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Abstract We determine the structure of conformal powers of the Dirac operator on Einstein
Spin-manifolds in terms of the product formula for shifted Dirac operators. The result is
based on the techniques of higher variations for the Dirac operator on Einstein manifolds
and spectral analysis of the Dirac operator on the associated Poincaré–Einstein metric, and
relies on combinatorial recurrence identities related to the dual Hahn polynomials.
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1 Introduction

Conformally covariant operators like the conformal Laplacian or the Dirac operator are of
central interest in geometric analysis onmanifolds. The conformal Laplacian is an example of
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826 M. Fischmann et al.

conformally covariant operators termedGJMSoperators, cf. [12,15,17], and this is analogous
for the Dirac operator, cf. [10,13,18]. Their original construction is based on the ambient
metric, or, equivalently, on the associated Poincaré–Einstein metric introduced by Fefferman
and Graham [8,9].

In the case of GJMS operators, it is shown in [11] that in even dimensions n there exists
in general no conformal modification of the k-th power of the Laplace operator for k > n

2 .
In the case of conformal powers of the Dirac operator on general Spin-manifolds, all known
constructions break down for even dimensions n if the order of the operator exceeds the
dimension. The effect of non-existence for higher order conformal powers of the Laplace
andDirac operators does not apply for certain classes ofmanifolds, for example flatmanifolds
[22] or Einstein manifolds [14].

The proper understanding of the internal structure of conformal powers of the Laplace and
Dirac operators is a difficult task, see the progress for GJMS operators in [19]. In particular,
there exists a sequence of second order differential operators such that all GJMS operators
are polynomials in this collection of second order differential operators, and vice versa.
Such a structure, in terms of first order differential operators, is also available for low order
examples of conformal powers of the Dirac operator, cf. [10, Chapter 6]. Explicit formulas
are available on flat manifolds, where they are just powers of the Laplace or Dirac operators,
on the spheres [4,7], where they factor into a product of shifted Laplace or Dirac operators,
or on Einstein manifolds, where the GJMS operators factor into a product of shifted Laplace
operators [9,14].

Let us alsomention that on Einsteinmanifolds there is a less uniform factorization formula
[16] for the conformally covariant Branson-Gover operators [2] on differential forms.

The main aim of our article is to complete these results for conformal powers of the Dirac
operator on Einstein Spin-manifolds.

Theorem Let (M, h) be a semi-Riemannian Einstein Spin-manifold of dimension n, nor-
malized by Ric(h) = 2(n−1)J

n h for constant normalized scalar curvature J ∈ R.
The (2N + 1)-th conformal power of the Dirac operator, N ∈ N0, satisfies

D2N+1ψ =
2N+1∏

j=1

(
/D − (N − j + 1)

√
2J
n

)
ψ

for all ψ ∈ �
(
S(M, h)

)
.

The result is based on the proper understanding of higher variations of the Dirac opera-
tor on Einstein manifolds and the spectral analysis of the Dirac operator on the associated
Poincaré–Einstein metric. The derivations of specific formulas rely on combinatorial recur-
rence identities related to dual Hahn polynomials.

Notice that our result implies the transfer of the spectral resolution for the Dirac operator
/D to the conformal powers of the Dirac operator D2N+1. Moreover, the product structure
(or, the factorization) of conformal powers of the Laplace and Dirac operators is applied in
theoretical physics, cf. [5,6], to compute conformal andmultiplicative anomalies of functional
determinants in the context of the AdS/CFT correspondence.

The paper is organized as follows. In Sect. 2, we briefly review some basic notions related
to Spin-geometry and Poincaré–Einstein metrics. In Sect. 3, we discuss variations to all
orders of the Dirac operator on semi-Riemannian Einstein Spin-manifolds with respect to the
1-parameter family of metrics arising from the Poincaré–Einstein metric, cf. Theorem 3.5. In
Sect. 4, we briefly recall the dual Hahn polynomials, which form a special class of generalized
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The Dirac operator on Einstein manifolds 827

hypergeometric functions. The solution of certain recurrence relation, derived in Sect. 5, has
an interpretation in terms of dual Hahn polynomials. Sect. 5 contains our main theorem,
Theorem 5.2. Its proof is based on a recurrence relation, deduced from the construction of
conformal powers on the Dirac operator of a semi-Riemannian Einstein Spin-manifold via
the associated Poincaré–Einstein metric, cf. Proposition 4.1.

2 Semi-Riemannian Spin-geometry, Clifford algebras, and Poincaré–Einstein metrics

In the present section we review conventions and notation related to semi-Riemannian Spin-
geometry and the Poincaré–Einstein metric construction used throughout the article.

Let (M, h) be a semi-Riemannian Spin-manifold of signature (p, q) and dimension n =
p + q . Then any orthonormal frame {ei }ni=1 fulfills h(ei , e j ) = εiδi j , where εi = −1 for
1 ≤ i ≤ p and εi = 1 for p + 1 ≤ i ≤ n.

