As complex functions, the regular functions
on X composed with the covering map are polynomials in the variables g1, ..., g%,
where ¢ is the size of the residual field of E.

Let o be an admissible representation of M, and (7, V) the representation of G, par-
abolically induced from o as before. It is possible to see 7w as one element of a family of
representations parametrized by unramified characters in X. Namely, for all x € X, the repre-
sentation 77, =i ndg” (x o) can be realized on the same space V (see [4, 1.3] for the precise
construction), making 7, (g) an analytic family of operators, for each g € G,. We will omit
the description of such a realization, since it will not be of relevance here.

Now, suppose that m; = m;y1—;,forall 1 <i < t.In this setting, we would like to exploit
the theory developed in [3] to produce a non-zero H,-invariant functional on 7, under suitable
conditions.

Let B € W,[M] be the M-admissible element that is given by eg(i) =t + 1 — i, for all
i€Ju={1,...,t}.Note, thatng H, ngl is the fixed point subgroup of the involution § = g

m) < Gn, letus define the complex algebraic
Ao

on G, given by 0(g) = & 8 lete 6, Where &g € G, is the permutation matrix corresponding
to B. The subgroup 6 (P) 1s then the opposite parabolic to P relative to the 6-stable maximal
torus 7 (the fixed diagonal torus).

Noting the action of 6 on the characters of G,, we define Xy C X as the connected com-
ponent of the identity character inside the affine variety of #-anti-invariants of X. Explicitly,

Xo = {1))\1 R---Q 1))" eX Vi, A = _)‘f+1—i} ~ ((CX)LI/ZJ )

Suppose now that £ is a non-zero H,-invariant functional on Vg (7). Recalling [4, Lemma

6.4] as before, this gives the existence of a non-zero functional 7 on the space of o, which is
invariant under the action of M# = M N Gﬁ. Now, when such 7is put in the setting of [3,
Theorem 2.8], we conclude the following statement. There is a regular function r on Xy, such
that for each x € Xy withr(x) # Othereis afunctional 0 # J (¢, x) € V* which is invariant
under the action of m, |;0. Moreover, for every ¢ € V, the function x — r(x)J (£, x)(¢)
can be prolonged to a reg”ular function on Xy.

This family of functionals can be used to construct a single non-zero functional on the
original representation 7. We summarize it in the following statement.

Proposition 2.3 Let M = My,,..m,) < G be a standard Levi subgroup, with m; =
Mi41—i, forall 1 < i < t. Let w be a representation of G, parabolically induced from M.
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On a local conjecture of Jacquet, ladder... 1117

Let B € Wa[M] be the M-admissible element that is given by eg(i) =t + 1 — i, for all
ieJgy=1{1,...,th
If Vg () has a non-zero Hy-invariant functional, then 7 is distinguished.

Proof The analytic continuation of L(x) := r(x)J (¢, x) to x = 1 (the trivial character)
defines a functional on V invariant under 7 (g Hy ngl). Fix an (affine) curve Y C Xy such
that 1 € Y, and r|y is a non-zero function. It follows that S = {L(x)(¢)ly : ¢ € V}isa
collection of non-zero regular functions on Y. Let p(x) be aregular function on Y whose order
of vanishing at 1 equals to the minimum of these orders for S. Then, L= p( )()’1 L0 x=1
gives a non-zero functional. Hence, 0 # L o w(ng) € V* is Hy-invariant. ]

3 Distinction of standard modules

3.1 Notations

Denote by I1g, the set of isomorphism classes of irreducible admissible representations of
G,. Givenintegers a < b, such that b —a + 1 divides n, and a supercuspidal p € I1g
a+1

n/(b—a+1)°
there is a unique irreducible quotient representation of v% p x v?+1 p x- - . x v? p. We denote this
representation by A(p, a, b), and call it a segment. These are exactly the essentially square-
integrable representations in I1g,. We say that a segment Ay € Ilg, precedes another
segment Ay € I'I(;n2 if Ay = A(p, a1, by) and Ay = A(p, az, by) for some supercuspidal
p and integers with a; < ap < by + 1 and by < b,. A representation that is induced from
two segments A| X A is irreducible, if and only if, none of the segments precedes the other
([18, 9.7]). Also, we have Ay x Ay = Ay x A when it is irreducible.

Denote by ¢, the central character of w € Ilg,. For all g € E*, |cz(g)| = |gl for
some r € R. We will call r the real exponent of 7 and denote it by N(xwr) = r. Clearly,
R(r) = n + NR(r). Also, if 7 is a subquotient of 7y X 72, then R(zw) = N(wy) + N(m2).
Together with the fact that v A(p, a, b) = A(p, a + k, b + k) for any integer k, it is easy to
see that if a segment A precedes A,, then R(A1) < N(Az).

