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Abstract In Jorgenson and Kramer (Compos Math 142:679–700, 2006) derived bounds for
the canonical Green’s function and the hyperbolic Green’s function defined on a compact
hyperbolicRiemann surface. In this article,we extend these bounds to noncompact hyperbolic
Riemann orbisurfaces of finite volume and of genus greater than zero, which can be realized
as a quotient space of the action of a Fuchsian subgroup of first kind on the hyperbolic upper
half-plane.
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1 Introduction

Notation Let X be a noncompact hyperbolic Riemann orbisurface of finite volume volhyp(X)

with genus gX ≥ 1, and can be realized as the quotient space �X\H, where �X ⊂ PSL2(R)

is a Fuchsian subgroup of the first kind acting on the hyperbolic upper half-plane H, via
fractional linear transformations. LetPX and EX denote the set of cusps and the set of elliptic
fixed points of�X , respectively. Put X = X ∪PX . Then, X admits the structure of a Riemann
surface.

Let μhyp(z) denote the (1,1)-form associated to hyperbolic metric, which is the natural
metric on X , and of constant negative curvature minus one. Let μshyp(z) denote the rescaled
hyperbolic metric μhyp(z)/ volhyp(X), which measures the volume of X to be one.

The Riemann surface X is embedded in its Jacobian variety Jac(X) via the Abel-Jacobi
map. Then, the pull back of the flat Euclidean metric by the Abel-Jacobi map is called the
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86 A. Aryasomayajula

canonical metric, and the (1,1)-form associated to it is denoted by μ̂can(z). We denote its
restriction to X by μcan(z).

Forμ = μshyp(z) orμcan(z), let gX,μ(z, w) defined on X×X denote the Green’s function
associated to the metric μ. The Green’s function gX,μ(z, w) is uniquely determined by the
differential equation (which is to be interpreted in terms of currents)

dzd
c
z gX,μ(z, w) + δw(z) = μ(z), (1)

with the normalization condition
∫

X
gX,μ(z, w)μ(z) = 0.

The Green’s function gX,can(z, w) associated to the canonical metric μcan(z) is called the
canonical Green’s function. Similarly the Green’s function gX,hyp(z, w) associated to the
(rescaled) hyperbolic metric μshyp(z) is called the hyperbolic Green’s function.

Fromdifferential Eq. (1), we can deduce that for a fixedw ∈ X , as a function in the variable
z, both the Green’s functions gX,can(z, w) and gX,hyp(z, w) are log-singular at z = w. Recall
that μhyp(z) is singular at the cusps and at the elliptic fixed points, and μcan(z) the pull back
of the smooth and flat Euclidean metric is smooth on X . Hence, from the elliptic regularity of
the dzdcz operator, it follows that gX,hyp(z, w) is log log-singular at the cusps, and gX,can(z, w)

remains smooth at the cusps.
From a geometric perspective, it is very interesting to compare the two metrics μhyp(z)

and μcan(z), and study the difference of the two Green’s functions

gX,hyp(z, w) − gX,can(x, w). (2)

on compact subsets of X .
In [10], Jorgenson and Kramer have already established these tasks, when X is a compact

Riemann surface devoid of elliptic fixed points. They proved a key-identity that relates the
hyperbolic metric μhyp(z) and the canonical metric μcan(z) via the hyperbolic heat kernel.
Using the key-identity, they expressed the difference (2) in terms of integrals which involve
only the hyperbolic heat kernel and the hyperbolic metric. This allowed them to derive
bounds for the difference (2) in terms of invariants coming from the hyperbolic geometry of
X , namely, the injectivity radius of X and the first non-zero eigenvalue λX,1 of the hyperbolic
Laplacian �hyp acting on smooth functions defined on X .

In [2], we extend the key-identity from [10] to cusps and elliptic fixed points at the level of
currents. This relation serves as a starting point for extending the bounds for the canonical and
the hyperbolic Green’s function from [10] to noncompact hyperbolic Riemann orbisurfaces
of finite volume.

In this article, using the key-identity from [2] and by extending the methods used in [10],
we study the difference (2) on compact subsets of X , and as an application, we derive upper
bounds for the canonical Green’s function gX,can(z, w) on X . Our bounds are similar to the
ones derived in [10].

Statement of main results We now describe our results for the modular curve Y0(N ) =
�0(N )\H. However, our results hold true for any noncompact hyperbolic Riemann orbisur-
face of finite volume and of genus greater than zero. Let N ∈ N>0 be such that the modular
curve Y0(N ) has genus gY0(N ) ≥ 1. Let 0 < ε < 1 be small enough such that it satisfies the
conditions elucidated in Notation 4.1.

For any cusp p ∈ PY0(N ), let UN ,ε(p) denote an open coordinate disk of radius ε around
the cusp p. For any elliptic fixed point e ∈ EY0(N ), let UN ,ε(e) denote an open coordinate
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Bounds for Green’s functions 87

disk around the elliptic fixed point e, which is as described in condition (3) in Notation 4.1.
Put

Y0(N )ε = Y0(N )

∖(

⋃

p∈PY0(N )

Uε(p) ∪
⋃

e∈EY0(N )

Uε(e)

)

.

For any δ > 0 and a fixed z, w ∈ X , identifying Y0(N ) with its fundamental domain, we
define the set

S�Y0(N )
(δ; z, w) = {

γ ∈ H(�0(N )) ∪ {id}∣∣ dH(z, γw) < δ
}

,

where H(�0(N )) denotes the hyperbolic elements of �0(N ). Furthermore, let gH(z, w)

denote the free-space Green’s function defined on H × H, which is given by the formula

gH(z, w) = log

∣

∣

∣

∣

z − w

z − w

∣

∣

∣

∣

2

.

From [17], recall that the first non-zero eigenvalue of the hyperbolic Laplacian�hyp satisfies
the lower boundλY0(N ),1 ≥ 3/16.With notation as above, for any δ > 0, using the dependence
of the genus gY0(N ), the number of cusps |PY0(N )|, and the number of elliptic fixed points
|EY0(N )| in terms of N from pp. 22–25 in [18], we derive the following estimates

sup
z,w∈Y0(N )ε

∣

∣gY0(N ),can(z, w) − gY0(N ),hyp(z, w)
∣

∣

= Oε,δ

(
(|PY0(N )| + |EY0(N )|

)

gY0(N )

(

1 + 1

λY0(N ),1

))

= Oε,δ(1); (3)

sup
z,w∈Y0(N )ε

∣

∣

∣

∣

gY0(N ),can(z, w) −
∑

γ∈S�Y0(N )
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= Oε,δ

(
(|PY0(N )| + |EY0(N )|

)

gY0(N )

(

1 + 1

λY0(N ),1

))

= Oε,δ(1). (4)

We even derive bounds for the canonical Green’s function gY0(N ),can(z, w) at cusps and at
elliptic fixed points.

Arithmetic significance In 1974, in [1], Arakelov defined an intersection theory for divisors
on an arithmetic surface by incorporating the associated compact Riemann surface with its
complex analytic geometry. The contribution at infinity is calculated by using canonical
Green’s functions defined on the corresponding Riemann surfaces.

In [7], Edixhoven et al. devised an algorithm which for a given prime �, computes the
Galois representations modulo � associated to a fixed modular form of arbitrary weight, in
time polynomial in �.

To show that the complexity of the algorithm is polynomial in �, they needed an upper
bound for the canonical Green’s function associated to the compactified modular surface
X1(�), and the upper bound provided by Merkl (also published in [7]) proved sufficient.

Bounds for the canonical Green’s function from [10] when restricted to X1(�) yield better
bounds than the ones derived by Merkl.

In 2011, in [5], while extending the algorithm of Edixhoven–Couveignes–de Jong, fol-
lowing the methods of Merkl, Bruin has derived bounds for the canonical Green’s function,
which for a given modular curve Y0(N ) are of the form O(N 2), which will appear as [6].
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88 A. Aryasomayajula

Furthermore, using the bounds of Bruin for the canonical Green’s function, Javanpeykar
has derived bounds for various Arakelovian invariants like the Faltings delta function and
Faltings height function in [9].

Our bounds for the canonical Green’s function are stronger than the ones derived by Bruin,
and are optimally derived by following the methods from [10]. Furthermore, our bounds for
the canonical Green’s function gX,can(z, w) at cusps are essential for calculating the Faltings
height of any modular curve X . We are hopeful that our results together with [9] will lead to
better bounds for the Arakelovian invariants considered in [9].

It is to be mentioned that using a different method, we have computed bounds for the
canonical Green’s function gX,can(z, w) at cusps in [3]. Although the bounds computed in
[3] are more explicit, their dependence on N for a modular curve Y0(N ) is not known.

This article also completes the program of Jorgenson and Kramer of estimating Arakelov-
ian invariants of modular curves via techniques coming from global analysis and theory of
heat kernels. However it would be interesting to study Edixhoven–Couveignes–de Jong’s
algorithm from [7], using our bounds for the canonical Green’s function, and we hope our
bounds lead to a better complexity for the algorithm.

Moreover, for any noncompact hyperbolic Riemann orbisurface X = �X\H, we have
studied the convergence of the following series

∑

γ∈P(�X )

gH(z, γ z),
∑

γ∈E(�X )

gH(z, γ z),
∫

X

⎛

⎝

∑

γ∈H(�X )

KH(t; z, γ z) − 1

volhyp(X)

⎞

⎠ dt,

(5)

where P(�X ), E(�X ), andH(�X ) denote the parabolic, elliptic, and hyperbolic elements of
�X , respectively, and the quantity KH(t; z, w) denotes the hyperbolic heat kernel on H × H.
We have also studied the behavior of the above stated series at the cusps and at the elliptic
fixed points.We believe that this analysis helps in the generalization of the work of Jorgenson
andKramer from [10] and [11] to noncompact hyperbolic Riemann orbisurfaces and to higher
dimensions.

Organization of the paper In the first section, we set up our notation, introduce basic notions,
and results. In Sect. 2, we prove convergence of the automorphic functions mentioned in (5).
In Sect. 3, using the existing bounds for the heat kernel from [10], we derive bounds for
the hyperbolic Green’s function gX,hyp(z, w) on compact subsets of X , and then extend
these bounds to the neighborhoods of cusps and elliptic fixed points. In Sect. 4, using the
convergence results from Sect. 2, and bounds for the hyperbolic Green’s function, we derive
bounds for the canonical Green’s function gX,can(z, w) on compact subsets of X , and then
extend these bounds to the neighborhoods of cusps and elliptic fixed points. Finally, in Sect. 5,
we extend our bounds to certain sequences of admissible noncompact Riemann orbisurfaces
to prove estimates (3) and (4).

2 Background material

In this section, we recall the basic notions and results required for next sections.
Let �X ⊂ PSL2(R) be a Fuchsian subgroup of the first kind acting by fractional linear

transformations on the upper half-planeH. Let X be the quotient space�X\H, and let gX ≥ 1
denote the genus of X . The quotient space X admits the structure of a Riemann orbisurface.
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Bounds for Green’s functions 89

Let PX and EX denote the finite set of cusps and finite set of elliptic fixed points of X ,
respectively. For e ∈ EX , let me denote the order of e; for p ∈ PX , put mp = ∞; for
z ∈ X\EX , put mz = 1. Let X denote X = X ∪ PX .

Locally, away from cusps and elliptic fixed points, we identity X with its universal cover
H, and hence, denote the points on X\(PX ∪ EX ) by the same letter as the points on H.
Structure of X as a Riemann surface The quotient space X admits the structure of a compact
Riemann surface. We refer the reader to section 1.8 in [16], for the details regarding the
structure of X as a compact Riemann surface. For the convenience of the reader, we recall
the coordinate functions for the neighborhoods of cusps and elliptic fixed points.

Let p ∈ PX be a cusp, and letU (p) denote a coordinate disk around the cusp p. Then, for
any w ∈ U (p), the coordinate function ϑp(w) for the open coordinate diskU (p) is given by

ϑp(w) = e2π iσ
−1
p w,

where σp is a scaling matrix of the cusp p satisfying the following relations

σpi∞ = p and σ−1
p �X,pσp = 〈γ∞〉, where γ∞ =

(

1 1
0 1

)

and �X,p = 〈γp〉 (6)

denotes the stabilizer of the cusp p with generator γp .
Similarly, let e ∈ EX be an elliptic fixed point, and let U (e) denote a coordinate disk

around the elliptic fixed point e. Then, for any w ∈ U (e), the coordinate function ϑe(w) for
the open coordinate disk U (e) is given by

ϑe(w) =
(

w − e

w − e

)me

.

Hyperbolic metric We denote the (1,1)-form corresponding to the hyperbolic metric of X ,
which is compatible with the complex structure on X and has constant negative curvature
equal to minus one, by μhyp(z). Locally, away from elliptic fixed points, as we identity X
with H, for z ∈ X\EX , the hyperbolic metric is given by

μhyp(z) = i

2
· dz ∧ dz

Im(z)2
.

Let volhyp(X) be the volume of X with respect to the hyperbolic metric μhyp. It is given by
the formula

volhyp(X) = 2π

(

2g − 2 + |PX | +
∑

e∈EX

(

1 − 1

me

))

.

The hyperbolic metric μhyp(z) is singular at the cusps and at the elliptic fixed points, and the
rescaled hyperbolic metric

μshyp(z) = μhyp(z)

volhyp(X)

measures the volume of X to be one.
Locally, for z ∈ X , the hyperbolic Laplacian �hyp on X is given by

�hyp = −y2
(

∂2

∂x2
+ ∂2

∂y2

)

= −4y2
(

∂2

∂z∂z

)

.
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90 A. Aryasomayajula

Recall that d = (

∂ + ∂
)

, dc = 1

4π i

(

∂ − ∂
)

, and ddc = − ∂∂

2π i
. So for any smooth function

f on X , we have

−4πdzd
c
z f (z) = �hyp( f ) μhyp(z). (7)

Canonical metric Let S2(�X ) denote the C-vector space of cusp forms of weight 2 with
respect to �X equipped with the Petersson inner-product. Let { f1, . . . , fgX } denote an ortho-
normal basis of S2(�X ) with respect to the Petersson inner product. Then, the (1,1)-form
μcan(z) corresponding to the canonical metric of X is given by

μcan(z) = i

2gX

gX
∑

j=1

∣

∣ f j (z)
∣

∣

2
dz ∧ dz.

The canonical metricμcan(z) remains smooth at the cusps and at the elliptic fixed points, and
measures the volume of X to be one.

Put

dX = sup
z∈X

μcan(z)

μshyp(z)
. (8)

As the canonical metric μcan(z) remains smooth at the cusps and at the elliptic fixed points,
and the hyperbolic metric is singular at these points, the quantity dX is well-defined.

Canonical Green’s function For z, w ∈ X , the canonical Green’s function gX,can(z, w) is
defined as the solution of the differential equation (which is to be interpreted in terms of
currents)

dzd
c
z gX,can(z, w) + δw(z) = μcan(z), (9)

with the normalization condition
∫

X
gX,can(z, w)μcan(z) = 0.

From Eq. (9), it follows that gX,can(z, w) has a log-singularity at z = w, i.e., for z, w ∈ X ,
it satisfies

lim
w→z

(

gX,can(z, w) + log |ϑz(w)|2) = Oz(1). (10)

Parabolic Eisenstein series For z ∈ X and s ∈ C with Re(s) > 1, the parabolic Eisenstein
series EX,par,p(z, s) corresponding to a cusp p ∈ PX is defined by the series

EX,par,p(z, s) =
∑

η∈�X,p\�X

Im
(

σ−1
p ηz

)s
.

