Math. Z. (2015) 280:85-133

DOI 10.1007/500209-015-1414-y Mathematische Zeitschrift

@ CrossMark

Bounds for Green’s functions on noncompact hyperbolic
Riemann orbisurfaces of finite volume

Anilatmaja Aryasomayajula

Received: 16 February 2014 / Accepted: 19 November 2014 / Published online: 15 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In Jorgenson and Kramer (Compos Math 142:679-700, 2006) derived bounds for
the canonical Green’s function and the hyperbolic Green’s function defined on a compact
hyperbolic Riemann surface. In this article, we extend these bounds to noncompact hyperbolic
Riemann orbisurfaces of finite volume and of genus greater than zero, which can be realized
as a quotient space of the action of a Fuchsian subgroup of first kind on the hyperbolic upper
half-plane.
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1 Introduction

Notation Let X be anoncompact hyperbolic Riemann orbisurface of finite volume volpyp (X)
with genus gx > 1, and can be realized as the quotient space I"'x \H, where 'y C PSL;(R)
is a Fuchsian subgroup of the first kind acting on the hyperbolic upper half-plane H, via
fractional linear transformations. Let Py and Ex denote the set of cusps and the set of elliptic
fixed points of 'y, respectively. Put X = X UPy. Then, X admits the structure of a Riemann
surface.

Let ftnyp(z) denote the (1,1)-form associated to hyperbolic metric, which is the natural
metric on X, and of constant negative curvature minus one. Let (shyp(z) denote the rescaled
hyperbolic metric jinyp(z)/ volnyp(X), which measures the volume of X to be one.

The Riemann surface X is embedded in its Jacobian variety Jac(X) via the Abel-Jacobi
map. Then, the pull back of the flat Euclidean metric by the Abel-Jacobi map is called the
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canonical metric, and the (1,1)-form associated to it is denoted by fican(z). We denote its
restriction to X by pican(2).

For 4 = pshyp(2) or peean (2), let gx, . (z, w) defined on X x X denote the Green’s function
associated to the metric u. The Green’s function gy ,(z, w) is uniquely determined by the
differential equation (which is to be interpreted in terms of currents)

dd{gx u(z, w) + 8y (2) = u(z), (1

with the normalization condition
/ gx.u(z, wn(z) = 0.
X

The Green’s function gy can(z, w) associated to the canonical metric fican(z) is called the
canonical Green’s function. Similarly the Green’s function gx hyp(z, w) associated to the
(rescaled) hyperbolic metric jshyp(z) is called the hyperbolic Green’s function.

From differential Eq. (1), we can deduce that for a fixed w € X, as afunction in the variable
z, both the Green’s functions gx, can(z, w) and gy hyp(z, w) are log-singular at z = w. Recall
that nyp(2) is singular at the cusps and at the elliptic fixed points, and ftcan (z) the pull back
of the smooth and flat Euclidean metric is smooth on X. Hence, from the elliptic regularity of
the d,d operator, it follows that gx hyp(z, w) is log log-singular at the cusps, and gx can (2, W)
remains smooth at the cusps.

From a geometric perspective, it is very interesting to compare the two metrics fthyp(2)
and fcan(2), and study the difference of the two Green’s functions

gX,hyp(Za w) — gx,can (X, W). (2)

on compact subsets of X.

In [10], Jorgenson and Kramer have already established these tasks, when X is a compact
Riemann surface devoid of elliptic fixed points. They proved a key-identity that relates the
hyperbolic metric zipyp(z) and the canonical metric jican(z) via the hyperbolic heat kernel.
Using the key-identity, they expressed the difference (2) in terms of integrals which involve
only the hyperbolic heat kernel and the hyperbolic metric. This allowed them to derive
bounds for the difference (2) in terms of invariants coming from the hyperbolic geometry of
X, namely, the injectivity radius of X and the first non-zero eigenvalue 1 x 1 of the hyperbolic
Laplacian Apyp acting on smooth functions defined on X.

In [2], we extend the key-identity from [10] to cusps and elliptic fixed points at the level of
currents. This relation serves as a starting point for extending the bounds for the canonical and
the hyperbolic Green’s function from [10] to noncompact hyperbolic Riemann orbisurfaces
of finite volume.

In this article, using the key-identity from [2] and by extending the methods used in [10],
we study the difference (2) on compact subsets of X, and as an application, we derive upper
bounds for the canonical Green’s function gx can(z, w) on X. Our bounds are similar to the
ones derived in [10].

Statement of main results We now describe our results for the modular curve Yo(N) =
I'o(N)\H. However, our results hold true for any noncompact hyperbolic Riemann orbisur-
face of finite volume and of genus greater than zero. Let N € N be such that the modular
curve Yo(N) has genus gy,(v) > 1. Let 0 < & < 1 be small enough such that it satisfies the
conditions elucidated in Notation 4.1.

For any cusp p € Py,(w), let Uy ¢(p) denote an open coordinate disk of radius & around
the cusp p. For any elliptic fixed point ¢ € Ey,(), let Uy . (e) denote an open coordinate
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disk around the elliptic fixed point e, which is as described in condition (3) in Notation 4.1.
Put

YO(N)eZYo(N)\( U vwmu U Ue<e>).
PEPYy(N) e€€y,(N)

For any § > 0 and a fixed z, w € X, identifying Yo(N) with its fundamental domain, we
define the set

Sryyn 85 2, w) = {y € H(To(N)) U {id}| du(z, yw) < 8},

where H(I'o(N)) denotes the hyperbolic elements of I'g(N). Furthermore, let gy (z, w)
denote the free-space Green’s function defined on H x H, which is given by the formula

z—w|

gu(z, w) = log

Z—w

From [17], recall that the first non-zero eigenvalue of the hyperbolic Laplacian Ay, satisfies
the lower bound Ay, (n),1 > 3/16. With notation as above, forany § > 0, using the dependence
of the genus gy,(n), the number of cusps [Py, )|, and the number of elliptic fixed points
|€yy(nvy| in terms of N from pp. 22-25 in [18], we derive the following estimates

SUP | &¥y(N),can (2 W) — &yo(W).hyp(Z, W)

z,WeYo(N)e
_0 5((|PY0<N>|+|£YO<N)|) (1+ 1 )) o )
- &, - &, E)
8Yy(N) AYo(W).1
sup gYo(N),can(Zv w) — Z gu(z, Vw)‘
zwelo(N)e Y €Sty vy Bi2.0)
_o Js((|7’Yo(N>I+|<9Yo(1v)|) (1+ 1 )) — 0.5(1) @
=0, = 0.5(1).
8Yo(N) AYo(N),1

We even derive bounds for the canonical Green’s function gy, (n),can(z, w) at cusps and at
elliptic fixed points.

Arithmetic significance In 1974, in [1], Arakelov defined an intersection theory for divisors
on an arithmetic surface by incorporating the associated compact Riemann surface with its
complex analytic geometry. The contribution at infinity is calculated by using canonical
Green’s functions defined on the corresponding Riemann surfaces.

In [7], Edixhoven et al. devised an algorithm which for a given prime ¢, computes the
Galois representations modulo £ associated to a fixed modular form of arbitrary weight, in
time polynomial in £.

To show that the complexity of the algorithm is polynomial in ¢, they needed an upper
bound for the canonical Green’s function associated to the compactified modular surface
X1(£), and the upper bound provided by Merkl (also published in [7]) proved sufficient.

Bounds for the canonical Green’s function from [10] when restricted to X (£) yield better
bounds than the ones derived by Merkl.

In 2011, in [5], while extending the algorithm of Edixhoven—Couveignes—de Jong, fol-
lowing the methods of Merkl, Bruin has derived bounds for the canonical Green’s function,
which for a given modular curve Yy (V) are of the form O (N 2, which will appear as [6].
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Furthermore, using the bounds of Bruin for the canonical Green’s function, Javanpeykar
has derived bounds for various Arakelovian invariants like the Faltings delta function and
Faltings height function in [9].

Our bounds for the canonical Green’s function are stronger than the ones derived by Bruin,
and are optimally derived by following the methods from [10]. Furthermore, our bounds for
the canonical Green’s function gy can(z, w) at cusps are essential for calculating the Faltings
height of any modular curve X. We are hopeful that our results together with [9] will lead to
better bounds for the Arakelovian invariants considered in [9].

It is to be mentioned that using a different method, we have computed bounds for the
canonical Green’s function gx can(z, w) at cusps in [3]. Although the bounds computed in
[3] are more explicit, their dependence on N for a modular curve Yo (N) is not known.

This article also completes the program of Jorgenson and Kramer of estimating Arakelov-
ian invariants of modular curves via techniques coming from global analysis and theory of
heat kernels. However it would be interesting to study Edixhoven—Couveignes—de Jong’s
algorithm from [7], using our bounds for the canonical Green’s function, and we hope our
bounds lead to a better complexity for the algorithm.

Moreover, for any noncompact hyperbolic Riemann orbisurface X = I'y\H, we have
studied the convergence of the following series

1
Z en(z, ¥2), Z gu(z, y2), / Z Ku(t;z,vz) — m dt,
yp

yeP('x) yeETx) X \yerry
©)

where P(I'y), £(I'x), and H(I"x) denote the parabolic, elliptic, and hyperbolic elements of
I'x, respectively, and the quantity Ky (¢; z, w) denotes the hyperbolic heat kernel on H x H.
We have also studied the behavior of the above stated series at the cusps and at the elliptic
fixed points. We believe that this analysis helps in the generalization of the work of Jorgenson
and Kramer from [10] and [11] to noncompact hyperbolic Riemann orbisurfaces and to higher
dimensions.

Organization of the paper In the first section, we set up our notation, introduce basic notions,
and results. In Sect. 2, we prove convergence of the automorphic functions mentioned in (5).
In Sect. 3, using the existing bounds for the heat kernel from [10], we derive bounds for
the hyperbolic Green’s function gx nyp(z, w) on compact subsets of X, and then extend
these bounds to the neighborhoods of cusps and elliptic fixed points. In Sect. 4, using the
convergence results from Sect. 2, and bounds for the hyperbolic Green’s function, we derive
bounds for the canonical Green’s function gx can(z, w) on compact subsets of X, and then
extend these bounds to the neighborhoods of cusps and elliptic fixed points. Finally, in Sect. 5,
we extend our bounds to certain sequences of admissible noncompact Riemann orbisurfaces
to prove estimates (3) and (4).

2 Background material
In this section, we recall the basic notions and results required for next sections.
Let 'y C PSL2(R) be a Fuchsian subgroup of the first kind acting by fractional linear

transformations on the upper half-plane H. Let X be the quotient space I'y \H, andlet gx > 1
denote the genus of X. The quotient space X admits the structure of a Riemann orbisurface.
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Bounds for Green’s functions 89

Let Px and Ex denote the finite set of cusps and finite set of elliptic fixed points of X,
respectively. For ¢ € Ex, let m, denote the order of ¢; for p € Px, put m;, = oo; for
z€ X\Ex,putm, = 1. Let X denote X = X U Py.