The Clifford algebra of (Rn, 〈·, ·〉p,q), denoted by Cl(Rp,q), is a quotient of the tensor
algebra of R

n by the two sided ideal generated by the relations x ⊗ y+ y⊗ x = −2〈x, y〉p,q
for all x, y ∈ R

n . In the even case n = 2m, the complexified Clifford algebra ClC(Rp,q) has
a unique irreducible representation up to isomorphism, whereas in the odd case n = 2m + 1
it has two non-equivalent irreducible representations on �n := C

2m , again unique up to
isomorphism. The restriction of this representation to the spin group Spin(p, q), regarded
as a subgroup of the group of units Cl∗(Rp,q), is denoted by κn .

The choice of a Spin-structure (Q, f ) on (M, h) provides an associated spinor bundle
S(M, h) := Q ×(Spin0(p,q),κn) �n , where Spin0(p, q) denotes the connected component
of the spin group containing the identity element. (We could work with the full spin group
as well, because we do not need the existence of a scalar product). Then the Levi-Civita
connection ∇h on (M, h) lifts to a covariant derivative ∇h,S on the spinor bundle. The
associated Dirac operator is denoted by /D.

Let ĥ = e2σ h be a metric conformally related to h, σ ∈ C∞(M). The spinor bundles for
ĥ and h can be identified by a vector bundle isomorphism Fσ : S(M, h) → S(M, ĥ), and
the Dirac operator satisfies the conformal transformation law

/̂D
(
e
1−n
2 σ ψ̂

) = e− 1+n
2 σ /̂Dψ,

for all smooth sections ψ ∈ �
(
S(M, h)

)
, and ·̂ denotes the evaluation with respect to ĥ.

Conformal odd powers of the Dirac operator were constructed in [10,13,18], and are denoted
by D2N+1 = /D2N+1 + LOT, for N ∈ N0 (N < n

2 for even n). Here, LOT stands for “lower
order terms.” They satisfy

D̂2N+1
(
e
2N+1−n

2 σ ψ̂
) = e− 2N+1+n

2 σ ̂D2N+1ψ

for all smooth function σ ∈ C∞(M) and sections ψ ∈ �
(
S(M, h)

)
. Notice that even confor-

mal powers of the Dirac operator do not exist, cf. [22].
As for the Poincaré–Einstein metric construction we refer to [9]. The Poincaré–Einstein

metric associated with an n-dimensional semi-Riemannian manifold (M, h), n ≥ 3, is X :=
M × (0, ε), ε ∈ R+, equipped with the metric

g+ = r−2(dr2 + hr ),
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828 M. Fischmann et al.

for a 1-parameter family of metrics hr on M , h0 = h. The requirement of the Einstein
condition on g+ for n odd,

Ric(g+) + ng+ = O(r∞),

uniquely determines the family hr , while for n even the conditions

Ric(g+) + ng+ = O(rn−2), tr(Ric(g+) + ng+) = O(rn−1),

uniquely determine the coefficients h(2), . . . , h(n−2), h̃(n) and the trace of h(n) in the formal
power series

hr = h + r2h(2) + · · · + rn−2h(n−2) + rn(h(n) + h̃(n) log r) + · · · .

For example, we have

h(2) = −P, h(4) = 1
4

(
P2 − B

n−4

)
,

where P is the Schouten tensor and B is the Bach tensor associated with h.
Choosing different representatives h, ĥ ∈ [h] in the conformal class leads to Poincaré–

Einstein metrics g1+ and g2+ related by a diffeomorphism 	 : U1 ⊂ X → U2 ⊂ X , where
both Ui , i = 1, 2, contain M × {0}, 	|M = I dM , and g1+ = 	∗g2+ (up to a finite order in r ,
for even n).

3 Variation of the Dirac operator induced by the Poincaré–Einstein metric

In this sectionwegive a complete descriptionof the variations of theDirac operator, associated
with the 1-parameter family hr induced by the Poincaré–Einstein metric g+, assuming that
(M, h0 = h) is Einstein.

For a general 1-parameter family of metrics hr on a Riemannian Spin-manifold, the first
variation of the Dirac operator was discussed in [1], which we will adapt and make explicit
for the 1-parameter family of metrics hr induced by the Poincaré–Einstein metric.

Motivated by a proof of the fundamental theorem of hypersurface theory and a new way
to identify spinors for different metrics, [3] introduced the technique of generalized cylinders
to derive the first order variation formula for the Dirac operator with respect to a deformation
of the underlying metric.

In general, the topic of higher metric variations for the Dirac operator was not discussed
in the literature. In case (M, h) is Einstein, the associated Poincaré–Einstein metric takes a
very simple form, cf. Eq. (3.1). This allows for a complete description of variation formulas
of general order for the Dirac operator associated with hr . The higher variation formulas
are used in Sect. 5 to make the construction of conformal powers of the Dirac operator very
explicit, ending in a product structure for D2N+1, N ∈ N0.