The normalized Jacquet module of segments has a clear description ([18, 9.5]). Sup-
pose that A = A(p,a,b) € IIg, with p € IIg,. In case d divides all m;’s, we have
"Mon,...m G (A) = A(p, a1,b1) @ -+ @ A(p, ar, by), where by = b, d (b — a; + 1) = m;,
and b; 1 = a; — 1, for all i. Otherwise, the Jacquet module is the zero representation.

A representation of G, is called a standard module if it is parabolically induced from
a representation kv of a standard Levi subgroup M = Mn,....m) < Gp, where k is an
irreducible tempered representation, and A = (A1, ..., A) € R, with A1 > Ap > -+ > A;.
Denote by S¢, the set of isomorphism classes of standard modules of G,. Each element
of it can be described by the triple (M, «, 1) known as the Langlands data. The Langlands
classification for G, (proved in [16]) can be formulated as a bijection ¥ : I1g, — &g, (or
between I1g, and triples of Langlands data), which satisfies the property that each w € I,
is the unique irreducible quotient of X' (7). It is known that ¥ () = 7, if and only if, 7 is
generic. We will slightly abuse notation by using X' as a notation for a given element in G¢,
as well.

In fact, our treatment of standard modules will not be focused on the above definition, but
rather on the following well-known description of a standard module in terms of segments.

Proposition 3.1 Every X' € G, can be realized as an induced representation of the form
Ay X -+ X Ay, where each A; is a segment, such that A; does not precede A; whenever
i <j.
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1118 M. Gurevich

Proof Suppose that X is parabolically induced from «1v*!' ® - - - ® k, v, as in the definition.
Itis known that a tempered representation ; € I1g,, can be realized as an induced represen-

tation of the form A; | x- - - x A; ;,, where {A; ;}; isauniquely defined multiset’ of segments,
all of which have real exponent 0. Bearing in mind that VvMA(p,a,b) = AW*ip, a, b) and
the transitivity property of parabolic induction, we see that X’ can be realizedas Ay x - - - X Ay,
where each A; is a segment, such that 9i(A1) < --- < R(A4,). ]

We will call an induced representation as described in the above proposition a rangée
module. Each rangée module is a realization of a standard module. Two rangée modules are
isomorphic, if and only if, they differ by a permutation on their defining segments. Moreover,
itis true that each multiset of segments can be reordered in such a way that their multiplication
would give a rangée module. Thus, G, is in bijection with multisets of segments.

If S is a rangée module realization of the standard module ¥ € Sg,, we will write
S = X. Yet, it will be useful to make a distinction between an element ¥ € &g, and any of
its concrete realizations S as a representation induced from a specified ordering of segments.

For a supercuspidal p € I1g,, consider the collection [p] = Wo : 1ez). Given arangée
module S = Ay x --- x Aj, weset Spp) = Aj; X - X Aj,wherel <iyp <--- <iy <t
are the indices for which A,-j = A(p, a, b) for some a, b. Let us set Sp) = 1 if there are no
such indices. In these terms we always have a canonical (up to permutation) decomposition
S = Sjp; X - - - X S ) for some supercuspidals o1, .. ., o7, such that [p;] and [p;] are disjoint
for distinct i, j. Clearly, if S = X, then X, := S|, is well-defined.

We will say that a rangée module S is right-ordered, if S = Sjp;] x - -+ x S[p,] and for
each i, S[p) = A(pi,a’i,b’i) X +o0 X A(,o,-,afl_,bfi) with b’i > bé > > bfi, for all i. It
is easily seen that each X' € G, has a (possibly non-unique) right-ordered rangée module
realization.

For m € Ilg, we set 7,1, ..., [y to be the irreducible representations of the corre-
sponding groups, such that X' (7)) = X}, forall 1 <i < [.This provides adecomposition
of the form 7w = 7] X - - - X 7). The elements of the decomposition are sometimes called
the pure components of 7. When 7w = my,,), we will say that 7 is of pure type [p]. Similar
notation will also be used for standard modules.

3.2 Jacquet’s conjecture—first implication

Let us recall the results of [5, Propositions 11, 12] which state that a representation = € I,
has at most one non-zero Hj,-invariant functional up to a scalar. If indeed 7 is distinguished,
then we must have 77 = V. As mentioned, the converse claim is not always true. Yet, let
us investigate the standard module X () of & € I, which satisfies 7% = V.

It is easy to see that segments satisfy A(p, a, b)* = A(p?, a, b). It is also known ([18,
9.4]) that A(p, a, b)Y = A(pY, —b, —a). It then follows that a segment A precedes another
segment Ay, if and only if, A7 precedes AT, if and only if, A5 precedes A} Thus, for a rangée
module § = A x - - - x A, both the representations ST = A} x - - - x Af and A XX AIV
will be rangée modules. If S = X, let us denote by X' the isomorphism class of the former,
and by X* the class of the latter. Let us remark though, that S¥ is generally not a standard
module, hence, X* must not be confused with the contragredient representation to X'.