Locally, away from cusps and elliptic fixed points, we identity X with its universal cover
H, and hence, denote the points on X \(Px U Ex) by the same letter as the points on H.
Structure of X as a Riemann surface The quotient space X admits the structure of a compact
Riemann surface. We refer the reader to section 1.8 in [16], for the details regarding the
structure of X as a compact Riemann surface. For the convenience of the reader, we recall
the coordinate functions for the neighborhoods of cusps and elliptic fixed points.

Let p € Px be acusp, and let U (p) denote a coordinate disk around the cusp p. Then, for
any w € U (p), the coordinate function ¥, (w) for the open coordinate disk U (p) is given by

s -1
ﬂp(w) :ezn’lo'p w’

where o0, is a scaling matrix of the cusp p satisfying the following relations

. _ 11
opico =p and o, ll"X’pap = (Yo), Where yoo = (0 1) and I'x , = (yp) (6)

denotes the stabilizer of the cusp p with generator y,,.

Similarly, let ¢ € £x be an elliptic fixed point, and let U (e) denote a coordinate disk
around the elliptic fixed point e. Then, for any w € U (¢), the coordinate function ¥, (w) for
the open coordinate disk U (e) is given by

mwo=(w_f)e.
w —e

Hyperbolic metric We denote the (1,1)-form corresponding to the hyperbolic metric of X,
which is compatible with the complex structure on X and has constant negative curvature
equal to minus one, by wnyp(z). Locally, away from elliptic fixed points, as we identity X
with H, for z € X\Ey, the hyperbolic metric is given by

@ i dzndz
== —7.
e = Im()?

Let volnyp(X) be the volume of X with respect to the hyperbolic metric fupyp. It is given by
the formula |
Volhyp(X) = 27 (2g —2+Pxl+ D (1 —~ m—))
eel X ¢

The hyperbolic metric uhyp(2) is singular at the cusps and at the elliptic fixed points, and the
rescaled hyperbolic metric
Mhyp (2)

Mshyp(2) = W

measures the volume of X to be one.
Locally, for z € X, the hyperbolic Laplacian Apy, on X is given by

92 92 92
Anp = =5+~ ) = -4 (—= ).
hyp = 7 (3x2 ay2) Y (azaz)
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_ 99
Recall that d = (8 + 8) ,d° (8 — 5), and dd¢ = 5 So for any smooth function
i

f on X, we have

" a4z

_47szd§f(z) = Ahyp(f) Mhyp(z)- @)

Canonical metric Let S>(I'x) denote the C-vector space of cusp forms of weight 2 with
respect to I'y equipped with the Petersson inner-product. Let { f1, ..., f,y} denote an ortho-
normal basis of S>(I"x) with respect to the Petersson inner product. Then, the (1,1)-form
[Lcan(2) corresponding to the canonical metric of X is given by

. 8x
l —
Mean(z) = 2ex j§=1 ‘fj(Z)fzdz AdZ.

The canonical metric tcan (z) remains smooth at the cusps and at the elliptic fixed points, and
measures the volume of X to be one.
Put

d Mean(2)
X = sup ———.
zeX Mshyp(z)

®)

As the canonical metric ptcan (z) remains smooth at the cusps and at the elliptic fixed points,
and the hyperbolic metric is singular at these points, the quantity dy is well-defined.

Canonical Green’s function For z, w € X, the canonical Green’s function gx can(z, w) is
defined as the solution of the differential equation (which is to be interpreted in terms of
currents)

dzdzc gX,can(Z’ w) + 8y (2) = Mean(2), 9)

with the normalization condition
/ gX,can(Z, W) fean(z) = 0.
X

From Eq. (9), it follows that gx can(z, w) has a log-singularity at z = w, i.e., forz, w € X,
it satisfies
Jim (gxcan (2. w) + log |9 (w)*) = O:(1). (10)

Parabolic Eisenstein series For z € X and s € C with Re(s) > 1, the parabolic Eisenstein
series £x, par, p(2, §) corresponding to a cusp p € Py is defined by the series

s
Expup) = >, Im (o)) .

nelx p\I'x
The series converges absolutely and locally uniformly for Re(s) > 1 (as a function in the
variable z, for a fixed s). It admits a meromorphic continuation to all s € C with a simple
pole at s = 1, and the Laurent expansion at s = 1 is of the form

SX,par,p(Za S) = + KX,p(Z) + Oz(s - 1)7 (11)

1
(s — 1) volpyp(X)

where kx5 (z) the constant term of Ex par, p(z, 5) ats = 1is called Kronecker’s limit function
(see Chapter 6 of [8]).
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Bounds for Green’s functions 91

Forz € X,and p, g € Px,the Kronecker’s limit function kx, , (0, z) satisfies the following
equation (see Theorem 1.1 of [14] for the proof)

- log (Im(z) ,
kx,p(042) = ka’q(n)e%znz + 8.4 Im(2) +kp 4 (0) — \u)l(}lng()())+zkp'q(n)82ﬂl’lz’

n<0 n>0

(12)
with Fourier coefficients k ,(n) € C.

For p, g € Px, as z € X approaches ¢, the Eisenstein series £x par, p (2, §) corresponding
to the cusp p € Py satisfies the following equation (see Corollary 3.5 in [8])

Exparp (2. 8) = 8p g Im(o, ') + ap g () Im(o, '2)!

L0 ((l I Im(aqflz)fRe(s))e—%rIm(gq—lz)) ’ (13)

where the Fourier coefficient o), 4 (s) is given by equation (3.21) in [8].

Elliptic Eisenstein series Let ¢ € £x be an elliptic fixed point of order m, with stabilizer
subgroup 'y .. Let o, be a scaling matrix of e satisfying the conditions

cos(rr/me) sin(w/me) ) (14)

o.i =e¢ and a;lFX’eoe = (yj), where y; = (—sin(n/m ) cos(r /m.)
[4 (4

Let p(z) denote the hyperbolic distance dy(z, i). Then, for z € X and s € C with Re(s) > 1,
the elliptic Eisenstein series Ex el (z, §) corresponding to an elliptic fixed point e € Ey is
defined by the series

Exene(zs) = > sinh™ (p(o7 n2)).
nelx \I'x

The series converges absolutely and locally uniformly for Re(s) > 1 and z # ¢ (as a function

in the variable z, for a fixed s, see [15]). From its definition, as z € X\Ex approaches an
elliptic fixed point ¢ € £y, for any s € C with Re(s) > 1, we find

Exell.e(z,8) = sinh ™ (p(oy ' 2)) = 0;(1). (15)
Moreover, for any z € X, s € C with Re(s) > 1, and any cusp p € Py, it follows that
lim Ex g, e(z,5) = 0. (16)
z—>p

Space of square-integrable functions Let L?(X) denote the space of square integrable func-
tions on X with respect to the hyperbolic (1, 1)-form ppyp(z). There exists a natural inner-
product (-, -y on L%(X) given by

(fog) = /X FTE gy @),

where f, g € L>(X), making L?(X) into a Hilbert space.
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92 A. Aryasomayajula

Furthermore, every f € L*(X) admits the spectral expansion

o0

@ =D (f oxa@)ex.n(2)
n=0

1
+ E Z / (fv gX,par,p(Z; ]/2+ir))gX,par,p(Z, 1/2 +ir)dr, A7)
pePx’ ~®

where {¢x ,(z)} denotes the set of orthonormal eigenfunctions for the discrete spectrum
of Anyp, and {Ex par,p(z, 1/2 +ir)} denotes the set of eigenfunctions for the continuous
spectrum of Apyp, with Ex par,p(z, 5) denoting the parabolic Eisenstein series for the cusp
p € Px.

The eigenfunctions {¢x ,(z)} corresponding to the discrete spectrum can all be chosen to
be real-valued, and for the rest of this article we continue to assume so.

Heat Kernels Fort € R- and z, w € H, the hyperbolic heat kernel Ky(¢; z, w) on R X
H x H is given by the formula

s (18)

J2e /4 oo re— T M

— dr
(4mt)3/2 /d]]-[[(Z,w) +/cosh(r) — cosh(dg(z, w))
where dp(z, w) is the hyperbolic distance between z and w.

Fort € R.p and z, w € X, the hyperbolic heat kernel Kx nyp(f; z, w) on Rop x X x X
is defined as

Ku(t; z, w) =

Kxnyp(t; 2, w) = >~ Kua(t; 2, yw).
velx

For notational brevity, we denote Kx nyp(f; z, w) by Kx hyp(?; z), when z = w.
The hyperbolic heat kernel Kx hyp(; z, w) admits the spectral expansion

o0
Kx hyp(t; 2, w) = D 9x.n(R)px n(w)e 5"
n=0
: N ] e (LDt
+ E Z / EX,par,p(Z, 1/2 + lr)gX,par,p(IU, 1/2 —ir)e dr,
—00

PEPx
(19)

where Ay , denotes the eigenvalue of the normalized eigenfunction ¢y ,(z) and rr+1 /4)
is the eigenvalue of the eigenfunction Ex par,p(z, 1/2 +ir), as above.

Let P(I'x), E(I'x), and H(I"x) (here id is not treated as a parabolic element) denote the
sets of parabolic, elliptic, and hyperbolic elements of the Fuchsian subgroup I"y, respectively.
Fort € R>p and z € X, put

PKx hyp(t; 2) = 2 Ku(t; z,v2), EKxnyp(t: 2) = Z Ku(t;z,v2)
y€HTx) ye€lx)

HKxnp(t;0) = > Kult; 2, y2).
y€PT'x)

As the hyperbolic heat kernel Kx hyp(?; z) is a sum of the above three series, the convergence
of each of the above series follows from the convergence of the hyperbolic heat kernel
Kx nyp(t; z) and the fact that Ky (¢; z, yz) is positive for all € R>q, z € H, and y € I'y.
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Bounds for Green’s functions 93

Selberg constant The hyperbolic length of the closed geodesic determined by a primitive
non-conjugate hyperbolic element y € H(I"y) on X is given by

¢y, = inf{du(z, yz)lz € H}.
The length of the shortest geodesic £x on X is given by
tx =inf {du(z, y2)| ¥ € H(T'x), y hyperbolic, z € H}.

From the definition, it is clear that £x > 0.
For s € C with Re(s) > 1, the Selberg zeta function associated to X is defined as

o0

Zx(s) = H Z,(s), where Z,(s) = H (1 - e(”'”)ZV).

yeH(Tx) n=0

The Selberg zeta function Zy (s) admits a meromorphic continuation to all s € C, with zeros
and poles characterized by the spectral theory of the hyperbolic Laplacian. Furthermore,
Zx(s) has a simple zero at s = 1, and the following constant is well-defined

Z () 1
=1 X : 20
=M (zx(s) s—l) 20)
For ¢t € Rxq, the hyperbolic heat trace is given by the integral

HTr KX,hyp(t) = / HKX,hyp(t; Z) thyp(Z)~
X

The convergence of the integral follows from the celebrated Selberg trace formula. Further-
more, from Lemma 4.2 in [12], we have the following relation

(o)
/ (HTrKX’hyp(t) — l)dt =cx — 1. (21)
0
Bounds on heat kernels For the rest of this article, we fix a 0 < #y < 1. Then, there exist
constants cg and ¢, such that for 0 < ¢ < fy and n > 0, we have
Ku(t; ) < —gm"/G0;
4t
furthermore, for t > 7y and n > 0, we get
Ku(t; 1) < coce™"/. (22)

The above two formulae follow directly from the expression for the heat kernel Ky (¢; 1)
stated in Eq. (18).

