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Abstract We study locally conformal calibrated G2-structures whose underlying Rie-
mannian metric is Einstein, showing that in the compact case the scalar curvature cannot
be positive. As a consequence, a compact homogeneous 7-manifold cannot admit an invari-
ant Einstein locally conformal calibrated G2-structure unless the underlying metric is flat. In
contrast to the compact case, we provide a non-compact example of homogeneous manifold
endowedwith a locally conformal calibratedG2-structurewhose associatedRiemannianmet-
ric is Einstein and non Ricci-flat. The homogeneous Einstein metric is a rank-one extension
of a Ricci soliton on the 3-dimensional complex Heisenberg group endowed with a left-
invariant coupled SU(3)-structure (ω,�), i.e., such that dω = cRe(�), with c ∈ R − {0}.
Nilpotent Lie algebras admitting a coupled SU(3)-structure are also classified.

Mathematics Subject Classification 53C10 · 53C30 · 53C25

1 Introduction

We recall that a seven-dimensional smooth manifold M admits a G2-structure if the structure
group of the frame bundle reduces to the exceptional Lie group G2. The existence of a G2-
structure is equivalent to the existence of a non-degenerate 3-form ϕ defined on the whole
manifold (see for example [26]) and using this 3-form it is possible to define a Riemannian
metric gϕ on M .
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If ϕ is parallel with respect to the Levi–Civita connection, i.e., ∇LCϕ = 0, then the
holonomy group is contained in G2, the G2-structure is called parallel and the corresponding
manifolds are called G2-manifolds. In this case, the induced metric gϕ is Ricci-flat. The first
examples of complete metrics with holonomy G2 were constructed by Bryant and Salamon
[6]. Compact examples of manifolds with holonomy G2 were obtained first by Joyce [24–
26] and then by Kovalev [28] and by Corti, Haskins, Nordström, Pacini [12]. Incomplete
Ricci-flat metrics of holonomy G2 with a 2-step nilpotent isometry group N acting on orbits
of codimension 1 were obtained in [9,20]. It turns out that these metrics are locally isometric
(modulo a conformal change) to homogeneous metrics on solvable Lie groups, which are
obtained as rank one extensions of a six-dimensional nilpotent Lie group endowed with an
invariant SU(3)-structure of a special kind, known in the literature as half-flat [10].

Examples of compact and non-compact manifolds endowed with non-parallel G2-
structures were given for instance in [1,7–9,14,15,17,19,27,38]. In particular, in [9]
conformally parallel G2-structures on solvmanifolds, i.e., on simply connected solvable Lie
groups, were studied.More in general, in [23] it was shown that a seven-dimensional compact
Riemannian manifold M admits a locally conformal parallel G2-structure if and only if it
has as covering a Riemannian cone over a compact nearly Kähler 6-manifold such that the
covering transformations are homotheties preserving the corresponding parallelG2-structure.

By [5,11,18], it is evident that the Riemannian scalar curvature of a G2-structure may be
expressed in terms of the 3-form ϕ and its derivatives. More precisely, in [5] an expression
of the Ricci curvature and the scalar curvature in terms of the four intrinsic torsion forms
τi , i = 0, . . . , 3, and their exterior derivatives was given. Moreover, using this it is possible
to show that the scalar curvature has a definite sign for certain classes of G2-structures.

If dϕ = 0, the G2-structure is called calibrated or closed. The geometry of this family
of G2-structures was studied in [11]. Furthermore, Bryant proved in [5] that if the scalar
curvature of a closed G2-structure is non-negative then the G2-structure is parallel.

We say that aG2-structureϕ isEinstein if the underlyingRiemannianmetric gϕ is Einstein.
In [5,11] it was proved, as an analogous of Goldberg conjecture for almost-Kähler manifolds,
that on a compact manifold an Einstein (or, more in general, with divergence-free Weyl
tensor [11]) calibrated G2-structure has holonomy contained in G2. In the non-compact
case, Cleyton and Ivanov showed that the same result is true with the additional assumption
that the G2-structure is ∗-Einstein, but it still an open problem to see if there exist (even
incomplete) Einstein metrics underlying calibrated G2-structures. Recently, some negative
results were proved in the case of non-compact homogeneous spaces in [16]. In particular,
the authors showed that a seven-dimensional solvmanifold cannot admit any left-invariant
calibrated G2-structure inducing an Einstein metric gϕ unless gϕ is flat.