The series converges absolutely and locally uniformly for Re(s) > 1 (as a function in the
variable z, for a fixed s). It admits a meromorphic continuation to all s ∈ C with a simple
pole at s = 1, and the Laurent expansion at s = 1 is of the form

EX,par,p(z, s) = 1

(s − 1) volhyp(X)
+ κX,p(z) + Oz(s − 1), (11)

where κX,p(z) the constant term of EX,par,p(z, s) at s = 1 is called Kronecker’s limit function
(see Chapter 6 of [8]).
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Bounds for Green’s functions 91

For z ∈ X , and p, q ∈ PX , theKronecker’s limit function κX,p(σq z) satisfies the following
equation (see Theorem 1.1 of [14] for the proof)

κX,p(σq z) =
∑

n<0

kp,q(n)e2π inz + δp,q Im(z) + kp,q(0) − log
(

Im(z)
)

volhyp(X)
+

∑

n>0

kp,q(n)e2π inz,

(12)

with Fourier coefficients kp,q(n) ∈ C.
For p, q ∈ PX , as z ∈ X approaches q , the Eisenstein series EX,par,p(z, s) corresponding

to the cusp p ∈ PX satisfies the following equation (see Corollary 3.5 in [8])

EX,par,p(z, s) = δp,q Im(σ−1
q z)s + αp,q(s) Im(σ−1

q z)1−s

+ O
(

(

1 + Im(σ−1
q z)−Re(s))e−2π Im(σ−1

q z)
)

, (13)

where the Fourier coefficient αp,q(s) is given by equation (3.21) in [8].

Elliptic Eisenstein series Let e ∈ EX be an elliptic fixed point of order me with stabilizer
subgroup �X,e. Let σe be a scaling matrix of e satisfying the conditions

σei = e and σ−1
e �X,eσe = 〈γi 〉, where γi =

(

cos(π/me) sin(π/me)

− sin(π/me) cos(π/me)

)

. (14)

Let ρ(z) denote the hyperbolic distance dH(z, i). Then, for z ∈ X and s ∈ C with Re(s) > 1,
the elliptic Eisenstein series EX,ell,e(z, s) corresponding to an elliptic fixed point e ∈ EX is
defined by the series

EX,ell,e(z, s) =
∑

η∈�X,e\�X

sinh−s (

ρ(σ−1
e ηz)

)

.

The series converges absolutely and locally uniformly for Re(s) > 1 and z �= e (as a function
in the variable z, for a fixed s, see [15]). From its definition, as z ∈ X\EX approaches an
elliptic fixed point e ∈ EX , for any s ∈ C with Re(s) > 1, we find

EX,ell,e(z, s) − sinh−s (

ρ(σ−1
e z)

) = Oz(1). (15)

Moreover, for any z ∈ X , s ∈ C with Re(s) > 1, and any cusp p ∈ PX , it follows that

lim
z→p

EX,ell,e(z, s) = 0. (16)

Space of square-integrable functions Let L2(X) denote the space of square integrable func-
tions on X with respect to the hyperbolic (1, 1)-form μhyp(z). There exists a natural inner-
product 〈·, ·〉 on L2(X) given by

〈 f, g〉 =
∫

X
f (z)g(z) μhyp(z),

where f, g ∈ L2(X), making L2(X) into a Hilbert space.
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92 A. Aryasomayajula

Furthermore, every f ∈ L2(X) admits the spectral expansion

f (z) =
∞
∑

n=0

〈 f, ϕX,n(z)
〉

ϕX,n(z)

+ 1

4π

∑

p∈PX

∫ ∞

−∞
〈

f, EX,par,p(z, 1/2 + ir)
〉EX,par,p(z, 1/2 + ir)dr, (17)

where {ϕX,n(z)} denotes the set of orthonormal eigenfunctions for the discrete spectrum
of �hyp, and {EX,par,p(z, 1/2 + ir)} denotes the set of eigenfunctions for the continuous
spectrum of �hyp, with EX,par,p(z, s) denoting the parabolic Eisenstein series for the cusp
p ∈ PX .

The eigenfunctions {ϕX,n(z)} corresponding to the discrete spectrum can all be chosen to
be real-valued, and for the rest of this article we continue to assume so.

Heat Kernels For t ∈ R>0 and z, w ∈ H, the hyperbolic heat kernel KH(t; z, w) on R>0 ×
H × H is given by the formula

KH(t; z, w) =
√
2e−t/4

(4π t)3/2

∫ ∞

dH(z,w)

re−r2/4t

√
cosh(r) − cosh(dH(z, w))

dr, (18)

where dH(z, w) is the hyperbolic distance between z and w.
For t ∈ R>0 and z, w ∈ X , the hyperbolic heat kernel KX,hyp(t; z, w) on R>0 × X × X

is defined as
KX,hyp(t; z, w) =

∑

γ∈�X

KH(t; z, γw).

For notational brevity, we denote KX,hyp(t; z, w) by KX,hyp(t; z), when z = w.
The hyperbolic heat kernel KX,hyp(t; z, w) admits the spectral expansion

KX,hyp(t; z, w) =
∞
∑

n=0

ϕX,n(z)ϕX,n(w)e−λX,n t

+ 1

4π

∑

p∈PX

∫ ∞

−∞
EX,par,p(z, 1/2 + ir)EX,par,p(w, 1/2 − ir)e−(r2+1/4)t dr,

(19)

where λX,n denotes the eigenvalue of the normalized eigenfunction ϕX,n(z) and (r2 + 1/4)
is the eigenvalue of the eigenfunction EX,par,p(z, 1/2 + ir), as above.

Let P(�X ), E(�X ), and H(�X ) (here id is not treated as a parabolic element) denote the
sets of parabolic, elliptic, and hyperbolic elements of the Fuchsian subgroup�X , respectively.
For t ∈ R≥0 and z ∈ X , put

PKX,hyp(t; z) =
∑

γ∈H(�X )

KH(t; z, γ z), EKX,hyp(t; z) =
∑

γ∈E(�X )

KH(t; z, γ z)

HKX,hyp(t; z) =
∑

γ∈P(�X )

KH(t; z, γ z).

As the hyperbolic heat kernel KX,hyp(t; z) is a sum of the above three series, the convergence
of each of the above series follows from the convergence of the hyperbolic heat kernel
KX,hyp(t; z) and the fact that KH(t; z, γ z) is positive for all t ∈ R≥0, z ∈ H, and γ ∈ �X .
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Bounds for Green’s functions 93

Selberg constant The hyperbolic length of the closed geodesic determined by a primitive
non-conjugate hyperbolic element γ ∈ H(�X ) on X is given by

�γ = inf{dH(z, γ z)| z ∈ H}.
The length of the shortest geodesic �X on X is given by

�X = inf
{

dH(z, γ z)
∣

∣ γ ∈ H(�X ), γ hyperbolic, z ∈ H
}

.

From the definition, it is clear that �X > 0.
For s ∈ C with Re(s) > 1, the Selberg zeta function associated to X is defined as

ZX (s) =
∏

γ∈H(�X )

Zγ (s), where Zγ (s) =
∞
∏

n=0

(

1 − e(s+n)�γ
)

.

The Selberg zeta function ZX (s) admits a meromorphic continuation to all s ∈ C, with zeros
and poles characterized by the spectral theory of the hyperbolic Laplacian. Furthermore,
ZX (s) has a simple zero at s = 1, and the following constant is well-defined

cX = lim
s→1

(

Z
′
X (s)

ZX (s)
− 1

s − 1

)

. (20)

For t ∈ R≥0, the hyperbolic heat trace is given by the integral

HTrKX,hyp(t) =
∫

X
HKX,hyp(t; z) μhyp(z).

The convergence of the integral follows from the celebrated Selberg trace formula. Further-
more, from Lemma 4.2 in [12], we have the following relation

∫ ∞

0

(

HTrKX,hyp(t) − 1
)

dt = cX − 1. (21)

Bounds on heat kernels For the rest of this article, we fix a 0 < t0 < 1. Then, there exist
constants c0 and c∞ such that for 0 < t < t0 and η ≥ 0, we have

KH(t; η) ≤ c0
4π t

e−η2/(4t);
furthermore, for t ≥ t0 and η ≥ 0, we get

KH(t; η) ≤ c∞e−t/4. (22)

The above two formulae follow directly from the expression for the heat kernel KH(t; η)

stated in Eq. (18).

Definition 2.1 We fix a constant 0 < β < 1/4, such that for t ≥ t0 and a fixed η ≥ 0, the
function

eβt KH(t; η) (23)

is a monotone decreasing function in the variable t .

Furthermore, there exists a δ0 > 0, such that for η > δ0 and a fixed 0 < t ≤ t0, the function
KH(t; η) is a monotone decreasing function in the variable η. We now fix a δX satisfying
δX > max {δ0, 4�X + 5}.

123



94 A. Aryasomayajula

As a function in the variable z, the sum EKX,hyp(t0, z)+HKX,hyp(t0; z) remains bounded
on X and also at the cusps. So we put

CHK
X = max

z∈X
(

KH(t0; z) + EKX,hyp(t0; z) + HKX,hyp(t0; z)
)

.

Automorphic Green’s function For z, w ∈ H with z �= w, and s ∈ C with Re(s) > 0, the
free-space Green’s function gH,s(z, w) is defined as

gH,s(z, w) = gH,s(u(z, w)) = �(s)2

�(2s)
u−s F(s, s; 2s,−1/u),

where u = u(z, w) = |z−w|2/(4 Im(z) Im(w)) and F(s, s; 2s,−1/u) is the hypergeometric
function.

For z, w ∈ H with z �= w and s = 1, we put gH(z, w) = gH,1(z, w), and by substituting
s = 1 in the definition of gH,s(z, w), we get

gH(z, w) = log

(

1 + 1

u(z, w)

)

= log

∣

∣

∣

∣

z − w

z − w

∣

∣

∣

∣

2

≥ 0. (24)

Using the formula from equation (1.3) in [8], we get

cosh(dH(z, w)) = 1 + 2u(z, w) �⇒ gH(z, w) = log

(

1 + 1

sinh2
(

dH(z, w)/2
)

)

. (25)

Furthermore, for z, w ∈ H with z �= w, we have the following relation

gH(z, w) =
∫ ∞

0
KH(t; z, w)dt. (26)

For z, w ∈ X with z �= w, and s ∈ C with Re(s) > 1, the automorphic Green’s function
gX,hyp,s(z, w) is defined as

gX,hyp,s(z, w) =
∑

γ∈�X

gH,s(z, γw).

The series converges absolutely and locally uniformly for z �= w andRe(s) > 1 (as a function
in the variables z and w, for a fixed s, see Chapter 5 in [8]).

For z, w ∈ X with z �= w, and s ∈ C with Re(s) > 1, the automorphic Green’s function
satisfies the following properties (see Chapters 5 and 6 in [8]):

(1) The automorphic Green’s function gX,hyp,s(z, w) admits a meromorphic continuation
to all s ∈ C with a simple pole at s = 1 with residue 4π/ volhyp(X), and the Laurent
expansion at s = 1 is of the form

gX,hyp,s(z, w) = 4π

s(s − 1) volhyp(X)
+ g(1)

X,hyp(z, w) + Oz,w(s − 1),

where g(1)
X,hyp(z, w) is the constant term of gX,hyp,s(z, w) at s = 1.

(2) Let p, q ∈ PX be two cusps. Put

Cp,q = min

{

c > 0

∣

∣

∣

∣

(

a b
c d

)

∈ σ−1
p �Xσq

}

, Cp,p = Cp.
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Then, for z, w ∈ X with Im(z) > Im(w) and Im(z) Im(w) > C−2
p,q , and s ∈ C with

Re(s) > 1, the automorphic Green’s function admits the Fourier expansion

ghyp,s(σpz, σqw) = 4π Im(z)1−s

2s − 1
Epar,p(σqw, s)

+ δp,q
∑

n �=0

1

|n|Ws(nz)Vs(nw) + O
(

e−2π(Im(z)−Im(w))
)

, (27)

where Ws(z) and Vs(z) denote the Whittaker functions, which are given by equations
(1.26) and (1.36) in [8], respectively. This equation has been proved as Lemma 5.4 in
[8], and one of the terms was wrongly estimated in the proof of the lemma. We have
corrected this error, and stated the corrected equation.

The space C�,��(X) Let C�,��(X) denote the set of complex-valued functions f : X →
P
1(C), which admit the following type of singularities at finitely many points Sing( f ) ⊂ X ,

and are smooth away from Sing( f ):

(1) If s ∈ Sing( f ), then as z approaches s, the function f satisfies

f (z) = c f,s log |ϑs(z)| + Oz(1), (28)

for some c f,s ∈ C.
(2) As z approaches a cusp p ∈ PX , the function f satisfies

f (z) = c f,p log
( − log |ϑp(z)|

) + Oz(1), (29)

for some c f,p ∈ C.

Hyperbolic Green’s function For z, w ∈ X and z �= w, the hyperbolic Green’s function is
defined as

gX,hyp(z, w) = 4π
∫ ∞

0

(

KX,hyp(t; z, w) − 1

volhyp(X)

)

dt.

For z, w ∈ X with z �= w, the hyperbolic Green’s function satisfies the following properties:

(1) For z, w ∈ X , the hyperbolic Green’s function is uniquely determined by the differential
equation (which is to be interpreted in terms of currents)

dzd
c
z gX,hyp(z, w) + δw(z) = μshyp(z), (30)

with the normalization condition
∫

X
gX,hyp(z, w)μhyp(z) = 0. (31)

(2) From Eq. (30), it follows that gX,hyp(z, w) admits a log-singularity at z = w, i.e., for
z, w ∈ X , it satisfies

lim
w→z

(

gX,hyp(z, w) + log |ϑz(w)|2) = Oz(1). (32)

(3) For z, w ∈ X and z �= w, we have

gX,hyp(z, w) = g(1)
X,hyp(z, w) = lim

s→1

(

gX,hyp,s(z, w) − 4π

s(s − 1) volhyp(X)

)

. (33)

The above properties follow from the properties of the heat kernelKX,hyp(t; z, w) or from
the properties of the automorphic Green’s function gX,hyp,s(z, w).
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(4) From Proposition 2.1 in [2], (or from Proposition 2.4.1 in [4]) for a fixed w ∈ X , and for
z ∈ X with Im(σ−1

p z) > Im(σ−1
p w), and Im(σ−1

p z) Im(σ−1
p w) > C−2

p , we have

gX,hyp(z, w) = 4πκX,p(w) − 4π

volhyp(X)
− 4π log

(

Im(σ−1
p z)

)

volhyp(X)

− log
∣

∣1 − e2π i(σ
−1
p z−σ−1

p w)
∣

∣

2 + O
(

e−2π(Im(σ−1
p z)−Im(σ−1

p w))
)

, (34)

i.e., for a fixed w ∈ X , as z ∈ X approaches a cusp p ∈ PX , we have

gX,hyp(z, w) = −4π log
(

Im(σ−1
p z)

)

volhyp(X)
+Oz,w(1) = −4π log

( − log |ϑp(z)|
)

volhyp(X)
+Oz,w(1).

(5) For any f ∈ C�,��(X) and for any fixed w ∈ X\Sing( f ), from Corollary 2.5 in [2] (or
from Corollary 3.1.8 in [4]), we have the equality of integrals

∫

X
gX,hyp(z, w)dzd

c
z f (z) + f (w) +

∑

s∈Sing( f )

c f,s

2
gX,hyp(s, w) =

∫

X
f (z) μshyp(z).

(35)

An auxiliary identity From Definition 8.1 in [13], for z ∈ X\EX , we have the following
relation

4π
∫ ∞

0
�hyp KX,hyp(t; z)dt =

∑

γ∈�X \{id}
�hyp gH(z, γ z).

Furthermore, fromLemmas 5.2 and 6.3, Proposition 7.3, the right-hand side of above equation
remains bounded at the cusps and at the elliptic fixed points. Hence, as in [2], we extend
Definition 8.1 in [13] and the above relation to cusps and elliptic fixed points to conclude
that the following quantity is well-defined on X and remains bounded at the cusps and at the
elliptic fixed points

∫ ∞

0
�hyp KX,hyp(t; z)dt.

Definition 2.2 For notational brevity, put

CX,hyp =
∫

X

∫

X
gX,hyp(ζ, ξ)

( ∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

×
( ∫ ∞

0
�hyp KX,hyp(t; ξ)dt

)

μhyp(ξ) μhyp(ζ ).