Definition 2.1 We fix a constant 0 < § < 1/4, such that for r > 1y and a fixed n > 0, the
function

e’ Ku(t; ) (23)
is a monotone decreasing function in the variable .

Furthermore, there exists a 5o > 0, such that for n > §p and a fixed 0 < ¢ < tg, the function
Km(t; n) is a monotone decreasing function in the variable n. We now fix a §y satisfying
dx > max {8y, 4¢x + 5}.
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94 A. Aryasomayajula

As a function in the variable z, the sum EKx nhyp(f0, z) + HKx nyp(to; z) remains bounded
on X and also at the cusps. So we put

cik = max (Km(t0; 2) + EKx nyp(to; 2) + HK x nyp(f0; 2)).

Automorphic Green’s function For z, w € H with z # w, and s € C with Re(s) > 0, the
free-space Green’s function gy (z, w) is defined as

[(s)2

I'(2s)

8H,s (2, w) = gu s (u(z, w)) = uF(s,s;2s,—1/u),
whereu = u(z, w) = |z—w|2/(4Im(z) Im(w)) and F (s, s; 25, —1/u) is the hypergeometric
function.

For z, w € H with z # w and s = 1, we put gy (z, w) = gu.1(z, w), and by substituting
s = 1 in the definition of gy s(z, w), we get

> 0. (24)

1 zZ—w
gu(z, w) =log(1+ = log | ——
u(z, w) zZ—w

Using the formula from equation (1.3) in [8], we get

1
cosh(dy(z, w)) =14 2u(z, w) = z,w)=log |1+ . (25
(du(z, w)) (z, w) gu(z, w) g( Sinh? (dnz. w)/Z)) (25)
Furthermore, for z, w € H with z # w, we have the following relation
o0
gu(z, w) =/ Ky (t; z, wydt. (26)
0

For z, w € X with z # w, and s € C with Re(s) > 1, the automorphic Green’s function
&X.hyp,s (2, w) is defined as

gX,hyp,s(Z» w) = Z gH,s(Za )/ll)).
yelx

The series converges absolutely and locally uniformly for z # w and Re(s) > 1 (as a function
in the variables z and w, for a fixed s, see Chapter 5 in [8]).

For z, w € X with z # w, and s € C with Re(s) > 1, the automorphic Green’s function
satisfies the following properties (see Chapters 5 and 6 in [8]):

(1) The automorphic Green’s function gx nyp,s(z, w) admits a meromorphic continuation
to all s € C with a simple pole at s = 1 with residue 47/ volpy,(X), and the Laurent
expansion at s = 1 is of the form

4 (1)

TN ) (@) —1 )
55— D) Volpgy(X) | Sy (& 0+ Oz =D

8X hyp.s(z, w) =

where gg)hyp(z, w) is the constant term of gx nyp,s(z, w) ats = 1.
(2) Let p, g € Px be two cusps. Put

Cp.q = min [c > 0'(‘6’ Z) € Up_ll"xaq] . Cpp=Cp.
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Bounds for Green’s functions 95

Then, for z, w € X with Im(z) > Im(w) and Im(z) Im(w) > C;,%I, and s € C with

Re(s) > 1, the automorphic Green’s function admits the Fourier expansion
47 Im(z)'
ghyp,s (UpZa Uq ll)) = ﬁgpar,p(aq w, S)
1 -
+8pg P (n2) Vs(nw) + O (e~ 27 m@-Imw)) = (57)
n
n#0

where W;(z) and V,(z) denote the Whittaker functions, which are given by equations
(1.26) and (1.36) in [8], respectively. This equation has been proved as Lemma 5.4 in
[8], and one of the terms was wrongly estimated in the proof of the lemma. We have
corrected this error, and stated the corrected equation.

The space Cy ¢¢(X) Let Cy p¢(X) denote the set of complex-valued functions f : X —
P!(C), which admit the following type of singularities at finitely many points Sing(f) C X,
and are smooth away from Sing(f):

(1) If s € Sing(f), then as z approaches s, the function f satisfies
F @) =cpsloglds(2)| + O:(1), (28)

for some ¢,y € C.
(2) As z approaches a cusp p € Py, the function f satisfies

f@ =cypplog(—log|d,()]) + 0:(1), (29)

for some cy,, € C.

Hyperbolic Green’s function For z, w € X and z # w, the hyperbolic Green’s function is

defined as ~ .
Jw) =4 K t;z, w) — ———— |dt.
8X ,hyp (z, w) T A ( X,hyp( zZ, w) VOlhyp (X))

For z, w € X with z # w, the hyperbolic Green’s function satisfies the following properties:

(1) For z, w € X, the hyperbolic Green’s function is uniquely determined by the differential
equation (which is to be interpreted in terms of currents)

dzd; 8x.hyp(z, W) + 8w (2) = Wshyp(2), (30)

with the normalization condition
/ 8X.hyp (2, W) Unyp(z) = 0. 3D

X

(2) From Eq. (30), it follows that gx nyp(z, w) admits a log-singularity at z = w, i.e., for
z, w € X, it satisfies

Uljiglz (gx.nyp(z, w) +log [0, (w)|*) = O, (1). (32)

(3) For z, w € X and 7 # w, we have

4
() .

, = . = 11[] . — . 33
8x.hyp(2, W) = gx 1y (2, W) Sl_)l(gx,hyp,s(z w) G 1)volhyp(X)) (33)

The above properties follow from the properties of the heat kernel Kx nyp (¢; z, w) or from
the properties of the automorphic Green’s function gx hyp,s(z, w).
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(4) From Proposition 2.1 in [2], (or from Proposition 2.4.1 in [4]) for a fixed w € X, and for
z € X with Im(op_lz) > Im(ap_lw), and Im(ap_lz) Im(ap_lw) > C;z, we have

47 47 log (Im(o, '2))
VOlpyp (X) VOlhyp (X)
—log|1 _62ni(ol,_lzfa;1w)’2 + 0(e—znam(a,,-‘z)—Im(o,;lw>>)’ (34)

8xX.,hyp (2, w) = 4mix p(w) —

i.e., for a fixed w € X, as z € X approaches a cusp p € Py, we have

47 log (Im(ap_lz)) O = 47 log (—log |9, (2)])
- Z,w -

Volpyp(X) Volpyp(X)

gX,hyp(Z» w) = +Oz,w(1)-

(5) Forany f € Cy¢¢(X) and for any fixed w € X\Sing(f), from Corollary 2.5 in [2] (or
from Corollary 3.1.8 in [4]), we have the equality of integrals

c Cfs
/ gX,hyp(Zv w)dzdz f@)+ f(w) + z 7 gX,hyp(& w) = / f(@) Mshyp(z)-
X seSing(f) X
(35)

An auxiliary identity From Definition 8.1 in [13], for z € X\Ex, we have the following
relation

00
477/ Apyp KX,hyp(t§ 2)dt = Z Anyp gu(z, y2).
0 yelx\lid)

Furthermore, from Lemmas 5.2 and 6.3, Proposition 7.3, the right-hand side of above equation
remains bounded at the cusps and at the elliptic fixed points. Hence, as in [2], we extend
Definition 8.1 in [13] and the above relation to cusps and elliptic fixed points to conclude
that the following quantity is well-defined on X and remains bounded at the cusps and at the
elliptic fixed points

00
/ Ahyp KX,hyp(t; z)dt.
0

Definition 2.2 For notational brevity, put

CX,hyp:/X/XgX,hyp(Ls)(/O AhypKX,hyp([;;)dt)

X (/0 Anyp Kx nyp(; 5)611‘) Hhyp(§) tnyp($)-

From Proposition 2.8 in [2] (or from Proposition 2.6.4 in [4]), for z, w € X, we have

8X.hyp(2, W) — gx.can (2, w) = ¢Px(2) + Ppx (W), (36)

where from Remark 2.16 in [2] (or from Corollary 3.2.7 in [4]), the function ¢x (z) is given
by the formula

CX,hyp
8g§( '

1 o0
ox(2) = T/ 8x.hyp(2, ) (/ Anyp Kx hyp(t; C)dt) Hhyp(¢) — (37)
gx Jx 0
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Key-identity From Corollary 2.15in[2] (or from Corollary 3.2.5in[4]), forany f € Cy ¢¢(X),
we have following identity, which is a generalization of Theorem 3.4 from [10] to cusps and
elliptic fixed points at the level of currents

g/ [ (@) pean(2)
X

1 1 1 0
= (47_[+V01hyp(x)) /X f@ Mhyp(Z)+§/Xf(z)(/0 Anyp Kx,hyp (5 Z)df) Hyp ().
(38)

3 Certain convergence results

In this section, we prove the absolute and uniform convergence of certain series, and compute
their asymptotics at cusps and at elliptic fixed points. The analysis of this section allows us
to decompose the integrals involved in (37) into expressions, which we will bound in Sect. 4.

3.1 Parabolic case

Definition 3.1 For z € H, put
Px(@) = > gu(zy2).
yeP(Tx)

For any z € H and y € SL»(R), from the definition of u(z, w), it follows that u(yz, w) =
u(z, y‘l w). Using which and Eq. (24), we arrive at gi (v z, w) = gu(z, )/_1 w). Furthermore,
for any yg € I'y, we have yo_lP(Fx)yo = P(I'x). So, for any yp € 'y and z € H, observe
that

Px(na) = D, gawzynd = D guz vy vna)

y€P(I'x) yeP(Tx)
= Z gu(z, yz) = Z gu(z, v2),
ve(v 'PTxn) rePTy)

which implies that the function Py (z) is invariant under the action of Iy, and hence, defines
a function on X (recall thatid & P(I'yx)).

Lemma 3.2 For z € X, the series Px(z) converges absolutely and locally uniformly.

Proof We have the following decomposition of parabolic elements of 'y
rro= U 'txmdidy=J U Uy
pE€Px nelx p\I'x pePx nelx p\I'x n#0

where y), is a generator of the stabilizer subgroup I'x,, of the cusp p € Px. This implies
that formally, we have

Px()= > euyd= > > > euln 'yin)

y€PI'x) P€Px n€lx p\I'x n#0
=2 D Dlamtizypnd= D, D Penp2), (39
pePx V]EFX.,,\FX n#0 pePx i’]EFX,p\FX
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where Pgen p(2) = Zn o 8H (z, yl'}z)‘ We first prove the absolute convergence of the func-

tion Pgep, (). From the definition of g (z, w) as given in (24), for any cusp p € Py, observe
that

(4Im(<7plz)2 + nz)

n2

Poen,p(2) = > _gu(0, 'z, vibo,'2) = > log
n#0 n#0

o0 4Im(o;'2)% + 12
<2log (4Im(0p_lz)2 +1)+ 2/ log (”t—z)dt
1

=47 Im(o, 'z) — 8Im(o, 'z) tan™! ( ) <32Im(o, '2)%,  (40)

2Im(o, '2)

where o), is a scaling matrix associated to the cusp p € Px asin (6) (for the details regarding
the computation of the last inequality, we refer the reader to Proposition 4.2.3 in [4]). This
proves the absolute convergence of the function Pgen, p(2).