In the present paper, we are mainly interested in the geometry of locally conformal cali-
brated G2-structures, i.e., G2-structures whose associated metric is conformally equivalent
(at least locally) to the metric induced by a calibrated G2-structure.

In Sect. 3, we prove that a compact manifold endowed with an Einstein locally conformal
calibrated G2-structure has non-positive scalar curvature (and then has either zero or negative
curvature if it is also connected) andwe show that a compact homogeneous 7-manifold cannot
admit an invariant Einstein locally conformal calibrated G2-structure unless the underlying
metric is flat.

In the last section, we give a non-compact example of a homogeneous manifold endowed
with an Einstein locally conformal calibrated G2-structure. The homogeneous manifold is
a solvmanifold, thus this example and the aforementioned result of [16] highlight a differ-
ent behaviour of calibrated and locally conformal calibrated G2-structures. Moreover, the
homogeneous Einstein metric is a rank-one extension of a Ricci soliton on the complex
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Einstein locally conformal calibrated G2-structures 1095

Heisenberg group induced by a coupled SU(3)-structure (ω,�) such that dω = −Re(�).
Recall that a half-flat SU(3)-structure is said to be coupled if dω is proportional to Re(�) at
each point (see [37]). Finally, we classify nilpotent Lie groups admitting a left-invariant cou-
pled SU(3)-structure, showing that the complex Heisenberg group is, up to isomorphisms,
the only nilpotent Lie group admitting a coupled SU(3)-structure (ω,�) whose associated
metric is a Ricci soliton.

2 Preliminaries on G2 and SU(3)-structures

Let (e1, . . . , e7) be the standard basis ofR7 and
(
e1, . . . , e7

)
be the corresponding dual basis.

We set

ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where for simplicity ei jk stands for thewedge product ei ∧e j ∧ek in�3((R7)
∗
). The subgroup

of GL(7,R) fixing ϕ is G2. The basis (e1, . . . , e7) is an oriented orthonormal basis for the
underlying metric and the orientation is determined by the inclusion G2 ⊂ SO(7). The group
G2 also fixes the 4-form

∗ϕ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247,

where ∗ denotes the Hodge star operator determined by the associated metric and orientation.
We recall that a G2-structure on a 7-manifold M is characterized by a positive 3-form ϕ.

Indeed, it turns out that there is a 1−1 correspondence betweenG2-structures on a 7-manifold
and 3-forms for which the bilinear form Bϕ defined by

Bϕ(X, Y ) = 1

6
iXϕ ∧ iY ϕ ∧ ϕ

is positive definite, where iX denotes the contraction by X . A 3-form ϕ for which Bϕ is
positive definite defines a unique Riemannian metric gϕ and volume form dVϕ such that for
any couple of vectors X and Y on M the following relation holds

gϕ(X, Y )dVϕ = 1

6
iXϕ ∧ iY ϕ ∧ ϕ.

As in [11], we let

ϕ = 1

6
ϕi jkei jk

and define the ∗-Ricci tensor of the G2-structure as

ρ∗
sm : = Ri jklϕi jsϕklm .

A G2-structure is said to be ∗-Einstein if the traceless part of the ∗-Ricci tensor vanishes,
i.e., if ρ∗ = s∗

7 g, where s∗ is the trace of ρ∗.
On a 7-manifold endowed with a G2-structure, the action of G2 on the tangent spaces

induces an action of G2 on the exterior algebra �p(M), for any p ≥ 2. In [4], it was shown
that there are irreducible G2-module decompositions

�2((R7)
∗
) = �2

7((R
7)

∗
) ⊕ �2

14((R
7)

∗
),

�3((R7)
∗
) = �3

1((R
7)

∗
) ⊕ �3

7((R
7)

∗
) ⊕ �3

27((R
7)

∗
),
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where �
p
k ((R7)

∗
) denotes an irreducible G2-module of dimension k. Using the previous

decomposition of p-forms, in [5] a simple expression of dϕ and d ∗ ϕ was obtained, where
∗ denotes the Hodge operator defined by the metric gϕ and the volume form dVϕ . More
precisely, for any G2-structure ϕ there exist unique differential forms τ0 ∈ �0(M), τ1 ∈
�1(M), τ2 ∈ �2

14(M), τ3 ∈ �3
27(M), such that

dϕ = τ0 ∗ ϕ + 3τ1 ∧ ϕ + ∗τ3,

d ∗ ϕ = 4τ1 ∧ ∗ϕ + τ2 ∧ ϕ,

where �
p
k (M) denotes the space of sections of the bundle �

p
k (T ∗M).