Proposition 3.2 Any 7 € I1g, satisfies X (n%) = X (7)" and X (x") = X (n)*. In partic-
ular, 7° = 7V holds, if and only if, ¥ (m)* = X (7)".

3 We will use this terminology to refer to a finite tuple of objects whose order is immaterial.
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On a local conjecture of Jacquet, ladder... 1119

Proof Since the Galois automorphism is obviously an exact functor, 7 * is the irreducible
quotient of X' (;r)" and the first equality must hold. The second equality is proved, for example,
in [17, Proposition 5.6]. ]

Our first mission is to show that distinction of X (7), for = € [1g,, already imposes the
condition 77 = 7. For that we will need the following key lemma.

Lemma 3.3 Suppose S is a right-ordered rangée module realization of a standard module of
G, that is induced from segments on a Levi subgroup M. Then, for every non-M-admissible
element w € W[ M], the space of Hy-invariant functionals on the representation V,,(S) is
zero.

Proof Assume the contrary, thatis, w € W[ M]is a non-admissible element such that V,,(S)
has a non-zero H,-invariant functional £.

Let us write § = ®;¢3,,0; for the M-representation from which S is induced (each §; is a
segment). We can also write

rM@w),m(6) = ®(l’,j)€3M(w)4M8iaj’

where §; 1 ® - - - ® §; 5, is the Jacquet module of §; as a representation of the corresponding
Levi subgroup of G,,,. From the formula for Jacquet modules of segments we know that
each §; ; must be a segment or the zero representation. In particular, if §; ; is distinguished,
then it must satisfy <SV i =67 T . Combining the last fact, Lemma 2.1, and the existence of ¢,

= ST holds

we conclude that the §; ;’s must all be non-zero representations and that §Y (i) =

for all (i, j) € Imw),m-

Since w is non-M-admissible, M (w) is strictly contained in M, which means there exists
ip € Jum with s;, > 1. Let us assume i is the minimal such index. Then, é;, = A(p, a, b)
for some supercuspidal p and integers a < b, §;,,1 = A(p,d +1,b) and 6;,» = A(p, ¢, d)
for some integers ¢ < ¢ < d < b. Suppose that €, (ig, 1) = (i1, j1) and €, (ip,2) =
(i2, J2). We know that &, = (5], 1)v = A((p")" . —b, —d — 1), and similarly 5, ;, =
A((p%)Y, —d, —c). We also know that i; < i>. Recalling that S was right-ordered, this must
mean that §;, = A((p*)",a’, b’) for some a’ < —b and —c < b’. Now, since —d — | < —c,
we deduce that j; > 1 and that §;, 1 = A((p")", e, b’) for some —d < e < b'. But, that
means €, (i1, 1) = (i3, j3) f\s)r some i3 < ig. From minimality of ip, we must have jz = 1

and 8j; = 8jy.j; = (Bfl 1) = A(p, —b', —e). Finally, notice that —e < b, which is a
contradiction to S being right-ordered. O

LetS = Ay x---x A, be aright-ordered rangée module. Let £ be a non-zero H, -invariant
functional on S. When filtering the representation space of S as an induced representation
from segments on a Levi subgroup M, ¢ must induce a non-zero H,-invariant functional on
Vu (S), for some w € Wr[M]. By the above lemma, w must be M-admissible, hence, €,, is
a permutation on Jys. Recalling Lemma 2.1, we see that A (i) = = Av for all i € J) with
€y (i) # i and that A; is distinguished for i € Js such that ew (i) = i. This analysis has the
following corollaries.

Proposition 3.4 If S = Ay x --- A, is any rangée module realization of a distinguished

standard module of G, then Ae(l) = AY for some involution € on {1, ..., t}. In particular,
s =3".
Moreover, when €(i) = i, the segment A; is distinguished.
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Proof There is a permutation « of {1,...,7} such that S = Ag1) X -+ X Agq) is a
right-ordered rangée module, and S, = S. Recalling again that a distinguished segment
A; € HGm,- must satisty Al.’ = Aiv, we see that € := o~ '€, o would fill the requirements of
the statement.

The existence of such € also shows the multisets of segments defining both S*and S are
the same. O

Remark 3.1 The above can be seen as a generalization of the main theorgm of [13], where
the case of a generic irreducible representation was handled, that is, when S = X' (7) =7 €
Ig,.