Hence, combining Eq. (39) with inequality (40), we arrive at the estimate

Px(z) <32 > > Im(o,'n2)* =32 D" Expurp(z2),

pE€Px nelx p\I'x PEPx

which proves the locally uniform convergence of the series Px(z). Furthermore, each term
of the series Py (z) is positive, hence, it converges absolutely. O

Lemma 3.3 As z € X approaches a cusp p € Px, the function Px(z) satisfies the estimate
Px(z) = 4w Im(0,, '2) — log (4Im(o;, '2)%) + O.(1).
Proof Let z € X approach a cusp p € Px. From Eq. (39), we obtain the decomposition

Px(z) = z Z Pgen,q (nz) + Z Pgen,p(nz) + Pgen,p(z)- 41

q€Px nelx 4\I'x nelx p\I'x
q#p n#id

We now estimate the right-hand side of the above equation term by term. Using inequality
(40), we derive the following upper bounds for the first and second terms

DD Peng) <32 > Im(o, 02 =32 D Expurg(a2);

q€Px nel'x ¢\I'x q€Px nel'x ¢\I'x q€Px
q#p q#p q#p
42)
D Penpm2) <32 > Im(o,'n2)” = 32(Ear (2. 2) —Im(o, '2)%). (43)
nelx p\I'x nelx p\I'x
n#id n#id

So using the above upper bounds, for z € X approaching p € Py, from Eq. (13), we have
the following estimate for the first and second terms

Z Z Pgen,q(nz) + Z Pgen,p(nz) =0 (Im((fp_lz)_l) . (44)

q€Px nel'x 4\I'x nelx p\I'x
q#p n#id
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As z € X approaches p € Py, we are now left to investigate the behavior of the third term

Pgen,p(z) = ZgH(Up_lz’ y:OO'p_lZ)

n#0
oo
T . -1 n _—1 -1 —1
= lim }inl( D sus(o, w ko, D) — g0, 2.0, w)). (45)
n=—00

From Lemma 5.1 in Chapter 5 of [8],f0rlm(ap_lz) > Im(op_lw), ands € CwithRe(s) > 1,
we have

o0
Z gH,S(crljlw, ygoaljlz) Im(o;lw)“ Im(crp’lz)l"‘

T2 1
n=—00
1 I T e
+> mWS(nap L) Ve(nao, 'w). (46)
n#0
Substituting the above expression in Eq. (45), we get
Peen. p(z) = 47 Im(0; '2) + lim lim ZLW( “1 ) Vs(no, 'w)
gen,p(2) = Up Z o m |n| s ncrp )Vsnop, w
n#0
— gus(o, 'z, o,;lu»). (47)

From the Proof of Lemma 5.4 in [8] (there is a slight error in the calculation of this lemma,
which has been corrected in Corollary 1.9.5 in [4]), we have the estimate

1 AN =T~
Z il s(no, lz)Vy(nop Yw)
n#0
= —log|l - ezm(a;'z—a;'w)|2 ) (e—Zn(lm(a;'z)—Im(a;'w))) _

Using the estimate stated in above equation, we compute

w—>zs—1

N 1 " _ _
lim lim (Z mWs(”Up lz)Vy(nap 1w) — gH,S(ap 1z, o, 1w))
n#0

= —log (4Im(c, '2)?) + 0.(1). (48)
Combining Eqgs. (47) and (48), we arrive at the estimate

—1 -1
O'p I—0p w
-1 -1
Op Z—0p W

= 47 Im(o, '2) — log (4Im(c, '2)?) + O.(1), (49)

. o D | 2
Pgen,p(Z) = ul)linz ( — log |1 _ e2m(0[, -0, u1)| ~log

2
)+ 0:(1)

which along with the estimate obtained in Eq. (44) completes the proof of the proposition.
[}

Remark 3.4 From Lemma 5.2 in [13], the following series

Z Anyp gu(Z, ¥2)

yeP(Tx)
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converges absolutely and uniformly for all z € X, and the above series remains bounded at
the cusps of X. Furthermore, from the absolute and locally uniform convergence of the series
Px (z), and the uniform convergence of the above series, we have the following relations

Z Anyp gu(z, yz) = Anyp Px(z) = Z z Anyp Pgen,p(ﬂz)a

yeP(Tx) pePx nelx p\I'x

2rIm(o, ') 2
Anyp Paen p(2) = D An gH(o*‘z,y"U’lz)Zz( ? ) B
yp Peen, p % P p % YooOp sinh(27 Im(a, '2))

Put

Cx'par = sup Anyp Px (2)]. (51
ze

3.2 Elliptic case
Definition 3.5 For z € H, put

Ex@= ., gu@ v

ye€l'x)
Using similar arguments as in Definition 3.1, we can conclude that the function Ex(z) is

I"x-invariant and hence, defines a function on X.

Lemma 3.6 For z € X\Ex, the series Ex(z) converges absolutely and locally uniformly,
and as z € X approaches an elliptic fixed point ¢ € Ex, we have

Ex(z) = —mjn_ 1 log [9e(2)[* + O (D). (52)

4

Furthermore, the function Ex (z) is zero at the cusps.

Proof We have the following decomposition of elliptic elements of "y

me—1
cro=1 U {'meentidy=J U U v
ecEx nel'y \I'x ee€fx nelx \I'x n=1

where I'y . denotes the stabilizer subgroup of the elliptic fixed point ¢ € £x, and y, denotes
a generator of I'y .. Using the above decomposition, formally we have

me—1
Ex(@) = D, guyd =y > > eun 'v'n)
yeé’(l"x) BES)(UEI‘X’E\I‘X n=1

me—1

D> D eule nz vl e ), (53)

665)( 7)€Fx4e\rx n=lI

where o, denotes a scaling matrix of the elliptic fixed point ¢ € £x as given in (14). Now
foranye € £x,0 <n <m.—1,andn € 'y (\I'x, let w = u + iv denote Ue_lnz. Using
formula (24) and the relation

u? +v? + 1 =2vcosh(p(w)),
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where p(u) denotes dp(z, i) the hyperbolic distance between the points z and i, we compute

" — sin(rm/me)(lwl2 + 1) 4+ cos(nmw/m,)(w — w) 2
gu(w, y'w) =

— sin(nm /me)(w? + 1)
_ sinz(rm/me) coshz(p(w)) + cosz(nn/mz)

-8 (Sinz(nn/me) coshz(,o(w)) — sinz(mt/me) )

1 1
= log (1 * sinz(nn/me)sinhz(p(w))) = sin®(nw/m) sinh?(p(w)) o
Put
cxen = max {1/sin*(nw/me)| e € Ex,0 <n < m¢ — 1}. (55)
Then, from decomposition (53) and inequality (54), we derive

me—1

c
ZICED VD DD D e e B =cxen D (me — 1) Exene (2. 2), (56)

eESX ﬂEFX R\FX n=1 (p(ae n )) eEEX

which proves the locally uniform convergence of the series Ex(z). Furthermore, each term
of the series E'x (z) is positive, hence, it converges absolutely. The asymptotic relation stated
in (52) follows trivially from decomposition (53).

Moreover, for any z, w € H with z # w, any y € I'y\P(I'x), and any cusp p € Py,
observe that

}i_{r; gu(z, yw) = 0.
From the above relation, it trivially follows that the function Ex (z) is zero at the cusps. 0O

Remark 3.7 From Lemma 3.6, it follows that the function E'y (z) admits log-singularities at
elliptic fixed points, and is zero at the cusps. So we can conclude that Ex(z) € Cy ¢ (X)
with Sing(Ex (z)) = £x and cgy . = —2(m, — 1)/m., for any e € Ex.

From Lemma 6.3 in [13], the following series

D Anpeuz y2) <0
ye€Tx)

converges absolutely and uniformly for all z € X, and the above series remains bounded
at the cusps. Furthermore, from the absolute and locally uniform convergence of the series
Ex(z), and the uniform convergence of the above series, we have the following relation

AnpEx(@) = D Anypgu(z yz) 0. (57)
ye&lx)

3.3 Hyperbolic case

Definition 3.8 For z € X, put

o 1
HX(Z) = 47T/0 (HKX,hyp(t7 Z) - V()lhyp()())d[ (58)

The function Hy (z) is invariant under the action of I'y, and hence, defines a function on X.
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Proposition 3.9 The function Hx (z) is well-defined on X. Moreover it satisfies

Hx(z) = lim (8x.hyp(z, w) — gr1(z, w)) — Ex(2) — Px(2). (59)
Proof From Lemmas 3.2, 3.6, we know that the series

Px()= Y. guzya)= Y 4 /0 Ku(t: 2, y2)dt,

yeP (') yeP(x)

Ex(z) = z gu(z, yz) = Z 471/0 Ku(t; z, yz)dt.

yeE(Ty) ye&Tx)

converge absolutely for all z € X, respectively. So, we can interchange summation and
integration in the above integrals. Moreover, the integral

o 1
Kx hyp(t; 2) — Ku(t; 0) — 7)6” (60)
/0 ( e Voliyp (X)
converges for all z € X. So we can write
o 1
Hx(z) = 47T/ (HKX,h (t;2) — 7)6#

0 P Volnyp (X)

*° 1

= 471/ Kx hyp(t;2) — Ku(t;0) — ——-- — z Ku(t; z,y2)
0 VOlhyp(X)
ye€Tx)

- > Kulsz Vz))dt

yePTx)

= 4”/0 (Kx,hyp(t; 2) — Ku(r;0) — )df — Ex(2) — Px(2), (61)

VOlhyp (X)

which proves the convergence of the function Hy (z).
From the convergence of the integral in (60), and an application of Fatou’s lemma from
real analysis, we can interchange limit and integration in the following expression to derive

o0 1
li — =4 K t;z) — Kg(t;0) — ———— )dt
wlglz(gx,hyp(z,w) gz, w)) = 4w /0 ( X.hyp (5 2) — K73 0) Volhyp(x))

(62)
Combining Egs. (61) and (62) proves Eq. (59). O

In the following proposition, we describe the behavior of the automorphic function Hy (z)
at the cusps.

Proposition 3.10 As z € X approaches a cusp p € Px, we have

8 log (Im(c, '2)) 4r

- + 47k, ,(0) + O(Im(o, '2)71),
Volhyp(X) Volhyp(X) rp ( P )

Ex(z) + Hx(z) =

where k;, ,(0) is the zeroth Fourier coefficient in the Fourier expansion of Kronecker’s limit
function kx ,(z) associated to the cusp p € Px (see Eq. (12)).