From Proposition 2.8 in [2] (or from Proposition 2.6.4 in [4]), for z, w ∈ X , we have

gX,hyp(z, w) − gX,can(z, w) = φX (z) + φX (w), (36)

where from Remark 2.16 in [2] (or from Corollary 3.2.7 in [4]), the function φX (z) is given
by the formula

φX (z) = 1

2gX

∫

X
gX,hyp(z, ζ )

(∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

μhyp(ζ ) − CX,hyp

8g2X
. (37)
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Key-identity FromCorollary 2.15 in [2] (or fromCorollary 3.2.5 in [4]), for any f ∈ C�,��(X),
we have following identity, which is a generalization of Theorem 3.4 from [10] to cusps and
elliptic fixed points at the level of currents

g
∫

X
f (z) μcan(z)

=
(

1

4π
+ 1

volhyp(X)

) ∫

X
f (z) μhyp(z)+ 1

2

∫

X
f (z)

( ∫ ∞

0
�hyp KX,hyp(t; z)dt

)

μhyp(z).

(38)

3 Certain convergence results

In this section, we prove the absolute and uniform convergence of certain series, and compute
their asymptotics at cusps and at elliptic fixed points. The analysis of this section allows us
to decompose the integrals involved in (37) into expressions, which we will bound in Sect. 4.

3.1 Parabolic case

Definition 3.1 For z ∈ H, put

PX (z) =
∑

γ∈P(�X )

gH(z, γ z).

For any z ∈ H and γ ∈ SL2(R), from the definition of u(z, w), it follows that u(γ z, w) =
u(z, γ −1w). Usingwhich andEq. (24),we arrive atgH(γ z, w) = gH(z, γ −1w). Furthermore,
for any γ0 ∈ �X , we have γ −1

0 P(�X )γ0 = P(�X ). So, for any γ0 ∈ �X and z ∈ H, observe
that

PX (γ0z) =
∑

γ∈P(�X )

gH(γ0z, γ γ0z) =
∑

γ∈P(�X )

gH(z, γ −1
0 γ γ0z)

=
∑

γ∈
(

γ −1
0 P(�X )γ0

)

gH(z, γ z) =
∑

γ∈P(�X )

gH(z, γ z),

which implies that the function PX (z) is invariant under the action of �X , and hence, defines
a function on X (recall that id �∈ P(�X )).

Lemma 3.2 For z ∈ X, the series PX (z) converges absolutely and locally uniformly.

Proof We have the following decomposition of parabolic elements of �X

P(�X ) =
⋃

p∈PX

⋃

η∈�X,p\�X

(

η−1�X,pη\{id}) =
⋃

p∈PX

⋃

η∈�X,p\�X

⋃

n �=0

{

η−1γ n
p η},

where γp is a generator of the stabilizer subgroup �X,p of the cusp p ∈ PX . This implies
that formally, we have

PX (z) =
∑

γ∈P(�X )

gH(z, γ z) =
∑

p∈PX

∑

η∈�X,p\�X

∑

n �=0

gH(z, η−1γ n
p ηz)

=
∑

p∈PX

∑

η∈�X,p\�X

∑

n �=0

gH(ηz, γ n
p ηz) =

∑

p∈PX

∑

η∈�X,p\�X

Pgen,p(ηz), (39)
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where Pgen,p(z) =
∑

n �=0
gH(z, γ n

p z). We first prove the absolute convergence of the func-

tion Pgen,p(z). From the definition of gH(z, w) as given in (24), for any cusp p ∈ PX , observe
that

Pgen,p(z) =
∑

n �=0

gH(σ−1
p z, γ n∞σ−1

p z) =
∑

n �=0

log

(

4 Im(σ−1
p z)2 + n2

n2

)

≤ 2 log
(

4 Im(σ−1
p z)2 + 1

) + 2
∫ ∞

1
log

(

4 Im(σ−1
p z)2 + t2

t2

)

dt

= 4π Im(σ−1
p z) − 8 Im(σ−1

p z) tan−1

(

1

2 Im(σ−1
p z)

)

≤ 32 Im(σ−1
p z)2, (40)

where σp is a scaling matrix associated to the cusp p ∈ PX as in (6) (for the details regarding
the computation of the last inequality, we refer the reader to Proposition 4.2.3 in [4]). This
proves the absolute convergence of the function Pgen,p(z).

Hence, combining Eq. (39) with inequality (40), we arrive at the estimate

PX (z) ≤ 32
∑

p∈PX

∑

η∈�X,p\�X

Im(σ−1
p ηz)2 = 32

∑

p∈PX

EX,par,p(z, 2),

which proves the locally uniform convergence of the series PX (z). Furthermore, each term
of the series PX (z) is positive, hence, it converges absolutely. ��

Lemma 3.3 As z ∈ X approaches a cusp p ∈ PX , the function PX (z) satisfies the estimate

PX (z) = 4π Im(σ−1
p z) − log

(

4 Im(σ−1
p z)2

) + Oz(1).

Proof Let z ∈ X approach a cusp p ∈ PX . From Eq. (39), we obtain the decomposition

PX (z) =
∑

q∈PX
q �=p

∑

η∈�X,q\�X

Pgen,q(ηz) +
∑

η∈�X,p\�X
η �=id

Pgen,p(ηz) + Pgen,p(z). (41)

We now estimate the right-hand side of the above equation term by term. Using inequality
(40), we derive the following upper bounds for the first and second terms

∑

q∈PX
q �=p

∑

η∈�X,q\�X

Pgen,q(ηz) ≤ 32
∑

q∈PX
q �=p

∑

η∈�X,q\�X

Im(σ−1
q ηz)2 = 32

∑

q∈PX
q �=p

EX,par,q(z, 2);

(42)
∑

η∈�X,p\�X
η �=id

Pgen,p(ηz) ≤ 32
∑

η∈�X,p\�X
η �=id

Im(σ−1
p ηz)2 = 32

(Epar,p(z, 2) − Im(σ−1
p z)2

)

. (43)

So using the above upper bounds, for z ∈ X approaching p ∈ PX , from Eq. (13), we have
the following estimate for the first and second terms

∑

q∈PX
q �=p

∑

η∈�X,q\�X

Pgen,q(ηz) +
∑

η∈�X,p\�X
η �=id

Pgen,p(ηz) = O
(

Im(σ−1
p z)−1

)

. (44)

123



Bounds for Green’s functions 99

As z ∈ X approaches p ∈ PX , we are now left to investigate the behavior of the third term

Pgen,p(z) =
∑

n �=0

gH(σ−1
p z, γ n∞σ−1

p z)

= lim
w→z

lim
s→1

( ∞
∑

n=−∞
gH,s(σ

−1
p w, γ n∞σ−1

p z) − gH,s(σ
−1
p z, σ−1

p w)

)

. (45)

FromLemma 5.1 in Chapter 5 of [8], for Im(σ−1
p z) > Im(σ−1

p w), and s ∈ Cwith Re(s) > 1,
we have

∞
∑

n=−∞
gH,s(σ

−1
p w, γ n∞σ−1

p z) = 4π

2s − 1
Im(σ−1

p w)s Im(σ−1
p z)1−s

+
∑

n �=0

1

|n|Ws(nσ−1
p z)Vs(nσ−1

p w). (46)

Substituting the above expression in Eq. (45), we get

Pgen,p(z) = 4π Im(σ−1
p z) + lim

w→z
lim
s→1

(

∑

n �=0

1

|n|Ws(nσ−1
p z)Vs(nσ−1

p w)

− gH,s(σ
−1
p z, σ−1

p w)

)

. (47)

From the Proof of Lemma 5.4 in [8] (there is a slight error in the calculation of this lemma,
which has been corrected in Corollary 1.9.5 in [4]), we have the estimate

∑

n �=0

1

|n|Ws(nσ−1
p z)Vs(nσ−1

p w)

= − log
∣

∣1 − e2π i(σ
−1
p z−σ−1

p w)
∣

∣

2 + O
(

e−2π(Im(σ−1
p z)−Im(σ−1

p w))
)

.

Using the estimate stated in above equation, we compute

lim
w→z

lim
s→1

(

∑

n �=0

1

|n|Ws(nσ−1
p z)Vs(nσ−1

p w) − gH,s(σ
−1
p z, σ−1

p w)

)

= − log
(

4 Im(σ−1
p z)2

) + Oz(1). (48)

Combining Eqs. (47) and (48), we arrive at the estimate

Pgen,p(z) = lim
w→z

(

− log
∣

∣1 − e2π i(σ
−1
p z−σ−1

p w)
∣

∣

2 − log

∣

∣

∣

∣

σ−1
p z − σ−1

p w

σ−1
p z − σ−1

p w

∣

∣

∣

∣

2)

+ Oz(1)

= 4π Im(σ−1
p z) − log

(

4 Im(σ−1
p z)2

) + Oz(1), (49)

which along with the estimate obtained in Eq. (44) completes the proof of the proposition.

��
Remark 3.4 From Lemma 5.2 in [13], the following series

∑

γ∈P(�X )

�hyp gH(z, γ z)
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converges absolutely and uniformly for all z ∈ X , and the above series remains bounded at
the cusps of X . Furthermore, from the absolute and locally uniform convergence of the series
PX (z), and the uniform convergence of the above series, we have the following relations

∑

γ∈P(�X )

�hyp gH(z, γ z) = �hyp PX (z) =
∑

p∈PX

∑

η∈�X,p\�X

�hyp Pgen,p(ηz),

�hyp Pgen,p(z) =
∑

n �=0

�hyp gH(σ−1
p z, γ n∞σ−1

p z) = 2

(

2π Im(σ−1
p z)

sinh(2π Im(σ−1
p z))

)2

− 2. (50)

Put

Caux
X,par = sup

z∈X
∣

∣ �hyp PX (z)
∣

∣. (51)

3.2 Elliptic case

Definition 3.5 For z ∈ H, put

EX (z) =
∑

γ∈E(�X )

gH(z, γ z).

Using similar arguments as in Definition 3.1, we can conclude that the function EX (z) is
�X -invariant and hence, defines a function on X .

Lemma 3.6 For z ∈ X\EX , the series EX (z) converges absolutely and locally uniformly,
and as z ∈ X approaches an elliptic fixed point e ∈ EX , we have

EX (z) = −me − 1

me
log |ϑe(z)|2 + Oz(1). (52)

Furthermore, the function EX (z) is zero at the cusps.

Proof We have the following decomposition of elliptic elements of �X

E(�X ) =
⋃

e∈EX

⋃

η∈�X,e\�X

{

η−1�X,eη\{id}} =
⋃

e∈EX

⋃

η∈�X,e\�X

me−1
⋃

n=1

{

η−1γ n
e η},

where �X,e denotes the stabilizer subgroup of the elliptic fixed point e ∈ EX , and γe denotes
a generator of �X,e. Using the above decomposition, formally we have

EX (z) =
∑

γ∈E(�X )

gH(z, γ z) =
∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

gH(z, η−1γ n
e ηz)

=
∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

gH(σ−1
e ηz, γ n

i σ−1
e ηz), (53)

where σe denotes a scaling matrix of the elliptic fixed point e ∈ EX as given in (14). Now
for any e ∈ EX , 0 < n ≤ me − 1, and η ∈ �X,e\�X , let w = u + iv denote σ−1

e ηz. Using
formula (24) and the relation

u2 + v2 + 1 = 2v cosh(ρ(w)),
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where ρ(u) denotes dH(z, i) the hyperbolic distance between the points z and i , we compute

gH(w, γ n
i w) = log

∣

∣

∣

∣

− sin(nπ/me)(|w|2 + 1) + cos(nπ/me)(w − w)

− sin(nπ/me)(w2 + 1)

∣

∣

∣

∣

2

= log

(

sin2(nπ/me) cosh2(ρ(w)) + cos2(nπ/me)

sin2(nπ/me) cosh2(ρ(w)) − sin2(nπ/me)

)

= log

(

1 + 1

sin2(nπ/me) sinh2(ρ(w))

)

≤ 1

sin2(nπ/me) sinh2(ρ(w))
. (54)

Put

cX,ell = max
{

1/ sin2(nπ/me)
∣

∣ e ∈ EX , 0 < n ≤ me − 1
}

. (55)

Then, from decomposition (53) and inequality (54), we derive

EX (z) ≤
∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

cX,ell

sinh2(ρ(σ−1
e ηz))

= cX,ell

∑

e∈EX

(me − 1) EX,ell,e(z, 2), (56)

which proves the locally uniform convergence of the series EX (z). Furthermore, each term
of the series EX (z) is positive, hence, it converges absolutely. The asymptotic relation stated
in (52) follows trivially from decomposition (53).

Moreover, for any z, w ∈ H with z �= w, any γ ∈ �X\P(�X ), and any cusp p ∈ PX ,
observe that

lim
z→p

gH(z, γw) = 0.

From the above relation, it trivially follows that the function EX (z) is zero at the cusps. ��

Remark 3.7 From Lemma 3.6, it follows that the function EX (z) admits log-singularities at
elliptic fixed points, and is zero at the cusps. So we can conclude that EX (z) ∈ C�,��(X)

with Sing(EX (z)) = EX and cEX ,e = −2(me − 1)/me, for any e ∈ EX .
From Lemma 6.3 in [13], the following series

∑

γ∈E(�X )

�hyp gH(z, γ z) ≤ 0

converges absolutely and uniformly for all z ∈ X , and the above series remains bounded
at the cusps. Furthermore, from the absolute and locally uniform convergence of the series
EX (z), and the uniform convergence of the above series, we have the following relation

�hyp EX (z) =
∑

γ∈E(�X )

�hyp gH(z, γ z) ≤ 0. (57)

3.3 Hyperbolic case

Definition 3.8 For z ∈ X , put

HX (z) = 4π
∫ ∞

0

(

HKX,hyp(t; z) − 1

volhyp(X)

)

dt. (58)

The function HX (z) is invariant under the action of �X , and hence, defines a function on X .
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Proposition 3.9 The function HX (z) is well-defined on X. Moreover it satisfies

HX (z) = lim
w→z

(

gX,hyp(z, w) − gH(z, w)) − EX (z) − PX (z). (59)

Proof From Lemmas 3.2, 3.6, we know that the series

PX (z) =
∑

γ∈P(�X )

gH(z, γ z) =
∑

γ∈P(�X )

4π
∫ ∞

0
KH(t; z, γ z)dt,

EX (z) =
∑

γ∈E(�X )

gH(z, γ z) =
∑

γ∈E(�X )

4π
∫ ∞

0
KH(t; z, γ z)dt.

converge absolutely for all z ∈ X , respectively. So, we can interchange summation and
integration in the above integrals. Moreover, the integral

∫ ∞

0

(

KX,hyp(t; z) − KH(t; 0) − 1

volhyp(X)

)

dt (60)

converges for all z ∈ X . So we can write

HX (z) = 4π
∫ ∞

0

(

HKX,hyp(t; z) − 1

volhyp(X)

)

dt

= 4π
∫ ∞

0

(

KX,hyp(t; z) − KH(t; 0) − 1

volhyp(X)
−

∑

γ∈E(�X )

KH(t; z, γ z)

−
∑

γ∈P(�X )

KH(t; z, γ z)
)

dt

= 4π
∫ ∞

0

(

KX,hyp(t; z) − KH(t; 0) − 1

volhyp(X)

)

dt − EX (z) − PX (z), (61)

which proves the convergence of the function HX (z).
From the convergence of the integral in (60), and an application of Fatou’s lemma from

real analysis, we can interchange limit and integration in the following expression to derive

lim
w→z

(

gX,hyp(z, w) − gH(z, w)
) = 4π

∫ ∞

0

(

KX,hyp(t; z) − KH(t; 0) − 1

volhyp(X)

)

dt.

(62)

Combining Eqs. (61) and (62) proves Eq. (59). ��

In the following proposition, we describe the behavior of the automorphic function HX (z)
at the cusps.

Proposition 3.10 As z ∈ X approaches a cusp p ∈ PX , we have

EX (z) + HX (z) = 8π log
(

Im(σ−1
p z)

)

volhyp(X)
− 4π

volhyp(X)
+ 4πkp,p(0) + O

(

Im(σ−1
p z)−1),

where kp,p(0) is the zeroth Fourier coefficient in the Fourier expansion of Kronecker’s limit
function κX,p(z) associated to the cusp p ∈ PX (see Eq. (12)).
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Proof Combining Eqs. (59) and (41), we have

EX (z) + HX (z) = lim
w→z

(

gX,hyp(z, w) −
∞
∑

n=−∞
gH(σ−1

p w, γ n∞σ−1
p z)

)

−
∑

q∈PX
q �=p

∑

η∈�X,q\�X

Pgen,q(ηz) −
∑

η∈�X,p\�X
η �=id

Pgen,p(ηz).