Throughout the article, we use the standard notation in semi-Riemannian geometry, e.g.,
Ric, τ are the Ricci tensor and its scalar curvature, respectively.

Let (M, h) be a semi-Riemannian Einstein manifold of dimension n with normalized
Einstein metric h,

Ric(h) = 2λ(n − 1)h, λ ∈ R.

This implies P = J
n h, where J = τ

2(n−1) is the normalized scalar curvature and

P = 1
n−2 (Ric − Jh) is the Schouten tensor. The associated Poincaré–Einstein metric
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The Dirac operator on Einstein manifolds 829

g+ = r−2(dr2 + hr ) on X is determined by the 1-parameter family of metrics hr on M ,

hr = h − r2 J
n h + r4

( J
2n

)2
h = (

1 − J
2n r

2)2 h, h0 = h. (3.1)

For r ∈ R+ small enough we consider a point-wise isomorphism fr : TxM → TxM , x ∈ M ,
relating h = h0 and hr via

Y 
→ fr Y := (
1 − J

2n r
2)−1

Y, for all Y ∈ �(T M),

characterized by h(Y,U ) = hr ( fr Y, frU ) for all Y,U ∈ �(T M) and f0 = I dT M .
Let us introduce the Levi-Civita covariant derivatives on T M corresponding to h and hr :

∇h,∇hr : �(T M) → �(T ∗M ⊗ T M),

and

∇h,hr : �(T M) → �(T ∗M ⊗ T M)

Y 
→ {
U → ∇h,hr

Y U := ( f −1
r ◦ ∇hr

Y ◦ fr )U
}
. (3.2)

The covariant derivatives ∇h,∇hr ,∇h,hr extend by the Leibniz rule and the spin represen-
tation to tensor-spinor fields. For example one has

(∇h
U f )(Y ) = ∇h

U ( f Y ) − f (∇h
UY ),

for all f ∈ End(T M), and U, Y ∈ �(T M).

Lemma 3.1 The covariant derivative ∇h,hr is metric for h, and its torsion T r satisfies

T r (U, Y ) = f −1
r

(
(∇hr

U fr )(Y ) − (∇hr
Y fr )(U )

)
, for all U, Y ∈ �(T M). (3.3)

Proof Let Y,U, Z ∈ �(T M). First we show the h-metricity of ∇h,hr :

(∇h,hr
Y h)(U, Z) = Y

(
h(U, Z)

) − h(∇h,hr
Y U, Z) − h(∇h,hr

Y Z ,U )

= Y
(
hr ( frU, fr Z)

) − h( f −1
r ∇hr

Y ( frU ), Z) − h( f −1
r ∇hr

Y ( fr Z),U )

= Y
(
hr ( frU, fr Z)

) − hr (∇hr
Y ( frU ), fr Z) − h(∇hr

Y ( fr Z), frU )

= ∇hr
Y hr ( frU, fr Z) = 0.

The second statement follows from

T r (U, Y ) = ∇h,hr
U Y − ∇h,hr

Y U − [U, Y ]
= f −1

r

(∇hr
U frY − ∇hr

Y frU
) − ∇hr

U Y + ∇hr
Y U

= f −1
r

(∇hr
U frY − fr (∇hr

U Y ) − ∇hr
Y frU + fr (∇hr

Y U )
)

= f −1
r

(
(∇hr

U fr )(Y ) − (∇hr
Y fr )(U )

)
.

��

It is well known that two h-metric covariant derivatives on (M, h) differ by their torsions.
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Lemma 3.2 We have

h(∇h,hr
U Y, Z) = h(∇h

UY, Z) + 1
2

[
h(T r (Z , Y ),U ) − h(T r (Y,U ), Z) − h(T r (U, Z), Y )

]

for all U, Y, Z ∈ �(T M).

Proof Let U, Y, Z ∈ �(T M). Any two covariant derivatives differ by a tensor field ω ∈
�(T ∗M ⊗ T M ⊗ T ∗M), i.e., ∇h,hr

U Y = ∇h
UY + ω(U )Y . Since both covariant derivatives

are metric with respect to h, we get

0 = ∇h,hr
U h(Y, Z) − ∇h

Uh(Y, Z) = −[
h(ω(U )Y, Z) + h(ω(U )Z , Y )

]
. (3.4)

Since ∇h is torsion-free, we have

T r (U, Y ) = ∇h,hr
U Y − ∇h,hr

Y U − [U, Y ]
= ∇h,hr

U Y − ∇h,hr
Y U − ∇h

UY + ∇h
YU

= ω(U )Y − ω(Y )U.