@ Springer



Bounds for Green’s functions 103

Proof Combining Egs. (59) and (41), we have

o
Ex(2) + Hx(2) = l}}iglz(gx,hyp@,w)— > gmo,:lw,y:oo,:lz))

n=-—00

- Z Z Pgen g (nz) — Z Pgen,p(nz)-
q€Px nel'x ¢\I'x nelx p\I'x
q#p n#id

We now estimate the right-hand side of the above equation term by term. As z € X approaches
the cusp p € Py, from Eq. (44), we arrive at the estimate

Ex(2) + Hx(2) = g)hglz(gx,hyp(z, w)— > gulo,'w,vio, z))+0(lm(o,;lz>‘l).

n=—00
(63)
We are now left to compute the asymptotics of the limit
o0
. _ -1 n __—1
Jim (ghyp<z, w)— > gulo, 'w, vio, z))
n=—0o
= lim i (z.w) — i Z ( '2)). (64)
= lim lim w)— ————— o, "w, .
Wi g \Shyps i 56— Dvolyp(x) &= & Voo

As z € X approaches p € Py, combining estimates (27) and (46), we have

o0

—1 —1
8X.hyp,s (2, w) — Z gu,s(0, W, Y50, 2) =

n=—0oo

4mIm(o, 'z)"

25 — 1 EX,par,p(w, S)

4 _
— % Im(o, Tw) Im(o,, Il 4 O(e_Z” Im(a, 1Z)).

Using the above expression, we find that the right-hand side of limit (64) can be written as

.. 4m Im(o, )15(g 4z
o, (# Xopar.p (0 9) = <_1>1hyp<x>)
4

4 Tm (o~ 0 (e—27Im(o,; ')y
+ Yol () (0,'2)+ O0(e )

To evaluate the above limit, we compute the Laurent expansions of &y, (w, ), Im (0, I,
and (2s — )~! at s = 1. The Laurent expansions of Im (op"z)l’s and 2s — D lats =1
are easy to compute, and are of the form

Im (0,2 ™ =1— (s = Dlog (Im (0, '2)) + O ((s — 1)?),
1

5o =126 =D+ 0(6 - 1?).
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Using the Laurent expansion of the Eisenstein series Epar, p (w, s) from Eq. (11), and com-
bining it with above expressions, we compute

o0
Jim (ghyp<z, w)— > gulo, w, ygooglz)) = 47Ky p(z) — 47 Im(o, '2)

n=—00
47 log (Im(op_lz)) A7
Volpyp (X) volpyp (X)

+ 0 (72 Iy 0y, (65)

From the Fourier expansion of Kronecker’s limit function kx ,(z) described in (12), we have

log (Im(o]jlz))

—1
+0 6*2771“1(‘7,; z) )
VOlhyp(X) ( )

Kx.p(2) =Im(o, '2) +kp p(0) —

As z € X approaches p € Py, substituting the above estimate in the right-hand side of Eq.
(65), and combining it with Eq. (60), we arrive at

87 log (Im(o; '2)) 4
E Hx(z) = — P _ 4rcky p(0) + O(Im(o, '2)7"),
x(2) + Hx (@) Volhyp (X) Volhyp (X) + 4k p () + O m(@, ") )
which completes the proof of the proposition. O

Remark 3.11 As the function Ex(z) is zero at the cusps, from Proposition 3.10, we can
conclude that Hy (z) has log log-growth at the cusps. Moreover, the function H(z) remains
smooth for all z € X. Hence, Hx (z) € Cg,¢¢(X) with Sing(Hx (z)) = 9.

Furthermore, from Eq. (21), it follows that

/ Hy (2) 1ingp(@) = d(cx — 1). (66)
X
Using Eq. (59), we get

Anyp Px(2) + Anyp Ex (2) + Anyp Hx (2) = Anyp Jim_ (gx.nyp(, ) — g (2, w)).

Since the integral

o0
471/ (Kx,hyp(t; z,z2) — Ku(t; 0) — dt,
0

1
VOlhyp (X) )

as well as the integral of the derivatives of the integrand are absolutely convergent, we can
take the Laplace operator Ayy, inside the integral. So we find

00
Ahyp Px(z) + Ahyp Ex(z) + Ahyp Hx(z) =4rn / Ahyp KX,hyp(t; z)dt. (67)
0

Corollary 3.12 For any z € X\Ex, we have

H E
(Hx(2) + X(Z))+ 1

ox(2) = 2ex 87gx Agx,hyp(zv ¢) Ahyp Px (&) Mhyp({)
_ me — _ CX,hyp . 27T(CX — 1) 1
e; gX hyp (z,¢) 8g§( ox VOlhyp X) 2g Ex(¢) Mshyp ©).
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Proof Using formula (7), and combining Egs. (37) and (67), we have

1 .
ox@) =5~ / &xmp (e O — dedS (Ex(Q) + Hy (D))
8X JXx

1 Cxn
+ —— | 8xnyp(@. ) Anyp Px(§) payp(2) — ——5.
X 88}(

68
T (68)

From Remarks 3.7 and 3.11, we know that the functions Ex(z) and Hy (z) both belong to
Cy.oe(X) with Sing(Ex(z)) = £x and Sing(Hx (z)) = @, respectively. Hence, from Eq. (35),
for any z € X\Ex, we have the following relations

¢ Ex(2) me—1 1
—/ng,hyp(z,i)d;d;Ex(C)Z 2);)( —Z —— &X.hyp(Z, e)—@AEX(C)Mshyp(C),

2gxm
cely gXMe

Hyx (z) 1 /
-— | H ‘ .
2gx 2gx . X(;) M hyp(g)

—/ng,hyp(z,f)dcdgﬂx@) =

Substituting the above two equations in Eq. (68) and using relation (66) completes the proof
of the corollary. o

4 Bounds for hyperbolic Green’s function

In this section, we derive bounds for the hyperbolic Green’s functions on compact subsets of
X, and in the neighborhoods of cusps and elliptic fixed points.

We begin by defining a compact subset Y., for some 0 < ¢ < 1, and we adapt the existing
bounds for the hyperbolic heat kernel from [10]. We then use these bounds to bound the
hyperbolic Green’s function both on the compact subset Y, and in the neighborhood of
cusps and elliptic fixed points.

4.1 Bounds for hyperbolic Green’s function

Notation 4.1 For any § > 0 and a fixed z, w € X, identifying X with its fundamental
domain, we define the set

Sry (85 z, w) = {y € H(Tx) U {id}| du(z, yw) < §}.
Let 0 < ¢ < min{l, £x} be any number such that the following conditions holds true:

(1) For any cusp p € Pyx, let U.(p) denote an open coordinate disk of radius & around p.
Then, we have Im(crp’lz) > Im(op’lyz), where o, is a scaling matrix of the cusp p.
Furthermore, for p, g € Px and p # g, we have

Us(p) NUg(q) = 0.

(2) For any elliptic fixed point ¢ € £y, let U (e) denote an open coordinate disk around e
such that dyg(z, ¢) = € for all z € dU,(¢). Furthermore for ¢, f € £x and ¢ # §, we have

Us(e) NU () = 9.
(3) For any elliptic fixed point ¢ € Ex, z € U (¢) and y € 'y, we have

du(z, ye) = ¢.
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Furthermore, for any p € Px and any ¢ € £y, we have
Ue(p) NUe(e) = 0.
We fix an ¢ satisfying the above three conditions and put

Y8=X\( U vewu Y Ua<e>), 5“=X\( U Ug<p)),

pEPx eefy pepx

yel = X\( U Ug(e)).

QESX
Furthermore, for any cusp p € Py, any elliptic fixed point ¢ € Ex, put
YPS = X\Ue(p), Y = X\U. (o),

respectively. For brevity of notation, we identify the fundamental domains associated to
the compact subsets Yy, Y2, and Y, f“ again by the same symbols.

The computations carried out in the following two remarks will come handy in the calculations
that follow.

Lemma 4.2 Let ¢ € Ex be an elliptic fixed point. Then, for any y € I'x, and z € dU,(e),
we have the following upper bound

sinh? (dy (z, y2)/2) < 7 coth(e/2) sinh? (dy(z, y¢)/2). (69)

Proof For z € dU,(¢) and any y € I'y, from condition (3), which the fixed ¢ satisfies, we
have

sinh? (du(z, ye)/2)

din(z.ye) 2 e = —— oo o 2k (70)
du(z,y2) < du(z, ye) +du(yz, ye) = du(z, ye) + & = sinh? (du(z, y2)/2)
< sinh? (d(z, ye)/2). (71)

For any z € dU,(¢) and y € I'y, observe that

sinh? ((du(z, ye) + €)/2) = sinh? (dw(z, y¢)/2) cosh?(e/2)

+ cosh? (du(z, ye)/2) sinh?(e/2) + sinh (du(z, y¢)/2) cosh (du(z, ye)/2) sinh(e)

= 2sinh? (dy(z, ye)/2) cosh?(g/2) + sinh?(¢/2)

+ sinh (dg1(z, y¢)/2) cosh (dp(z, ye)/2) sinh(e). (72)
Using inequality (70) and the fact that sinh (dg1 (z, y¢)/2) < cosh (du(z, ye)/2), we estimate
the second and third terms on the right-hand side of above equation

sinh? (¢/2) + sinh (dH(z, )/e)/2) cosh (dH(z, ye)/2) sinh(e)

sinh? (du(z, ye)/2)
sinh2(e/2)

< sinh? (dy(z, ye)/2) + sinh(e) + sinh? (du(z, ye)/2) sinh(e).
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Combining Eq. (72) with the above inequality, and using the fact that 0 < ¢ < 1 (which
implies that O < sinh(e/2) + cosh(e/2) < 2, and 1 < cosh(¢/2) < cot(g/2)), we find

sinh? ((dy(z, ye)+€)/2) < sinh? (du(z, y¢)/2) (1+2 cosh? (¢ /2)+2 coth(e/2) +sinh(e))
< sinh? (dp(z, y¢)/2) (3 coth(e/2) + 2 cosh(e/2) ( sinh(e/2) + cosh(e/2)))
< 7 coth(e/2) sinh? (dy (z, y¢)/2). (73)

Finally combining the above upper bound with inequality (70) completes the proof of the
lemma. O

Lemma 4.3 Let e € Ex be an elliptic fixed point. Then, for any y € ', z € 0Ug/2(¢), and
w € dU:(e), we have the following upper bound

sinh? (dp(z, y2)/2) < 14coth(e/4) sinh? (d(z, yw)/2). (74)

Proof Forany y € I'y, z € 0Ug/2(¢), and w € dU,(e), from the choice of ¢ (i.e., condition
(3) which the fixed ¢ satisfies), we have

du(z, yw) + du(z, ) = du(yw, ©) = du(z, yw)
sinh? (du(z, yw)/2)

>e/2 = — > 1; (75)
sinh”(g/4)
du(z, yz) < du(z, yw) +du(yw, y2) < dulz, yw) +¢
= sinh? (du(z, y2)/2) < sinh? ((du(z, yw) + )/2). (76)

Using computation (72) from Lemma 4.2, we have
sinh? ((dy(z, yw) + €)/2) = 2sinh? (di(z, yw)/2) cosh?(e/2)
+ sinh2(8/2)+sinh (dH(z, yw)/2) cosh (dH(z, yw)/2) sinh(e).