Corollary 3.5 If X (r) is distinguished for = € Ig,, then w¥ = ",

Proposition 3.6 SupposethatS = Ay X---x Ay is arangée module realization of a standard
module of Gy, such that A; 2 Aj for all distinct i, j. Then, dim Hompg, (S, C) < 1.

Proof As before, we can assume S is right-ordered and parabolically induced from segments
on a standard Levi subgroup M < G,. Suppose that S is distinguished. We have seen that
as a consequence Vu (S) is distinguished for some M-admissible w € W,[M]. That forces
A: W = = A/ foralli, as in the proof of Proposition 3.4. Now, if V,,(S) had been distinguished
for some other M-admissible w # w’ € W,[M], it would have also imposed the condition
Aew/ ) = A/ But, that condition cannot hold for two different involutions because of our
assumption. Hence, V,,(S) is the only distinguished geometric subquotient of S. Yet, since
segments are irreducible, by the general multiplicity-one theorem dim Homp,, (4;,C) <1
(where A; € I1 G, ). Together with Lemma 2.1, it implies that dim Hom g, (Vw (5),C) < 1.

The validity of the statement follows easily. O

3.3 Jacquet’s conjecture—converse implication

We treat the converse problem, that is, what can be said about the distinction properties of a
general standard module X which satisfies X* = X7,

Let n be the quadratic character of F* associated to the extension E/F. Let x be any
extension of n to E*. We also denote by 1 and x the corresponding characters of H,, and
G, for any m, obtained by composition with the determinant maps G,, — G1, H,, — Hj.
Since y is trivial on the group of norms (for the extension E/F) of E*, we have x* = x -1

The representation y r is distinguished, if and only, 7 is n-distinguished. Note, that x (71 x
) = (xm1) X (xm2), and that x A(p, a, b) = A(xp, a, b) for all segments. In particular,
S, is closed under tensoring with . In this context we note the following obvious corollary
of Lemma 2.2.

Corollary 3.7 Suppose that M = My, ,...m,) < Gy is a standard Levi subgroup. Let o; be a
n-distinguished admissible representation of Gy, forall1 <i <t. Then,m =01 X --- X0y
is n-distinguished.

Let us recall what is known about distinction of segments. We will recast the accumulated
results of [9,12] and [1] on the issue into a unified notation.

Note, that R((z")Y) = —N(x) for all w € I1g,. Now, when p € I1g, is a supercuspidal
representation satisfying [(0%)V] = [p], we have R(p) = nr + R((p*)Y) = nr — R(p) for
some integer r. Thus, @ must be half-integer.

Proposition 3.8 Let p € IIg, be a supercuspidal representation satisfying (p*)" = p.
Then, there is a bit y (p) € {0, 1}, such that p is n¥? -distinguished.
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Proof It follows from the assumption that 21(p) = 0. As a supercuspidal representation with
a unitary central character, p is square-integrable. The statement then follows essentially
from the main theorem of [9]. We only remark why the requirement on the central character
in Kable’s result is superfluous with our formulation. Indeed, the proof of [9, Theorem 7]
shows that the local Asai L-function of one of the representations p and yp has a pole at 0.
Applying [9, Theorem 4] is then enough to finish the argument. O

Proposition 3.9 Let p € g, be a supercuspidal representation, and A = A(p,a,b) a
segment. Then,

1. The identity A = (A")Y holds, if and only if, [(p)V] = [p] and R(A) = 0.

2. Supposethat [(p%)Y] = [p] holds. Then, there is an invariant bit y (p) = y ([p]) € {0, 1}
extending the previous definition of y for unitarizable supercuspidals, such that if A =
(AYYY holds, then the segment A is n? P -distinguished, and is not n* P+ distinguished.

Proof 1. If A = (A")Y holds, then [(p%)Y] = [p] and R(A) = 0 are immediate. Con-
versely, suppose that [(p7)"] = [p] holds. Note, that

b—a+1
R(A) = % (na + nb + 2R (p))

as a sum of an arithmetic progression. Thus, when R(A) = 0, we have a + b =
—2NM(p)/n. Since p is the only element of [p] with real exponent 3i(p), we must have
V21 (pTYY = p. From this, A((p%)V, —b, —a) = A(p, a, b) easily follows.

2. We denote pg = vy and yy = ¥ (po), as defined in Proposition 3.8. When
A = (A")Y holds, [12, Corollary 4.2] states that A is nVUJr"’b-distinguished. Yet, we
have observed above that in this the parity of a — b is the same as 20 (p)/n. Thus,

v(p) 1= o + 29 (p)/n (mod 2)

will satisfy the condition in the statement. This definition of y is also easily seen to be an
invariant of [ p]. Finally, the fact that A cannot be both distinguished and n-distinguished
is proved in [1]. m]

Remark 3.2 We clearly have y (xp) =1 — y(p).