Using Eq. (3.4), we see that this implies

h(T r (Z , Y ),U ) − h(T r (Y,U ), Z) − h(T r (U, Z), Y )

= 2h(ω(U )Y, Z) = 2h(∇h,hr
U Y − ∇h

UY, Z),

and the proof is complete. ��
Any h-metric covariant derivative induces a covariant derivative on the spinor bundle

S(M, h), hence ∇h , ∇hr and ∇h,hr induce

∇h,S : �
(
S(M, h)

) → �
(
T ∗M ⊗ S(M, h)

)
,

∇hr ,S : �
(
S(M, hr )

) → �
(
T ∗M ⊗ S(M, hr )

)
,

∇r,S : �
(
S(M, h)

) → �
(
T ∗M ⊗ S(M, h)

)
. (3.5)

Note that the last of the above covariant derivatives equals ∇h,hr ,S , but we will use the
abbreviation ∇r,S . It follows from Lemma 3.2 that locally

∇r,S
si ψ = si (ψ) + 1

2

∑

j<k

ε jεkh(∇h,hr
si s j , sk)s j · sk · ψ

= ∇h,S
si ψ + 1

8

∑

j �=k

ε jεkT
r,σ
i jk s j · sk · ψ, (3.6)

where ψ ∈ �
(
S(M, h)

)
, {si }ni=1 is an h-orthonormal frame, T r,σ

i jk := (1 − σ − σ 2)T r
k ji with

σT r
i jk := T r

jki and T r (U, Y, Z) := h(T r (U, Y ), Z) for U, Y, Z ∈ �(T M). The isometry
fr : TxM → TxM , x ∈ M , pulls-back hr to h and lifts to a spinor bundle isomorphism

βr : S(M, h) → S(M, hr ).

It preserves the base points on M and satisfies βr (U · ψ) = fr (U ) · βr (ψ) for all U ∈
�(T M), ψ ∈ �

(
S(M, h)

)
.

Lemma 3.3 Let ψ ∈ �
(
S(M, h)

)
, Y ∈ �(T M). Then

∇r,S
Y ψ = (β−1

r ◦ ∇hr ,S
Y ◦ βr )ψ. (3.7)
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The Dirac operator on Einstein manifolds 831

Proof For ψ ∈ �
(
S(M, h)

)
, we have

∇r,S
Y ψ = Y (ψ) + 1

2

∑

j<k

ε jεkh(∇h,hr
Y s j , sk)s j · sk · ψ

= Y (ψ) + 1
2

∑

j<k

ε jεkhr (∇hr
Y fr s j , fr sk)β

−1
r

(
fr s j · fr sk · βrψ

)

= (β−1
r ◦ ∇hr ,S

Y ◦ βr )ψ,

which completes the proof. ��
Let us introduce the notation

f (l) := dl

drl
( fr )|r=0, T (l)(U, Y ) := dl

drl
(
T r (U, Y )

)|r=0, (3.8)

for l ∈ N0.

Lemma 3.4 (1) Let l ∈ N0. Then

f (2l+1)U = 0, f (2l)U = (2l)! ( J
2n

)l
U, U ∈ �(T M). (3.9)

(2) Let l ∈ N. Then the torsion T r of ∇h,hr fulfills

T (l)(U, Y ) = 0 (3.10)

for all U, Y ∈ �(T M).

Proof Expansion of fr into a formal power series

fr = (
1 − J

2n r
2)−1

I dT M =
∑

l≥0

r2l
(2l)! (2l)!

( J
2n

)l
I dT M

gives the first statements. It follows from Lemma 3.1 that the l-th derivative of T r at r = 0
is given by a sum, where each contribution contains derivatives of fr , f −1

r and ∇hr at r = 0.
Using f (2l+1) = 0 and f (2l) = (2l)!( J

2n )l I dT M , for all l ∈ N0, we just have to show that
dl

drl
(∇hr )|r=0 acts as a covariant derivative, hence annihilating the identity map. But this is

obvious, since dl

drl
does not effect the properties of ∇hr being a covariant derivative. ��

In what follows, we use two Dirac operators induced by ∇h,S and ∇hr ,S :

/Dh : �
(
S(M, h)

) → �
(
S(M, h)

)
,

/Dhr : �
(
S(M, hr )

) → �
(
S(M, hr )

)
. (3.11)

Furthermore, we define

/Dh,hr : �
(
S(M, h)

) → �
(
S(M, h)

)

ψ 
→ β−1
r ◦ /Dhr ◦ βr (ψ). (3.12)

Lemma 3.3 and βr (U · ψ) = fr (U ) · βr (ψ) for U ∈ �(T M), ψ ∈ �
(
S(M, h)

)
imply

/Dh,hr ψ =
n∑

i=1

εi si · ∇r,S
fr (si )

ψ, (3.13)
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832 M. Fischmann et al.

and the r -derivatives of /Dh,hr at r = 0 yield the variation formulas for /Dh with respect to
the 1-parameter deformation hr of h. Note that /Dh,hr is not the Dirac operator induced by
∇r,S .

