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Abstract We generalize the observable diameter and the separation distance for metric
measure spaces to those for pyramids, and prove some limit formulas for these invariants for
a convergent sequence of pyramids. We obtain various applications of our limit formulas as
follows.We have a criterion of the phase transition property for a sequence of metric measure
spaces or pyramids, and find some examples of symmetric spaces of noncompact type with
the phase transition property. We also give a simple proof of a theorem in Funano and Shioya
(Geom Funct Anal 23(3):888–936, 2013) on the limit of an N -Lévy family.
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1 Introduction

The study of Gromov–Hausdorff convergence of Riemannian manifolds is one of the central
topics in Riemannian geometry. For a Gromov–Hausdorff convergence, the upper bound of
dimension is necessary for various reasons. One of the main reasons is that the Gromov–
Hausdorff precompactness cannot be expected for a sequence of manifolds with unbounded
dimension. Different from the Gromov–Hausdorff metric, Gromov [7, § 3. 12 ] introduced the
observable distance function, say dconc, on the set, say X , of mm-spaces (metric measure
spaces), based on the idea of the concentration of measure phenomenon due to Lévy andMil-
man (see [6,9–11]). He constructed a natural compactification, say �, of (X , dconc), which
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is useful to describe the asymptotic behavior of a sequence of Riemannian manifolds with
unbounded dimension. In general, the limit of a sequence of manifolds is no longer an mm-
space and is an element of�. We have {Sn(√n)}∞n=1 as a typical example of such a sequence,
where Sn(r) denotes an n-dimensional sphere of radius r in the Euclidean space Rn+1. The
sequence {Sn(√n)} converges to an element of�, called the virtual infinite-dimensional stan-
dard Gaussian space, which is the infinite-dimensional version of a Euclidean space with
the standard Gaussian measure (see [13,14]). On the other hand, {Sn(√n)} is not Gromov–
Hausdorff precompact and has no Gromov–Hausdorff convergent subsequence.

The observable diameter and the separation distance are two of the most important and
fundamental invariants of an mm-space. It is a natural problem to investigate the limit of
these two invariants for a convergent sequence of mm-spaces. In this paper, we generalize
these two invariants to those for an element of �, and prove some formulas for the limit
of these two invariants for a convergent sequence in �. We apply these formulas to study
the asymptotic behavior of a sequence of Riemannian manifolds with unbounded dimen-
sion. The Lévy family property and the∞-dissipation property for a sequence of mm-spaces
(pyramids) are two of the extremal properties in the asymptotic behavior. The Lévy family
property corresponds to condensation and the ∞-dissipation property does to evaporation.
We consider a property like the phase transition for a sequence of mm-spaces or pyra-
mids, say the phase transition property. We obtain a useful criterion for the phase transition
property, and prove that some symmetric spaces of compact type have the phase transition
property.

We describe more details for the compactification � of X . For two mm-spaces X and Y ,
we define that X ≺ Y holds if there is a 1-Lipschitz map from Y to X that pushes the measure
on Y forward to that on X . This is a partial order relation, called the Lipschitz order relation.
We define a pyramid to be a family of mm-spaces forming a directed set with respect to the
Lipschitz order and with some closedness condition (see Definition 2.21). For example, for
a given mm-space X , the family

PX := {Y ∈ X | Y ≺ X}

is a pyramid, say the pyramid associated with X . The compactification � of X is, in fact,
realized as the family of pyramids. It has a natural metric and the map

ι : X � X �−→ PX ∈ �

is a topological embedding map. The pyramid associated with a one-point mm-space ∗ is
P∗ = {∗}, which is the minimal pyramid with respect to the inclusion relation. The family X
itself is the maximal pyramid. A sequence of mm-spaces (resp. pyramids) is a Lévy family if
and only if it converges to a one-point mm-space (resp.P∗). See Corollary 5.8. A sequence of
mm-spaces (resp. pyramids)∞-dissipates if and only if the sequence of pyramids associated
with them (resp. the sequence itself) converges to the maximal pyramid X (see Lemma 6.3).

We generalize the observable diameter and the separation distance to those for a
pyramid, and prove the following limit formulas. Denote by ObsDiam(P;−κ) and
Sep(P; κ0, κ1, . . . , κN ) the observable diameter and the separation distance of a pyramid
P , respectively (see Definitions 2.4, 2.8, 3.2, and 4.3). Convergence in � is called weak
convergence.
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Metric measure invariants and phase transition property 761

Theorem 1.1 (Limit formulas) Let P and Pn, n = 1, 2, . . ., be pyramids. If Pn converges
weakly to P as n → ∞, then

ObsDiam(P;−κ) = lim
ε→0+ lim inf

n→∞ ObsDiam(Pn;−(κ + ε))

= lim
ε→0+ lim sup

n→∞
ObsDiam(Pn;−(κ + ε)),

Sep(P; κ0, κ1, . . . , κN ) = lim
ε→0+ lim inf

n→∞ Sep(Pn; κ0 − ε, κ1 − ε, . . . , κN − ε)

= lim
ε→0+ lim sup

n→∞
Sep(Pn; κ0 − ε, κ1 − ε, . . . , κN − ε)

for any κ, κ0, . . . , κN > 0.

Elek [4] proved a similar result, which is only an inequality and for another compactifica-
tion of the space X with a stronger topology. He also assumes the boundedness of diameter
for a sequence of mm-spaces, so that {Sn(√n)} cannot be treated in his result.

For the proof of Theorem 1.1, we introduce a new metric on � using measurements, and
prove some formulas between themetric and the observable diameter/the separation distance.

We consider the limit behavior of a given sequence of mm-spaces (or pyramids) under
scale changes. For t > 0 and a pyramidP , we denote by tP the scale change ofP with factor
t . We define that a sequence of pyramids Pn , n = 1, 2, . . ., has the phase transition property
if there is a sequence of positive real numbers cn , n = 1, 2, . . ., such that

(1) if tn/cn → 0 as n → ∞, then {tnPn} is a Lévy family;
(2) if tn/cn → +∞ as n → ∞, then {tnPn} ∞-dissipates.

We call such a sequence {cn} a sequence of critical scale order. The second named author
proved in [13,14] that the sequences of spheres Sn(1) and complex projective spaces CPn

both have the phase transition property with critical scale order ∼√
n. Note that there are

many examples of manifolds that do not have the phase transition property. We intuitively
expect spaces with high symmetry to admit the phase transition property. We apply the limit
formulas (Theorem 1.1) to obtain the following criterion for the phase transition property.

Theorem 1.2 (Criterion for phase transition property) Let {Pn} be a sequence of pyramids.
Then the following (1) and (2) are equivalent to each other.

(1) {Pn} has the phase transition property.
(2) There exists a sequence {rn}∞n=1 of positive real numbers such that

ObsDiam(Pn;−κ) ∼ rn

for any κ with 0 < κ < 1, where an ∼ bn means that the ratios an/bn and bn/an are
bounded.

In this case, {1/rn} is a sequence of critical scale order.

Note that (2) of the theorem means that the order of ObsDiam(Xn;−κ) as n → ∞ is
independent of κ . The theorem is a first discovery for the value of the lower estimate of the
observable diameter.

We give an application of Theorem 1.2. Let RPn , CPn , HPn denote the n-dimensional
real, complex, and quaternionic projective spaces, respectively. SO(n), SU (n), and Sp(n)

denote the special orthogonal group of order n, the special unitary group of order n, and the
compact symplectic group of order n. Vk(Rn), Vk(Cn), and Vk(Hn) denote the real, complex,
and quaternionic Stiefelmanifolds, respectively.Weequip themwith theRiemannian distance
function and the normalized Riemannian volume measure.
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Corollary 1.3 Let {kn} be a sequence of natural numbers with kn ≤ n. The sequences
{Sn(1)}, {RPn}, {CPn}, {HPn}, {SO(n)}, {SU (n)}, {Sp(n)}, {Vkn (Rn)}, {Vkn (Cn)}, and
{Vkn (Hn)} all have the phase transition property of critical scale order ∼√

n.