Also, if [(pT)V] = [p], note that (v/2p)")Y = v=12(p™)V € [v!/2p]. Thus, y (v'/?p)
is well-defined. Going through the definition of y in the above proof, one can deduce that
y!'2p) =1—=y(p).

The knowledge of the distinction properties of segments can be combined with the Blanc—
Delorme method for producing functionals, and thus learning about the distinction of standard
modules. Let us start with the treatment of a standard module of pure type.

Lemma 3.10 Suppose that ¥ = X,) = (X)* € &g, for a supercuspidal p. Then X is
nYP)_distinguished.

If the real exponents of all segments from which X' is constructed are non-zero, then X is
both distinguished and n-distinguished.

Proof Let us write the multiset of segments which define X as {A;};<;. Let us partition this
multiset as I = I_U Iy U I} according to whether 0(A4;) is negative, zero or positive. Define
So = Xijer,Ai, with an arbitrary order of multiplication. Recall again, that if a segment A’
precedes A", we must have NA) < SR(A”). Since N(A;) =0 foralli € Iy, Sp is a rangée
module.
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Clearly, the assumption on X compels [(p7)Y] = [p] to hold. So, by Proposition 3.9, all
{Ai}ict, are n”P)-distinguished. By passing from X to x” ") ¥, we may assume they are
in fact all distinguished while retaining the condition X' = X*. Thus, by Lemma 2.2, Sy is
distinguished. Clearly when Sy = 1, what follows applies to both X' and x X.

Let S; = Af X oo X A,+ be a rangée module constructed from the segments {A;};cy, .
By our assumption {A;};c; is closed under the operation A > (A7)Y. Since this operation
negates the real exponent of a segment, it actually induces a bijection w : I, — I_ such
that Ay = (Af)v, forall 1 <i <t If A;r = A;, let us define AJT = Ay(). Then,
S_ = A; x---x A is arangée module.

Moreover, arguing as before about the real exponent of preceding segments, we see that

ATX---XA,*XxielOAixA;x~-~><Al_

is arangée module realization of X'. In particular, it obviously means that X' can be realized as
the induced representation 7 := AT X+e X Af XSyx Ay x---x A7 . Since A;r = ((A;)’)v
forall 1 <i <t and Sy is distinguished, by Lemma 2.1 Vg () is distinguished, where 8 is
as described in Proposition 2.3. So, by that proposition 77 must be distinguished as well. O

In general, we can now formulate the analogue of the Jacquet’s conjecture on the level of
standard modules.

~

Theorem 3.11 Let 7w € I1g, be such that 7¥ = w*. Then, there is a decomposition & =
| Xy X 73, where wy € Ilg, fori =1,2,3, X () = X (1) x X (mw2) x X (m3), X (1) is
both distinguished and n-distirlzguished, X (1) is distinguished but not n-distinguished, and
X (3) is not distinguished but n-distinguished. Each of w1, o, w3 may be missing from the
decomposition.

Proof Let ¥ () = X (mpp,)) X -+ x X(7mp,]) be the canonical decomposition to standard
modules of the pure components of 7. By Proposition 3.2, X' ()* = X (;r)*. Hence, there

is an involution w on {1, ..., ¢}, such that [,ofu(i)] = [,ol.v], and E(H[pwm])* = X(mp)°-

Since a change in the order of the pure components is of no effect, we can assume that there

isO <r <tsuchthat w(2i) =2i —1foralll <i <r,andw(i) =iforall2r <i <t.
Fix 1 <i <r.Let Aj x --- x Ay be arealization of X (7r,,,1). Then,

SZ(AIE)VX"‘X(AE)VXAIX"‘XAk

must be a realization of X (7r(p,,_,1) X X (7[p,;])- Yet, by Proposition 2.3 and Lemma 2.1, S
is distinguished. Furthermore, the fact that ((x A)")" = x (A?)" shows that xS is distin-
guished by the same argument.

By invoking Lemma 22, we see that X = (Z(7pp)) x Z(7[p)) X -+
X (Z (1) X Z (0, ])) is both distinguished and n-distinguished.

Finally, we have ¥ (7) = X' x (T pyppq]) X -+ X X(mpp,1), where each 2r < i <
t satisfies X' (mp,,)* = X(myp)°. Thus, after a proper rearrangement of the indices, by
Lemma 3.10 there willbe 2r 4+ 1 < 51 < 5 < ¢, such that X' (;(,,)) is both distinguished and
n-distinguished for all 2r 4+ 1 < i < s, distinguished forall s; <i < 57, and n-distinguished
forall s; <i <t.Put

! S1 ! 82 ! t
T = Xz el T2 = XiZg417ei] T3 = Xj=gy+17Upil-

The statement will then be partially satisfied by Lemma 2.2 and Corollary 3.7, when setting

m; = 7. For the complete statement, we should switch to 7y := 7| x 7 and omit 75 from
the decomposition, in case X(;r;) happens to be n-distinguished as well. A similar switch
can be done when 75 happens to be distinguished. O
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Reading the above theorem, it may be tempting to conjecture that the irreducible repre-
sentations 7r;, i = 1,2, 3, should satisfy the same distinction properties as their respective
standard modules. Yet, we will see that the class of ladder representations serves as a source
of examples for = € Ilg, of pure type, whose standard module is both distinguished and
n-distinguished, while 7 itself satisfies only one “kind” of distinction.