In the case of a closed G2 structure we have

dϕ = 0,

d ∗ ϕ = τ2 ∧ ϕ.

By the results of [5], the scalar curvature is given by

Scal(gϕ) = −1

2
|τ2|2

and from this it is clear that it cannot be positive.
For a locally conformal calibrated G2-structure ϕ one has τ0 ≡ 0 and τ3 ≡ 0, so

dϕ = 3τ1 ∧ ϕ,

d ∗ ϕ = 4τ1 ∧ ∗ϕ + τ2 ∧ ϕ,

and taking the exterior derivative of the former it is easy to show that τ1 is a closed 1-form.
Moreover, in this case the scalar curvature has not a definite sign as one can check from its
expression

Scal(gϕ) = 12δτ1 + 30|τ1|2 − 1

2
|τ2|2,

where δ denotes the adjoint of the exterior derivative d with respect to the metric gϕ .
If the only nonzero intrinsic torsion form is τ1, we have the so called locally conformal

parallel G2-structures. They are named in this way since a conformal change of the metric
gϕ associated to a G2-structure of this kind gives (at least locally) the metric induced by a
parallel G2-structure. In this case

dϕ = 3τ1 ∧ ϕ,

d ∗ ϕ = 4τ1 ∧ ∗ϕ.

We will give an example of such a structure at the end of Sect. 4.
We recall that a six-dimensional smooth manifold admits an SU(3)-structure if the struc-

ture groupof the framebundle can be reduced toSU(3). It is possible to show that the existence
of an SU(3)-structure is equivalent to the existence of an almost Hermitian structure (h, J, ω)

and a unit (3, 0)-form �.
Since SU(3) is the stabilizer of the transitive action of G2 on the 6-sphere S6, it follows

that a G2-structure on a 7-manifold induces an SU(3)-structure on any oriented hypersurface.
If the G2-structure is parallel, then the SU(3)-structure is half-flat [10]. In terms of the forms
(ω,�) this means d(ω ∧ ω) = 0, d(Re(�)) = 0.

In our computations we will use another characterization of SU(3)-structures which fol-
lows from the results of [22,36]. We describe it here. Consider a six-dimensional oriented
real vector space V , a k-form on V is said to be stable if its GL(V)-orbit is open. Let
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A : �5(V ∗) → V ⊗ �6(V ∗) denote the canonical isomorphism given by A(γ ) = w ⊗ 
,
where iw
 = γ , and define for a fixed 3-form σ ∈ �3(V ∗)

Kσ : V → V ⊗ �6(V ∗), Kσ (w) = A((iwσ) ∧ σ)

and

λ : �3(V ∗) → (�6(V ∗))⊗2, λ(σ ) = 1

6
trK 2

σ .

A 3-form σ is stable if and only if λ(σ ) �= 0 and whenever this happens it is possible to
define a volume form by

√|λ(σ )| ∈ �6(V ∗), where the positively oriented root is chosen,
and an endomorphism

Jσ = 1√|λ(σ )| Kσ ,

which is a complex structure when λ(σ ) < 0.
A pair of stable forms (ω, σ ) ∈ �2(V ∗) × �3(V ∗) is called compatible if ω ∧ σ = 0 and

normalized if J ∗
σ σ ∧σ = 2

3ω
3 (the latter identity is non-zero since a 2-form ω is stable if and

only if ω3 �= 0). Such a pair defines a (pseudo) Euclidean metric h(·, ·) = ω(Jσ ·, ·). As a
consequence, on a six-dimensional smooth manifold N there is a one to one correspondence
between SU(3)-structures and pairs (ω, σ ) ∈ �2(N ) × �3(N ) such that for each point
p ∈ N the pair of forms defined on Tp N (ωp, σp) is stable, compatible, normalized, has
λ(σp) < 0 and induces a Riemannian metric h p(·, ·) = ωp(Jσp ·, ·). In this case we have
� = σ + iJ ∗

σ σ and, then, σ = Re(�). We refer to h as the associated Riemannian metric to
the SU(3)-structure (ω, σ ).