The corollary for {Sn(1)} and {CPn} is already known as in [14, Theorem 1.1].
The limit formulas are also useful to study an N -Lévy family, which is defined in [5] by

using the separation distance (see Definition 5.1). A 1-Lévy family coincides with a Lévy
family. A typical example of an N -Lévy family is a sequence of closedRiemannianmanifolds
Mn , n = 1, 2, . . ., such that the N -th nonzero eigenvalue of the Laplacian on Mn is divergent
as n → ∞. We prove that the limit of an N -Lévy family is the pyramid associated with some
finite extended mm-space consists of at most N points (see Corollary 5.6), where ‘extended’
means that the distance between two points is allowed to be infinity. By using this statement,
we give a simple proof of [5, Theorem 4.4] (see Corollary 5.9).

As another application of the limit formulas, we are able to estimate the observable diam-
eter of the l p-product Xn of an mm-space X , which together with Theorem 1.2 leads us to
the phase transition property of the sequence of the l p-product Xn , n = 1, 2, . . .. We here
assume the discreteness of X in the case of p > 1 for the lower estimate of the observable
diameter. This study is published separately as [12].

This paper is organized as follows. In Sect. 2, we describe basic definitions and facts in
metric measure geometry. In Sect. 3, we define the observable diameter of a pyramid and
prove the limit formula for observable diameter. In Sect. 4, we define the separation distance
of a pyramid and prove the limit formula for separation distance. In Sect. 5, we study an
N -Lévy family and prove that the limit of an N -Lévy family is realized by a finite extended
mm-space. In particular, we see that a Lévy family of pyramids converges to a one-point
mm-space. In Sect. 6, we study dissipation and prove Theorem 1.2. Applying Theorem 1.2,
we give several examples with the phase transition property.

2 Preliminaries

In this section, we give the definitions and the facts stated in [7, § 3 1
2 ]. In [7, § 3 1

2 ], many
details are omitted. We refer to [13] for the details. The reader is expected to be familiar with
basic measure theory and metric geometry (cf. [1–3,8]).

2.1 mm-Isomorphism and Lipschitz order

Definition 2.1 (mm-Space) An mm-space is defined to be a triple (X, dX , μX ), where
(X, dX ) is a complete separable metric space and μX a Borel probability measure on X .
We sometimes say that X is an mm-space, in which case the metric and the measure of X
are respectively indicated by dX and μX .

Definition 2.2 (mm-Isomorphism) Twomm-spaces X andY are said to bemm-isomorphic to
each other if there exists an isometry f : suppμX → suppμY such that f∗μX = μY , where
f∗μX is the push-forward of μX by f . Such an isometry f is called an mm-isomorphism.
Denote by X the set of mm-isomorphism classes of mm-spaces.

Any mm-isomorphism between mm-spaces is automatically surjective, even if we do not
assume it. Note that X is mm-isomorphic to (suppμX , dX , μX ).

We assume that an mm-space X satisfies

X = supp μX

unless otherwise stated.
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Metric measure invariants and phase transition property 763

Definition 2.3 (Lipschitz order) Let X and Y be two mm-spaces. We say that X (Lipschitz)
dominates Y andwrite Y ≺ X if there exists a 1-Lipschitzmap f : X → Y with f∗μX = μY .
We call the relation ≺ on X the Lipschitz order.

The Lipschitz order ≺ is a partial order relation on X

2.2 Observable diameter

The observable diameter is one of the most fundamental invariants of an mm-space.

Definition 2.4 (Partial and observable diameter) Let X be an mm-space. For a real number
α, we define the partial diameter diam(X;α) = diam(μX ;α) of X to be the infimum of
diam(A), where A ⊂ X runs over all Borel subsets with μX (A) ≥ α and diam(A) denotes
the diameter of A. For a real number κ > 0, we define the observable diameter of X to be

ObsDiam(X;−κ) := sup{diam( f∗μX ; 1 − κ) |
f : X → R is 1-Lipschitz continuous}.

The observable diameter is an invariant under mm-isomorphism. Clearly, ObsDiam(X;
−κ) ismonotone nonincreasing in κ > 0.Note thatObsDiam(X;−κ) = diam(X; 1−κ) = 0
for κ ≥ 1.

Definition 2.5 (Lévy family) A sequence of mm-spaces Xn , n = 1, 2, . . ., is called a Lévy
family if

lim
n→∞ObsDiam(Xn;−κ) = 0

for any κ > 0.

For an mm-space X and a real number t > 0, we define t X to be the mm-space X with
the scaled metric dt X := tdX .

Proposition 2.6 Let X be an mm-space. Then we have

ObsDiam(t X;−κ) = t ObsDiam(X;−κ)

for any t, κ > 0.

Proposition 2.7 If X ≺ Y , then

ObsDiam(X;−κ) ≤ ObsDiam(Y ;−κ)

for any κ > 0.

2.3 Separation distance

Definition 2.8 (Separation distance) Let X be an mm-space. For any real numbers
κ0, κ1, . . . , κN > 0 with N ≥ 1, we define the separation distance

Sep(X; κ0, κ1, . . . , κN )

of X as the supremum of mini �= j dX (Ai , A j ) over all sequences of N + 1 Borel sub-
sets A0, A2, . . . , AN ⊂ X satisfying that μX (Ai ) ≥ κi for all i = 0, 1, . . . , N , where
dX (Ai , A j ) := inf x∈Ai ,y∈A j dX (x, y). If there exists no sequence A0, . . . , AN ⊂ X with
μX (Ai ) ≥ κi , i = 0, 1, . . . , N , then we define

Sep(X; κ0, κ1, . . . , κN ) := 0.
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We see that Sep(X; κ0, κ1, . . . , κN ) is monotone nonincreasing in κi for each i =
0, 1, . . . , N . The separation distance is an invariant under mm-isomorphism.

Proposition 2.9 Let X be an mm-space. Then we have

Sep(t X; κ0, κ1, . . . , κN ) = t Sep(X; κ0, κ1, . . . , κN )

for any t, κ0, κ1, . . . , κN > 0.

Proposition 2.10 Let X and Y be two mm-spaces. If X is dominated by Y , then we have, for
any real numbers κ0, . . . , κN > 0,

Sep(X; κ0, . . . , κN ) ≤ Sep(Y ; κ0, . . . , κN ).

Proposition 2.11 For any mm-space X and any real numbers κ and κ ′ with κ > κ ′ > 0, we
have

ObsDiam(X;−2κ) ≤ Sep(X; κ, κ), (1)

Sep(X; κ, κ) ≤ ObsDiam(X;−κ ′). (2)

2.4 Box distance and observable distance

For a subset A of a metric space (X, dX ) and for a real number r > 0, we set

Ur (A) := {x ∈ X | dX (x, A) < r},
where dX (x, A) := infa∈A dX (x, a).

Definition 2.12 (Prokhorov distance) The Prokhorov distance dP (μ, ν) between two Borel
probability measures μ and ν on a metric space X is defined to be the infimum of ε > 0
satisfying

μ(Uε(A)) ≥ ν(A) − ε (2.1)

for any Borel subset A ⊂ X .

The Prokhorov metric is a metrization of weak convergence of Borel probability measures
on X provided that X is a separable metric space.

Definition 2.13 (Ky Fan metric) Let (X, μ) be a measure space and Y a metric space. For
two μ-measurable maps f, g : X → Y , we define dμ

KF( f, g) to be the infimum of ε ≥ 0
satisfying

μ({x ∈ X | dY ( f (x), g(x)) > ε}) ≤ ε. (2.2)

dKF is called the Ky Fan metric. We sometimes write dKF( f, g) by omitting μ.

dμ
KF is a metric on the set of μ-measurable maps from X to Y by identifying two maps if

they are equal μ-a.e.