Using inequality (75), and the fact that sinh (dg (z, yw)/2) < cosh (dg(z, yw)/2), we arrive
at

sinh? ((d(z, yw) +£)/2)

E) .
< SiIll’l2 (dIHI(Z, yw)/z) (2 COShz(S/Z) + M sinh(g) )

— +sinh(e) + ————
sinh”(g/4) sinh“(g/4)
= sinh? (dH(z, yw)/2) (2 COSh2(8/2) +4 cosh? (e/4)+sinh(g)+4 coth(e/4) cosh(s/Z))
Using the fact that 0 < ¢ < 1 (which implies that cosh2(5/4) < COShZ(S/Z), cosh(e/
2) < 1.13, sinh(¢) < 1.18, and 1 < coth(e/4)), we arrive at the following estimate
sinh? ((d(z, yw) + €)/2) < 14 coth(e/4) sinh* (du(z, yw)/2),
which together with inequality (76) completes the proof of the lemma. O

Definition 4.4 From Eqgs. (13) and (15), it follows that the following quantities are well-
defined

CX,par = Sup Z (5X,par.p(z7 2) — Im(o,p—lz)Z)’ )
zeX pePx

Cx.el =supcxen Y (me — D(Ex.eie(z,2) —sinh ™2 (p(07'2))). (73)
zeX cefy
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Lemma 4.5 We have the following upper bounds

sup Px(z) < —6|Px| loge + 32Cx par (79)
zeyP™

2
sup Ex(z) <— D (me—1) log (tanh*(e)/cx en) + Cx.eil- (80)
ZeYse“ eefy

Proof Combining estimate (77) with the estimates from the Proof of Lemma 3.3 (estimate
(43)), we arrive at the following upper bound

sup Px(z) <32 > (Im(oglz)z+32(5X,par,,,(z,2) —Im(a;lz)z))

cerP vePy

16|Px|1
- _16[Px|loge + 32Cx par < —6|Px| loge + 32Cx par,

T

which proves (79).
Combining estimate (78) with the estimates from the proof of Lemma 3.6 (estimates (54)
and (56)), and using the fact that cx ¢y > 1, we arrive at the following estimate

me—1
: 1
sup Ex(z) < sup Z E log (1 + )

) ) —1
cers e S 5 sin? (7 /m.) sinh? (o (o' 2))

+ sup cxen ((me — 1(&x.eine(z,2) — sinh ™2 (p<o;1z>)))

zeyd! ecEx
< sup (— > (me—1) log (tanh%p(o;lz))/cx,eu)) + Cxall- (81)
ZEYee“ eey

For any ¢ € Ex, from condition (2) which the fixed ¢ satisfies, we find

sup (— log (tanhQ(p(oglz))/cx,eu)) = sup (— log (tanhz(dﬂ.ﬂ(z, 2))/Cx,e11))

zeygl zeYel
< sup (— log ( tanh* (s (2, e))/CX,eu)) = —log (tanh®(¢)/cx en)- (82)
7€0U, (e)
Combining inequalities (81) and (82), establishes upper bound (80). ]

Definition 4.6 With notation as in Sect. 1, forany § > dx, o > 0, and z, w € Y, put
8

=Kxmptiz.w) = D gxa@exa)e X — D" Ky(t: du(z, yw)).

n:0<iyn<a Y ESry (852,w)

The following theorem is an adaption of Lemma 4.2 in [10] to the case where X admits cusps
and elliptic fixed points.

Theorem 4.7 For any o € (0,Ax1), § > 6x, and z, w € Y¢, we have the following upper
bounds:
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(a) For0 <t < ty, then

|k FNGERT]
1 co sinh(£x) sinh(8) coe*tx
volpyp (X) 852 sinh®(£x /2) 27 sinh?(£x /2)

+ Z Ku(t; z, yw)

yePTx)

+ > Ku(tiz.yw): (83)
yee(Tx)

(b) Ift > ty, then
1 _
K hypt 2o w)] < 3 (PKx nyp (3 2) + PKx hyp(t; w)) + e P70 cHE

Coo SINN(S + £x) e~ /4
sinh(£x)

(84)

Proof Forany @ € (0,Ax,1), 6 > 6x,z, w € Ye, and 0 < ¢t < 1y, adapting the arguments
from the Proof of Lemma 4.2 in [10], we have

|Kthp(t;Z7U))|
1
Sm-l- Z Ku(t; z, yw)+ Z Ku(t; z, yw)+ Z Ku(t; z, yw).
hyp Y €Sy (8:2.w) yePTx) yeETx)

Estimate (83) now follows from restricting the arguments from the same proof to hyper-
bolic elements of 'y, and from the observation that the length of the shortest geodesic £y
corresponds to the injectivity radius ry in the Proof of Lemma 4.2 in [10].

For notational brevity, put

o0
K(t:2) = D oxn@@xn(w)e 5o+ — Z / | Ex par.p (2, 1/2-+ir)|7e=H/A1 gy,

n=1 per
For t > 19, again from the Proof of Lemma 4.2 in [10], we have

1
IKthp(t;z,w)lfi(K(t;z)+K(t;w))+ > Kultdu(z, yw))
Y €Sy (8;2,w)

(Kxnyp(t: 2) + Kxnp(t:w)) + > Kult: du(z, yw)).
Y €Sy (852,w)

1
2

Adapting the arguments from the Proof of Lemma 4.2 in [10] to H(I"x), we find

Coo Sinh(8 + £x) e~!/*
> Kultdu(z,yw) < ———
sinh(£x)
YESry (8;2,w)
Now it suffices to show that
Kx’hyp(t; 7) = PKX,hyp(f; 7) + (K]]—]I(l; 0) + EKX,hyp(t; 7))+ HKX’hyp(t; Z))

< PKx nyp(t52) + P70 K.

As in the Proof of Lemma 4.2 in [10], put

h(t; 2) = eP' (Ku(t; 0) + EKx nyp(t; 2) + HK x nyp (3 2)). (85)
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From Eq. (23), for a fixed z € Y, it follows that for all > #g, the function h(z; z) is a
monotone decreasing function in 7. Hence, following arguments as in the Proof of Lemma
4.2 in [10], we arrive at

(Ku(t; 0) + EKx hyp (15 2) + HKx hyp (15 2))
< e PU=0) (K (19 0) + EKx nyp (103 2) + HK x pyp (103 7)) < e P70 K

which completes the proof of the lemma. O

Proposition 4.8 Forany a € (0, Ax,1), § > 0, and z, w € Y,, we have the following upper
bound

gX,hyp(Za w) — Z gu(z, )/lU)‘ < Bx.¢a.s,
YESTy (8;2,w)

where for § > §x, we have
1 ¢o sinh(£y) sinh(8) coetx
BX,S,C(,S = 2 w12 .12
Volpyp (X) 882 sinh“(£x /2) 27 sinh“(Lx /2)
4o sinh(8 + €x)  CHK
sinh(£x) B

+7Px| (log £)* + 41 Cx par
+ l4coth (¢/4) ( — D" (me —1) log (tanh(£/2) /cx.en) + Cx,eu);

eeEx

and for § < 8x, we have

sinh(x + £x)

2
Sh(ex) |log (tanh(5/2))].

BX,S,a,zS = BX,S,a,(SX

Proof Forany o € (0,1x.1),6 > 0,and z, w € Y, we have

1) o0
gxmpw) = > gH(z,yw)’:/o |Kl‘fy’g(t;z,w)|dt+/ | Ko (15 2, w)dt.

y€Sry (8:2.w) 0

From Theorem 4.7, and using the fact that the heat kernel Kyy(¢; n) is positive for all # > 0
and > 0, and that 0 < 79 < 1, we have the following inequality

gxhp@w) — D gH, yw)’
YESry (6iz,w)

= sup (Px(z)+ > gHG@ YW+ Y gH(z,yw))

Zwele yeP(Tx) yeETx)
( 1 co sinh(Cx) sinh(3) coe2tx dcoosinh(8+tx) CHE )
volpyp(X) ~ 882sinh2(€x/2) 2 sinh?(£x/2) sinh(£y) B

For z, w € Y, we are left to bound the term

Px@+ D guzyw)+ D gu(yw). (86)

yeP(Tx) ye&€lx)
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From upper bound (79), we have the following upper bound for the first term
sup Px(z) < sup Px(z) = —6|Px| loge + 32 Cx par. (87

2€¥e zeyf™

Now, for z € Y /2, afixedw e YE ,and z # w, observe that
Angp D gulz yw) =0;
yeP(Tx)
from Eq. (50), for z = w, we find that
Anp D gu(z, ¥2) = Anyp Px(2) < 0.
yeP(Tx)

Hence, for z € Yp/2, and a fixed w € Y™, the second term in expression (86) is a super-
harmonic function in the variable z. So from the maximum principle for superharmonic
functions, we deduce that

sup > gm(zyw) < sup D gm(zyw) < sup D gz, yw),
we¥e yep(ry) ~€Y/z yeP(T'x) Z€3U€/2<P>ye7><rx)
werar we

for some cusp p € Px. From the definition of gg(z, w) from (24) and from condition (1)
which the fixed ¢ satisfies, forany y € I'x, z € 0U;2(p) and w € YP" we derive

4Im(o, '2) Im(ap—lyw))
|<7p_lz — Gp_l)/wl2
e (14 4Im(o,'2)? _ 4Im(o, '2)?
=08 - IR (log2)?
(Im(o, '2) — Im(o,  yw)) g

gu(z, yw) = gH(Gp_lz, Gp_lyw) = log (1 +

<9Im(c, '),

where o0, is a scaling matrix for the cusp p € Px. Using the above inequality, we arrive at

sup z gu(z,yw) < sup 9 Z Im(al;lyz)2: sup 9 Z Im(U;lZ)Z

ZeaUE/sﬂ(,p)VEP(Fx) 2€Ue2(P) P (ry) 2€Us2(P)  pepy
weY,
2
+ osip 9> (Exparp(z.2) — Im(o, '2)%) < [Px] (log(e/2)” + 9 Cx par- (88)
2€3Ug2(p) pePx

Hence, combining upper bounds (87) and (88), and using the fact that 0 < ¢ < 1 (which
implies that —loge < (log(g/2)?), we arrive at the following upper bound for the first two
terms in expression (86)

Px@+ D guyw) <7[Px| (loge/2))* + 41 Cx par. (89)
yeP(x)

For z € Yf}lz, afixed w € Yf”, and z # w, observe that

Anp D gulz, yw) =0;
ye€Tx)

from Eq. (57), for z = w, we find that

Anyp D gulz,y2) <0.
ye€Tyx)
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Hence, for z € Y f}lz, and a fixed w € Yf”, the third term in the expression (86) is a super-
harmonic function in the variable z. So from the maximum principle for superharmonic
functions, we deduce that

sup > gu(yw)< sup D gu(zyw)= sup > gm(z,yw),

ewele yee(ry) 2€0Yh yeE (Ty) €0Uena(®) e (ry)

ell weY,
weYy, e,e

for some elliptic fixed point ¢ € Ex. Similarly for w € Y, fli and a fixed z € U,/ (e), the third

term in expression (86) is a superharmonic function in the variable w. Hence, we arrive at

sup Z gu(z, yw) = sup z gu(z, yw).