An SU(3)-structure (ω, σ ) on a 6-manifold N is called coupled if dω = cσ , with c a
non-zero real number. Note that in particular a coupled SU(3)-structure is half-flat since
d(ω2) = 0 and dσ = 0 and its intrinsic torsion belongs to the space W1

− ⊕ W2
−, where

W1
− ∼= R and W2

− ∼= su(3) (see [10]).
It is interesting to notice that the product manifold N × R, where N is a 6-manifold

endowed with a coupled SU(3)-structure (ω, σ ), has a natural locally conformal calibrated
G2-structure defined by

ϕ = ω ∧ dt + σ.

Indeed,

dϕ = cσ ∧ dt = cϕ ∧ dt,

since in local coordinates the components of σ are functions defined on N and thus they do
not depend on t . Then, τ0 ≡ 0, τ3 ≡ 0 and τ1 = (− 1

3c
)

dt .

3 Einstein locally conformal calibrated G2-structures on compact
manifolds

Wewill show now that a seven-dimensional, compact, smooth manifold M endowed with an
Einstein locally conformal calibrated G2-structure ϕ has Scal(gϕ) ≤ 0. It is worth observing
here that, up to now, there are no known examples of smooth manifolds endowed with a
locally conformal calibrated G2-structure whose associated metric is Ricci-flat (and then has
zero scalar curvature).

123
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First of all recall that given a Riemannian manifold (M, g) of dimension n ≥ 3 it is
possible to define the so called conformal Yamabe constant Q(M, g) in the following way:
set an : = 4(n−1)

n−2 , pn : = 2n
n−2 and let C∞

c (M) denote the set of compactly supported smooth
real valued functions on M . Then

Q(M, g): = inf
u∈C∞

c (M),u �≡0

⎧
⎨

⎩

∫
M (an |du|2g + u2Scal(g))dVg

(
∫

M |u|pn dVg)
2

pn

⎫
⎬

⎭
.

The sign of Q(M, g) is a conformal invariant, in particular the following characterization
holds:

Proposition 3.1 If (M, g) is a compact Riemannian manifold of dimension n ≥ 3, then
Q(M, g) is negative/zero/positive if and only if g is conformal to a Riemannian metric of
negative/zero/positive scalar curvature.

Using the conformal Yamabe constant it is possible to prove the following

Theorem 3.2 Let M be a seven-dimensional, compact, smooth manifold endowed with an
Einstein locally conformal calibrated G2-structure ϕ. Then Scal(gϕ) ≤ 0. Moreover, if M is
connected, Scal(gϕ) is either zero or negative.

Proof Suppose that Scal(gϕ) > 0, then the 1-form τ1 is exact. Indeed, since dτ1 = 0, we
can consider the de Rham class [τ1] ∈ H1

dR(M) and take the harmonic 1-form ξ representing
[τ1], that is, τ1 = ξ + d f , where �ξ = 0 and f ∈ C∞(M). ξ has to vanish everywhere
on M since it is compact, oriented and has positive Ricci curvature. Then τ1 = d f . Let us
consider ϕ̃: = e−3 f ϕ, it is clear that ϕ̃ is a G2-structure defined on M . Moreover

dϕ̃ = d(e−3 f ϕ)

= −3e−3 f d f ∧ ϕ + e−3 f dϕ

= −3e−3 f τ1 ∧ ϕ + e−3 f (3τ1 ∧ ϕ)

= 0,

so ϕ̃ is a closed G2-structure and Scal(gϕ̃ ) ≤ 0 by [5]. We have gϕ̃ = e−2 f gϕ , that is, gϕ̃

is conformal to the Riemannian metric gϕ of positive scalar curvature, then the conformal
Yamabe constant Q(M, gϕ̃ ) is positive by the previous characterization.

Since M is compact, it has finite volume and is complete as a consequence of the well
known Hopf–Rinow Theorem. Then, by [34, Corollary 2.2] we have that Q(M, gϕ̃ ) ≤ 0,
which is in contrast with the previous result. ��

As a consequence of the previous proposition we have the

Corollary 3.3 A seven-dimensional, compact, homogeneous, smooth manifold M cannot
admit an invariant locally conformal calibrated Einstein G2-structure ϕ, unless the under-
lying metric gϕ is flat.