Lemma 2.14 Let X be a topological space with a Borel probability measure μ and Y a
metric space. For any two μ-measurable maps f, g : X → Y , we have

dP ( f∗μ, g∗μ) ≤ dμ
KF( f, g).

123



Metric measure invariants and phase transition property 765

Definition 2.15 (Parameter) Let I := [0, 1) and let X be an mm-space. A map ϕ : I → X
is called a parameter of X if ϕ is a Borel measurable map such that

ϕ∗L1 = μX ,

where L1 denotes the one-dimensional Lebesgue measure on I .

Any mm-space has a parameter.

Definition 2.16 (Box distance)We define the box distance�(X, Y ) between two mm-spaces
X and Y to be the infimum of ε ≥ 0 satisfying that there exist parameters ϕ : I → X ,
ψ : I → Y , and a Borel subset I0 ⊂ I such that

| ϕ∗dX (s, t) − ψ∗dY (s, t) | ≤ ε for any s, t ∈ I0; (1)

L1(I0) ≥ 1 − ε, (2)

where ϕ∗dX (s, t) := dX (ϕ(s), ϕ(t)) for s, t ∈ I .

The box distance function � is a complete separable metric on X .

Lemma 2.17 Let X be a complete separable metric space. For any two Borel probability
measures μ and ν on X, we have

�((X, μ), (X, ν)) ≤ 2 dP (μ, ν).

Definition 2.18 (Observable distance) Denote byLip1(X) the set of 1-Lipschitz continuous
functions on an mm-space X . For any parameter ϕ of X , we set

ϕ∗Lip1(X) := { f ◦ ϕ | f ∈ Lip1(X)}.
We define the observable distance dconc(X, Y ) between two mm-spaces X and Y by

dconc(X, Y ) := inf
ϕ,ψ

dH (ϕ∗Lip1(X), ψ∗Lip1(Y )),

where ϕ : I → X and ψ : I → Y run over all parameters of X and Y , respectively, and
where dH is the Hausdorff distance with respect to the metric dL

1

KF. We say that a sequence
of mm-spaces Xn , n = 1, 2, . . ., concentrates to an mm-space X if Xn dconc-converges to X
as n → ∞.

Proposition 2.19 Let {Xn}∞n=1 be a sequence of mm-spaces. Then, {Xn} is a Lévy family if
and only if Xn concentrates to a one-point mm-space as n → ∞.

Proposition 2.20 For any two mm-spaces X and Y we have

dconc(X, Y ) ≤ �(X, Y ).

2.5 Pyramid

Definition 2.21 (Pyramid) A subset P ⊂ X is called a pyramid if it satisfies the following
(1), (2), and (3).

(1) If X ∈ P and if Y ≺ X , then Y ∈ P .
(2) For any two mm-spaces X, X ′ ∈ P , there exists an mm-space Y ∈ P such that X ≺ Y

and X ′ ≺ Y .
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(3) P is nonempty and �-closed.

We denote the set of pyramids by �.
For an mm-space X we define

PX := {X ′ ∈ X | X ′ ≺ X}.
We call PX the pyramid associated with X .

It is trivial that X is a pyramid. Let ∗ denotes a one-point mm-space, i.e., an mm-space
consists of a single point. Then we see P∗ = {∗}.

In Gromov’s book [7], the definition of a pyramid is only by (1) and (2) of Definition 2.21.
We here put (3) as an additional condition for the Hausdorff property of �.

Definition 2.22 We say that a sequence of mm-spaces Xn , n = 1, 2, . . ., approximates a
pyramid P if we have

X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · and
∞⋃

n=1

Xn

�

= P,

where the bar with � means the closure with respect to �.

Definition 2.23 (Weak convergence) LetPn,P ∈ �, n = 1, 2, . . ..We say thatPn converges
weakly to P as n → ∞ if the following (1) and (2) are both satisfied.

(1) For any mm-space X ∈ P , we have

lim
n→∞ �(X,Pn) = 0.

(2) For any mm-space X ∈ X \ P , we have

lim inf
n→∞ �(X,Pn) > 0.

Theorem 2.24 (Gromov and Shioya [7,13,14]) There exists a metric ρ on � satisfying the
following (1)–(4).

(1) The metric ρ is a metrization of weak convergence.
(2) The metric space (�, ρ) is compact.
(3) The map X � X �→ PX ∈ � is a topological embedding with respect to dconc and ρ,

and its image is dense in �. In particular, � is a compactification of (X , dconc).
(4) For any two mm-spaces X and Y , we have

ρ(PX ,PY ) ≤ dconc(X, Y ).

2.6 Measurement

Definition 2.25 (M(N ), M(N , R), X (N , R)) Let N be a natural number and R a nonneg-
ative real number. Denote by M(N ) the set of Borel probability measures on R

N equipped
with the Prokhorov metric dP , and set

M(N , R) := {μ ∈ M(N ) | suppμ ⊂ BN
R },

where BN
R := {x ∈ R

N | ‖x‖∞ ≤ R} and ‖ · ‖∞ denotes the l∞-norm on R
N . We define

X (N , R) := {(BN
R , ‖ · ‖∞, μ) | μ ∈ M(N , R)}.
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Note that M(N , R) and X (N , R) are compact with respect to dP and �, respectively.

Definition 2.26 (N-measurement) Let P be a pyramid, N a natural number, and R a non-
negative real number. We define

M(P; N ) := {μ ∈ M(N ) | (RN , ‖ · ‖∞, μ) ∈ P},
M(P; N , R) :=M(P; N ) ∩ M(N , R).

We call M(P; N ) (resp. M(P; N , R)) the N-measurement (resp. (N , R)-measurement) of
P . For an mm-space X , we define M(X; N ) :=M(PX ; N ) and M(X; N , R) :=M(PX ;
N , R).

The N -measurementM(P; N ) is a closed subset ofM(N ) and the (N , R)-measurement
M(P; N , R) is a compact subset of M(N ). We see

M(X; N ) := {�∗μX | � : X → (RN , ‖ · ‖∞) is 1-Lipschitz}.
Lemma 2.27 ([14, Lemma 3.6], [13, Lemma 5.15]) Let X and Y be two mm-spaces. For
any natural number N we have

dH (M(X; N ),M(Y ; N )) ≤ Ndconc(X, Y ),

where dH is the Hausdorff distance with respect to the Prohorov metric dP .

Lemma 2.28 ([13, Lemma 5.41]) Let P and P ′ be two pyramids. For any natural number
N and nonnegative real number R, we have

dH (M(P; N , R),M(P ′; N , R)) ≤ 2 dH (M(P; N ),M(P ′; N )).

3 Obsrevable diameter for pyramid

Lemma 3.1 Let X be an mm-space. Then we have the following (1) and (2).

(1) The partial diameter diam(μX ; 1 − κ) is right-continuous in κ > 0.
(2) The observable diameter ObsDiam(X;−κ) is right-continuous in κ > 0.

Proof Weprove (1). Let {δn}∞n=1 be amonotone decreasing sequence of positive real numbers
converging to zero. Then, diam(μX ; 1 − (κ + δn)) is monotone nondecreasing in n and
bounded from above by diam(μX ; 1 − κ). Set

α := lim
n→∞ diam(μX ; 1 − (κ + δn)).

It is clear that α ≤ diam(μX ; 1−κ). For (1), it suffices to prove diam(μX ; 1−κ) ≤ α. There
are closed subsets An ⊂ X , n = 1, 2, . . ., with the property that μX (An) ≥ 1− (κ + δn) for
any n and

lim
n→∞ diam(An) = α.