Wenowestimate the right-hand side of the above equation termby term.As z ∈ X approaches
the cusp p ∈ PX , from Eq. (44), we arrive at the estimate

EX (z) + HX (z) = lim
w→z

(

gX,hyp(z, w) −
∞
∑

n=−∞
gH(σ−1

p w, γ n∞σ−1
p z)

)

+ O
(

Im(σ−1
p z)−1).

(63)

We are now left to compute the asymptotics of the limit

lim
w→z

(

ghyp(z, w) −
∞
∑

n=−∞
gH(σ−1

p w, γ n∞σ−1
p z)

)

= lim
w→z

lim
s→1

(

ghyp,s(z, w) − 4π

s(s − 1) volhyp(X)
−

∞
∑

n=−∞
gH,s(σ

−1
p w, γ n∞σ−1

p z)

)

. (64)

As z ∈ X approaches p ∈ PX , combining estimates (27) and (46), we have

gX,hyp,s(z, w) −
∞
∑

n=−∞
gH,s(σ

−1
p w, γ n∞σ−1

p z) = 4π Im(σ−1
p z)1−s

2s − 1
EX,par,p(w, s)

− 4π

2s − 1
Im(σ−1

p w)s Im(σ−1
p z)1−s + O

(

e−2π Im(σ−1
p z)).

Using the above expression, we find that the right-hand side of limit (64) can be written as

lim
w→z

lim
s→1

(

4π Im(σ−1
p z)1−s

2s − 1
EX,par,p(w, s) − 4π

(s − 1) volhyp(X)

)

+ 4π

volhyp(X)
− 4π Im(σ−1

p z) + O
(

e−2π Im(σ−1
p z)).

Toevaluate the above limit,we compute theLaurent expansions ofEpar,p(w, s), Im(σ−1
p z)1−s ,

and (2s − 1)−1 at s = 1. The Laurent expansions of Im (σ−1
p z)1−s and (2s − 1)−1 at s = 1

are easy to compute, and are of the form

Im (σ−1
p z)

1−s = 1 − (s − 1) log
(

Im (σ−1
p z)

) + O
(

(s − 1)2
)

,

1

2s − 1
= 1 − 2(s − 1) + O

(

(s − 1)2
)

.
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Using the Laurent expansion of the Eisenstein series Epar,p(w, s) from Eq. (11), and com-
bining it with above expressions, we compute

lim
w→z

(

ghyp(z, w) −
∞
∑

n=−∞
gH(σ−1

p w, γ n∞σ−1
p z)

)

= 4πκX,p(z) − 4π Im(σ−1
p z)

− 4π log
(

Im(σ−1
p z)

)

volhyp(X)
− 4π

volhyp(X)
+ O

(

e−2π Im(σ−1
p z)). (65)

From the Fourier expansion of Kronecker’s limit function κX,p(z) described in (12), we have

κX,p(z) = Im(σ−1
p z) + kp,p(0) − log

(

Im(σ−1
p z)

)

volhyp(X)
+ O

(

e−2π Im(σ−1
p z)).

As z ∈ X approaches p ∈ PX , substituting the above estimate in the right-hand side of Eq.
(65), and combining it with Eq. (60), we arrive at

EX (z) + HX (z) = −8π log
(

Im(σ−1
p z)

)

volhyp(X)
− 4π

volhyp(X)
+ 4πkp,p(0) + O

(

Im(σ−1
p z)−1),

which completes the proof of the proposition. ��

Remark 3.11 As the function EX (z) is zero at the cusps, from Proposition 3.10, we can
conclude that HX (z) has log log-growth at the cusps. Moreover, the function H(z) remains
smooth for all z ∈ X . Hence, HX (z) ∈ C�,��(X) with Sing(HX (z)) = ∅.

Furthermore, from Eq. (21), it follows that
∫

X
HX (z) μhyp(z) = 4π(cX − 1). (66)

Using Eq. (59), we get

�hyp PX (z) + �hyp EX (z) + �hyp HX (z) = �hyp lim
w→z

(

gX,hyp(z, w) − gH(z, w)
)

.

Since the integral

4π
∫ ∞

0

(

KX,hyp(t; z, z) − KH(t; 0) − 1

volhyp(X)

)

dt,

as well as the integral of the derivatives of the integrand are absolutely convergent, we can
take the Laplace operator �hyp inside the integral. So we find

�hyp PX (z) + �hyp EX (z) + �hyp HX (z) = 4π
∫ ∞

0
�hyp KX,hyp(t; z)dt. (67)

Corollary 3.12 For any z ∈ X\EX , we have

φX (z) =
(

HX (z) + EX (z)
)

2gX
+ 1

8πgX

∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

−
∑

e∈EX

me − 1

2gXme
gX,hyp(z, e)−CX,hyp

8g2X
− 2π(cX − 1)

gX volhyp(X)
− 1

2gX

∫

X
EX (ζ ) μshyp(ζ ).
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Proof Using formula (7), and combining Eqs. (37) and (67), we have

φX (z) = 1

2gX

∫

X
gX,hyp(z, ζ )

( − dζ d
c
ζ

(

EX (ζ ) + HX (ζ )
))

+ 1

8πgX

∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(z) − CX,hyp

8g2X
. (68)

From Remarks 3.7 and 3.11, we know that the functions EX (z) and HX (z) both belong to
C�,��(X)with Sing(EX (z)) = EX and Sing(HX (z)) = ∅, respectively. Hence, from Eq. (35),
for any z ∈ X\EX , we have the following relations

−
∫

X
gX,hyp(z, ζ )dζ d

c
ζ EX (ζ )=EX (z)

2gX
−

∑

e∈EX

me−1

2gXme
gX,hyp(z, e)− 1

2gX

∫

X
EX (ζ ) μshyp(ζ ),

−
∫

X
gX,hyp(z, ζ )dζ d

c
ζ HX (ζ ) = HX (z)

2gX
− 1

2gX

∫

X
HX (ζ ) μshyp(ζ ).

Substituting the above two equations in Eq. (68) and using relation (66) completes the proof
of the corollary. ��

4 Bounds for hyperbolic Green’s function

In this section, we derive bounds for the hyperbolic Green’s functions on compact subsets of
X , and in the neighborhoods of cusps and elliptic fixed points.

We begin by defining a compact subset Yε, for some 0 < ε < 1, and we adapt the existing
bounds for the hyperbolic heat kernel from [10]. We then use these bounds to bound the
hyperbolic Green’s function both on the compact subset Yε , and in the neighborhood of
cusps and elliptic fixed points.

4.1 Bounds for hyperbolic Green’s function

Notation 4.1 For any δ > 0 and a fixed z, w ∈ X , identifying X with its fundamental
domain, we define the set

S�X (δ; z, w) = {

γ ∈ H(�X ) ∪ {id}∣∣ dH(z, γw) < δ
}

.

Let 0 < ε < min{1, �X } be any number such that the following conditions holds true:

(1) For any cusp p ∈ PX , let Uε(p) denote an open coordinate disk of radius ε around p.
Then, we have Im(σ−1

p z) ≥ Im(σ−1
p γ z), where σp is a scaling matrix of the cusp p.

Furthermore, for p, q ∈ PX and p �= q , we have

Uε(p) ∩Uε(q) = ∅.

(2) For any elliptic fixed point e ∈ EX , let Uε(e) denote an open coordinate disk around e

such that dH(z, e) = ε for all z ∈ ∂Uε(e). Furthermore for e, f ∈ EX and e �= f, we have

Uε(e) ∩Uε(f) = ∅.

(3) For any elliptic fixed point e ∈ EX , z ∈ ∂Uε(e) and γ ∈ �X , we have

dH(z, γ e) ≥ ε.
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Furthermore, for any p ∈ PX and any e ∈ EX , we have

Uε(p) ∩Uε(e) = ∅.

We fix an ε satisfying the above three conditions and put

Yε = X

∖(

⋃

p∈PX

Uε(p) ∪
⋃

e∈EX

Uε(e)

)

, Y par
ε = X

∖(

⋃

p∈PX

Uε(p)

)

,

Y ell
ε = X

∖(

⋃

e∈EX

Uε(e)

)

.

Furthermore, for any cusp p ∈ PX , any elliptic fixed point e ∈ EX , put

Y par
ε,p = X\Uε(p), Y ell

ε,e = X\Uε(e),

respectively. For brevity of notation, we identify the fundamental domains associated to
the compact subsets Yε , Y

par
ε , and Y ell

ε again by the same symbols.

The computations carried out in the following two remarkswill comehandy in the calculations
that follow.

Lemma 4.2 Let e ∈ EX be an elliptic fixed point. Then, for any γ ∈ �X , and z ∈ ∂Uε(e),
we have the following upper bound

sinh2
(

dH(z, γ z)/2
) ≤ 7 coth(ε/2) sinh2

(

dH(z, γ e)/2
)

. (69)

Proof For z ∈ ∂Uε(e) and any γ ∈ �X , from condition (3), which the fixed ε satisfies, we
have

dH(z, γ e) ≥ ε �⇒ sinh2
(

dH(z, γ e)/2
)

sinh2(ε/2)
≥ 1; (70)

dH(z, γ z) ≤ dH(z, γ e) + dH(γ z, γ e) = dH(z, γ e) + ε �⇒ sinh2
(

dH(z, γ z)/2
)

≤ sinh2
(

dH(z, γ e)/2
)

. (71)

For any z ∈ ∂Uε(e) and γ ∈ �X , observe that

sinh2
(

(dH(z, γ e) + ε)/2
) = sinh2

(

dH(z, γ e)/2
)

cosh2(ε/2)

+ cosh2
(

dH(z, γ e)/2
)

sinh2(ε/2) + sinh
(

dH(z, γ e)/2
)

cosh
(

dH(z, γ e)/2
)

sinh(ε)

= 2 sinh2
(

dH(z, γ e)/2
)

cosh2(ε/2) + sinh2(ε/2)

+ sinh
(

dH(z, γ e)/2
)

cosh
(

dH(z, γ e)/2
)

sinh(ε). (72)

Using inequality (70) and the fact that sinh
(

dH(z, γ e)/2
) ≤ cosh

(

dH(z, γ e)/2
)

, we estimate
the second and third terms on the right-hand side of above equation

sinh2(ε/2) + sinh
(

dH(z, γ e)/2
)

cosh
(

dH(z, γ e)/2
)

sinh(ε)

≤ sinh2
(

dH(z, γ e)/2
) + sinh2

(

dH(z, γ e)/2
)

sinh2(ε/2)
sinh(ε) + sinh2

(

dH(z, γ e)/2
)

sinh(ε).
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Combining Eq. (72) with the above inequality, and using the fact that 0 < ε < 1 (which
implies that 0 < sinh(ε/2) + cosh(ε/2) < 2, and 1 < cosh(ε/2) < cot(ε/2)), we find

sinh2
(

(dH(z, γ e)+ε)/2
) ≤ sinh2

(

dH(z, γ e)/2
)(

1+2 cosh2(ε/2)+2 coth(ε/2)+sinh(ε)
)

≤ sinh2
(

dH(z, γ e)/2
)(

3 coth(ε/2) + 2 cosh(ε/2)
(

sinh(ε/2) + cosh(ε/2)
))

≤ 7 coth(ε/2) sinh2
(

dH(z, γ e)/2
)

. (73)

Finally combining the above upper bound with inequality (70) completes the proof of the
lemma. ��
Lemma 4.3 Let e ∈ EX be an elliptic fixed point. Then, for any γ ∈ �X , z ∈ ∂Uε/2(e), and
w ∈ ∂Uε(e), we have the following upper bound

sinh2
(

dH(z, γ z)/2
) ≤ 14 coth(ε/4) sinh2

(

dH(z, γw)/2
)

. (74)

Proof For any γ ∈ �X , z ∈ ∂Uε/2(e), and w ∈ ∂Uε(e), from the choice of ε (i.e., condition
(3) which the fixed ε satisfies), we have

dH(z, γw) + dH(z, e) ≥ dH(γw, e) �⇒ dH(z, γw)

≥ ε/2 �⇒ sinh2
(

dH(z, γw)/2
)

sinh2(ε/4)
≥ 1; (75)

dH(z, γ z) ≤ dH(z, γw) + dH(γw, γ z) ≤ dH(z, γw) + ε

�⇒ sinh2
(

dH(z, γ z)/2
) ≤ sinh2

(

(dH(z, γw) + ε)/2
)

. (76)

Using computation (72) from Lemma 4.2, we have

sinh2
(

(dH(z, γw) + ε)/2
) = 2 sinh2

(

dH(z, γw)/2
)

cosh2(ε/2)

+ sinh2(ε/2)+sinh
(

dH(z, γw)/2
)

cosh
(

dH(z, γw)/2
)

sinh(ε).

Using inequality (75), and the fact that sinh
(

dH(z, γw)/2
) ≤ cosh

(

dH(z, γw)/2
)

, we arrive
at

sinh2
(

(dH(z, γw) + ε)/2
)

≤ sinh2
(

dH(z, γw)/2
)

(

2 cosh2(ε/2) + sinh2(ε/2)

sinh2(ε/4)
+ sinh(ε) + sinh(ε)

sinh2(ε/4)

)

= sinh2
(

dH(z, γw)/2
)

(

2 cosh2(ε/2)+4 cosh2(ε/4)+sinh(ε)+4 coth(ε/4) cosh(ε/2)

)

Using the fact that 0 < ε < 1 (which implies that cosh2(ε/4) ≤ cosh2(ε/2), cosh(ε/
2) ≤ 1.13, sinh(ε) ≤ 1.18, and 1 < coth(ε/4)), we arrive at the following estimate

sinh2
(

(dH(z, γw) + ε)/2
) ≤ 14 coth(ε/4) sinh2

(

dH(z, γw)/2
)

,

which together with inequality (76) completes the proof of the lemma. ��
Definition 4.4 From Eqs. (13) and (15), it follows that the following quantities are well-
defined

CX,par = sup
z∈X

∑

p∈PX

( EX,par,p(z, 2) − Im(σ−1
p z)2

)

, (77)

CX,ell = sup
z∈X

cX,ell

∑

e∈EX

(me − 1)
( EX,ell,e(z, 2) − sinh−2 (

ρ(σ−1
e z)

))

. (78)
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Lemma 4.5 We have the following upper bounds

sup
z∈Y par

ε

PX (z) ≤ −6|PX | log ε + 32CX,par (79)

sup
z∈Y ell

ε

EX (z) ≤ −
∑

e∈EX

(me − 1) log
(

tanh2(ε)/cX,ell
) + CX,ell. (80)

Proof Combining estimate (77) with the estimates from the Proof of Lemma 3.3 (estimate
(43)), we arrive at the following upper bound

sup
z∈Y par

ε

PX (z) ≤ 32
∑

p∈PX

(

Im(σ−1
p z)2 + 32

(EX,par,p(z, 2) − Im(σ−1
p z)2

)

)

≤ −16|PX | log ε

π
+ 32CX,par ≤ −6|PX | log ε + 32CX,par,

which proves (79).
Combining estimate (78) with the estimates from the proof of Lemma 3.6 (estimates (54)

and (56)), and using the fact that cX,ell ≥ 1, we arrive at the following estimate

sup
z∈Y ell

ε

EX (z) ≤ sup
z∈Y ell

ε

∑

e∈EX

me−1
∑

n=1

log

(

1 + 1

sin2(nπ/me) sinh2(ρ(σ−1
e z))

)

+ sup
z∈Y ell

ε

cX,ell

∑

e∈EX

(

(me − 1)
( EX,ell,e(z, 2) − sinh−2 (

ρ(σ−1
e z)

))

)

≤ sup
z∈Y ell

ε

(

−
∑

e∈EX

(me − 1) log
(

tanh2(ρ(σ−1
e z))/cX,ell

)

)

+ CX,ell. (81)

For any e ∈ EX , from condition (2) which the fixed ε satisfies, we find

sup
z∈Y ell

ε

(

− log
(

tanh2(ρ(σ−1
e z))/cX,ell

)

)

= sup
z∈Y ell

ε

(

− log
(

tanh2(dH(z, e))/cX,ell
)

)

≤ sup
z∈∂Uε(e)

(

− log
(

tanh2(dH(z, e))/cX,ell
)

)

= − log
(

tanh2(ε)/cX,ell
)

. (82)

Combining inequalities (81) and (82), establishes upper bound (80). ��

Definition 4.6 With notation as in Sect. 1, for any δ ≥ δX , α > 0, and z, w ∈ Yε, put

K α,δ
X,hyp(t; z, w)

= KX,hyp(t; z, w) −
∑

n: 0≤λX,n<α

ϕX,n(z)ϕX,n(w)e−λX,n t −
∑

γ∈S�X (δ;z,w)

KH(t; dH(z, γw)).