Proof Recall that a homogeneous Einstein manifold with negative scalar curvature is not
compact [3]. Thus, every seven-dimensional, compact, homogeneous, smooth manifold M
with an invariant G2-structure ϕ whose associated metric is Einstein has Scal(gϕ) ≥ 0.
Combining this result with the previous proposition we have Scal(gϕ) = 0 and, in particular,
gϕ is Ricci-flat. The statement then follows recalling that in the homogeneous case Ricci
flatness implies flatness [2]. ��
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Einstein locally conformal calibrated G2-structures 1099

4 Noncompact homogeneous examples and coupled SU(3)-structures

In this section, after recalling some facts about noncompact homogeneousEinsteinmanifolds,
we first study the classification of coupled SU(3)-structures on nilmanifolds and then we
construct an example of a locally conformal calibrated G2-structure ϕ inducing an Einstein
(non Ricci-flat) metric on a noncompact homogeneous manifold.

All the known examples of noncompact homogeneous Einstein manifolds are solvmani-
folds, i.e., simply connected solvable Lie groups S endowed with a left-invariant metric (see
for instance the recent survey [32]). D. Alekseevskii conjectured that these might exhaust
the class of non-compact homogeneous Einstein manifolds (see [3, 7.57]).

Lauret in [33] showed that every Einstein solvmanifold is standard, i.e., it is a solvable
Lie group S endowed with a left-invariant metric such that the orthogonal complement a =
[s, s]⊥, where s is the Lie algebra of S, is abelian. We recall that given a metric nilpotent Lie
algebra n with an inner product 〈·, ·〉n, a metric solvable Lie algebra (s = n ⊕ a, 〈·, ·〉s) is
called a metric solvable extension of (n, 〈·, ·〉n) if [s, s] = n and the restrictions to n of the
Lie bracket of s and of the inner product 〈·, ·〉s coincide with the Lie bracket of n and with
〈·, ·〉n, respectively. The dimension of a is called the algebraic rank of s.

In [21, 4.18], it was proved that the study of standard Einstein metric solvable Lie algebras
reduces to the rank-one metric solvable extension of a nilpotent Lie algebra (i.e., those for
which dim(a) = 1). Indeed, by [21] the metric Lie algebra of any (n + 1)-dimensional rank-
one solvmanifold can be modelled on (s = n ⊕ RH, 〈·, ·〉s) for some nilpotent Lie algebra
n, with the inner product 〈·, ·〉s such that 〈H, n〉s = 0, 〈H, H〉s = 1 and the Lie bracket on
s given by

[H, X ]s = DX, [X, Y ]s = [X, Y ]n,

where [·, ·]n denotes the Lie bracket on n and D is some derivation of n. By [30], a left-
invariant metric h on a nilpotent Lie group N is a Ricci soliton if and only if the Ricci
operator satisfies Ric(h) = μI + D, for some μ ∈ R and some derivation D of n, when
h is identified with an inner product on n or, equivalently, if and only if (N , h) admits a
metric standard extension whose corresponding standard solvmanifold is Einstein. The inner
product h is also called nilsoliton.

Using the results of [29,31], in [39] all the seven-dimensional rank-one Einstein solvman-
ifolds were determined, proving that each one of the 34 nilpotent Lie algebras n of dimension
6 admits a rank-one solvable extension which can be endowedwith an Einstein inner product.

Six-dimensional nilpotent Lie algebras admitting a half-flat SU(3)-structure were classi-
fied in [13]. For coupled SU(3)-structures we can show the following

Theorem 4.1 Let n be a six-dimensional, non-abelian, nilpotent Lie algebra admitting a
coupled SU(3)-structure. Then n is isomorphic to one of the following

n9 = (0, 0, 0, e12, e14 − e23, e15 + e34), n28 = (0, 0, 0, 0, e13 − e24, e14 + e23),

where for instance n9 = (0, 0, 0, e12, e14 − e23, e15 + e34) means that there exists a basis
(e1, . . . , e6) of n∗

9 such that

de j = 0, j = 1, 2, 3, de4 = e12, de5 = e14 − e23, de6 = e15 + e34.

Moreover, the only nilpotent Lie algebra admitting a coupled SU(3)-structure inducing a
nilsoliton is n28.
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Table 1 Expression of λ(σ) for the six-dimensional nilpotent Lie algebras admitting a half-flat SU(3)-
structure

n (de1, de2, de3, de4, de5, de6) λ(σ ) Sign of λ(σ)

n4 (0, 0, e12, e13, e14 + e23, e24 + e15) 4c4b215(−b15(b12 + b13) + b214) ?

n6 (0, 0, e12, e13, e23, e14) c4b415 ≥0

n7 (0, 0, e12, e13, e23, e14 − e25) c4(b214 − b215)
2 ≥0

n8 (0, 0, e12, e13, e23, e14 + e25) c4(b214 − b215)
2 ≥0

n9 (0, 0, 0, e12, e14 − e23, e15 + e34) 4c4b215(−b15(b9 + b13) + b214) ?