We take a monotone decreasing sequence {ηp}∞p=1 of positive real numbers converging to
zero. The inner regularity ofμX proves that there are compact subsets Kp ⊂ X , p = 1, 2, . . .,
such that μX (Kp) > 1 − ηp and Kp ⊂ Kp+1 for every p. We have μX (An ∩ Kp) >

1 − (κ + δn + ηp). Note that the set of closed subsets in Kp is compact with respect to the
Hausdorff distance. Thus, there is a Hausdorff convergent subsequence of {An ∩ Kp}∞n=1 for
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each p. By a diagonal argument, we find a common subsequence {n(m)} of {n} in such a
way that An(m) ∩ Kp Hausdorff converges as m → ∞ for any p. Denote its limit by Ap .
{Ap}∞p=1 is a monotone nondecreasing sequence of compact subsets of X satisfying that
μX (Ap) ≥ 1 − (κ + ηp) for any p. Setting

A :=
∞⋃

p=1

Ap,

we have μX (A) ≥ 1 − κ . Since lim supn→∞ diam(An) ≤ α, we obtain

diam(μX ; 1 − κ) ≤ diam(A) ≤ α.

This completes the proof of (1).
We prove (2). Since ObsDiam(X;−(κ + δ)) is monotone nonincreasing in δ, we have

lim
δ→0+ObsDiam(X;−(κ + δ)) ≤ ObsDiam(X;−κ).

By (1),

ObsDiam(X;−κ) = sup
f ∈Lip1(X)

diam( f∗μX ; 1 − κ)

= sup
f ∈Lip1(X)

lim
δ→0+ diam( f∗μX ; 1 − (κ + δ))

≤ lim
δ→0+ObsDiam(X;−(κ + δ)).

This completes the proof of the lemma. ��
Note that diam(μX ; 1 − κ) and ObsDiam(X;−κ) are not necessarily left-continuous in

κ , e.g., for a discrete space.

Definition 3.2 (Observable diameter of pyramid) Let κ > 0. The κ-observable diameter of
a pyramid P is defined to be

ObsDiam(P;−κ) := lim
δ→0+ sup

X∈P
ObsDiam(X;−(κ + δ)) (≤ +∞).

Note that supX∈P ObsDiam(X;−(κ+δ)) ismonotonenonincreasing in δ, so that the above
limit always exists. It follows from Definition 3.2 that ObsDiam(P;−κ) is right-continuous
in κ > 0.

The following means the consistency of the definition.

Proposition 3.3 For any mm-space X we have

ObsDiam(PX ;−κ) = ObsDiam(X;−κ)

for any κ > 0.

Proof The proposition follows from Proposition 2.7 and Lemma 3.1. ��
For a pyramid P and a real number t > 0, we define

tP := {t X | X ∈ P}.
The following proposition is obvious.

123



Metric measure invariants and phase transition property 769

Proposition 3.4 Let P be a pyramid. Then we have

ObsDiam(tP;−κ) = t ObsDiam(P;−κ)

for any t, κ > 0.

Definition 3.5 (ρR) For two pyramids P , P ′, and for a positive real number R, we define

ρR(P,P ′) :=
∞∑

N=1

1

N 2N+1 dH (M(P; N , N R),M(P ′; N , N R)),

where dH is the Hausdorff distance with respect to the Prokhorov metric.

Lemma 3.6 Let P and Pn, n = 1, 2, . . ., be pyramids. Then the following (1), (2), and (3)
are all equivalent to each other.

(1) Pn converges weakly to P as n → ∞.
(2) Pn ∩X (N , R) Hausdorff converges to P ∩X (N , R) as n → ∞ for any natural number

N and any nonnegative real number R, where the Hausdorff distance is induced from
�.

(3) M(Pn; N , R) Hausdorff converges toM(P; N , R) as n → ∞ for any natural number
N and any nonnegative real number R, where the Hausdorff distance is induced from
dP .

Proof ‘(1) ⇐⇒ (2)’ follows from [13, Lemma 6.18].
‘(3) �⇒ (2)’ follows from

dH (P ∩ X (N , R),P ′ ∩ X (N , R)) ≤ 2dH (M(P; N , R),M(P ′; N , R)),

which is implied by Lemma 2.17.
‘(2) �⇒ (3)’ follows from [13, Lemma 7.23]. This completes the proof. ��

Theorem 3.7 We have the following (1), (2), and (3).

(1) ρR for each R > 0 is a metric on � compatible with weak convergence.
(2) For any two pyramidsP ,P ′, for any natural number N, and for any positive real number

R, we have

dH (M(P; N , N R),M(P ′; N , N R)) ≤ N 2N+1ρR(P,P ′).

(3) For any two mm-spaces X, Y , and any positive real number R,

ρR(PX ,PY ) ≤ dconc(X, Y ).

Proof (1) follows from Lemma 3.6.
(2) is obvious.

By Lemmas 2.27 and 2.28, we have

dH (M(X; N , N R),M(Y ; N , N R)) ≤ 2 dH (M(X; N ),M(Y ; N ))

≤ 2Ndconc(X, Y ),

which implies (3). This completes the proof.
��
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Lemma 3.8 Let μ and ν be two Borel probability measures on R and ε a positive real
number. If dP (μ, ν) < ε, then

diam(μ; 1 − (κ + ε)) ≤ diam(ν; 1 − κ) + 2ε.

for any κ > 0.

Proof Since μ(Uε(A)) ≥ ν(A) − ε for any Borel subset A ⊂ R, we have

diam(ν; 1 − κ) = inf{diam(A) | ν(A) ≥ 1 − κ}
≥ inf{diam(A) | μ(Uε(A)) ≥ 1 − κ − ε}
≥ inf{diam(B) | μ(B) ≥ 1 − κ − ε} − 2ε

= diam(μ; 1 − κ − ε) − 2ε.

��
Definition 3.9 (diamD , ObsDiamD) For a pyramid P and a nonnegative real number D, we
set

diamD(μX ; 1 − κ) := min{diam(μX ; 1 − κ), D},
ObsDiamD(P;−κ) := min{ObsDiam(P;−κ), D}.

Lemma 3.10 Let P and P ′ be two pyramids. If we have

M(P; 1, R) ⊂ Uε(M(P ′; 1, R))

for two positive real numbers ε and R, then

ObsDiam2R(P;−(κ + ε)) ≤ ObsDiam2R(P ′; −κ) + 2ε

for any κ > 0.

Proof By Lemma 3.8, we have

ObsDiam2R(P;−(κ + ε))

= lim
δ→0+ sup

X∈P, f ∈Lip1(X)

diam2R( f∗μX ;−(κ + ε + δ))

= lim
δ→0+ sup

X∈P, f ∈Lip1(X), f (X)⊂[−R,R]
diam( f∗μX ;−(κ + ε + δ))

= lim
δ→0+ sup

μ∈M(P;1,R)

diam(μ;−(κ + ε + δ))

≤ lim
δ→0+ sup

μ′∈M(P ′;1,R)

diam(μ′; −(κ + δ)) + 2ε

= ObsDiam2R(P ′; −κ) + 2ε.

This completes the proof. ��
Corollary 3.11 Let P and P ′ be two pyramids. If ρR(P,P ′) < ε/4 for two real numbers
ε, R > 0, then

ObsDiam2R(P;−(κ + ε)) ≤ ObsDiam2R(P ′; −κ) + 2ε

for any κ > 0.
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Proof The corollary follows from Theorem 3.7(2) and Lemma 3.10. ��
Theorem 3.12 (Limit formula for observable diameter) Let P and Pn, n = 1, 2, . . ., be
pyramids. If Pn converges weakly to P as n → ∞, then

ObsDiam(P;−κ) = lim
ε→0+ lim inf

n→∞ ObsDiam(Pn;−(κ + ε))

= lim
ε→0+ lim sup

n→∞
ObsDiam(Pn;−(κ + ε))

for any κ > 0.

Proof Let κ, R > 0 be any two fixed numbers. For any real number ε with 0 < ε < κ ,
there is a number n0 such that ρR(Pn,P) < ε/2 for any n ≥ n0. Let n ≥ n0. Corollary 3.11
implies

ObsDiam2R(Pn;−(κ + ε)) ≤ ObsDiam2R(P;−κ) + 2ε,

ObsDiam2R(P;−(κ + 2ε)) ≤ ObsDiam2R(Pn;−(κ + ε)) + 2ε.