4 Distinction of ladder representations

We will say that a rangée module S = Ay X - - - xX A, is of proper ladder type if A; precedes
A;_1,forall 1 < i < t. Note, that for such S, the standard module S € S, has a unique
rangée module realization. Hence, we can safely say that S is of proper ladder type. A
representation 7w € I1g, is called a proper ladder representation if X' (i) is of proper ladder
type. In particular, proper ladder representations are of pure type.

In [10], a ladder representation was defined as = € I1g, , for which X' (1) can be realized
as A(p,ay, b)) x--- x A(p,as, b)), witha; >ay >--->a,and by > by > --- > b,.

The following straightforward lemma shows that ladder representations are easily decom-
posed into proper ladder representations.

Lemma 4.1 Let w be a ladder representation. There are unique proper ladder representa-
tions my, ..., T such that

X(r)=X(my) x -+ x X(mwg)

holds, and for which the defining segments of X (r;) do not precede those of X (r;), for
distinct i, j. Moreover, 1 = mw| X - -+ X Tg.

Proof Suppose that 7 is realized as A(p, a1, b1) x --- x A(p, as, b;). We write
ip=min{l <i <t : biy1 <a;i — 1} (b41 = —00),
and denote X1 = A(p, a1, b1) x --- x A(p, a;,, b;;). Next, we write
ir=min{i; <i <t : by <a; — 1},

and X» = A(p, aj;+1, bi;+1) X --- X A(p, a;,, bi,). We continue like so until iy = ¢.

The irreducible representations 1, ..., 7 for which X (m;) = X; clearly satisfy the
first conditions of the statement. The equality 7 = 7y X --- X m; then follows from [18,
Proposition 8.5]. O

Suppose that A = A(p, a, b) is a segment that precedes A’ = A(p, a’, b’). Then, (A U
A") x (AN A’) is a sub-representation of A’ x A, where A’UA = A(p,a,b’)and A’'NA =
A(p,a’, b). Moreover, if ¥ () = A’ x A, then 7 is givenas X ()/ (AU A") x (AN A")).
Such description of the maximal sub-representation of a standard module was generalized in
[10] for standard modules of ladder representations.

Suppose that 7 € I, is a proper ladder representation, with S = Ay x - - - x A, realizing
XY (@r).Foralli =1,...,t — 1, we define

Si=Ar X XA X (A1 UA) X (Aig1 NA;) X Ajjp X oo+ X Ay

It is easy to check that the S;’s are all standard modules, which by exactness of parabolic
induction can be embedded as sub-representations of S. Let us denote X; = §;, and con-
sider X, ..., X;_1 C X(m) as sub-representations. The main theorem of [10] states that
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T = X))/ (X1 + -+ Xi—1). We would like to use this description to obtain invariant
functionals on ladder representations.

Theorem 4.2 Let m = my,) € I1g, be a proper ladder representation, with X () = Ay x
oo X Ap. Then w®™ = 1t holds, if and only if, 7 is nY P+ distinguished.

~

Proof As mentioned before, when 7 is distinguished, 7% = 7V follows from [5, Propo-

sition 12]. In the same manner, when x7 is distinguished, x 7% = X_lnv holds, but
1

xT=x.

Conversely, suppose that 77 = 7" holds.

By Proposition 3.2 we have X (7)* = X ()*. Hence, (A])Y x---x (A])Y Z A x--- Ay
Since there is only one rangée module realization of a standard module of proper ladder type,
we must have A, _; = (Ai’)v. In particular, R(A;) = —R(A,+1_;). The ladder condition
also imposes N(A1) > R(A2) > -+ > N(A;). Thus, if ¢ is even, N(A;) # 0 for all
i. Lemma 3.10 then indicates that X (;7) is nV(p)""“']—distinguished. The same lemma also
gives the same conclusion when ¢ is odd (y? P ++1 = yr (),

We exhibited a non-zero (H,, n? (" +1+1 )-equivariant functional on X' (7). Now, we would
like to show that it factors through the map X' () + m. In other words, we like to show the
functional vanishes on each X;, i = 1,...,¢ — 1. It is enough to show that these standard
modules are not n? ")+ 1_distinguished.