n10 (0, 0, 0, e12, e14, e15 + e23) c4b415 ≥0

n11 (0, 0, 0, e12, e14, e15 + e23 + e24) c4b415 ≥0

n12 (0, 0, 0, e12, e14, e15 + e24) 0 0

n13 (0, 0, 0, e12, e14, e15) 0 0

n14 (0, 0, 0, e12, e13, e14 + e35) c4b414 ≥0

n15 (0, 0, 0, e12, e23, e14 + e35) c4(b214 − b215)
2 ≥0

n16 (0, 0, 0, e12, e23, e14 − e35) c4(b214 + b215)
2 ≥0

n21 (0, 0, 0, e12, e13, e14 + e23) 0 0

n22 (0, 0, 0, e12, e13, e24) c4b415 ≥0

n24 (0, 0, 0, e12, e13, e23) 0 0

n25 (0, 0, 0, 0, e12, e15 + e34) c4b415 ≥0

n27 (0, 0, 0, 0, e12, e14 + e25) 0 0

n28 (0, 0, 0, 0, e13 − e24, e14 + e23) −4c4b415 ≤0

n29 (0, 0, 0, 0, e12, e14 + e23) 0 0

n30 (0, 0, 0, 0, e12, e34) c4b415 ≥0

n31 (0, 0, 0, 0, e12, e13) 0 0

n32 (0, 0, 0, 0, 0, e12 + e34) 0 0

n33 (0, 0, 0, 0, 0, e12) 0 0

n34 (0, 0, 0, 0, 0, 0) 0 0

Proof By the results in [13], the generic nilpotent Lie algebra n admitting a half-flat SU(3)-
structure is isomorphic to one of the 24 Lie algebras described in Table 1. Consider on n a
generic 2-form

ω = b1e12 + b2e13 + b3e14 + b4e15 + b5e16 + b6e23 + b7e24 + b8e25

+ b9e26 + b10e34 + b11e35 + b12e36 + b13e45 + b14e46 + b15e56,

where bi ∈ R, i = 1, . . . , 15, and the 3-form

σ = c(dω), c ∈ R − {0}.

The expression of λ(σ ) for each nilpotent Lie algebra considered is given in Table 1.
We observe that among the 24 nilpotent Lie algebras admitting a half-flat SU(3)-structure

we have:
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Einstein locally conformal calibrated G2-structures 1101

• 1 case (n28) for which λ(σ ) < 0 if b15 �= 0,
• 2 cases (n4 and n9) for which the sign of λ(σ ) depends on ω,
• 21 cases for which λ(σ ) cannot be negative.

Therefore, the 21 algebras having λ(σ ) ≥ 0 do not admit any coupled SU(3)-structure.
Consider n4, it has structure equations

(0, 0, e12, e13, e14 + e23, e24 + e15).

First of all, observe that if b15 = 0 then λ(σ ) = 0. So if we want to find an SU(3)-structure
we have to look for ω with b15 �= 0. Moreover, σ induces an almost complex structure if
and only if λ(σ ) is negative, then we have to suppose in addition that b15(b12 + b13) > b214.
Since we want ω to be the 2-form associated to an SU(3)-structure, it must be a form of type
(1, 1) and this happens if and only if ω(·, ·) = ω(J ·, J ·), where J = Jσ . Computing the
previous identity with respect to the considered frame, we have that the following equations
have to be satisfied by the components of ω:

ωab =
6∑

k,m=1

J k
a J m

b ωkm, 1 ≤ a < b ≤ 6

(observe thatω12 = b1,ω13 = b2 and so on). Using these equations it is possible to write four
of the bi in terms of the remaining and obtain a new expression for ω. We can now compute
the matrix associated to h(·, ·) = ω(J ·, ·) with respect to the basis (e1, . . . , e6) and observe
that for the nonzero vector v = e4 − b14

b15
e5 + b13

b15
e6 we have h(v, v) = 0. Therefore, h cannot

be positive definite and, as a consequence, it is not possible to find a coupled SU(3)-structure
on n4.