Taking the limits of these two inequalities as n → ∞ and then ε → 0+, we have

ObsDiam2R(P;−κ) = lim
ε→0+ lim inf

n→∞ ObsDiam2R(Pn;−(κ + ε))

= lim
ε→0+ lim sup

n→∞
ObsDiam2R(Pn;−(κ + ε)).

Since this holds for any R > 0, the proof is completed. ��
Example 3.13 In our previous paper [14, Corollary 5.8], we obtain

lim
n→∞ObsDiam(Sn(rn);−κ) = diam(γ 1

λ2
; 1 − κ) = 2λI−1((1 − κ)/2)

for any sequence of positive real numbers rn , n = 1, 2, . . ., with rn/
√
n → λ, and for any

κ with 0 < κ < 1, where γ 1
λ2

denotes the one-dimensional centered Guassian measure on R

with variance λ2 and I (r) := γ 1[0, r ] for r ≥ 0. SincePSn(rn) converges weakly to the virtual
infinite-dimensional Gaussian space �∞

λ2
with variance λ2 (see [14]), we have, by Theorem

3.12,

ObsDiam(P�∞
λ2

;−κ) = diam(γ 1
λ2

; 1 − κ) = 2λI−1((1 − κ)/2)

for any κ and λ with 0 < κ < 1 and λ ≥ 0.

4 Separation distance for pyramid

Lemma 4.1 Let X be an mm-space. Then we have

lim
δ→0+Sep(X; κ0 − δ, κ1 − δ, . . . , κN − δ) = Sep(X; κ0, κ1, . . . , κN )

for any κ0, κ1, . . . , κN > 0 with N ≥ 1.

Proof Let {δn}∞n=1 be a monotone decreasing sequence of positive real numbers converging
to zero. Then, Sep(X; κ0 − δn, . . . , κN − δn) is monotone nonincreasing in n. We set

β := lim
n→∞Sep(X; κ0 − δn, . . . , κN − δn).

123



772 R. Ozawa, T. Shioya

SinceSep(X; κ0−δn, . . . , κN−δn)≥Sep(X; κ0, . . . , κN ),wehaveβ ≥ Sep(X; κ0, . . . , κN ).
It suffices to prove Sep(X; κ0, . . . , κN ) ≥ β. It follows from the definition of β that there
are Borel subsets An

0, A
n
1, . . . , A

n
N ⊂ X such that μX (An

i ) ≥ κi − δn for any n and
i = 0, 1, . . . , N , and

lim
n→∞min

i �= j
dX (An

i , A
n
j ) = β.

We may assume that each An
i is a closed set. Take a monotone decreasing sequence {ηp}∞p=1

of positive real numbers converging to zero. By the inner regularity ofμX , there is amonotone
nondecreasing sequence of compact subsets Kp ⊂ X , p = 1, 2, . . ., such that μX (Kp) >

1 − ηp for any p. Set

An
i,p := An

i ∩ Kp.

Each An
i,p is a compact set and satisfies μX (An

i,p) > κi − δn − ηp > 0. For each i and each
p, the sequence {An

i,p}n has a Hausdorff convergent subsequence. By a diagonal argument,

there is a common subsequence {n(m)} of {n} such that An(m)
i,p Hausdorff converges to a

compact subset of X , say Ai,p , for any i and p. Ai,p is monotone nondecreasing in p and
satisfies μX (Ai,p) ≥ κi − ηp . Setting

Ai :=
∞⋃

p=1

Ai,p,

we have μX (Ai ) ≥ κi . Since

min
i �= j

dX (An(m)
i , An(m)

j ) ≤ min
i �= j

dX (An(m)
i,p , An(m)

j,p )

we obtain

β ≤ min
i �= j

dX (Ai , A j ) ≤ Sep(X; κ0, . . . , κN ).

This completes the proof. ��
Remark 4.2 Lemma 4.1 and the monotonicity of Sep(X; κ0, . . . , κN ) in κi together imply
that Sep(X; κ0 − δ0, . . . , κN − δN ) converges to Sep(X; κ0, . . . , κN ) as δ0, . . . , δN → 0+.

Definition 4.3 (Separation distance of pyramid) For a pyramid P and κ0, . . . , κN > 0, we
define

Sep(P; κ0, κ1, . . . , κN ) := lim
δ→0+ sup

X∈P
Sep(X; κ0 − δ, κ1 − δ, . . . , κN − δ)

( ≤ +∞).

Sep(P; κ0, κ1, . . . , κN ) is left-continuous and monotone nonincreasing in κ0, . . . , κN .

Proposition 4.4 For any mm-space X we have

Sep(PX ; κ0, κ1, . . . , κN ) = Sep(X; κ0, κ1, . . . , κN )

for any κ0, . . . , κN > 0.

Proof The proposition follows from Proposition 2.10 and Lemma 4.1. ��
The following is obvious.
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Proposition 4.5 Let P be a pyramid. Then we have

Sep(tP; κ0, κ1, . . . , κN ) = t Sep(P; κ0, κ1, . . . , κN )

for any t, κ0, κ1, . . . , κN > 0.

Definition 4.6 (SepD) For a pyramid P and for positive real numbers κ0, . . . , κN , and D,
we set

SepD(P; κ0, κ1, . . . , κN ) := min{Sep(P; κ0, κ1, . . . , κN ), D}.

Lemma 4.7 Let P and P ′ be two pyramids. If we have

M(P; N + 1, R) ⊂ Uε(M(P ′; N + 1, R))

for a natural number N and for two real numbers ε, R > 0, then

Sep2R(P; κ0, κ1, . . . , κN ) ≤ Sep2R(P ′; κ0 − ε, κ1 − ε, . . . , κN − ε) + 2ε

for any κ0, . . . , κN > ε.

Proof We take any δ > 0 and any mm-space X ∈ P . Let 0 < r < Sep2R(X; κ0 −
δ, . . . , κN − δ). There are Borel subsets A0, . . . , AN ⊂ X such that μX (Ai ) ≥ κi − δ

and dX (Ai , A j ) ≥ r for any different i and j . Set fi (x) := min{dX (x, Ai ), r} for x ∈
X , F := ( f0, . . . , fN ) : X → R

N+1, and FR := ( f0 − R, . . . , fN − R) : X → R
N+1.

FR∗ μX belongs to M(P; N + 1, R). By M(P; N + 1, R) ⊂ Uε(M(P ′; N + 1, R)), there
are an mm-space Y ∈ P ′ and a 1-Lipschitz map GR : Y → (RN+1, ‖ · ‖∞) such that
dP (FR∗ μX ,GR∗ μY ) < ε. We find maps gi : Y → R, i = 0, 1, . . . , N , in such a way that
(g0 − R, . . . , gN − R) = GR . Setting G := (g0, . . . , gN ) we have dP (F∗μX ,G∗μY ) < ε.
Let

Bi := {gi < ε, g j > r − ε for any j �= i} ⊂ Y.

We see that, for i = 0, 1, . . . , N ,

μY (Bi ) = G∗μY (xi < ε, x j > r − ε for any j �= i)

= G∗μY (Uε(xi ≤ 0, x j ≥ r for any j �= i))

≥ F∗μX (xi ≤ 0, x j ≥ r for any j �= i) − ε

= μX (Ai ) − ε ≥ κi − ε − δ.

For any y ∈ Bi and y′ ∈ Bj with i �= j , we have

dY (y, y′) ≥ |gi (y) − gi (y
′)| > r − 2ε

and hence dY (Bi , Bj ) ≥ r − 2ε. Thus,

Sep(Y ; κ0 − ε − δ, . . . , κN − ε − δ) ≥ r − 2ε.

By the arbitrariness of r ,

Sep2R(X; κ0 − δ, . . . , κN − δ) ≤ Sep(Y ; κ0 − ε − δ, . . . , κN − ε − δ) + 2ε.