The following theorem is an adaption of Lemma 4.2 in [10] to the case where X admits cusps
and elliptic fixed points.

Theorem 4.7 For any α ∈ (0, λX,1), δ ≥ δX , and z, w ∈ Yε, we have the following upper
bounds:
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(a) For 0 < t < t0, then
∣

∣K α,δ
X,hyp(t; z, w)

∣

∣

≤ 1

volhyp(X)
+ c0 sinh(�X ) sinh(δ)

8δ2 sinh2(�X/2)
+ c0e2�X

2π sinh2(�X/2)
+

∑

γ∈P(�X )

KH(t; z, γw)

+
∑

γ∈E(�X )

KH(t; z, γw); (83)

(b) If t ≥ t0, then

∣

∣K α,δ
X,hyp(t; z, w)

∣

∣ ≤ 1

2

(

PKX,hyp(t; z) + PKX,hyp(t;w)
) + e−β(t−t0) CHK

X

+ c∞ sinh(δ + �X ) e−t/4

sinh(�X )
. (84)

Proof For any α ∈ (0, λX,1), δ ≥ δX , z, w ∈ Yε , and 0 < t < t0, adapting the arguments
from the Proof of Lemma 4.2 in [10], we have
∣

∣K α,δ
X,hyp(t; z, w)

∣

∣

≤ 1

volhyp(X)
+

∑

γ �∈S�X (δ;z,w)

KH(t; z, γw)+
∑

γ∈P(�X )

KH(t; z, γw)+
∑

γ∈E(�X )

KH(t; z, γw).

Estimate (83) now follows from restricting the arguments from the same proof to hyper-
bolic elements of �X , and from the observation that the length of the shortest geodesic �X
corresponds to the injectivity radius rX in the Proof of Lemma 4.2 in [10].

For notational brevity, put

K (t; z) =
∞
∑

n=1

ϕX,n(z)ϕX,n(w)e−λX,n t+ 1

4π

∑

p∈PX

∫ ∞

0

∣

∣ EX,par,p
(

z, 1/2+ir
)∣

∣

2
e−(r2+1/4)t dr.

For t ≥ t0, again from the Proof of Lemma 4.2 in [10], we have

∣

∣K α,δ
X,hyp(t; z, w)

∣

∣ ≤ 1

2

(

K (t; z) + K (t;w)
) +

∑

γ∈S�X (δ;z,w)

KH(t; dH(z, γw))

≤ 1

2

(

KX,hyp(t; z) + KX,hyp(t;w)
) +

∑

γ∈S�X (δ;z,w)

KH(t; dH(z, γw)).

Adapting the arguments from the Proof of Lemma 4.2 in [10] to H(�X ), we find

∑

γ∈S�X (δ;z,w)

KH(t; dH(z, γw)) ≤ c∞ sinh(δ + �X ) e−t/4

sinh(�X )
.

Now it suffices to show that

KX,hyp(t; z) = PKX,hyp(t; z) + (

KH(t; 0) + EKX,hyp(t; z) + HKX,hyp(t; z)
)

≤ PKX,hyp(t; z) + e−β(t−t0) CHK
X .

As in the Proof of Lemma 4.2 in [10], put

h(t; z) = eβt(KH(t; 0) + EKX,hyp(t; z) + HKX,hyp(t; z)
)

. (85)
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From Eq. (23), for a fixed z ∈ Yε, it follows that for all t ≥ t0, the function h(t; z) is a
monotone decreasing function in t . Hence, following arguments as in the Proof of Lemma
4.2 in [10], we arrive at

(

KH(t; 0) + EKX,hyp(t; z) + HKX,hyp(t; z)
)

≤ e−β(t−t0)
(

KH(t0; 0) + EKX,hyp(t0; z) + HKX,hyp(t0; z)
) ≤ e−β(t−t0) CHK

X ,

which completes the proof of the lemma. ��
Proposition 4.8 For any α ∈ (0, λX,1), δ > 0, and z, w ∈ Yε , we have the following upper
bound

∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ BX,ε,α,δ,

where for δ ≥ δX , we have

BX,ε,α,δ = 4π

(

1

volhyp(X)
+ c0 sinh(�X ) sinh(δ)

8δ2 sinh2(�X/2)
+ c0e2�X

2π sinh2(�X/2)

+ 4c∞ sinh(δ + �X )

sinh(�X )
+ CHK

X

β

)

+ 7 |PX | (log ε)2 + 41CX,par

+ 14 coth
(

ε/4
)

(

−
∑

e∈EX

(me − 1) log
(

tanh2(ε/2)/cX,ell
) + CX,ell

)

;

and for δ ≤ δX , we have

BX,ε,α,δ = BX,ε,α,δX + sinh(δX + �X )

sinh(�X )

∣

∣ log
(

tanh2(δ/2)
)∣

∣.

Proof For any α ∈ (0, λX,1), δ > 0, and z, w ∈ Yε , we have
∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

=
∫ t0

0

∣

∣K α,δ
hyp(t; z, w)

∣

∣dt +
∫ ∞

t0

∣

∣K α,δ
hyp(t; z, w)

∣

∣dt.

From Theorem 4.7, and using the fact that the heat kernel KH(t; η) is positive for all t ≥ 0
and η ≥ 0, and that 0 < t0 < 1, we have the following inequality
∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ sup
z,w∈Yε

(

PX (z) +
∑

γ∈P(�X )

gH(z, γw) +
∑

γ∈E(�X )

gH(z, γw)

)

+ 4π

(

1

volhyp(X)
+ c0 sinh(�X ) sinh(δ)

8δ2 sinh2(�X /2)
+ c0e

2�X

2π sinh2(�X /2)
+ 4c∞ sinh(δ+�X )

sinh(�X )
+CHK

X
β

)

.

For z, w ∈ Yε, we are left to bound the term

PX (z) +
∑

γ∈P(�X )

gH(z, γw) +
∑

γ∈E(�X )

gH(z, γw). (86)
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From upper bound (79), we have the following upper bound for the first term

sup
z∈Yε

PX (z) ≤ sup
z∈Y par

ε

PX (z) ≤ −6 |PX | log ε + 32CX,par. (87)

Now, for z ∈ Y par
ε/2, a fixed w ∈ Y par

ε , and z �= w, observe that

�hyp

∑

γ∈P(�X )

gH(z, γw) = 0;

from Eq. (50), for z = w, we find that

�hyp

∑

γ∈P(�X )

gH(z, γ z) = �hyp PX (z) ≤ 0.

Hence, for z ∈ Y par
ε/2, and a fixed w ∈ Y par

ε , the second term in expression (86) is a super-
harmonic function in the variable z. So from the maximum principle for superharmonic
functions, we deduce that

sup
z,w∈Yε

∑

γ∈P(�X )

gH(z, γw) ≤ sup
z∈Y par

ε/2

w∈Y par
ε

∑

γ∈P(�X )

gH(z, γw) ≤ sup
z∈∂Uε/2(p)

w∈Y par
ε

∑

γ∈P(�X )

gH(z, γw),

for some cusp p ∈ PX . From the definition of gH(z, w) from (24) and from condition (1)
which the fixed ε satisfies, for any γ ∈ �X , z ∈ ∂Uε/2(p) and w ∈ Y par

ε , we derive

gH(z, γw) = gH(σ−1
p z, σ−1

p γw) = log

(

1 + 4 Im(σ−1
p z) Im(σ−1

p γw)

|σ−1
p z − σ−1

p γw|2
)

≤ log

(

1 + 4 Im(σ−1
p z)2

(

Im(σ−1
p z) − Im(σ−1

p γw)
)2

)

≤ 4 Im(σ−1
p z)2

(log 2)2
≤ 9 Im(σ−1

p z)2,

where σp is a scaling matrix for the cusp p ∈ PX . Using the above inequality, we arrive at

sup
z∈∂Uε/2(p)

w∈Y par
ε

∑

γ∈P(�X )

gH(z, γw) ≤ sup
z∈∂Uε/2(p)

9
∑

γ∈P(�X )

Im(σ−1
p γ z)2 = sup

z∈∂Uε/2(p)
9

∑

p∈PX

Im(σ−1
p z)2

+ sup
z∈∂Uε/2(p)

9
∑

p∈PX

( EX,par,p(z, 2) − Im(σ−1
p z)2

) ≤ |PX | ( log(ε/2))2 + 9CX,par. (88)

Hence, combining upper bounds (87) and (88), and using the fact that 0 < ε < 1 (which
implies that − log ε ≤ (log(ε/2)2), we arrive at the following upper bound for the first two
terms in expression (86)

PX (z) +
∑

γ∈P(�X )

gH(z, γw) ≤ 7 |PX | ( log(ε/2))2 + 41CX,par. (89)

For z ∈ Y ell
ε/2, a fixed w ∈ Y ell

ε , and z �= w, observe that

�hyp

∑

γ∈E(�X )

gH(z, γw) = 0;

from Eq. (57), for z = w, we find that

�hyp

∑

γ∈E(�X )

gH(z, γ z) ≤ 0.
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Hence, for z ∈ Y ell
ε/2, and a fixed w ∈ Y ell

ε , the third term in the expression (86) is a super-
harmonic function in the variable z. So from the maximum principle for superharmonic
functions, we deduce that

sup
z,w∈Yε

∑

γ∈E(�X )

gH(z, γw) ≤ sup
z∈∂Y ell

ε/2

w∈Y ell
ε,e

∑

γ∈E(�X )

gH(z, γw) = sup
z∈∂Uε/2(e)

w∈Y ell
ε,e

∑

γ∈E(�X )

gH(z, γw),

for some elliptic fixed point e ∈ EX . Similarly for w ∈ Y ell
ε,e and a fixed z ∈ Uε/2(e), the third

term in expression (86) is a superharmonic function in the variable w. Hence, we arrive at

sup
z∈∂Uε/2(e)

w∈Y ell
ε,e

∑

γ∈E(�X )

gH(z, γw) = sup
z∈∂Uε/2(e)
w∈∂Uε(e)

∑

γ∈E(�X )

gH(z, γw).

From Eq. (25), recall that

∑

γ∈E(�X )

gH(z, γw) =
∑

γ∈E(�X )

log

(

1 + 1

sinh2
(

dH(z, γw)/2
)

)

.

Combining upper bound (74) from Lemma 4.3 with upper bound (80), for any γ ∈ �X ,
z ∈ ∂Uε/2(e), and w ∈ ∂Uε(e), we derive

∑

γ∈E(�X )

gH(z, γw) ≤
∑

γ∈E(�X )

log

(

1+ 14 coth(ε/4)

sinh2
(

dH(z, γ z)/2
)

)

≤ sup
z∈∂Uε/2(e)

14 coth(ε/4) E(z)

≤ 14 coth
(

ε/4
)

(

−
∑

e∈EX

(me − 1) log
(

tanh2(ε/2)/cX,ell
) + CX,ell

)

.

Combining the above inequalitywith upper bound (89) completes the proof of the proposition.
��

Notation 4.9 For the rest of this article, put

ε̃ = 2 log

(1 +
√

1 + (

3 log(ε/2)
)2

3 log(ε/2)

)

. (90)

Corollary 4.10 For any α ∈ (0, λX,1), δ ∈ (0, ε̃), z ∈ ∂Y par
ε/2 , and w ∈ Yε, we have the

following upper bound
∣

∣ gX,hyp(z, w)
∣

∣ ≤ BX,ε/2,α,δ .

Proof Without loss of generality, we may assume that z ∈ ∂Uε/2(p), for some cusp p ∈ PX .
For any γ ∈ �X , z ∈ ∂Uε/2(p), and w ∈ Yε, recall that

u(z, γw) = sinh2
(

dH(z, γw)/2
) = |z − γw|2

4 Im(z) Im(γw)
≥ | Im(z) − Im(γw)|2

4 Im(z) Im(γw)
. (91)

From condition (1), which the fixed ε satisfies, we derive

sinh2
(

dH(z, γw)/2
) ≥

(

log(ε) − log(ε/2)
)2

4
(

log(ε/2)
)2 �⇒ sinh

(

dH(z, γw)/2
) ≥ 1

3 log(ε/2)
.
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From the above inequality, it follows that for any γ ∈ �X , z ∈ ∂Uε/2(p), andw ∈ Yε , we get
dH(z, γw) ≥ ε̃. Now for any α ∈ (0, λX,1) and δ ∈ (0, ε̃), from Proposition 4.8, we arrive at

sup
z∈∂Uε/2(p)

w∈Yε

∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ sup
z,w∈Yε/2

∣

∣ gX,hyp(z, w)
∣

∣ ≤ BX,ε/2,α,δ,

which completes the proof of the corollary. ��

Corollary 4.11 Let e ∈ EX be an elliptic fixed point. Then, for any α ∈ (0, λX,1), δ ∈ (0, ε),
and z ∈ Yε, we have the following upper bound

∣

∣ gX,hyp(z, e)
∣

∣ ≤ BX,ε,α,δ .

Proof For any α ∈ (0, λX,1), δ ∈ (0, ε), and z ∈ Yε, from condition (3) which the fixed ε

satisfies, we find
∣

∣

∣

∣

gX,hyp(z, e) −
∑

γ∈S�X (δ;z,e)
gH(z, γ e)

∣

∣

∣

∣

= ∣

∣ gX,hyp(z, e)
∣

∣.

Following similar arguments as in the Proof of Proposition 4.8, we get

∣

∣ gX,hyp(z, e)
∣

∣ ≤ sup
z∈Yε

(

PX (z) +
∑

γ∈P(�X )

gH(z, γ e) +
∑

γ∈E(�X )

gH(z, γ e)

)

+ 4π

(

1

volhyp(X)
+ c0 sinh(�X ) sinh(δ)

8δ2 sinh2(�X/2)
+ c0e2�X

2π sinh2(�X/2)
+ 4c∞ sinh(δ+�X )

sinh(�X )
+CHK

X

β

)

.

We estimate the first two terms on the right-hand side of above inequality by the same
quantities as in the Proof of Proposition 4.8. For the third term, from similar arguments as
in the Proof of Proposition 4.8, and using the upper bound from Lemma 4.2 (i.e., estimate
(69)), we derive

sup
z∈Yε

∑

γ∈E(�X )

gH(z, γ e) = sup
z∈∂Uε(e)

∑

γ∈E(�X )

gH(z, γ e)

≤ sup
z∈∂Uε(e)

∑

γ∈E(�X )

log

(

1 + 7 coth(ε/2)

sinh2
(

dH(z, γ z)/2
)

)

≤ sup
z∈∂Uε(e)

7 coth(ε/2) E(z) ≤ sup
z∈∂Uε/2(e)

14 coth(ε/4) E(z),

which can be bounded again by the same estimate as in the Proof of Proposition 4.8. Hence,
we deduce that for hypothesis as in the statement of the corollary, we have the same bound
for

∣

∣ gX,hyp(z, e)
∣

∣ as in Proposition 4.8, i.e., BX,ε,α,δ , which completes the proof of the
corollary. ��

Corollary 4.12 Let p ∈ PX be any cusp. Then, for any α ∈ (0, λX,1), δ > 0, z ∈ Y par
ε , and

w ∈ Uε(p), we have

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw) = − 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

)

+ hδ,p(z, w),
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where hδ,p(z, w) is a harmonic function in the variable w ∈ Uε(p), which satisfies the
following upper bound

sup
z∈Uε(p)

∣

∣hδ,p(z, w)
∣

∣ ≤ BX,ε,α,δ .