For theLie algebrasn9 andn28 we can give an explicit example of coupledSU(3)-structure.
Consider on n9 the forms

ω = −3

2
e12 − 1

4
e14 − e15 − e24 + 1

2
e26 − 1

2
e35 − e36 + e56,

σ =
√
15 4

√
2

4
e123 +

√
15 4

√
2

8
e234 −

√
15 4

√
2

8
e125 +

√
15 4

√
2

8
e134

+
√
15 4

√
2

4
e135 −

√
15 4

√
2

4
e146 +

√
15 4

√
2

4
e236 +

√
15 4

√
2

4
e345.

We have

ω ∧ σ = 0, ω3 �= 0, λ(σ ) = −225

64
, dω = − 4√

15 4
√
2
σ,

in particular (ω, σ ) is a compatible pair of stable forms. The associated almost complex
structure J = Jσ has the following matrix expression with respect to the basis (e1, . . . , e6):

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 −√
2 0 0 0√

2 0 0 −√
2 0 0√

2
2 0 0 0 0 0

0
√
2
2 −√

2 0 0 0√
2 0

√
2
2

√
2
2 0

√
2

−
√
2
4 −

√
2
4

3
√
2

2 0 −
√
2
2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

and it is easy to check that J ∗σ ∧ σ = 2
3ω

3, i.e., the pair (ω, σ ) is normalized.
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The inner product h(·, ·) = ω(J ·, ·) is given with respect to the basis (e1, . . . , e6) by

h =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

5
√
2

2

√
2
8

√
2
4 −√

2 0
√
2√

2
8

5
√
2

8 −
√
2
4 0

√
2
4 0√

2
4 −

√
2
4

7
√
2

4

√
2
4 −

√
2
2

√
2
2

−√
2 0

√
2
4

√
2 0 0

0
√
2
4 −

√
2
2 0

√
2
2 0√

2 0
√
2
2 0 0

√
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

.

and it is positive definite. Therefore, we can conclude that (ω, σ ) is a coupled SU(3)-structure
on n9.

For n28 consider the pair of compatible, normalized, stable forms
(
ω = e12 + e34 − e56, σ = e136 − e145 − e235 − e246

)
. (1)

This pair defines a coupled SU(3)-structure with dω = −σ . Moreover, the associated inner
product

h = (e1)2 + · · · + (e6)2

is a nilsoliton with

Ric(h) = −3I + 2 diag(1, 1, 1, 1, 2, 2).

Summarizing our results, we can conclude that n9 and n28 are, up to isomorphisms, the only
six-dimensional nilpotent Lie algebras admitting a coupled SU(3)-structure.

We have just provided a coupled SU(3)-structure on n28 whose associated inner product
is a nilsoliton, we claim that this is the unique case among all six-dimensional nilpotent Lie
algebras. It is clear that to prove the previous assertion it suffices to show that n9 does not
admit any coupled SU(3)-structure inducing a nilsoliton inner product. In order to do this,
we consider an orthonormal basis (e1, . . . , e6) of n9 whose dual basis satisfies the structure
equations

(

0, 0, 0,

√
5

2
e12, e14 − e23,

√
5

2
e15 + e34

)

(by the results of [30] and [39], these are, up to isomorphisms, the structure equations for
which the considered inner product on n9 is a nilsoliton). As we did before, consider a generic
2-form ω, the 3-form σ = c(dω), evaluate λ(σ ) and impose that it is negative. Then compute
Jσ and the matrix associated to h(·, ·) = ω(Jσ ·, ·)with respect to the considered basis. Since
h has to be the restriction to n9 of an Einstein inner product defined on n9 ⊕ Re7 and since
the latter is unique up to scaling, we have to impose that the symmetric matrix associated to
h is a multiple of the identity. Solving the associated equations we find that λ(σ ) has to be
zero, which is a contradiction. ��

Starting from a six-dimensional nilpotent Lie algebra n endowed with a coupled SU(3)-
structure, it is possible to construct a locally conformal calibrated G2-structure on the rank-
one solvable extension s = n ⊕ Re7 under some extra hypothesis. Let d̂ denote the exterior
derivative on n and d denote the exterior derivative on s. Observe that given a k-form θ ∈
�k(n∗) we have
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dθ = d̂θ + ρ ∧ e7

for some ρ ∈ �k(n∗).

Proposition 4.2 Let n be a six-dimensional, nilpotent Lie algebra endowed with a coupled
SU(3)-structure (ω, σ ) with d̂ω = cσ , c ∈ R − {0}. Consider on its rank one solvable
extension s = n⊕Re7 the G2-structure defined by ϕ = ω ∧ e7 +σ , where the closed 1-form
e7 is the dual of e7. Then the G2-structure is locally conformal calibrated with τ1 = 1

3ce7 if
and only if dσ = −2cσ ∧ e7.