Theorem 3.5 Let (M, h) be a semi-Riemannian Einstein Spin-manifold with
dim(M) = n, i.e., Ric = 2(n − 1)λh. Let g+ be the associated Poincaré–Einstein metric on
X with g+ = r−2(dr2 + hr ), hr = (1− J

2n r
2)2h. Then, for all l ∈ N0, ψ ∈ �

(
S(M, h)

)
, we

have

d(2l)

dr (2l) ( /Dh,hr ψ)|r=0 = (2l)! ( J
2n

)l
/Dh

ψ,

d(2l+1)

dr (2l+1) ( /Dh,hr ψ)|r=0 = 0. (3.14)

Proof The r -derivatives of /Dh,hr at r = 0 are

dl

drl
( /Dh,hr ψ)|r=0 =

l∑

k=0

(
l

k

) n∑

i=1

εi si · ∇r,S;(k)
f (l−k)si

ψ,

where ∇r,S;(k) := dk

drk
(∇r,S)|r=0, for k ∈ N0. From Eq. (3.6), we obtain for l ∈ N

dl

drl
(∇r,S

si ψ) = 1
8

∑

j �=k

ε jεk
dl

drl
(T r,σ

i jk )s j · sk · ψ,

which vanishes at r = 0 due to Lemma 3.4 and the linearity of dl

drl
. Thus we get

dl

drl
( /Dh,hr ψ)|r=0 =

n∑

i=1

εi si · ∇0,S
f (l)si

ψ.

Since ∇0,S agrees with the spinor covariant derivative ∇h,S on S(M, h), we may conclude
by Lemma 3.4 that

d2l

dr2l
( /Dh,hr ψ)|r=0 = (2l)! ( J

2n

)l
/Dh

ψ, d2l+1

dr2l+1 ( /Dh,hr ψ)|r=0 = 0,

hence completing the proof. ��

4 Generalized hypergeometric functions and dual Hahn polynomials

The aim of the present section is to introduce a certain class of polynomials, to prove some
of their combinatorial properties, and to give their interpretation in terms of dual Hahn
polynomials. These polynomials will be responsible for the product structure of conformal
powers of the Dirac operator.

The Pochhammer symbol of a complex number a ∈ C is denoted by (a)l , and it is defined
by (a)l := a(a+1) · · · (a+ l−1) for l ∈ N, and (a)0 := 1. The generalized hypergeometric
function pFq , for p, q ∈ N, with p upper parameters, q lower parameters, and argument z,
is defined by

pFq

[
a1 , . . . , ap
b1 , . . . , bq

; z
]

:=
∞∑

l=0

(a1)l · · · (ap)l
(b1)l · · · (bq)l

zl

l! , (4.1)

for ai ∈ C (1 ≤ i ≤ q), b j ∈ C \ {−N0} (1 ≤ j ≤ q), and z ∈ C.
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The Dirac operator on Einstein manifolds 833

For later purposes, we introduce the polynomials

q̃m(y) :=
m∑

l=0

(−1)m−l( n2 + 1 + l)m−l (k − m)m−l

(
m

l

) l∏

j=1

(y − j2), (4.2)

for m ∈ N0, k, n ∈ N and an abstract variable y.

Proposition 4.1 The polynomials q̃m(y), m ∈ N0, satisfy the recurrence relation

q̃m+1(y) = (
y − 2m(k − m − n

2 − 1
2 ) − n

2 (k − 1) − k
)
q̃m(y)

−m(m − k)(m + n
2 )(m − k + n

2 − 1)q̃m−1(y), (4.3)

with q̃−1(y) := 0 and q̃0(y) := 1.

Proof We prove the statement by comparing the coefficients of
∏l

j=1(y − j2) on both sides
of (4.3). The only detail to observe is that one must replace y in the coefficient of q̃m(y)
on the right-hand side of (4.3) by (y − (l + 1)2) + (l + 1)2, with l being the summation
index of the sum in the definition of q̃m(y). The term (y − (l + 1)2) then combines with the
product

∏l
j=1(y − j2) to become

∏l+1
j=1(y − j2). The verification that the coefficients of

∏l
j=1(y − j2) do indeed agree is then a routine matter. ��

Remark Our considerations are motivated by [9], where the analogous recurrence relation

qm+1(y) = (
y − 2m(k − m − n

2 ) − n
2 (k − 1)

)
qm(y)

−m(m − k)(m − 1 + n
2 )(m − 1 + n

2 − k)qm−1(y),

for k, n ∈ N, m ∈ N0, and q−1(y) := 0, q0(y) := 1, appears. Its solution is given by

qm(y) :=
m∑

l=0

(−1)m−l( n2 + l)m−l (k − m)m−l

(
m

l

) l∏

j=1

(
y − j ( j − 1)

)
. (4.4)

In the rest of the section, we discuss interpretations of q̃m(y) and qm(y) in terms
of dual Hahn polynomials, cf. [20,21]. The Hahn polynomial Qn(x) := Qn(x;α, β,

N ) is defined by

Qn(x) := 3F2

[−n , −x , n + α + β + 1
α + 1 , −N + 1

; 1

]
, (4.5)

for �(α),�(β) > −1, N ∈ N and n = 0, . . . , N − 1. It is known that, beside recurrence
relations, Hahn polynomials satisfy a difference relation, cf. [21, Equation (1.3)]. The dual
Hahn polynomials can be defined by recurrence relations with the same coefficients as the
Hahn polynomials have in their difference relations, cf. [21, Equation (1.18)].