Proof For any δ > 0, a fixed z ∈ Y par
ε , and w ∈ Uε(p), both the functions

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw) , − 4π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

are solutions of differential Eq. (30). So we find that

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw) = − 4π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

+ hδ,p(z, w),

where hδ,p(z, w) is a harmonic function in the variable z ∈ Uε(p).
As hδ,p(z, w) is a harmonic function, |hδ,p(z, w)| is a subharmonic function. So for a

fixed z ∈ Y par
ε , from the maximum principle for subharmonic functions and Proposition 4.8,

we arrive at the upper bound

sup
w∈Uε(p)

∣

∣hδ,p(z, w)
∣

∣ = sup
w∈∂Uε(p)

∣

∣hδ,p(z, w)
∣

∣ =
∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ Bε,α,δ,

for any α ∈ (0, λX,1) and δ > 0. The proof of the corollary follows from the fact that the
upper bound derived above does not depend on the fixed z ∈ Y par

ε . ��

Corollary 4.13 Let p, q ∈ PX and p �= q be two cusps. Then, for any α ∈ (0, λX,1), δ > 0,
z ∈ Uε(p), and w ∈ Uε(q), we have

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

= − 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

)

− 4π

volhyp(X)
log

(

log |ϑq(w)|
log ε

)

+ hδ,p,q(z, w),

where hδ,p,q(z, w) is a harmonic function in both the variables z ∈ Uε(p) and w ∈ Uε(q),
which satisfies the following upper bound

sup
z∈Uε(p)
z∈Uε(q)

∣

∣hδ,p,q(z, w)
∣

∣ ≤ BX,ε,α,δ .

Proof The proof of the corollary follows from similar arguments as in Corollary 4.12. ��

Corollary 4.14 Let p ∈ PX be any cusp. Then, for any α ∈ (0, λX,1), δ > 0, and z, w ∈
Uε(p), we have

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)\{id}
gH(z, γw) −

∑

γ∈�X,p

gH(z, γw)

= − 4π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

− 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

)

+ hδ,p,p(z, w),
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where hδ,p,p(z, w) is a harmonic function in both the variables z ∈ Uε(p) and w ∈ Uε(q),
which satisfies the following upper bound

sup
z,w∈Uε(p)

∣

∣

∣

∣

hδ,p,p(z, w)

∣

∣

∣

∣

≤ BX,ε,α,δ . (92)

Proof For z, w ∈ Uε(p), the hyperbolic Green’s function satisfies the differential Eq. (30).
For z, w ∈ Uε(p), put

h(z, w) = − 4π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

− 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

)

+
∑

γ∈S�X (δ;z,w)\{id}
gH(z, γw) +

∑

γ∈�X,p

gH(z, γw).

Observe that for z �= w, dzdcz h(z, w) = μshyp(z). So, if we show that both the functions
h(z, w) and gX,hyp(z, w) admit the same type of singularity when z = w on Uε(p), we can
conclude that

gX,hyp(z, w) = h(z, w) + hδ,p,p(z, w),

where hδ,p,p(z, w) is a harmonic function in both the variables z, w ∈ Uε(p). Moreover,
from similar arguments as in Corollary 4.12, we can conclude that the function hδ,p,p(z, w)

satisfies the asserted upper bound (92).
For any z ∈ Uε(p), from Eqs. (36) and (10), we find that

lim
w→z

(

gX,hyp(z, w) + log |ϑz(w)|2) = lim
w→z

(

gX,can(z, w) + log |ϑz(w)|2) + 2φX (z)

= − 8π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

+ Oz(1),

where the contribution from the term Oz(1) is a smooth function which remains bounded for
all z ∈ Uε(p) and for z = p.

Now observe that

lim
w→z

(

h(z, w) + log |ϑz(w)|2) = − 8π

volhyp(X)
log

(

log |ϑp(z)|
log ε

)

+ lim
w→z

⎛

⎝

∑

γ∈�X,p\{id}
gH(z, γw) + gH(z, w) + log |ϑz(w)|2

⎞

⎠ + Oz(1), (93)

where the contribution from the term Oz(1) is a smooth function which remains bounded for
all z ∈ Uε(p) and for z = p. For z ∈ Uε(p), from Eq. (49) from Proof of Lemma 3.3, and
from the definition of gH(z, w), i.e., Eq. (24), the second term on the right-side of Eq. (93)
simplifies to give

lim
w→z

⎛

⎝

∑

γ∈�X,p\{id}
gH(z, γw) + gH(z, w) + log |ϑp(w) − ϑp(z)|2

⎞

⎠

= Pgen,p(z) − 4π Im(σ−1
p z) + lim

w→z

(

gH(σ 1
pz, σ

−1
p w) + log

∣

∣1 − e2π i(w−z)
∣

∣

2)

= Pgen,p(z) − 4π Im(σ−1
p z) + log

(

4 Im(σ−1
p z)2

) + log(4π2) = Oz(1),

which together with Eq. (93) completes the proof of the corollary. ��
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Corollary 4.15 Let e, f ∈ EX and e �= f be two elliptic fixed points. Then, for any α ∈
(0, λX,1), δ > 0, z ∈ Uε(e), and w ∈ Uε(f), we have

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

= −4π log
(

1 − |ϑe(z)|2/me
)

volhyp(X)
− 4π log

(

1 − |ϑf(w)|2/mf
)

volhyp(X)
+ hδ,e,f(z, w),

where hδ,e,f(z, w) is a harmonic function in both the variables z ∈ Uε(e) and w ∈ Uε(e),
which satisfies the following upper bound

sup
z∈Uε(e)
w∈Uε(f)

∣

∣

∣

∣

hδ,e,f(z, w)

∣

∣

∣

∣

≤ BX,ε,α,δ;

furthermore, for z, w ∈ Uε(e), we have

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)\{id}
gH(z, γw) −

∑

γ∈�X,e

gH(z, γw)

= −4π log
(

1 − |ϑe(z)|2/me
)

volhyp(X)
− 4π log

(

1 − |ϑe(w)|2/me
)

volhyp(X)
+ hδ,e,e(z, w),

where hδ,e,e(z, w) is a harmonic function in both the variables z, w ∈ Uε(e), which satisfies
the following upper bound

sup
z∈Uε(e)

∣

∣

∣

∣

hδ,e,e(z, w)

∣

∣

∣

∣

≤ BX,ε,α,δ;

Proof The proof of the corollary follows from arguments similar to the ones employed in
the proofs of Corollaries 4.13 and 4.14. ��
Remark 4.16 In order to understand the dependence of our bounds for the hyperbolic Green’s
function on ε, it suffices to analyze the dependence of BX,ε,α,δ on ε. From the formula for
BX,ε,α,δ from Proposition 4.8, and the asymptotics of the functions coth(x) and log(tanh(x))
at x = 0, we arrive at the following estimate for BX,ε,α,δ

BX,ε,α,δ = OX
(

ε−2).

5 Bounds for canonical Green’s function

In this section, we obtain bounds for the canonical Green’s function on the compact subset
Yε of X . From Eq. (36), to derive bounds for the canonical Green’s function gX,can(z, w),
it suffices to derive bounds for the function φX (z), and for the hyperbolic Green’s function
gX,hyp(z, w). From last section, we have bounds for gX,hyp(z, w), and it remains to bound
the function φX (z). Recall that from Corollary 3.12, we have

φX (z) =
(

HX (z) + EX (z)
)

2gX
+ 1

8πgX

∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(z)

−
∑

e∈EX

me − 1

2gXme
gX,hyp(z, e) − CX,hyp

8g2X
− 2π(cX − 1)

gX volhyp(X)
− 1

2gX

∫

X
EX (ζ ) μshyp(ζ ).

(94)
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Using analysis from the Sects. 2 and 3, it is easy to bound almost all the quantities involved
in the above expression for φX (z) excepting the integral

1

8πgX

∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(z),

which we now accomplish.

Lemma 5.1 For z ∈ Yε , we have the equality of integrals
∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

= 4π PX (z) − 4π
∫

Y par
ε/2

PX (ζ ) μshyp(ζ )

+ 4π
∑

p∈PX

( ∫

∂Uε/2(p)
gX,hyp(z, ζ )dcζ PX (ζ ) −

∫

∂Uε/2(p)
PX (ζ )dcζ ghyp(z, ζ )

)

+
∑

p∈PX

∫

Uε/2(p)
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ ).

Proof Observe that we have the following decomposition
∫

X
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

= −4π
∫

X
gX,hyp(z, ζ )dζ d

c
ζ PX (ζ )

= −4π
∫

Y par
ε/2

gX,hyp(z, ζ )dζ d
c
ζ PX (ζ ) +

∑

p∈PX

∫

Uε/2(p)
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ ).

(95)

Let Ur (z) denote an open coordinate disk of radius r around z ∈ Yε with r small enough
such that Ur (z) � Y par

ε/2. From Eq. (30) and from Stokes’s theorem, we have

−
∫

Y par
ε/2

gX,hyp(z, ζ )dζ d
c
ζ PX (ζ ) +

∫

Y par
ε/2

PX (ζ ) μshyp(ζ )

= lim
r→0

(

−
∫

Y par
ε/2\Ur (z)

gX,hyp(z, ζ )dζ d
c
ζ PX (ζ ) +

∫

Y par
ε/2\Ur (z)

PX (ζ )dζ d
c
ζ ghyp(z, ζ )

)

= lim
r→0

( ∫

∂Ur (z)
gX,hyp(z, ζ )dcζ PX (ζ ) −

∫

∂Ur (z)
PX (ζ )dcζ ghyp(z, ζ )

)

+
∑

p∈PX

( ∫

∂Uε/2(p)
gX,hyp(z, ζ )dcζ PX (ζ ) −

∫

∂Uε/2(p)
PX (ζ )dcζ ghyp(z, ζ )

)

. (96)

Using the fact that the function PX (ζ ) is smooth at z, and as ζ approaches z, the hyperbolic
Green’s function gX,hyp(z, ζ ) satisfies

gX,hyp(z, ζ ) = − log |ϑz(ζ )|2 + Oz(1),

we derive that

lim
r→0

( ∫

∂Ur (z)
gX,hyp(z, ζ )dcζ PX (ζ ) −

∫

∂Ur (z)
PX (ζ )dcζ ghyp(z, ζ )

)

= PX (z).
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Combining the above equation with Eqs. (95) and (96) completes the proof of the
lemma. ��
Corollary 5.2 For any z ∈ Y par

ε , we have

φX (z) =
(

PX (z)+EX (z)+HX (z)
)

2gX
+ 1

8πgX

∑

p∈PX

∫

Uε/2(p)
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

+ 1

2gX

∑

p∈PX

( ∫

∂Uε/2(p)
gX,hyp(z, ζ )dcζ PX (ζ ) −

∫

∂Uε/2(p)
PX (ζ )dcζ ghyp(z, ζ )

)

− 2π(cX − 1)

gX volhyp(X)
− 1

2gX

∫

Y par
ε/2

PX (ζ ) μshyp(ζ )−CX,hyp

8g2X
+

∑

e∈EX

me − 1

2gXme
gX,hyp(z, e)

− 1

2gX

∫

X
EX (ζ ) μshyp(ζ ). (97)

Proof The proof of the corollary follows directly from combining Eq. (94) and Lemma 5.1.
��

Lemma 5.3 For any α ∈ (0, λX,1) and δ ∈ (0, �X ), we have the following upper bound

sup
z∈Yε

∣

∣PX (z) + EX (z) + HX (z)
∣

∣

2gX
≤ BX,ε/2,α,δ

2gX
.

Proof For any α ∈ (0, λX,1) and δ ∈ (0, �X ), from Eq. (59), we have

sup
z∈Yε

∣

∣PX (z) + EX (z) + HX (z)
∣

∣

= sup
z∈Yε

lim
w→z

∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ sup
z∈Yε/2

lim
w→z

∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

,

and the proof of the lemma follows from Proposition 4.8. ��
Proposition 5.4 For any α ∈ (0, λX,1) and δ ∈ (0, ε̃), we have the following upper bound

1

8πgX
sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

Uε/2(p)
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

∣

∣

∣

∣

≤ − |PX |Caux
X,par

4gX log(ε/2)

(

BX,ε/2,α,δ + 4π

volhyp(X)

)

.

Proof Observe the inequality

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

Uε/2(p)
gX,hyp(z, ζ )�hyp PX (ζ ) μhyp(ζ )

∣

∣

∣

∣

≤ sup
ζ∈X

∣

∣ �hyp PX (ζ )
∣

∣

× sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

Uε/2(p)
gX,hyp(z, ζ ) μhyp(ζ )

∣

∣

∣

∣

= Caux
X,par

(

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

Uε/2(p)
gX,hyp(z, ζ ) μhyp(ζ )

∣

∣

∣

∣

)

. (98)
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For any p ∈ PX , z ∈ Yε , and ζ ∈ Uε/2(p), from arguments as in Corollary 4.12, we have

gX,hyp(z, ζ ) = − 4π

volhyp(X)
log

(

log |ϑp(ζ )|
log(ε/2)

)

+ gp(z, ζ ), (99)

where gp(z, ζ ) is a harmonic function in the variable ζ . From maximum principle for har-
monic functions and from Corollary 4.10, we have the following upper bound

sup
z∈Yε

ζ∈Uε/2(p)

∣

∣gp(z, ζ )
∣

∣ = sup
z∈Yε

ζ∈∂Uε/2(p)

∣

∣gp(z, ζ )
∣

∣ = sup
z∈Yε

ζ∈∂Uε/2(p)

∣

∣ gX,hyp(z, ζ )
∣

∣

≤ sup
z∈Yε

ζ∈∂Y par
ε/2

∣

∣ gX,hyp(z, ζ )
∣

∣ ≤ BX,ε/2,α,δ, (100)

for any α ∈ (0, λX,1) and δ ∈ (0, ε̃).
For any p ∈ PX , we make the following computations

∫

Uε/2(p)
μhyp(ζ ) =

∫ ε/2

0

∫ 2π

0

rdrdθ

(r log r)2
= 2π

∫ ε/2

0

d(log r)

(log r)2
= − 2π

log(ε/2)
,

∫

Uε/2(p)
log

( − log |ϑp(ζ )|) μhyp(ζ ) =
∫ ε/2

0

∫ 2π

0

r log
( − log r

)

drdθ

(r log r)2

= 2π
∫ ε/2

0

log
( − log r

)

d(log r)

(log r)2
= −2π

(

log
( − log(ε/2)

) + 1
)

log(ε/2)
.

For any p ∈ PX , using inequality (100), and the above computations, we derive
∣

∣

∣

∣

∫

Uε/2(p)
gp(z, ζ ) μhyp(ζ )

∣

∣

∣

∣

≤ −2π BX,ε/2,α,δ

log(ε/2)
, (101)

∣

∣

∣

∣

∫

Uε/2(p)

4π

volhyp(X)
log

(

log |ϑp(ζ )|
log(ε/2)

)∣

∣

∣

∣

μhyp(ζ )

=
∫

Uε/2(p)

4π

volhyp(X)
log

(− log |ϑp(ζ )|
− log(ε/2)

)

μhyp(ζ ) = − 8π2

volhyp(X) log(ε/2)
. (102)

For any p ∈ PX , using Eq. (99), and the above computations (101) and (102), we arrive at
∣

∣

∣

∣

∫

Uε/2(p)
gX,hyp(z, ζ ) μhyp(ζ )

∣

∣

∣

∣

≤ − 2π

log(ε/2)

(

BX,ε/2,α,δ + 4π

volhyp(X)

)

(103)

Combining the above upper bound with inequality (98) completes the proof of the corollary.
��

Remark 5.5 For any z ∈ Yε, combining Lemma 5.3 and Proposition 5.4, we obtain the
following upper bound for the first line on the right-hand side of Eq. (97)

BX,ε/2,α,δ

2gX
− |PX |Caux

X,par

4gX log(ε/2)

(

BX,ε/2,α,δ + 4π

volhyp(X)

)

,

for any α ∈ (0, λX,1) and δ ∈ (

0,min{�X , ε̃}).
Proposition 5.6 For any α ∈ (0, λX,1) and δ ∈ (0, ε̃), we have the following upper bound

1

2gX
sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
gX,hyp(z, ζ )dcζ PX (ζ )

∣

∣

∣

∣

≤ |PX | BX,ε/2,α,δ

2gX
.
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Proof From Corollary 4.10 and Stokes’s theorem, we have the elementary estimate

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
gX,hyp(z, ζ )dcζ PX (ζ )

∣

∣

∣

∣

≤ sup
z∈Yε

ζ∈∂Y par
ε/2

∣

∣ gX,hyp(z, ζ )
∣

∣ ·
⎛

⎝

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
dcζ PX (ζ )

∣

∣

∣

∣

⎞

⎠

≤ BX,ε/2,α,δ ·
⎛

⎝

∑

p∈PX

∫

∂Uε/2(p)

∣

∣dζ d
c
ζ PX (ζ )

∣

∣

⎞

⎠ ≤ BX,ε/2,α,δ

4π
·
(∫

X

∣

∣�hyp PX (ζ )
∣

∣ μhyp(ζ )

)

(104)

for any α ∈ (0, λX,1) and δ ∈ (0, ε̃).
Let Ur (p) denote an open coordinate disk of radius r around a parabolic fixed point

p ∈ PX . Put

Y par
r = X\

⋃

p∈PX

Ur (p).