Proof Suppose that dσ = −2cσ ∧ e7, we can write dω = d̂ω + γ ∧ e7 for some 2-form
γ ∈ �2(n∗).Weobtaindϕ = ce7∧ϕ.Then,ϕ is locally conformal calibratedwith τ1 = 1

3ce7.
Conversely, suppose that ϕ is locally conformal calibrated with τ1 = 1

3ce7. Then we have

dϕ = ce7 ∧ ϕ. Moreover, we know that dσ = d̂σ + β ∧ e7 = β ∧ e7 for some 3-form
β ∈ �3(n∗), since σ is d̂-closed. We then have

dϕ = dω ∧ e7 + dσ = e7 ∧ (−cσ − β)

and comparing this with the previous expression of dϕ we obtain

e7 ∧ (−cσ − β) = ce7 ∧ ϕ = e7 ∧ (cσ)

from which follows β = −2cσ . ��
Now we will construct an Einstein locally conformal calibrated G2-structure on a rank-

one extension of the Lie algebra n28 (Lie algebra of the 3-dimensional complex Heisenberg
group) endowed with the coupled SU(3)-structure (1).

Example 4.3 Consider n28 and the metric rank-one solvable extension s = n28 ⊕ Re7 with
structure equations

(
1

2
e17,

1

2
e27,

1

2
e37,

1

2
e47, e13 − e24 + e57, e14 + e23 + e67, 0

)
.

The associated solvable Lie group S is not unimodular and so it does not admit any
compact quotient [35]. Consider on n28 the coupled SU(3)-structure (ω, σ ) given by (1)
with the nilsoliton associated inner product

h = (e1)2 + · · · + (e6)2.

Then the inner product on s

g = (e1)2 + · · · + (e7)2

is Einstein with Ricci tensor Ric(g) = −3g.
Since dσ = 2σ ∧ e7, by the previous proposition we have a locally conformal calibrated

G2-structure on s given by

ϕ = ω ∧ e7 + σ = e127 + e347 − e567 + e136 − e145 − e235 − e246

and it is easy to show that gϕ = g. Then the corresponding solvmanifold (S, ϕ) is an
example of non-compact homogeneous manifold endowed with an Einstein (non-flat) locally
conformal calibrated G2-structure.
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Observe that the G2-structure ϕ satisfies the conditions

dϕ = −e7 ∧ ϕ,

d ∗ ϕ = −e7 ∧ (3e1256 + 2e1234 + 3e3456).

Then

τ1 = −1

3
e7,

as we expected from Proposition 4.2, and

τ2 = −
(
5

3
e12 + 5

3
e34 + 10

3
e56

)
.

Moreover, the G2-structure is not ∗-Einstein, since by direct computation with respect to the
orthonormal basis (e1, . . . , e7) one has

ρ∗ =

⎛

⎜
⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 22 0 0
0 0 0 0 0 22 0
0 0 0 0 0 0 −6

⎞

⎟
⎟
⎟⎟⎟⎟⎟⎟
⎠

.

It is worth emphasizing here that, by [16], on seven-dimensional solvmanifolds there are
no left-invariant calibrated G2-structures inducing an Einstein non-flat metric. The previous
example shows that the situation is different in the case of locally conformal calibrated
G2-structures.

We provide now a non-compact example of homogeneous manifold admitting an Einstein
(non-flat) locally conformal parallel G2-structure.

Example 4.4 The Einstein rank-one solvable extension of the six-dimensional abelian Lie
algebra is the solvable Lie algebra with structure equations

(ae17, ae27, ae37, ae47, ae57, ae67, 0),

where a is a nonzero real number. The Riemannian metric

g = (e1)2 + · · · + (e7)2

is Einstein with Ricci tensor given by Ric(g) = −6a2g.
The 3-form

ϕ = −e125 − e136 − e147 + e237 − e246 + e345 − e567

has stabilizer G2, is such that gϕ = g and satisfies the conditions

dϕ = −3ae2467 + 3ae3457 − 3ae1257 − 3ae1367,

d ∗ ϕ = 4ae23567 + 4ae12347 − 4ae14567.

It is immediate to show that τ1 = −ae7 and τ0 ≡ 0, τ2 ≡ 0, τ3 ≡ 0, that is, the G2-structure
ϕ is locally conformal parallel.
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