Assume the contrary, that is, X/ = XV(p)+’+lEi0 is distinguished, for some ip. Let
A} x -+ x A} be a realization of X', where A’j = xVWHFTIA; for 1 < j < ipor
io+1 < j <t and Al = VO (A U A), A = XV O (4410 0 Ay).
By Proposition 3.4 there is an involution € on {1, ..., ¢}, such that (A;.T)v = A’e(j).

Suppose that t + 1 — ip ¢ {ip, ip + 1}. Then,

~ Vo~
A )= PeaRaran ( T ) o XV(P)+I+1A1.0.

/
e(t+1—ip t+1—ip

Yet, since X () is of ladder type, it can be easily seen that none of A}, ..., A; can be
isomorphic to x? P+ +L A, Thus, we must have t + 1 —ip € {ip,ip + 1}. The same
argument also shows that# + 1 — (ip + 1) € {io, ip + 1}. In other words, t must be even, and
io =1/2.

Now, by repeating a similar argument we can see that if € (ig) ¢ {io, ip + 1}, then A;O =
X7 PHHLAL 1 (ig)- That would have meant A1 U Ajy = Ar41-e(y), Which is again a
contradiction, because X' () is of ladder type. So, €(ip) € {io, iop + 1}. Note, that (Al((r))v =
A;(H'
by Proposition 3.4 it means A; 11 U A;; is n? @++1_distinguished. Recalling that  is even,
this gives a contradiction to Proposition 3.9. O

| cannot hold, because those are segments of different lengths. Hence, € (ip) = io, and

Theorem 4.3 Let w = ny) € Ilg, be a ladder representation satisfying
]T‘[ o~ n,v

Suppose that 1 = 1 X - -+ X g, with each 1; being a proper ladder representation, as
in Lemma 4.1. Suppose further that ¥ (mw) = A1 X - -+ X A;.

Then, in case K is even, 7 is both distinguished and n-distinguished.

In case k is odd, w is n? P+ distinguished.

Proof Recall that ¥ () = X'(m1) X --- x X (;) and by Proposition 3.2,
X)) x o o x X)) =2 =2@)" =X x - x X(m)'.
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The above equality shows two decompositions of a standard module of a ladder representa-
tion into standard modules of proper ladder type, each of which ordered by decreasing real
exponent of their irreducible quotient. Thus, from uniqueness we have niv =n; 4+1-j» forall
1<ic<k

In case k is even, we can use Proposition 2.3 to produce the desired functionals on 77, and
on xm, by applying the same argument as in the end of the proof of Lemma 3.10.

In case k is odd, this argument would still be valid if we knew that 77 11),2 = (n(fk +1) /2)v

is 7+ +1_distinguished. Indeed, by Theorem 4.2, 7(41)/2 is n” T+ distinguished,
where £ is the number of segments in the construction of X (7(t41)/2). Note, that for any
i # (k+1)/2, ¥(m;) and X (;x4+1—;) are distinct standard modules constructed from an
equal number of segments. Thus, # — g is an even number, and ¥ P+ +1 = yr+o+l g

Finally, we want to complete the above result by showing that a ladder representation that
is induced from an odd number of proper ladder representations, cannot be both distinguished
and 7n-distinguished.

Lemma 4.4 Suppose that S = Sy is a rangée module of pure type induced from t segments.
If tis odd, then S is not n* P distinguished.

Proof Assume thatS’ := x?PFLS = Apx- - x Ay s distinguished. Let € be the involution
on {1, ..., 1t} supplied by Proposition 3.4. Since ¢ is odd, there is a fixed point 1 <r <t
of €. Hence, by Proposition 3.4, A, is distinguished. However, A, = x?®*1 A(p, a, b) for
some a, b. This contradicts Proposition 3.9. O

For the case of a proper ladder representation for which X (1) is constructed from an even
number of segments, the situation is more complicated. The standard module X (;r) will,
in fact, be both distinguished and n-distinguished. Yet, we must show that not all of these
functionals can factor through the quotient .

For that cause, we will apply the theory of Gelfand-Kazhdan derivatives for representations
of G,. Letusrecall the mirabolic subgroup P, < G, consisting of matrices whose bottom row
is (0 - - -0 1). For an admissible representation o of G;_1, denote by ¥+ (o) the representation
of Py obtained by composing the natural homomorphism Py — G4_; on v!/?¢. Also, there
is a canonical functor @1 taking representations of Py to representations of Py, whose
definition we will refrain from writing here. Recall, that given w € Ilg,, there are well-

defined finite-length (possibly zero) representations 7 of G,_i fork = 1, ..., n,* called
the derivatives of r. There is a filtration of 7 as a P, -representation, such that its subquotients
are isomorphic to (@ T owt(x®) k=1,... n.