For every z ∈ X , from formula (50), we know that
∣

∣ �hyp PX (ζ )
∣

∣ = −�hyp PX (ζ ). Then,
using Stokes’s theorem, we find

∫

X

∣

∣ �hyp PX (ζ )
∣

∣ μhyp(ζ ) = 4π lim
r→0

∫

Y par
r

dζ d
c
ζ PX (ζ )

= 4π
∑

p∈PX

lim
r→0

∫

∂Ur (p)
dcζ PX (ζ ) = −4π |PX | lim

r→0

∫ 2π

0

r

2

∂PX (ζ )

∂r

dθ

2π
, (105)

for any p ∈ PX . Now from Lemma 3.3, for any z ∈ ∂Ur (p), we have

PX (ζ ) = 4π Im(σ−1
p ζ ) − log

(

4 Im(σ−1
p ζ )2

) + Oζ (1) = −2 log r − 2 log
( − log r

) + O(1)

�⇒ r

2

∂PX (ζ )

∂r
=−1− 2

r log r
+O(r) �⇒ −4π |PX | lim

r→0

∫ 2π

0

r

2

∂PX (ζ )

∂r

dθ

2π
= 4π |PX |.

(106)

Combining computations (105) and (106) with upper bound (104), completes the proof of
the proposition. ��
Proposition 5.7 We have the following upper bound

1

2gX
sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
PX (ζ )dcζ gX,hyp(z, ζ )

∣

∣

∣

∣

≤ −3 |PX | log(ε/2)
gX

+ 16CX,par

gX
.

Proof Since P(ζ ) is a non-negative function on X , using Stokes’s theorem, we derive

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
PX (ζ )dcζ gX,hyp(z, ζ )

∣

∣

∣

∣

≤ sup
ζ∈Y par

ε/2

PX (ζ ) ·
(

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
dζ d

c
ζ gX,hyp(z, ζ )

∣

∣

∣

∣

)

= sup
ζ∈Y par

ε/2

PX (ζ ) ·
(

sup
z∈Yε

∑

p∈PX

∣

∣

∣

∣

∫

∂Uε/2(p)
μshyp(ζ )

∣

∣

∣

∣

)

≤ sup
z∈Y par

ε/2

PX (ζ ),

and the proof of the proposition follows directly from estimate (79). ��
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Remark 5.8 For any z ∈ Yε, combining Propositions 5.6 and 5.7, we obtain the following
upper bound for the second line on the right-hand side of Eq. (97)

|PX | BX,ε/2,α,δ

2gX
− 3 |PX | log(ε/2)

gX
+ 16CX,par

gX
+ 2π |cX − 1|

gX volhyp(X)
,

for any α ∈ (0, λX,1) and δ ∈ (0, ε̃).

Proposition 5.9 We have the following upper bound

1

2gX

∣

∣

∣

∣

∫

Y par
ε/2

PX (z) μshyp(z)

∣

∣

∣

∣

≤ −|PX | log(ε/2)
gX

.

Proof Since PX (z) is a non-negative function on X , we have
∣

∣

∣

∣

∫

Y par
ε/2

PX (z) μshyp(z)

∣

∣

∣

∣

≤
∫

Y par
ε/2,p

PX (z) μshyp(z)=
∑

p∈PX

∑

η∈�X,p\�X

∫

Y par
ε/2,p

Pgen,p(ηz) μshyp(z).

(107)

The interchange of summation and integration in the above equation is valid, provided that
the latter series converges absolutely. As the function PX (z) is a non-negative function, to
prove the absolute convergence of the latter series, it suffices to prove that

∑

p∈PX

∑

η∈�X,p\�X

∫

Y par
ε/2,p

Pgen,p(ηz) μshyp(z) ≤ −2 |PX | log(ε/2). (108)

For every p ∈ PX , after making the substitution z �→ η−1σpz, from the PSL2(R)-invariance
of the metric μshyp(z), from estimate (40) from Proof of Lemma 3.2, and using the fact that
2π ≤ volhyp(X), we get

∑

p∈PX

∑

η∈�X,p\�X

∫

Y par
ε/2,p

Pgen,p(ηz) μshyp(z) =
∑

p∈PX

∑

η∈�X,p\�X

∫

σ−1
p ηY par

ε/2,p

Pgen,p(σpz) μshyp(z)

= 1

volhyp(X)

∑

p∈PX

∫ − log(ε/2)/2π

0

∫ 1

0
Pgen,p(σpz)

dxdy

y2

≤ 1

volhyp(X)

∑

p∈PX

∫ − log(ε/2)/2π

0

∫ 1

0
32y2

dxdy

y2
= −16 |PX | log(ε/2)

π volhyp(X)
≤ −2 |PX | log(ε/2),

which proves upper bound (108), and completes the proof of the proposition. ��
Proposition 5.10 We have the following upper bound

∣

∣CX,hyp
∣

∣

8g2X
≤ 2π (dX + 1)2

λX,1 volhyp(X)
.

Proof Recall that CX,hyp is defined as

CX,hyp =
∫

X

∫

X
gX,hyp(ζ, ξ)

( ∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

×
( ∫ ∞

0
�hyp KX,hyp(t; ξ)dt

)

μhyp(ξ) μhyp(ζ ).
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From formulae (36), (37), we have

�hyp φX (z) = 4π μcan(z)

μhyp(z)
− 4π

volhyp(X)
�⇒

∫

X
�hyp φX (z) μhyp(z) = 0, (109)

φX (z) = 1

2gX

∫

X
gX,hyp(z, ζ )

( ∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

μhyp(ζ ) − CX,hyp

8g2X
,

respectively. So combining the above two equations, we get

− 1

4π

∫

X
φX (z)�hyp φX (z) μhyp(z)

= − 1

2gX

∫

X

∫

X
gX,hyp(z, ζ )

( ∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

μhyp(ζ ) μcan(z). (110)

Observe that
∫

X
gX,hyp(z, ζ )

( ∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

μhyp(ζ ) = 2gXφX (z) + CX,hyp

4gX
∈ C�,��(X).

So combining Eqs. (38) and (110), we derive
∫

X
φX (z)�hyp φX (z) μhyp(z) = π

g2X

∫

X

∫

X
gX,hyp(z, ζ )

(∫ ∞

0
�hyp KX,hyp(t; ζ )dt

)

×
(∫ ∞

0
�hyp KX,hyp(t; z)dt

)

μhyp(ζ ) μhyp(z) = πCX,hyp

g2X
. (111)

Using Eq. (109), we have

sup
z∈X

| �hyp φX (z)| ≤ sup
z∈X

∣

∣

∣

∣

4π μcan(z)

volhyp(X) μshyp(z)

∣

∣

∣

∣

+ 4π

volhyp(X)
= 4π (dX + 1)

volhyp(X)
, (112)

where dX is as defined in (8). As the function φX (z) ∈ L2(X), it admits a spectral expansion
of the form (17). So from the arguments used to prove Proposition 4.1 in [11], we have

∣

∣

∣

∣

∫

X
φX (z)�hyp φX (z) μhyp(z)

∣

∣

∣

∣

≤ sup
z∈X

| �hyp φX (z)|2
λX,1

∫

X
μhyp(z). (113)

Hence, from Eq. (111), and combining estimates (112) and (113), we arrive at the estimate

∣

∣CX,hyp
∣

∣ = g2X
π

∣

∣

∣

∣

∫

X
φX (z)�hyp φX (z) μhyp(z)

∣

∣

∣

∣

≤ g2X
πλX,1

∫

X
| �hyp φX (z)|2 μhyp(z) ≤ 16πg2X (dX + 1)2

λX,1 volhyp(X)
,

which completes the proof of the proposition. ��

Lemma 5.11 We have the following upper bound

1

2gX

∫

X
EX (ζ ) μshyp(ζ ) ≤ 5 cX,ell

gX volhyp(X)

∑

e∈EX

(me − 1).
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Proof For any z ∈ X and Eq. (53), we have

∫

X
EX (ζ ) μshyp(ζ ) =

∫

X

∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

gH(σ−1
e ηz, γ n

i σ−1
e ηz) μshyp(ζ )

=
∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

∫

X
gH(σ−1

e ηz, γ n
i σ−1

e ηz) μshyp(ζ ).

The interchange of summation and integration in the above equation is valid, provided that
the latter series converges absolutely. As the function EX (z) is a non-negative function, to
prove the absolute convergence of latter series, it suffices to prove

∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

∫

X
gH(σ−1

e ηz, γ n
i σ−1

e ηz) μshyp(ζ ) ≤ 9 cX,ell |EX |
volhyp(X)

∑

e∈EX

(me − 1).

(114)

For any e ∈ EX , γi ∈ �X,e, and η ∈ �X,e\�X , from computation (54), and from definition
of constant cX,ell in (55), we have

gH(σ−1
e ηz, γ n

i σ−1
e ηz) = log

(

1 + 1

sin2(nπ/me) sinh2(ρ(σ−1
e ηz))

)

(115)

≤ cX,ell log

(

1 + 1

sinh2(ρ(σ−1
e ηz))

)

. (116)

Furthermore, recall that the hyperbolic metric μhyp(z) in elliptic coordinates is given by

μhyp(z) = sinh(ρ(z))dρ ∧ dθ.

From estimate (115), we find

∑

e∈EX

∑

η∈�X,e\�X

me−1
∑

n=1

∫

X
gH(σ−1

e ηz, γ n
i σ−1

e ηz) μshyp(ζ )

≤ cX,ell

∑

e∈EX

(me − 1)
∑

η∈�X,e\�X

∫

X
log

(

1 + 1

sinh2(ρ(σ−1
e ηz))

)

μshyp(z). (117)

For every e ∈ EX , after making the substitution z �→ η−1σez, from the PSL2(R)-invariance
of the metric μshyp(z), we compute

∑

η∈�X,e\�X

∫

X
log

(

1 + 1

sinh2(ρ(σ−1
e ηz))

)

μshyp(z)

=
∫ ∞

0

∫ 2π

0
log

(

coth2(ρ(z))
) sinh(ρ(z))dρ ∧ dθ

volhyp(X)
= 4π log 2

volhyp(X)
≤ 9

volhyp(X)
,

which together with upper bound (117) proves upper bound (114), and completes the proof
of the lemma. ��
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Remark 5.12 For any elliptic fixed point e ∈ EX , from Corollary 4.11, we have

sup
z∈Yε

⎛

⎝

∑

e∈EX

me − 1

2gXme

∣

∣ gX,hyp(z, e)
∣

∣

⎞

⎠ ≤ sup
z∈Yε/2

⎛

⎝

∑

e∈EX

me − 1

2gXme

∣

∣ gX,hyp(z, e)
∣

∣

⎞

⎠

≤ |EX |BX,ε/2,α,δ

2gX
,

for any α ∈ (0, λX,1) and δ ∈ (0, ε). For any z ∈ Y par
ε , combining Propositions 5.9 and 5.10,

and Lemma 5.11 with the above upper bound, we obtain the following upper bound for the
third line on the right-hand side of Eq. (97)

|EX |BX,ε/2,α,δ

2gX
− |PX | log(ε/2)

gX
+ 5 cX,ell

gX volhyp(X)

∑

e∈EX

(me − 1) + 2π (dX + 1)2

λX,1 volhyp(X)
,

for any α ∈ (0, λX,1) and δ ∈ (0, ε).

Theorem 5.13 For any α ∈ (0, λX,1) and δ ∈ (

0,min{ε, ε̃}), we have the following upper
bound

sup
z∈Y par

ε

∣

∣φX (z)
∣

∣ ≤ CX,ε,α,δ,

where CX,ε,α,δ = BX,ε/2,α,δ

2gX

(

|PX |
(

1 − Caux
X,par

2 log(ε/2)

)

+ |EX | + 1

)

− 4 |PX | log(ε/2)
gX

+ 16CX,par

gX
+ 5 cX,ell

gX volhyp(X)

∑

e∈EX

(me − 1)

+ 2π (dX + 1)2

λX,1 volhyp(X)
+ 2π |cX − 1|

gX volhyp(X)
− π |PX |Caux

X,par

gX volhyp(X) log(ε/2)
. (118)

Proof The proof of the theorem follows fromCorollary 5.2, and combining the upper bounds
stated in Remarks 5.5, 5.8, and 5.12. ��
Corollary 5.14 Let p ∈ PX be any cusp. Then, for any α ∈ (0, λX,1), δ ∈ (

0,min{ε, ε̃}),
and z ∈ Uε(p), we have

φX (z) = − 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

)

+ φp(z),

where φp(z) is a subharmonic function for z ∈ Uε(p), which satisfies the following upper
bound

sup
z∈Uε(p)

|φp(z)| ≤ CX,ε,α,δ .

Proof For any p ∈ PX and z ∈ Uε(p), using Eq. (36), we find

�hyp

(

φX (z) + 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

))

= 4π μcan(z)

μhyp(z)
≥ 0,

which implies that

φp(z) =
(

φX (z) + 4π

volhyp(X)
log

(

log |ϑp(w)|
log ε

))
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is a subharmonic function. From Theorem 5.13 and maximum principle for subharmonic
functions, we derive

sup
z∈Uε(p)

|φp(z)| = sup
z∈∂Uε(p)

|φp(z)| = sup
z∈∂Uε(p)

|φ(z)| ≤ CX,ε,α,δ,

which completes the proof of the lemma. ��

Corollary 5.15 Let e ∈ EX be any elliptic fixed point. Then, for any α ∈ (0, λX,1), δ ∈
(

0,min{ε, ε̃}), and z ∈ Uε(e), we have

φX (z) = −4π log
(

1 − |ϑe(z)|2/me
)

volhyp(X)
+ φe(z),

where φe(z) is a subharmonic function on z ∈ Uε(e), which satisfies the following upper
bound

sup
z∈Uε(e)

|φe(z)| ≤ CX,ε,α,δ .

Proof The proof of the corollary follows from similar arguments as in Corollary 5.14. ��

Theorem 5.16 For any α ∈ (0, λX,1) and δ ∈ (

0,min{ε, ε̃}), we have the following upper
bounds

sup
z,w∈Yε

∣

∣ gX,hyp(z, w) − gX,can(z, w)
∣

∣ ≤ 2CX,ε,α,δ; (119)

sup
z,w∈Yε

∣

∣

∣

∣

gX,can(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ 2CX,ε,α,δ +BX,ε,α,δ . (120)

Proof Upper bound (119) follows directly from formula (36) and Theorem 5.13. From tri-
angle inequality, for any z, w ∈ Yε , we have

∣

∣

∣

∣

gX,can(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ ∣

∣ gX,can(z, w) − gX,hyp(z, w)
∣

∣

+
∣

∣

∣

∣

gX,hyp(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

. (121)

Hence, upper bound (120) follows directly from combining Theorem 5.13 and Proposi-
tion 4.8. ��
Corollary 5.17 Let p, q ∈ PX and p �= q be two cusps. Then, for any α ∈ (0, λX,1) and
δ ∈ (

0,min{ε, ε̃}), we have the following upper bounds

sup
z∈Uε(p)
w∈Uε(q)

∣

∣

∣

∣

gX,can(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ 2CX,ε,α,δ +BX,ε,α,δ; (122)

sup
z,w∈Uε(p)

∣

∣

∣

∣

gX,can(z, w)−
∑

γ∈S�X (δ;z,w)\{id}
gH(z, γw)−

∑

γ∈�X,p

gH(z, γw)

∣

∣

∣

∣

≤ 2CX,ε,α,δ+BX,ε,α,δ .