2€0Ue2() |, e 2€0Uep2(e) ), o
weyel ye€lx) wealle) V€ (T'x)

From Eq. (25), recall that

1
D sHG@yw = D log(1+sinhz(dH(Za)’w)/z)).

yeETy) ye€x)

Combining upper bound (74) from Lemma 4.3 with upper bound (80), for any y € I'y,
7 € 0Ug/2(e), and w € 90U, (e), we derive

14 coth(e /4
> oguywy < > log<1+, iR )5 sup 14 coth(e/4) E(2)
ye£Tx) yeeTx) sinh? (A (2, 72)/2) ]~ et e

< l4coth (e/4) ( — > (me—1) log (tanh*(e/2) /cx.en) + cx,eu) .
EEEX
Combining the above inequality with upper bound (89) completes the proof of the proposition.
]

Notation 4.9 For the rest of this article, put

B 1+ /1 + (3log(e/2))?
F=2Io ( ) (90)

3log(e/2)

Corollary 4.10 For any « € (0,Ax1), § € (0,%), z € an;g, and w € Y, we have the
Sfollowing upper bound

| 8x.hyp (@, )| < Bx.er2.0.6 -

Proof Without loss of generality, we may assume that z € 0U,/2(p), for some cusp p € Px.
Forany y € 'y, z € 9Ug2(p), and w € Y, recall that

e —ywl?  _ [Im() — Imyw)

T _
u(z, yw) = sinh” (d(z yw)/2) = g o Z i) TGy w) o
From condition (1), which the fixed ¢ satisfies, we derive
. log(e) — log(e/2))? . 1
h? (du(z, 23( — sinh (dy(z, ) > ——
S (dnte, Y 2) 2 o) sinh (. v)/2) 2 T
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From the above inequality, it follows that forany y € I'x, z € dU,2(p), and w € Y, we get
du(z, yw) > €. Now forany o € (0, Lx1) and § € (0, €), from Proposition 4.8, we arrive at

Sup | gx.hyp(z, w) — Z gu(z, yw)‘ < sup |gxnyp(z w)| < Bx.er2as
2€0U¢/2(p) - Z,WeYep2
e y €Sy (8:2,w)
which completes the proof of the corollary. O

Corollary 4.11 Let e € Ex be an elliptic fixed point. Then, for any o € (0, Ax.1), § € (0, €),
and z € Y, we have the following upper bound

’gX,hyp(Z’ e)‘ <Bxgsas-

Proof Forany a € (0,1x.1),6 € (0, ¢), and z € Y, from condition (3) which the fixed ¢
satisfies, we find

= ’ 8X,hyp(Z, e)‘

&xX.hyp(z,¢) — Z gu(z, ye)

yE€Sry (852,0)

Following similar arguments as in the Proof of Proposition 4.8, we get

| 8x.hyp(z. ©)| < sup (Px(z)+ z gu(z, ye) + Z gH(z,ye))

ke yeP(T'y) yeEIx)
N ( 1 co sinh(£x) sinh(3) coe?tx deo sinh(8+Ly)  CH K)
volhyp(X) ~ 882sinh?(£x/2) 27 sinh?(£x/2) sinh(£x) 8 )

We estimate the first two terms on the right-hand side of above inequality by the same
quantities as in the Proof of Proposition 4.8. For the third term, from similar arguments as
in the Proof of Proposition 4.8, and using the upper bound from Lemma 4.2 (i.e., estimate
(69)), we derive

sup > gm(zy) = sup > gu(z ye)

e yeery) @€0Ue(®) yeg(ry)
7 coth(e/2
< sup z log(l_|_ : 200 (¢/2) )
sinh? (du(z, ¥2)/2)

z€dUg(e) yeETx)

< sup 7coth(¢/2)E(z) < sup l4coth(e/4) E(2),
z€3dUg(e) 2€0Ue¢ 2(e)

which can be bounded again by the same estimate as in the Proof of Proposition 4.8. Hence,
we deduce that for hypothesis as in the statement of the corollary, we have the same bound
for | &x.,hyp (2, e)] as in Proposition 4.8, i.e., By ¢q,s, Which completes the proof of the
corollary. O

Corollary 4.12 Let p € Px be any cusp. Then, for any o € (0, 1x,1),§ >0, z € Y2 and
w € Ug(p), we have

4r log |9, (w)]
gxnp@w) — > gu(zyw) =— 10g( g +hs p(z, w),
i VOlhyp(X) loge
YESTy (8:2,w)
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where hs ,(z, w) is a harmonic function in the variable w € Ug(p), which satisfies the
following upper bound

sup |hs,p(z, w)| < By eas -
ZEUS(P)

Proof Forany § > 0, afixed z € YP andw € U.(p), both the functions

47 log |9, (2)|
8x.hyp(z, w) — Z gu(z, yw), -— log( &%

yESTy (8:2,w) VOlhyp (X) log e

are solutions of differential Eq. (30). So we find that

4 log |9, (2)|
8X,hyp(z, w) — E gu(z, yw) = — log ( AL + hs,p(z, w),
. VOlhyp (X) loge
y €SPy (332,w)

where hs ,(z, w) is a harmonic function in the variable z € U (p).

As hs ,(z, w) is a harmonic function, |As, ,(z, w)| is a subharmonic function. So for a
fixed z € Y™, from the maximum principle for subharmonic functions and Proposition 4.8,
we arrive at the upper bound

sup |hs p(zw)[ = sup by p(zw)| = gxmp@w) = D gm(E yw)| < Beas,

welg(p) wedUg(p) yeSr3:z,w)

for any o € (0, Ax,1) and 6 > 0. The proof of the corollary follows from the fact that the
upper bound derived above does not depend on the fixed z € Y. O

Corollary 4.13 Let p,q € Px and p # q be two cusps. Then, for any o € (0, 1x.1), 6 > 0,
z € Ug(p), and w € Ug(q), we have

8X,hyp(2, w) — Z gu(z, yw)
€8Ty (8:2.w)
4 log |9, (w 4 log |9, (w
_ log( 2 [Pp( )|)_ log( g |04 ( )|)+hs,p,q(z,w),
Volpyp (X) loge VOlpyp (X) loge

where hs p 4(z, w) is a harmonic function in both the variables z € Ug(p) and w € U, (q),
which satisfies the following upper bound

sup |h8,p,q(zv w)| <Bx:sas-
z2€Ue(p)
2eUe(q)

Proof The proof of the corollary follows from similar arguments as in Corollary 4.12. 0O

Corollary 4.14 Let p € Px be any cusp. Then, for any « € (0,1x,1), 8 > 0, and z, w €
U.(p), we have

gxnp@w)— D gmyw)— D gu(z, yw)
y €Sty (3:z.w)\(id) yelx.p
4 log|¥,(z 4 log |9, (w
_ o ( g (9, )|)_ o ( g [9( )|)+hayp’p(w),
VOlpyp (X) loge volpyp (X) loge
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where hs , p(z, w) is a harmonic function in both the variables z € Ug(p) and w € Ug(q),
which satisfies the following upper bound

sup
z,welg(p)

hB,p,p(Za w)| < BX,S,O{,S . (92)

Proof For z, w € U.(p), the hyperbolic Green’s function satisfies the differential Eq. (30).
For z, w € U.(p), put

h(z, w) = — log |l9p(Z)|) _An log (log |z§‘p(u))|)

volpyp (X) ( loge VOlpyp (X) loge
+ > gm@yw+ D guyw).

yeSrX (8;z,w)\{id} yelx p

Observe that for z # w, d.d{h(z, w) = [ishyp(2). So, if we show that both the functions
h(z, w) and gx nyp(z, w) admit the same type of singularity when z = w on Ug(p), we can
conclude that

8x.hyp(2, w) = h(z, w) + hs p p(z, w),

where hs p p(z, w) is a harmonic function in both the variables z, w € U, (p). Moreover,
from similar arguments as in Corollary 4.12, we can conclude that the function hs , ,(z, w)
satisfies the asserted upper bound (92).

For any z € U.(p), from Egs. (36) and (10), we find that

Jim (gx.hyp(z. ) +log [9:(w)[*) = lim (gx.can(z. w) + log [9:(w)[?) + 2¢x (2)

87 ] log |9, (2)]
loge

T Volpyp(X)

)+0z(1),

where the contribution from the term O, (1) is a smooth function which remains bounded for
all z € Uy (p) and for z = p.
Now observe that

lim (h(z, w) + log [9.(w)) = - L (logm”@')

Volpyp (X) loge

+ lim E gu(z, yw) + gu(z, w) + log |9, (w)|*> | + 0.(1), (93)
w—z
yelx p\{id}

where the contribution from the term O, (1) is a smooth function which remains bounded for
all z € Ug(p) and for z = p. For z € Ug(p), from Eq. (49) from Proof of Lemma 3.3, and
from the definition of gg(z, w), i.e., Eq. (24), the second term on the right-side of Eq. (93)
simplifies to give

: 2
lim D> gm(eyw) + g w) +logl9,w) — 9,(2)]
yelxp\lid)
_ . _ i(w—z)12
= Pgen,p(2) — 4n Im(o, I+ 1})11131 (gH(U;z, o, "w) + log |1 — miw Z)’ )
= Pyen,p(2) — 41 Im(0, '2) + log (4Im(o, '2)*) + log(dn?) = O.(1),

which together with Eq. (93) completes the proof of the corollary. O
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Corollary 4.15 Let ¢,§f € Ex and ¢ # § be two elliptic fixed points. Then, for any o €
0,Ax.1), 6 >0, z € Ug(e), and w € Uc(f), we have

gxmpw)— > gulz yw)
VESTy (852,w)
4 log (1 — [9:()¥™)  4mlog (1 — [95(w)[>/™F)

=- - +hs e (2, W),
Volhyp (X) VOlyp(X) o

where hs . j(z, w) is a harmonic function in both the variables z € Ug(¢) and w € Ug(e),
which satisfies the following upper bound

sup  |hs,e§(z, w)| < Bx 0,5
2€Uq(e)
weUe (f)
furthermore, for z, w € Ug(¢), we have
gxnp@w)— D guyw)— > gu(z, yw)
7E€Sry (8;z,w)\{id} ye€lx,e
4 log (1 — [9e(2)*™)  4mlog (1 — [0 (w)[*/™)
= — _ +h8,e.e(sz)s
VOlhyp (X) Volhyp (X)

where hs .. (z, w) is a harmonic function in both the variables z, w € U, (¢), which satisfies
the following upper bound

sup
zeUg(e)

hﬁ,e,e(za w)| < BX,S,a,S;
Proof The proof of the corollary follows from arguments similar to the ones employed in
the proofs of Corollaries 4.13 and 4.14. O

Remark 4.16 In order to understand the dependence of our bounds for the hyperbolic Green’s
function on ¢, it suffices to analyze the dependence of By ¢ 4,5 on . From the formula for
By ¢.«,5 from Proposition 4.8, and the asymptotics of the functions coth(x) and log(tanh(x))
at x = 0, we arrive at the following estimate for By ¢ 4,5

BX,s,oz,(S = Oy (5_2)-

5 Bounds for canonical Green’s function

In this section, we obtain bounds for the canonical Green’s function on the compact subset
Y, of X. From Eq. (36), to derive bounds for the canonical Green’s function gx can(z, w),
it suffices to derive bounds for the function ¢x (z), and for the hyperbolic Green’s function
&x,hyp(z, w). From last section, we have bounds for gx hyp(z, w), and it remains to bound
the function ¢x (z). Recall that from Corollary 3.12, we have

H E
(Hx(2) + X(Z))+ 1

dx(2) = 2gx 87gx /XgX,hyp(Z» ¢) Anyp Px ) Mhyp (2)
Cx. hyp 2n(cx — 1) 1
—_ — E §
ZE) gX hyp(2, €) — $a2 " axvolu (0 26x X (©) Kshyp(©)-
%94)
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Bounds for Green’s functions 117

Using analysis from the Sects. 2 and 3, it is easy to bound almost all the quantities involved
in the above expression for ¢ x (z) excepting the integral
1
= [ 8&xhyp(2, &) Anyp Px(8) pnyp(2),
87y Jx yp yp yp

which we now accomplish.