This completes the proof. ��
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Corollary 4.8 Let P and P ′ be two pyramids. If ρR(P,P ′) < ε
(N+1)2N+2 for a natural

number N and for two real numbers ε, R > 0, then

Sep2R(P; κ0, κ1, . . . , κN ) ≤ Sep2R(P ′; κ0 − ε, κ1 − ε, . . . , κN − ε) + 2ε

for any κ0, . . . , κN > ε.

Proof The corollary follows from Theorem 3.7(2) and Lemma 4.7. ��
Theorem 4.9 (Limit formula for separation distance) Let P and Pn, n = 1, 2, . . ., be pyra-
mids. If Pn converges weakly to P as n → ∞, then

Sep(P; κ0, κ1, . . . , κN ) = lim
ε→0+ lim inf

n→∞ Sep(Pn; κ0 − ε, κ1 − ε, . . . , κN − ε)

= lim
ε→0+ lim sup

n→∞
Sep(Pn; κ0 − ε, κ1 − ε, . . . , κN − ε)

for any κ0, . . . , κN > 0.

Proof The theorem is obtained in the same way as in the proof of Theorem 3.12, by using
Corollary 4.8. ��
Proposition 4.10 Let P be a pyramid. Then we have

ObsDiam(P;−2κ) ≤ Sep(P; κ, κ) (1)

Sep(P; κ, κ) ≤ ObsDiam(P;−κ ′) (2)

for any real number κ and κ ′ with 0 < κ ′ < κ .

Proof Let 0 < κ ′ < κ . We take a sequence of mm-spaces Yn , n = 1, 2, . . ., approximating
P . Proposition 2.11 implies that, for any δ with 0 < δ < κ ,

ObsDiam(Yn;−2(κ + δ)) ≤ Sep(Yn; κ + δ, κ + δ)

≤ Sep(Yn; κ − δ, κ − δ).

Since PYn → P as n → ∞, applying Theorems 3.12 and 4.9 yields (1). (2) is proved in the
same way. This completes the proof. ��

5 N-Lévy family

Definition 5.1 (N -Lévy family) Let N be a natural number. A sequence of pyramids Pn ,
n = 1, 2, . . ., is called an N-Lévy family if

lim
n→∞Sep(Pn; κ0, κ1, . . . , κN ) = 0

for any κ0, κ1, . . . , κN > 0 with
∑N

i=0 κi < 1. A 1-Lévy family is called a Lévy family.

Definition 5.2 (#P) For a pyramid P , we define

#P := sup
X∈P

#X (≤ +∞),

where #X denotes the number of elements of X .
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Lemma 5.3 Let X be an mm-space, P a pyramid, and N a natural number. Then we have
the following (1) and (2).

(1) We have

Sep(X; κ0, κ1, . . . , κN ) = 0

for any κ0, κ1, . . . , κN > 0 with
∑N

i=1 κi < 1 if and only if #X ≤ N.
(2) We have

Sep(P; κ0, κ1, . . . , κN ) = 0

for any κ0, κ1, . . . , κN > 0 with
∑N

i=1 κi < 1 if and only if #P ≤ N.

Proof We prove (1). The ‘if’ part is obvious. Let us prove the ‘only if’ part. It suffices to
show that, if #X ≥ N + 1, then Sep(X; κ0, κ1, . . . , κN ) > 0 for some κ0, κ1, . . . , κN > 0
with

∑N
i=1 κi < 1.

If #X ≥ N + 2, then we find different N + 2 points x0, x1, . . . , xN+1 ∈ X and set

r := min
i �= j

dX (xi , x j ) > 0, Ai :=Ur/3(xi ), and κi := μX (Ai ).

Note that each κi is positive. We have mini �= j dX (Ai , A j ) ≥ r/3 by triangle inequalities, and
therefore

Sep(X; κ0, κ1, . . . , κN ) ≥ r/3 > 0.

We also have
∑N

i=0 κi ≤ 1 − κN+1 < 1.
If #X = N + 1, then we find real numbers κ0, . . . , κN such that 0 < κi < min j μX ({x j })

for any i , where {x0, x1, . . . , xN } := X . We see
∑N

i=0 κi < 1. Since x0, x1, . . . , xN are
different to each other,

Sep(X; κ0, κ1, . . . , κN ) > 0.

(1) has been proved.
We prove (2). The ‘if’ part is easy to prove. We prove the ‘only if’ part. Let

κ0, κ1, . . . , κN > 0 be any real numbers with
∑N

i=1 κi < 1. We assume

Sep(P; κ0, κ1, . . . , κN ) = 0.

Then, for any mm-space X ∈ P , we have, by Lemma 4.1,

Sep(X; κ0, . . . , κN ) = lim
δ→0+Sep(X; κ0 − δ, . . . , κN − δ)

≤ lim
δ→0+ sup

Y∈P
Sep(Y ; κ0 − δ, . . . , κN − δ)

= Sep(P; κ0, κ1, . . . , κN ) = 0,

which together with (1) implies #X ≤ N . By the arbitrariness of X we obtain #P ≤ N . This
completes the proof of the lemma. ��
Definition 5.4 (Extended mm-space) We consider to generalize the definition of an mm-
space such that the metric is allowed to take values in [0,+∞]. We call such a space an
extended mm-space. We define the Lipschitz order ≺ between extended mm-spaces in the
same manner, and define the pyramid PX associated with an extended mm-space X by

PX := {X ′ ∈ X | X ′ ≺ X}.
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It is easy to see that PX is a pyramid for any extended mm-space X . For an
extended mm-space X and a real number D > 0, we define XD := (X, dXD , μX ), where
dXD (x, y) := min{dX (x, y), D} for x, y ∈ X . Then, XD is an mm-space belonging to PX .
We observe that PX coincides with the �-closure of

⋃
0<D<+∞ PXD .

Proposition 5.5 We have #P < +∞ if and only if there exists a finite extended mm-space
X such that P = PX . In this case, we have #X = #P .

Proof Note that the number of elements #X is monotone nondecreasing in X with respect to
the Lipschitz order. We easily see that #X = #PX for any extended mm-space. In particular,
we have the ‘if’ part of the proposition. We prove the ‘only if’ part. Assume that N := #P <

+∞. Let {Xn}∞n=1 be a sequence ofmm-spaces approximatingP . There is a natural number n0
such that #Xn = N for any n ≥ n0. Since X1 ≺ X2 ≺ · · · ≺ Xn ≺ · · · , we find 1-Lipschitz
maps fn : Xn+1 → Xn which pushes μXn+1 forward to μXn . For n ≥ n0, the map fn is
bijective. Let {xn1 , xn2 , . . . , xnN } := Xn such that fn(x

n+1
i ) = xni for any i = 1, 2, . . . , N and

n ≥ n0. We see that μXn ({xni }) is independent of n ≥ n0 and that dXn (x
n
i , xnj ) is monotone

nondecreasing in n ≥ n0 for any i, j = 1, 2, . . . , N . Let X = {x1, x2, . . . , xN } be an N -point
space and define an (extended) mm-structure of X by

dX (xi , x j ) := lim
n→∞ dXn (x

n
i , xnj ) (≤ +∞) and μX ({xi }) := μXn ({xni })

for i, j = 1, 2, . . . , N and n ≥ n0. Then we have Xn ≺ X for any n and therefore
P ⊂ PX . The rest of the proof is to show PX ⊂ P . Let D > 0 be any number. Since
limn→∞ dXD

n
(xni , xnj ) = dXD (xi , x j ) for any i, j = 1, 2, . . . , N ,we see that XD

n �-converges

to XD as n → ∞, which together with XD
n ∈ P implies XD ∈ P . Since PX coincides with

the �-closure of
⋃

0<D<+∞ PXD , we have PX ⊂ P . This completes the proof. ��
Combining the statements proved before, we obtain the following theorem.