(123)
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Proof Upper bound (122) follows directly from triangle inequality (121), and combining
Corollaries 4.13 and 5.14.

Similarly upper bound (123) follows directly from triangle inequality (121), and combin-
ing Corollaries 4.14 and 5.14. ��

Remark 5.18 Let p, q ∈ PX and p �= q be two cusps. Then, for any α ∈ (0, λX,1) and
δ ∈ (

0,min ε, ε̃}), from upper bound (122), we have the following upper bound

∣

∣

∣

∣

gX,can(p, q) −
∑

γ∈S�X (δ;z,w)

gH(p, γ q)

∣

∣

∣

∣

= ∣

∣ gX,can(p, q)
∣

∣ ≤ 2CX,ε,α,δ +BX,ε,α,δ . (124)

In an upcoming article, we will derive an upper bound for gX,can(p, q) using a different
method, and the upper bound does not depend on the choice of ε.

Corollary 5.19 Let e, f ∈ EX and e �= f be two elliptic fixed points. Then, for any α ∈
(0, λX,1) and δ ∈ (

0, ε, ε̃}), we have the following upper bounds

sup
z∈Uε(e)
w∈Uε(f)

∣

∣

∣

∣

gX,can(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

≤ 2CX,ε,α,δ +BX,ε,α,δ

sup
z,w∈Uε(e)

∣

∣

∣

∣

gX,can(z, w) −
∑

γ∈S�X (δ;z,w)\{id}
gH(z, γw) −

∑

γ∈�X,e

gH(z, γw)

∣

∣

∣

∣

≤ 2CX,ε,α,δ +BX,ε,α,δ .

Proof The proof of the corollary follows from triangle inequality 121, and combining Corol-
laries 5.15 and 4.15. ��

Remark 5.20 In order to understand the dependence of our bounds for the canonical Green’s
function on ε, it suffices to analyze the dependence of BX,ε,α,δ and CX,ε,α,δ on ε. From
the formula for CX,ε,α,δ from Theorem 5.13, and the dependence of BX,ε,α,δ on ε from
Remark 4.16, we arrive at the following estimate for CX,ε,α,δ

CX,ε,α,δ = OX
(

ε−3).

6 Bounds for families of modular curves

In this section, we investigate the bounds obtained in previous subsections for certain
sequences of Riemann orbisurfaces similar to the study conducted in Section 5 of [10].

We start by recalling the definition of an admissible sequence of non-compact hyperbolic
Riemann orbisurfaces of finite volume.

Definition 6.1 Let {XN }N∈N indexed by N ∈ N ⊆ N be a set of non-compact hyperbolic
Riemann orbisurfaces of finite volume of genus gN ≥ 1, which can be realized as a quotient
space �XN \H, where �XN is a Fuchsian subgroup of the first kind acting by fractional linear
transformations on the upper half-plane H. We say that the sequence is admissible if it is one
of the following two types:

(1) If N = N and N ∈ N , then XN+1 is a finite degree cover of XN .
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(2) For N ∈ N>0, let

Y0(N ) = �0(N )\H, Y1(N ) = �1(N )\H, Y (N ) = �(N )\H,

with the congruence subgroups �0(N ), �1(N ), �(N ), respectively. In each of the three
cases above, letN ⊆ N be such that Y0(N ), Y1(N ), Y (N ) has genus bigger than zero for
N ∈ N , respectively. We then consider here the families {XN }N∈N given by

{Y0(N )}N∈N , {Y1(N )}N∈N , {Y (N )}N∈N .

Denote by qN ∈ N the minimal element in Case (1), i.e., qN = 0; and the smallest
prime in N in Case (2).

Remark 6.2 It is to be noted that the family of hyperbolicmodular curves do not form a single
tower of hyperbolic Riemann orbisurfaces, hence, the distinction in the above definition.
However, they form a different structure which we call a net. We refer the reader to Section
5 of [11] for further details.

Notation 6.3 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite volume. We fix an 0 < ε < 1 satisfying the conditions elucidated in
Notation 4.1 for the Riemann orbisurface XqN .

Then, for any N ∈ N , to emphasize the dependence on N , we denote the open coordinate
disks around a cusp p ∈ PXN and an elliptic fixed point e ∈ EXN described in Notation
4.1 by UN ,ε(p) and UN ,ε(e), respectively. Furthermore, we denote the compact subset Yε

associated to the Riemann orbisurface XN by YN ,ε.

Lemma 6.4 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite volume. Then, we have the following upper bounds:

(1) For any N ∈ N , we have

dXN = OXqN (1).

(2) For any N ∈ N , we have

cXN = OXqN

(

gXN

λXN ,1

)

.

(3) For any N ∈ N , we have

�XN = OXqN (1).

(4) For any N ∈ N , we have

CHK
XN

= OXqN (1).

Proof The first three assertions follow directly fromLemma 5.3 of [10]. Assertion (4) follows
from employing arguments similar to the ones used to prove assertion (d) in Lemma 5.3 of
[10]. ��
Notation 6.5 For � ⊂ PSL2(R) a Fuchsian subgroup of the first kind, let Mpar(�) denote
the set of maximal parabolic subgroups of �. Note that for P ∈ Mpar(�), we have P =
〈γP 〉 ∈ Mpar(�), where γP denotes a generator of the maximal parabolic subgroup P .
Furthermore, there exists a scaling matrix σP satisfying the condition

σ−1
P γPσP = γ∞, where γ∞ =

(

1 1
0 1

)

. (125)
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Remark 6.6 Let � be a subgroup of finite index in �0 ⊂ PSL2(R), a Fuchsian subgroup of
the first kind. Then, there is a bijection

ϕ : Mpar(�) −→ Mpar(�0),

which is given as follows. For each P ∈ Mpar(�), there exists a maximal parabolic subgroup
P0 ⊂ �0 containing P , andwe setϕ(P) = P0; the inversemap is given byϕ−1(P0) = P0∩�.

Furthermore, the scaling matrices σP0 and σP of the parabolic subgroups P0 and P ,
respectively, can be chosen such that they satisfy the relation

σP0 = σP

(

1/
√
nP0P 0
0

√
nP0P

)

, (126)

where nP0P = [P0 : P].
Proposition 6.7 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite volume. Then, we have the following upper bounds:

(1) For any N ∈ N , we have

CXN ,par = OXqN (1).

(2) For any N ∈ N , we have

Caux
XN ,par = OXqN (1).

(3) For any N ∈ N , we have

cXN ,ell = OXqN (1); 5 cXN ,ell

gXN volhyp(XN )

∑

e∈EXN

(me − 1) = OXqN

( |EXN |
gXN

)

.

(4) For any N ∈ N , we have

CX,ell = OXqN (1).

Proof Wefirst prove assertion (1) for {XN }N∈N , an admissible sequence ofRiemann orbisur-
faces of type (1). In order to do so, we need to consider the pair of Riemann orbisurfaces XN

and XqN , where XN is a finite degree cover of XqN .
For any N ∈ N and XN = �XN \H, from Eq. (77), recall that

CXN ,par = sup
z∈XN

∑

p∈PXN

(EXN ,par(z, 2) − Im(σ−1
p z)2

)

.

Consider the set

P(�XN ) = {

�XN ,p | p ∈ PXN

}

,

where �XN ,p denotes the stabilizer subgroup of the cusp p ∈ PXN . Keeping in mind that the
set PXN is in bijection with the set of conjugacy classes of maximal parabolic subgroups of
�XN , for any z ∈ H, we have the equality

⋃

p∈PXN

⋃

η∈�XN ,p\�XN
η �=id

η−1�XN ,pη =
⋃

P∈Mpar(�XN )

P �∈P(�XN )

P

�⇒
∑

p∈PXN

(EXN ,par(z, 2) − Im(σ−1
p z)2

) =
∑

P∈Mpar(�XN )

P �∈P(�XN )

Im
(

σ−1
P z

)2
. (127)
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From Remark 6.6, we have a bijective map

ϕN ,qN : Mpar
(

�XN

) −→ Mpar
(

�XqN
)

,

sending P ∈ Mpar(�XN ) to P0 = ϕN ,qN (P) ∈ Mpar(�XqN ). Then, for z ∈ H, using the
relation stated in Eq. (126), we have

yP = Im(σ−1
P z) =

(

1/
√
nP0P 0
0

√
nP0P

)

Im(σ−1
P0

z) = yP0
nP0P

, (128)

where nP0P = [P0 : P]. For z ∈ H, using relations (127) and (128), and the bijection
between the sets Mpar(�XN ) and Mpar(�XqN ), we derive

∑

P∈Mpar(�XN )

P �∈P(�XN )

Im
(

σ−1
P z

)2 ≤
∑

P0∈Mpar(�XqN )

P0 �∈P(�XqN )

Im
(

σ−1
P0

z
)2

n2P0P
≤

∑

P0∈Mpar(�XqN )

P0 �∈P(�XqN )

Im
(

σ−1
P0

z
)2

,

using which, we deduce that

CXN ,par ≤ CXqN ,par = OXqN (1),

which proves assertion (1) for the case of an admissible sequence of type (1).
We now prove assertion (1) for {XN }N∈N , an admissible sequence of Riemann orbisur-

faces of type (2). We prove assertion (1) only for the sequence of modular curves
{Y0(N )}N∈N , as the proof extends with notational changes to the other sequences of modular
curves {Y1(N )}N∈N and {Y (N )}N∈N .

For any N ∈ N the modular curve Y0(N ) is a finite degree cover of Y0(1) = PSL2(Z)\H.
Extending our notation to the modular curve Y0(1), and adapting the arguments from the
proof for admissible sequences of Riemann orbisurfaces of type (1), for N ∈ N , we have

CY0(N ),par = O(1),�⇒ CY0(N ),par = OY0(qN )(1).

This completes the proof for assertion (1).
For the case of admissible sequences of Riemann orbisurfaces of type (1), assertion (2) has

been established as Proposition 5.4 in [13]. Using Proposition 5.4 from [13] and adapting the
arguments from proof of assertion (1), trivially proves assertion (2) for the case of admissible
sequences of Riemann orbisurfaces of type (2).

Wefirst prove assertion (3) for {XN }N∈N , an admissible sequenceofRiemannorbisurfaces
of type (1). We again the consider a pair of Riemann orbisurfaces XN and XqN , where XN

is a finite degree cover of XqN .
For any N ∈ N , from Eq. (55), recall that

cXN ,ell = max
{

1/ sin2(nπ/me)
∣

∣ e ∈ EXN , 0 < n ≤ me − 1
}

.

Observe that
{

me

∣

∣ e ∈ EXN

} ⊆ {

me

∣

∣ e ∈ EXqN
}

,
∑

e∈EXN

(me − 1) ≤ |EXN |
∑

e∈EXqN

(me − 1),

which along with the inequality gXN ≤ volhyp(XN ), trivially proves assertion (3) or admis-
sible sequences of Riemann orbisurfaces of type (1).

Adapting similar arguments as the ones used to prove assertion (1) for admissible
sequences of Riemann orbisurfaces of type (2), trivially proves assertion (3) for admissi-
ble sequences of Riemann orbisurfaces of type (2).
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Assertion (4) follows easily from similar arguments as the ones used to prove assertions
(1), (2), and (3). ��

Proposition 6.8 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite volume. Then, for any N ∈ N , α ∈ (0, λXN ,1), and δ > 0, we
have the following estimate

sup
z,w∈YN ,ε

∣

∣

∣

∣

gXN ,hyp(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,α,δ(1).

Proof The proof of the proposition follows from similar arguments as the ones used to prove
Theorem 5.5 in [10], and using Lemma 6.4 and Propositions 4.8 and 6.7. ��

Theorem 6.9 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite hyperbolic volume. Then, for any N ∈ N , we have the following
estimates

sup
z,w∈YN ,ε

∣

∣gXN ,can(z, w) − gXN ,hyp(z, w)
∣

∣ = OXqN ,ε

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

;

(129)

sup
z,w∈YN ,ε

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

. (130)

Proof Estimate (129) follows from similar arguments as the ones used to prove Theorem 5.6
in [10], and using Lemma 6.4, and Propositions 5.16 and 6.7.

Estimate (130) follows from similar arguments as the ones used to prove Corollary 5.7 in
[10], and using Proposition 6.8 and estimate (129). ��

Corollary 6.10 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite hyperbolic volume. For any N ∈ N , let p, q ∈ PXN and p �= q
be two cusps. Then, for any δ > 0, we have the following estimates

sup
z∈UN ,ε(p)
w∈UN ,ε(q)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

;

sup
z,w∈UN ,ε(p)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)\{id}

gH(z, γw) −
∑

γ∈�XN ,p

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

.

Proof The proof of the corollary follows directly from Corollary 5.17 and Theorem 6.9. ��
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Corollary 6.11 Let {XN }N∈N be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite hyperbolic volume. For any N ∈ N , let e, f ∈ EXN and e �= f be
two elliptic fixed points. Then, for any δ > 0, we have the following estimates

sup
z∈UN ,ε(e)
w∈UN ,ε(f)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

;

sup
z,w∈UN ,ε(e)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)\{id}

gH(z, γw) −
∑

γ∈�XN ,e

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ

(
(|PXN | + |EXN |)

gXN

(

1 + 1

λXN ,1

))

.

Proof The proof of the corollary follows directly from Corollary 5.19 and Theorem 6.9. ��

Remark 6.12 Consider the admissible sequence of modular curves {Y0(N )}N∈N . For any
N ∈ N , the modular curve Y0(N ) is a finite degree cover of Y0(1) = PSL2(Z)\H. Further-
more, we have the following estimate for the genus gY0(N ) of Y0(N )

gY0(N ) = O
(

N log N
)

.

From Riemann–Hurwitz formula, we have the following estimates

[

PSL2(Z) : �0(N )
] = O

(

gY0(N )

)

, |PY0(N )| = O
(

N log N
)

, |EY0(N )| = Oε

(

N ε
)

,

for any ε > 0. We refer the reader to [18], pp. 22–25 for details of the above estimates.
Furthermore, fromwork of Selberg [17], we know thatλY0(N ),1 ≥ 3/16.All the above esti-

mates also hold true for the other sequences ofmodular curves {Y1(N )}N∈N and {Y (N )}N∈N .

Corollary 6.13 Let {XN }N∈N , an admissible sequence of Riemann orbisurfaces of type (2).
Then, for any N ∈ N and δ > 0, we have the following estimate

sup
z,w∈YN ,ε

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�X (δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ(1). (131)

For any N ∈ N , let p, q ∈ PXN and p �= q be two cusps. Then, for any δ > 0, we have the
following estimates

sup
z∈UN ,ε(p)
w∈UN ,ε(q)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ(1); (132)

sup
z,w∈UN ,ε(p)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)\{id}

gH(z, γw) −
∑

γ∈�XN ,p

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ(1).

(133)
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For any N ∈ N , let e, f ∈ EXN and e �= f be two elliptic fixed points. Then, for any δ > 0,
we have the following estimates

sup
z∈UN ,ε(e)
w∈UN ,ε(f)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ(1); (134)

sup
z,w∈UN ,ε(e)

∣

∣

∣

∣

gXN ,can(z, w) −
∑

γ∈S�XN
(δ;z,w)\{id}

gH(z, γw) −
∑

γ∈�XN ,e

gH(z, γw)

∣

∣

∣

∣

= OXqN ,ε,δ(1).

(135)

Proof Estimate (131) follows directly from combining Remark (6.12) with Theorem 6.9.
Estimates (132) and (133) followdirectly fromcombiningRemark (6.12)withCorollary 6.10.
Estimates (134) and (135) followdirectly fromcombiningRemark (6.12)withCorollary 6.11.
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