For λ(n) := n(n + α + β + 1), the relation between Hahn polynomials Qn(x) and dual
Hahn polynomials Rk(λ) := Rk(λ;α, β, N ) is given by

Rk
(
λ(n)

) = Qn(k). (4.6)

Notice that
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834 M. Fischmann et al.

(−y)l (1 + y)l = (−1)l
l∏

j=1

(
y(y + 1) − j ( j − 1)

)
,

(1 − y)l (y + 1)l = (−1)l
l∏

j=1

(
y2 − j2

)
,

for l ∈ N. Furthermore, by using the identities for Pochhammer symbols

( n2 + l)m−l = ( n2 )m
1

(
n
2 )l

, ( n2 + 1 + l)m−l = ( n2 + 1)m 1
(
n
2+1)l

,

(k − m)m−l = (k − m)m
(−1)l

(1−k)l
,

(
m

l

)
= (−1)l (−m)l

l! ,

one obtains the following precise relations.

Proposition 4.2 For all m ∈ N0, k, n ∈ N, we have

q̃m
(
λ(y − 1)

) = (−1)m( n2 + 1)m(k − m)m 3F2

[−(y − 1) , −m , 1 + y
n
2 + 1 , 1 − k

; 1

]

= (−1)m( n2 + 1)m(k − m)m Qy−1(m; n
2 , 1 − n

2 , k)

= (−1)m( n2 + 1)m(k − m)m Rm
(
λ(y − 1); n

2 , 1 − n
2 , k

)
(4.7)

and

qm
(
λ(y)

) = ( n2 )m(k − m)m(−1)m 3F2

[−y , −m , 1 + y
n
2 , 1 − k

; 1

]

= ( n2 )m(k − m)m(−1)m Qy(m; n
2 − 1, 1 − n

2 , k)

= ( n2 )m(k − m)m(−1)m Rm
(
λ(y); n

2 − 1, 1 − n
2 , k

)
. (4.8)

Hence, up to a multiplicative factor, both q̃m(y) and qm(y) can be realized as dual Hahn
polynomials.

5 Product structure (factorization) of conformal powers of the Dirac operator

In the present section, we show that conformal powers of the Dirac operator on Einstein
manifolds obey a product structure, in the sense that they factor into linear factors based on
shifted Dirac operators. This result is parallel to the case of conformal powers of the Laplace
operator on Einstein manifolds, cf. [14, Theorem 1.2].

Let us denote theDirac operator on (M, h) by /D. (Notice that in Sect. 3we used /Dh instead
of /D.) The proof of our main result, Theorem 5.2, relies on the construction of conformal
powers of the Dirac operator.

Theorem 5.1 ([13]) Let (M, h) be a semi-Riemannian Spin-manifold of dimension n. For
every N ∈ N0 (N ≤ n

2 for even n) there exists a linear differential operator, called conformal
power of the Dirac operator,

D2N+1 : �
(
S(M, h)

) → �
(
S(M, h)

)
, (5.1)

satisfying
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(1) D2N+1 is of order 2N + 1 and D2N+1 = /D2N+1 + LOT, where, as before, LOT denotes
lower order terms;

(2) D2N+1 is conformally covariant, that is,

D̂2N+1

(
e
2N+1−n

2 σ ψ̂
)

= e− 2N+1+n
2 σ ̂D2N+1ψ (5.2)

for every ψ ∈ �
(
S(M, h)

)
and σ ∈ C∞(M). Note that ·̂ denotes evaluation with respect

to ĥ = e2σ h.

We briefly outline the main point of the proof, which will be then analyzed in detail on
Einstein manifolds. Let g+ be the associated Poincaré–Einstein metric on X with conformal
infinity (M, [h]). The conformal compactification of

(
X = M × (0, ε), g+

)
is

(
M × [0, ε), ḡ := r2g+ = dr2 + hr ),

where ḡ smoothly extends to r = 0. Corresponding spinor bundles are denoted by

S(M, h), S(X, g+), S(X, ḡ),

respectively. The spinor bundle S(X, ḡ)|r=0 is isomorphic to S(M, h) if n is even, and it is
isomorphic to S(M, h) ⊕ S(M, h) if n is odd. The proof of Theorem 5.1 is based on the
extension of a boundary spinor ψ ∈ �(S(X, ḡ)|r=0) to the interior θ ∈ �

(
S(X, ḡ)

)
: one

requires θ to be a formal solution of

D(ḡ)θ = iλθ, λ ∈ C. (5.3)

Here, D(ḡ) arises by applying the vector bundle isomorphism Fr : S(X, g+) → S(X, ḡ),
which exists since g+ and ḡ are conformally equivalent, to the equation /Dg+ϕ = iλϕ,
λ ∈ C and ϕ ∈ �

(
S(X, g+)

)
. The solution of Eq. (5.3) is obstructed for λ = − 2N+1

2 ,
and the obstruction induces a conformally covariant linear differential operator D2N+1 =
/D2N+1 + LOT .
Let us be more specific. Let (M, h) be a semi-Riemannian Einstein Spin-manifold, nor-

malized by Ric(h) = 2(n−1)J
n h for constant normalized scalar curvature J ∈ R. Consider the

embedding ιr : M → X given by ιr (m) := (r,m). Then (M, ι∗r (ḡ) = hr ) is a hypersurface
in (X, ḡ) with trivial space-like normal bundle. It follows from [3] that the Dirac operator
/Dḡ of (X, ḡ) and the leaf-wise (or, hypersurface) Dirac operator

/̃D
hr := ∂r ·

n∑

i=1

εi si · ∇̃hr ,S
si : �

(
S(X, ḡ)

) → �
(
S(X, ḡ)

)

for an hr -orthonormal frame {si }i on M are related by

ι∗r ∂r · /Dḡ = /̃D
hr

ι∗r + n
2 ι∗r Hr − ι∗r∇ ḡ,S

∂r
, (5.4)

where Hr := 1
n trhr (Wr ) is the hr -trace of theWeingartenmap associatedwith the embedding

ιr . We used a swung dash (on /̃D
hr ) in order to emphasize the action on the spinor bundle on

(X, ḡ). At r = 0, we have the identification

/̃D := /̃D
h0 �

⎧
⎪⎨

⎪⎩

/D, if n is even,(
/D 0

0 − /D

)
, if n is odd.
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The equation /Dg+ϕ = iλϕ, λ ∈ C and ϕ ∈ �
(
S(X, g+)

)
, is equivalent to Eq. (5.3) by

combination of conformal covariance, Eq. (5.4), and the isomorphism Fr , where the linear
differential operator D(ḡ) : �

(
S(X, ḡ)

) → �
(
S(X, ḡ)

)
is given by

D(ḡ)θ = −r∂r · /̃D
hr

θ − n
2 r Hr∂r · θ + r∂r · ∇ ḡ,S

∂r
θ − n

2 ∂r · θ

for θ = Fr (ϕ). Using Theorem 3.5, we find the explicit formulas

/̃D
hr = (

1 − J
2n r

2)−1
/̃D, Hr = J

n r
(
1 − J

2n r
2)−1

. (5.5)

This is a consequence of the Einstein assumption onM . In general, there is no explicit formula
analogous to Eq. (5.5). We decompose the spinor bundle S(X, ḡ) into the ±i-eigenspaces
S±∂r (X, ḡ) with respect to the linear map ∂r · : S(X, ḡ) → S(X, ḡ) satisfying ∂2r = −1. The
formal solution of Eq. (5.3) is constructed inside

A := {
θ =

∑

j≥0

r jθ j | θ j ∈ �
(
S(X, ḡ)

)
, ∇ ḡ,S

∂r
θ j = 0

}
,

and

θ̄ := r
n
2 +λθ =

∑

j≥0

r
n
2 +λ+ j (θ+

j + θ−
j ) ∈ A

for θ±
j ∈ �

(
S±∂r (X, ḡ)

)
, j ∈ N0, is a solution of Eq. (5.3) provided the coupled system of

recurrence relations

jθ+
j = /̃Dθ−

j−1 + n+ j−2
2n Jθ+

j−2,

(2λ + j)θ−
j = /̃Dθ+

j−1 + 2λ+n+ j−2
2n Jθ−

j−2, (5.6)

holds for all j ∈ N0. Note that we only consider restrictions to r = 0 and then extend
θ±
j , j ≥ 0, by parallel transport with respect to ∇ ḡ,S along the geodesic induced by the

r -coordinate. The initial data are given by θ+
0 := ψ+ for some ψ+ ∈ �(S+∂r (X, ḡ)|r=0),

and θ−
0 = 0. Provided λ /∈ −N + 1

2 , the system can be solved uniquely for all j ∈ N if n
is odd, and for all j ∈ N such that j ≤ n if n is even. The obstruction at λ = − 2N+1

2 , for
N ∈ N0 (N ≤ n

2 for even n), is given by D2N+1 for N ∈ N.

The application of /̃D to the system (5.6) together with the shift of j to j − 1, respectively
j − 3, implies

( j − 1) /̃Dθ+
j−1 = /̃D

2
θ−
j−2 + n+ j−3

2n J /̃Dθ+
j−3,

(2λ + j − 1) /̃Dθ−
j−1 = /̃D

2
θ+
j−2 + 2λ+n+ j−3

2n J /̃Dθ−
j−3,

/̃Dθ−
j−3 = ( j − 2)θ+

j−2 − n+ j−4
2n Jθ+

j−4,

/̃Dθ+
j−3 = (2λ + j − 2)θ−

j−2 − 2λ+n+ j−4
2n Jθ−

j−4.