Theorem 5.6 Let {Pn}∞n=1 be a sequence of pyramids converging weakly to a pyramid P ,
and N a natural number. Then, the following (1) and (2) are equivalent to each other.

(1) {Pn} is an N-Lévy family.
(2) There exists a finite extended mm-space X with #X ≤ N such that P = PX .

Proof Theorem 4.9 and Lemma 5.3(2) together prove the equivalence between (1) and #P ≤
N . These are also equivalent to (2) due to Proposition 5.5. This completes the proof. ��

For a compact (weighted)RiemannianmanifoldM , we denote byλN (M) the N -th nonzero
eigenvalue of the (weighted) Laplacian on M . Since a sequence of compact (weighted)
Riemannian manifolds Mn , n = 1, 2, . . ., is an N -Lévy family if λN (Mn) → +∞ as
n → ∞ (see [5, Corollary 4.3]), we have the following corollary to Theorem 5.6.

Corollary 5.7 Let {Mn}∞n=1 be a sequence of compact (weighted) Riemannian manifolds
such that λN (Mn) → +∞ as n → ∞ for a natural number N. Then, there exist a sub-
sequence {Mni } of {Mn} and a finite extended mm-space X with #X ≤ N such that PMni
converges weakly to PX as i → ∞.

Let ∗ denote a one-point mm-space. Note that P∗ = {∗}.
Corollary 5.8 Let Pn, n = 1, 2, . . ., be pyramids. Then, the following (1), (2), and (3) are
equivalent to each other.
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(1) {Pn} is a Lévy family.
(2) Pn converges weakly to P∗ as n → ∞.
(3) limn→∞ ObsDiam(Pn;−κ) = 0 for any κ > 0.

Proof ‘(1)⇐⇒ (2)’ follows from Theorem 5.6. ‘(1)⇐⇒ (3)’ follows from Proposition 4.10,
where we use the monotonicity of Sep(P; κ0, κ1) in κ0, κ1. This completes the proof. ��

As an application of Theorem 5.6, we prove the following corollary, which is an extension
of [5, Theorem 4.4]. The proof here is much easier than that in [5].

Corollary 5.9 Let {Pn}∞n=1 be an N-Lévy family of pyramids such that

ObsDiam(Pn;−κ) < +∞ (5.1)

for any κ with 0 < κ < 1 and for any n. Then we have one of the following (1) and (2).

(1) {Pn} is a Lévy family.
(2) There is a subsequence {Pni }∞i=1 of {Pn} and a sequence of real numbers ti with 0 <

ti ≤ 1, i = 1, 2, . . ., such that tiPni converges weakly to PX for some finite mm-space
X with 2 ≤ #X ≤ N.

Note that the observable diameter of an mm-space is always finite, so that (5.1) holds for
any sequence of mm-spaces.

Proof Let {Pn}∞n=1 be an N -Lévy family of pyramids that is not a Lévy family. Taking a
subsequence of {Pn}, we assume that {Pn} converges weakly to a pyramid P . By Theorem
5.6, there is a finite extended mm-space Y such that P = PY with 2 ≤ #Y ≤ N . Take a real
number κ with 0 < κ < miny∈Y μY ({y}). If ObsDiam(Pn;−κ) is bounded fromabove for all
n, then Theorem3.12 implies the finiteness ofObsDiam(Y ;−κ ′) = diam(Y ) for 0 < κ ′ < κ ,
so that Y is an mm-space and we have the theorem. Assume that ObsDiam(Pn;−κ) is
unbounded. Replacing {Pn} with a subsequence we assume that ObsDiam(Pn;−κ) ≥ 1
for any n. Setting tn := ObsDiam(Pn;−κ)−1, we have 0 < tn ≤ 1 for any n by (5.1). We
replace {tnPn} with a weakly convergent subsequence of it. By Theorem 5.6, there is a finite
extended mm-space X such that tnPn converges weakly to PX as n → ∞. Since tnPn ⊂ Pn ,
we have PX ⊂ PY and so X ≺ Y . In particular, κ < minx∈X μX ({x}). Therefore, applying
Theorem 3.12 yields

diam(X) = ObsDiam(PX ;−κ)

= lim
δ→0+ lim inf

n→∞ ObsDiam(tnPn;−(κ + δ))

= lim
δ→0+ lim inf

n→∞
ObsDiam(Pn;−(κ + δ))

ObsDiam(Pn;−κ)
≤ 1,

so that X is an mm-space. Moreover, since ObsDiam(tnPn;−κ) = 1, {tnPn} is not a Lévy
family (see Corollary 5.8) and X consists of at least two points. This completes the proof. ��

6 Dissipation and phase transition property

Definition 6.1 (Dissipation) Let {Pn}∞n=1 be a sequence of pyramids and let 0 < δ ≤ +∞.
We say that {Pn} δ-dissipates if

lim inf
n→∞ Sep(Pn; κ0, κ1, . . . , κN ) ≥ δ
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for any κ0, κ1, . . . , κN > 0 with
∑N

i=0 κi < 1. We say that {Pn} weakly dissipates if
lim inf
n→∞ Sep(Pn; κ0, κ1, . . . , κN ) > 0

for any κ0, κ1, . . . , κN > 0 with
∑N

i=0 κi < 1.

Definition 6.2 (Dissipated pyramid) Let P be a pyramid and let 0 < δ ≤ +∞. P is said
to be δ-dissipated if P contains all mm-spaces with diameter ≤ δ. We say that P is weakly
dissipated if

Sep(P; κ0, κ1, . . . , κN ) > 0

for any κ0, κ1, . . . , κN > 0 with
∑N

i=0 κi < 1.

Note that P is ∞-dissipated if and only if P = X .

Lemma 6.3 Let {Pn}∞n=1 be a sequence of pyramids converging weakly to a pyramid P , and
let 0 < δ ≤ +∞. Then, the following (1) and (2) are equivalent to each other.

(1) {Pn} δ-dissipates (resp. weakly dissipates).
(2) P is δ-dissipated (resp. weakly dissipated).

Proof The lemma for the weak dissipation follows from Theorem 4.9.
We prove the lemma for the δ-dissipation. Theorem 4.9 implies that (1) is equivalent to

the following:

(3) For any κ0, . . . , κN > 0 with
∑N

i=0 κi < 1, we have

Sep(P; κ0, . . . , κN ) ≥ δ.

There is a sequence of mm-spaces Xn , n = 1, 2, . . ., apprioximating P . (3) is equivalent to

lim inf
n→∞ Sep(Xn; κ0, . . . , κN ) ≥ δ

for any κ0, . . . , κN > 0 with
∑N

i=0 κi < 1. Due to [13, Proposition 8.5], this is equivalent to
(2). The proof is completed. ��
Definition 6.4 (Phase transition property) Let {Pn}∞n=1 be a sequence of pyramids. We say
that {Pn} has the phase transition property if there exists a sequence of positive real numbers
cn , n = 1, 2, . . ., satisfying the following (1) and (2).

(1) For any sequence of positive numbers tn with tn/cn → 0, the sequence {tnPn} is a Lévy
family.

(2) For any sequence of positive numbers tn with tn/cn → +∞, the sequence {tnPn} ∞-
dissipates.

We call such a sequence {cn} a sequence of critical scale order. We say that a sequence of
mm-spaces Xn has the phase transition property if so does {PXn }.
Remark 6.5 (1) of Definitnion 6.4 is equivalent to

lim sup
n→∞

ObsDiam(cnPn;−κ) < +∞

for any κ with 0 < κ < 1.
(2) is equivalent to the weak dissipation property of {cnPn}.
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The following is a key to the proof of Theorem 1.2.

Lemma 6.6 Let κ, κ0, κ1, . . . , κN be any positive real numbers with N ≥ 1 such that

1 − 1

N

(
1 −

N∑

i=0

κi

)
≤ κ < 1.

Then we have

Sep(X; κ0, κ1, . . . , κN ) ≥ ObsDiam(X;−κ)

for any mm-space X.