The theory of derivatives is useful for our analysis of distinction because of the following
known equality ([1, Lemma 2.4]) for a finite-length admissible representation o of G,_
1I<k<n-1):

dim Hom p,np, (@) o wT(0), C) = dim Hompy, , (v'/?, C).
Lemma 4.5 Let w € [1g, be a non-generic distinguished representation. Then v126 must
be distinguished for at least one irreducible subquotient o of one of the derivatives of 7.

Proof When 7 is non-generic, 7 is zero (one may take it as a definition). The non-zero
H,,-invariant functional on 7 induces a non-zero P,, N H,,-invariant functional on at least one

4 We treat G = P as the trivial group. We will formally refer to the one-dimensional irreducible represen-
tation of the trivial group 1, ¥ (1) and X (1) as empty representations in our notation. The product operation
on them will have a trivial meaning (1 x 7 = ).
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of the P,-subquotients (@)1 o W+ (7w ®) of 7, for 1 < k < n — 1. The rest follows from
the above equality. O

The so-called full derivative of a ladder representation was computed in [10, Theorem
14]. In other words, the semisimplification of all of the derivatives of a ladder n € I1g, is
known, and in fact consists of ladder representations of smaller groups. Let us repeat it here.
When X' () is of ladder type and is given by A(p, ay, by) x --- x A(p, a;, by), the set of all
irreducible representations appearing as subquotients of the derivatives of r is

D(x) = {a e Mg, : )= Ap.d}.by) x - x Ap.a}.by), Vi aj<a] < ail],

k<n

where qag is taken as oo and A(p, a, b) = 1ifa > b.

~

Theorem 4.6 Let w € Ilg, be a ladder representation with a decomposition w1 = w1 X
- X Ty into proper ladder representations, as in Lemma 4.1.
If Xk is odd, w cannot be both distinguished and n-distinguished.

Proof Supposethatr = mp,) € I1g, andthat ¥ () = Ay x- - -x A;.Recalling Theorem4.2,
we should prove that 7 is not n¥ (") _distinguished. If it was, then pulling back the non-zero
functional would make X () n¥®**_distinguished as well. For an odd ¢ this cannot happen
by Lemma 4.4. Thus, we will assume ¢ is even.

We write ko = (k + 1)/2. Let us denote by i and 7y the indices for which

E(nko) = Ai() X X Ai0+f()—1 .

Assume 7' = x" g is distinguished. Then (7")V = (7/)" holds. When writing nl =
x? P ;. we clearly have m/ = ) x -+ x m; as the decomposition of Lemma 4.1. The
argument in the proof of Theorem 4.3 shows that (7'[120)v = (7'[,20)r holds in such case. The
same proof also shows that 7y must be even as well.

Inparticular, o > 1, which means that A, 41 precedes A;,. Hence, X (") is notirreducible
and 7’ is non-generic. By Lemma 4.5, there is a representation o € D ("), for which v!'/%¢
is distinguished. Hence, its standard module X (v'/%¢) is distinguished as well.

It can be easily seen from the description of the full derivative of a ladder representation
that X (o) = Y(o01) X --- x X (oy), for some o; € D(ni’). Up to some possibly empty o,
this is the decomposition of Lemma 4.1.

From the same description, we see that X' (o, ) is constructed of either # or o — 1 segments.

Let us first handle the case that Z‘(vl/2ak0) = vl/ZE(okO) = A;O X o X A;OJF,O_]
(where all A} are non-empty segments). Arguing the same as for 7/, the distinction
of v!/2¢ forces (1)1/2c7k0)v = (vl/zako)’. Now, by the proof of Theorem 4.2, this

means that ?)%(A’Zi0+t0717i) = —N(A)) for all iy < i < ip + to — 1. In particu-

lar, Zi(’;’é"*l NR(A]) = 0. From the distinction of 7" we can again argue the same to
deduce (Zi‘:éo*l N(A;) = ) Zi";é‘rl R(x7 P A;) = 0. Yet, by the description of D(rr’),
R(AD) = 1/2+R(x7 P Ap), forall ig < i <ty +ig — 1. Hence, a contradiction.
Otherwise, ¥ (v!/ Zako) has a rangée module realization induced from 79 — 1 segments.
Suppose that ¥ = X (v!/2¢) has a rangée module realization induced from s segments.
Again, referring to the same situation as in the proof of Theorem 4.3, we see that s — (1o — 1)
is even. Hence, s is odd. Keeping track of the tensoring operations we see that X is of pure type
[v!/2x7® p]. Since X is distinguished, by Lemma 4.4 we must have y (v!/2x?® p) = 0.
The remark after Proposition 3.9 shows this is impossible, because obviously y (x? ) p) = 0
holds. O
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