These formulas can be used to decouple the system (5.6) into

jθ+
j =

(
1

2λ+ j−1
/̃D
2 + (2λ+n+ j−3)( j−2)

2n(2λ+ j−1) J + (2λ+ j−1)(n+ j−2)
2n(2λ+ j−1) J

)
θ+
j−2

− (2λ+n+ j−3)(n+ j−4)
4n2(2λ+ j−1)

J 2θ+
j−4,

(2λ + j)θ−
j =

(
1
j−1

/̃D
2 + (2λ+ j−2)(n+ j−3)

2n( j−1) J + (2λ+n+ j−2)( j−1)
2n( j−1) J

)
θ−
j−2

− (2λ+n+ j−4)(n+ j−3)
4n2( j−1)

J 2θ−
j−4, (5.7)
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for all j ≥ 2, with the initial data θ+
0 = ψ+, θ−

0 = 0, θ+
1 = 0, and θ−

1 = 1
2λ+1

/̃Dψ+.
Introducing φl := θ−

2l+1 for l ∈ N0, Eq. (5.7) is equivalent to

2l(2λ + 2l + 1)φl =
(

/̃D
2 + (2λ+2l−1)(n+2l−2)

2n J + 2l(2λ+n+2l−1)
2n J

)
φl−1,

− (2λ+n+2l−3)(n+2l−2)
4n2

J 2φl−2, (5.8)

for l ∈ N and φ0 := 1
2λ+1

/̃Dψ+. We define the solution operators q̃l(y) by

4l l! ( n
2J )l(λ + 3

2 )l φl = q̃l(y)φ0, (5.9)

where y := n
2J

/̃D
2
. Then Eq. (5.8) yields a recurrence relation for q̃l(y), namely

q̃l(y) = (
y + (λ + l − 1

2 )(l + n
2 − 1) + l(λ + l + n

2 − 1
2 )

)
q̃l−1(y)

−(l − 1)(l + n
2 − 1)(l + λ − 1

2 )(l + λ + n
2 − 3

2 )q̃l−2(y),

l ∈ N, q̃−1(y) := 0 and q̃0(y) := 1. Changing l to (m + 1) and substituting λ = − 2N+1
2 for

N ∈ N0, we obtain

q̃m+1(y) = (
y − 2m(N − m − n

2 − 1
2 ) − n

2 (N − 1) − N
)
q̃m(y)

−m(m − N )(m + n
2 )(m − N + n

2 − 1)q̃m−1(y). (5.10)

The unique solution of the recurrence relation (5.10) is given by

q̃m(y) :=
m∑

l=0

(−1)m−l( n2 + 1 + l)m−l (N − m)m−l

(
m

l

) l∏

j=1

(y − j2), (5.11)

cf. Proposition 4.1, and it specializes for m = N to

q̃N (y) =
N∏

j=1

(y − j2) =
N∏

j=1

(√
n
2J

/̃D − j
) (√

n
2J

/̃D + j
)

.

The solution φl , cf. Eq. (5.9), multiplied by (2λ + 1) is obstructed at λ = − 2N+1
2 , N ∈ N0,

and we get

4N N !(−N )NφN = ( n
2J

)−N
q̃N (y) /̃Dψ+.

Repeating all the previous steps with eigen-Eq. (5.3) for the eigenvalue −λ and initial data
ψ− ∈ �(S−∂r (X, ḡ)|r=0), the obstruction at λ = − 2N+1

2 , for N ∈ N0, induces

D2N+1 =
( n

2J

)−N
/D

N∏

j=1

(√
n
2J

/D − j
) (√

n
2J

/D + j
)

= /D
N∏

j=1

(
/D − j

√
2J
n

) (
/D + j

√
2J
n

)
, (5.12)
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the conformal power of the Dirac operator in the factorized form. Note that there is no
restriction on N ∈ N0 in the case of even n. Thus we have the following result.

Theorem 5.2 Let (M, h) be a semi-Riemannian Einstein Spin-manifold of dimension n,
normalized by Ric(h) = 2(n−1)J

n h for constant normalized scalar curvature J ∈ R.
The (2N + 1)-th conformal power of the Dirac operator, N ∈ N0, satisfies

D2N+1ψ =
2N+1∏

j=1

(
/D − (N − j + 1)

√
2J
n

)
ψ

= /D
N∏

j=1

(
/D2 − j2

( 2J
n

))
ψ (5.13)

for all ψ ∈ �
(
S(M, h)

)
. The empty product is regarded as 1.

In particular, Theorem 5.2 applies to the standard round sphere (Sn, h) of radius 1. We
get

D2N+1 = ( /D − N ) · · · ( /D − 1) /D( /D + 1) · · · ( /D + N ) (5.14)

for all N ∈ N0, since the scalar curvature is τ = n(n − 1) and so J = n
2 . This agrees with

the results in [4,7].
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