Proof We take any real number r with 0 < r < ObsDiam(X;−κ) and fix it. There is a
1-Lipschitz function f : X → R such that diam( f∗μX ; 1 − κ) > r . We then have the
following:

(∗) If a Borel subset A ⊂ R satisfies diam(A) ≤ r , then f∗μX (A) < 1 − κ .

We define real numbers a0, a1, . . . , aN inductively by

a0 := inf{a ∈ R | f∗μX (−∞, a] ≥ κ0},
ai := inf{a ≥ ai−1 + r | f∗μX [ai−1 + r, a] ≥ κi }, i = 1, 2, . . . , N .

We check the well-definedness of ai ′s. It is clear that a0 is defined as a (finite) real number
since 0 < κ0 < 1. Assume that a0, a1, . . . , ak for a number k ≤ N − 1 are defined as real
numbers. We are going to check that ak+1 is defined as a real number. For that, it suffices to
prove

f∗μX [ak + r,+∞) > κk+1. (6.1)

By the definition of ai , we have f∗μX (−∞, a0) ≤ κ0 and f∗μX [ai−1 + r, ai ) ≤ κi for
i = 1, 2, . . . , k. Also, (∗) implies f∗μX [ai , ai +r ] < 1−κ for i = 0, 1, . . . , k. We therefore
have

f∗μX (−∞, ak + r) ≤
k∑

i=0

f∗μX [ai , ai + r ] + f∗μX (−∞, a0)

+
k∑

i=1

f∗μX [ai−1 + r, ai )

< N (1 − κ) +
k∑

i=0

κi

≤ 1 −
N∑

i=k+1

κi ,

which implies (6.1).
Setting

A0 := (−∞, a0],
Ai := [ai−1 + r, ai ] for i = 1, 2, . . . , N ,

we have f∗μX (Ai ) ≥ κi and dR(Ai , A j ) ≥ r for i �= j , so that

Sep((R, f∗μX ); κ0, κ1, . . . , κN ) ≥ r.
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Since (R, f∗μX ) ≺ X and by Proposition 2.10, we have

Sep(X; κ0, κ1, . . . , κN ) ≥ r.

By the arbitrariness of r , this completes the proof. ��

Lemma 6.7 LetP be a pyramid. Then the following (1) and (2) are equivalent to each other.

(1) P is weakly dissipated.
(2) ObsDiam(P;−κ) > 0 for any κ with 0 < κ < 1.

Proof It is easy to see that (1) is equivalent to the following:

(1’) For any κ0, . . . , κN > 0 with
∑N

i=0 κi < 1, there is an mm-space X ∈ P such that
Sep(X; κ0, . . . , κN ) > 0.

Also, (2) is equivalent to the following:

(2’) For any κ with 0 < κ < 1 there is anmm-space X ∈ P such thatObsDiam(X;−κ) > 0.

We prove (1’) �⇒ (2’). For any given κ with 0 < κ < 1, we take κ ′ with 0 < κ ′ <

min{κ, 1/2}. Proposition 2.11 implies

ObsDiam(X;−κ) ≥ Sep(X; κ ′, κ ′),

which is positive for some X ∈ P by (1’). We obtain (2’).
The implication (2’) �⇒ (1’) follows from Lemma 6.6.
This completes the proof of the proposition. ��

Lemma 6.8 LetPn, n = 1, 2, . . . , be pyramids. Then the following (1) and (2) are equivalent
to each other.

(1) {Pn} weakly dissipates.
(2) We have

lim inf
n→∞ ObsDiam(Pn;−κ) > 0

for any κ with 0 < κ < 1.

Proof It follows from Theorem 4.9 and the compactness of� that (1) holds if and only if for
any weakly convergent subsequence of {Pn}, its weak limit is weakly dissipated. By Lemma
6.7, this is equivalent to that for any weakly convergent subsequence of {Pn}, its weak limit,
say P , satisfies ObsDiam(P;−κ) > 0 for any κ with 0 < κ < 1, which is also equivalent
to (2) by Theorem 3.12 and the compactness of �. This completes the proof. ��

Using Lemma 6.8, we present:

Proof of Theorem 1.2 Let {cn} be a sequence of positive real numbers.

(1) of Definition 6.4 is equivalent to

lim sup
n→∞

ObsDiam(cnPn;−κ) < +∞ (6.2)

for any κ with 0 < κ < 1.
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(2) of Definition 6.4 is equivalent to the weak dissipation property of {cnPn}, which is, by
Lemma 6.8, also equivalent to

lim inf
n→∞ ObsDiam(cnPn;−κ) > 0 (6.3)

for any κ with 0 < κ < 1. Since

ObsDiam(cnPn;−κ) = cn ObsDiam(Pn;−κ),

we obtain the theorem.

��
Remark 6.9 We have another way to prove Theorem 1.2 by generalizing Lemma 6.6 for a
pyramid. However, this is essentially same as above.

Corollary 6.10 Let {Pn} be a sequence of pyramids with the phase transition property and
{cn} a sequence with critical scale order. If a sequence {tn} of positive real numbers satisfies
tn ∼ cn, then {tnPn} neither is a Lévy family nor ∞-dissipates.

Proof of Theorem 1.2 It suffices to prove the corollary for tn := cn because of Propositions
3.4 and 4.5.

It follows from (6.3) that {cnPn} is not a Lévy family.
By (6.2) and Proposition 4.10, {cnPn} does not ∞-dissipates. This completes the proof.

��
Proof of Corollary 1.3 We have

ObsDiam(Xn;−κ) ∼ 1/
√
n

for Xn = Sn(1),RPn,CPn,HPn (see [14, Corollaries 5.8 and 5.11] for Sn(1) and CPn ;
the same proof works for RPn and HPn). Theorem 1.2 proves the phase transition property
for {Sn(1)}, {RPn}, {CPn}, and {HPn}.

Since the Ricci curvature of SO(n) is ∼ n, we have

ObsDiam(SO(n);−κ) ≤ O(1/
√
n)

(see [13], §2.5). By Sn(1) ≺ SO(n), we also have a lower bound of ObsDiam(SO(n);−κ),
so that

ObsDiam(SO(n);−κ) ∼ 1/
√
n.

This together with Theorem 1.2 leads us to the phase transition property for {SO(n)}. Since
Sn(1) ≺ Vk(Rn) ≺ SO(n), we have the phase transition property for {Vkn (Rn)}. The proofs
for {SU (n)}, {Sp(n)}, {Vkn (Cn)}, and {Vkn (Hn)} are in the same way. This completes the
proof. ��
Definition 6.11 Let α > 0. An mm-space is said to be α-atomic if it has an atom with
mass ≥ α. A pyramid P is said to be α-atomic if any mm-space X ∈ P is α-atomic. A
pyramid (resp. an mm-space) is atomic if it is α-atomic for some α > 0. A pyramid (resp. an
mm-space) is non-atomic if it is not atomic.

Proposition 6.12 Let {Pn} be a sequence of pyramids with the phase transition property
and {cn} a sequence of critical scale order for {Pn}. Then, the limit, say P , of any weakly
convergent subsequence of {cnPn} satisfies

0 < ObsDiam(P;−κ) < +∞ (6.4)

for any κ with 0 < κ < 1. In particular, P is non-atomic.
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Proof It follows from the phase transition property and Theorem 1.2 that

lim inf
n→∞ ObsDiam(cnPn;−κ) > 0,

lim sup
n→∞

ObsDiam(cnPn;−κ) < +∞

for any κ with 0 < κ < 1. These inequalities together with Theorem 3.12 implies (6.4).
We prove that P is non-atomic. We see that if an mm-space X is α-atomic for a real

number α > 0, then

ObsDiam(X;−κα) ≤ diam(X; 1 − κα) = 0

for κα := 1−α. Therefore, ifP is α-atomic for some α > 0, then we have ObsDiam(P;−κα)

= 0, which is a contradiction to (6.4). This completes the proof. ��
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