Lemma 5.1 For z € Y, we have the equality of integrals
/ gX,hyp(Za 0) Anyp Px (%) Mhyp(g)
X

=47 Px(z) —4m /par PX(;)Mshyp(g)

&/2

+ 4 Z (/ gX,hyp(Z, {)dépx(g)—/
AUe/2(p)

Px (¢)d; gnyp(z, C))

pePx 9Ue2(p)
+ > / X.hyp (2> ©) Anyp Px (2 finyp(2).
pepy Y Uer2(p

Proof Observe that we have the following decomposition

/XgX,hyp(Za %) Ahyp Px (%) /'Lhyp(g)
— —4x /X Sxnyp (2 O dE P (0)

= —471/, 8x,hyp(2, $)dedy Px (¢) + Z / 8X.hyp(2, ¢) Anyp Px(8) tnyp(8).
yPa

&/2 pePy  Ver2(p)
(95)

Let U, (z) denote an open coordinate disk of radius r around z € Y, with r small enough
such that U, (z) C Y, f;g From Eq. (30) and from Stokes’s theorem, we have

_/pmgX,hyp(Zv;)d{dng(g)+/par PX(;)Mshyp(;)
Y Y

&/2 &/2

= lim (_/ gX,hyp(Z»C)dngPX(é‘)'i‘/ PX(;)dCdgghyp(va))
r—0 YIU: (2) "*"

€/2 &/2\Ur (2)

— lim ( | exmptz ot - | Px(c)dgghyp<z,;))
=0\ JauU,(2) Uy (2)

+ / gx.hyp(z, $)d; P (C)—/
Z ( IUe2(p) b erx

pePx 3U€/2(P)

Px@)dgghyp(z,c)). (96)

Using the fact that the function Px(¢) is smooth at z, and as ¢ approaches z, the hyperbolic
Green’s function gx hyp(z, ¢) satisfies

8x.hyp(z, §) = —log [9,(O)* + 0.(1),

we derive that

lim ( / gxhyp (2. ) Px (¢) — / Py (£)d{ ghyp . c)) = Px(2).
AU (2) AUy (2)

r—0
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Combining the above equation with Egs. (95) and (96) completes the proof of the
lemma. O

Corollary 5.2 For any z € YF™, we have

(Px(2)+Ex(2)+Hx (2)) 1
+
2¢x 8mgx

ox(z) = / 8x.hyp(Z5 £) Anyp Px () thyp($)
UE/Z(P)

PEPx

1
+ — , ,0)ds P —/ P df R )
2¢x Z (/6U8/2(p) 8Xx hyp(Z 5 ¢ x(§) P x(§) {ghyp(Z 0

PEPx

1
&x,hyp(2, ©)
2gxm, P

2n(cx — 1) 1 Cx hyp me —
—_—— Px(§) pshyp(§) — —5—+
gx volnyp(X)  2gx JyPy P 8g% Z

ecly

1
- /X Ex(©) 1tsnyp (©)- ©7)

Proof The proof of the corollary follows directly from combining Eq. (94) and Lemma 5.1.
]

Lemma 5.3 Forany a € (0, Lx,1) and § € (0, £x), we have the following upper bound

|Px(z) + Ex(2) + Hx ()| _ Bx.er.as
sup < .
zeY, 2gx 2gx
Proof Forany @ € (0, Ax,1) and § € (0, £x), from Eq. (59), we have
Px(2) + Ex(2) + Hx(2)|

sup
z€Ye

&x,hyp(Z, w) — Z gul(z, )/w)‘
Y ESTy (8:2,w)

= sup lim
Y, W2

gxnp@w) = > gz yw)
YESTy (8;2,w)

< sup lim
€Y,y WL

)

and the proof of the lemma follows from Proposition 4.8. O
Proposition 5.4 Forany o € (0, Ax,1) and § € (0, €), we have the following upper bound
1
5 sup
T8X zeY, pePyx
IPx| CXh 4z
< Rpw ( Bx 12,0, +7).
4gx log(e/2) VOlhyp (X)

Proof Observe the inequality

/ gX,hyp(Zv 0 Ahyp Px (%) Mhyp(f)‘
Uep2(p)

sup
ze¥e

/ 8x.hyp(2: ©) Anyp Px(€) finyp(0)| < sup | Anyp Px (0]
US/Z p) teX

PEPx

X sup
zeYs pePx

= C?(u,)[()ar ( sup Z ‘ /U ) gX,hyp(Zv ¢) I/Lhyp(;)’)- (98)

z€Ys pePx

/ gX,hyp(Z»Z) Mhyp({)’
Us/Z(P)
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Forany p € Py, z € Y, and ¢ € Ug/2(p), from arguments as in Corollary 4.12, we have
4n log |9, (¢)]
) =— 1 ,0), 99
gx.hyp(z, §) Volyp(X) 0og ( log(/2) +8p(z:¢) (99)

where g,(z, ¢) is a harmonic function in the variable ¢. From maximum principle for har-
monic functions and from Corollary 4.10, we have the following upper bound

sup [gp(z. )= sup [gp(z. 0= sup |gxinyp(z. O

Z€Ye z€Ye z€Ye

¢eUqa(p) ¢€dUga(p) ¢€dUg2(p)

< sup | gxnyp(z, O] < Bx.er2.as (100)
z€Ye
ceavrty

forany & € (0, Ax,1) and § € (0,%).
For any p € Py, we make the following computations

22 rdrdo ¢/2 d(logr) 2
Mhyp(§) = T o= 2w 7 = ,
Ue/2(p) (rlogr) o (logr) log(/2)

¢/2 127 rlog (—logr)drd6
1 1 9
/U " og (= 1log [9,(9)) pnyp(¢) = / / oar?

_5 ¢/2 log (— logr)d(logr) _ 27 (log (—log(e/2)) + 1)
- ”/0 dogr? log(¢/2) ‘

For any p € Py, using inequality (100), and the above computations, we derive

27 Bx 12,08
gp(z,¢) un ({)‘ S, (101)
‘ /um(p) ! g log(¢/2)
4 log |9, ()]
’ / log ( L Mhyp ({)
Ue/a(p) VOlhyp(X) log(e/2)
4 —log |9, ()] 82
= / log ( P2 ) tnyp(0) = — . (102)
Ue/a(p) VOlnyp(X) —log(e/2) volnyp (X) log(e/2)
For any p € Py, using Eq. (99), and the above computations (101) and (102), we arrive at
’/ (2 ¢) (C)’ < (B P ) (103)
8Xx.hyp(2, &) Un S ——— | Bxe2 0 T
Uppy T P log(e/2) \ "% " volpyp(X)
Combining the above upper bound with inequality (98) completes the proof of the corollary.

m}

Remark 5.5 For any z € Y., combining Lemma 5.3 and Proposition 5.4, we obtain the
following upper bound for the first line on the right-hand side of Eq. (97)

Bx 12,05 IPx| C?(u?)ar ( B 4 )
- X620, T )
2gx 4gx log(e/2) VOlhyp(X)

for any & € (0, Ax,1) and § € (0, min{lx, &}).

Proposition 5.6 Forany o € (0, 1x,1) and § € (0, €), we have the following upper bound

1 .
——sup > ‘/ gx,hyp(z,c)ngx(c)‘ <
AUe2(p)

|Px| Bx,er2,a,8
5 L
8X zeYe pePy

2gx
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120 A. Aryasomayajula

sup
z€Ye PePx

Proof From Corollary 4.10 and Stokes’s theorem, we have the elementary estimate
/ X hyp(2, O)df Px (§)| < sup | 8x.hyp(z. O] -
AUe2(p)

ngx@)‘
Ue/2(p)
ceayf/“z'

: Bx e2,a
<BX5/2“‘5 (Z/ |dCdéPX(§)|> M (/|AhprX(§)|l/«hyp(§))
Ue2(p)

pePx

pE'Px

(104)

forany @ € (0, 1x,1) and 8 € (0, ?).
Let U,(p) denote an open coordinate disk of radius r around a parabolic fixed point
p € Px. Put

r=x\ J vm.
PEPx
For every z € X, from formula (50), we know that | Anyp PX(§)| = — Apyp Px(¢). Then,
using Stokes’s theorem, we find

[ 180 Px(©) | iy =4 tim [ dedPao
X r—0 y'f’ar

2T 3Px () db
2 or 27’

=47 lim dg Px (¢) :—4n|PX|l}iir%)/0 (105)

pepy 0 00 (p)
for any p € Px. Now from Lemma 3.3, for any z € dU,(p), we have

Px(¢) =4mIm(o,'¢) —log (4Im(s, '£)?) + O, (1) = —2logr — 2log ( — logr) + O(1)

r dPx(¢) 2 r 9Px(¢) dO
= =—1- = — =4m|Pxl.
2 or rlogr 2 or 2m

(106)

+0(r) = —47 [Py| lim/
r—0 Jo

Combining computations (105) and (106) with upper bound (104), completes the proof of
the proposition. O

Proposition 5.7 We have the following upper bound
1
—— sup

3|Px|log(e/2) n 16 Cx par
2gx z€¥e ’

8X 8X

/ Px (¢)d; gx hyp(z, é“)‘ <-
dUe/2(p)

PEPx

Proof Since P (¢) is a non-negative function on X, using Stokes’s theorem, we derive

sup ‘/ PX(;)d;gX hyp(Z $)
Z€Y; pePy Ue/2(p)
< sup Px(¢)- (SUP ‘/ ded; gx hyp(2, C)D
cert z€¥e ep, |1/ 3Ue2(p)
= sup Px(¢)- (Sup ‘/ Mghyp(f)’) < sup Px(%),
{EYSE z€Ye pEP aUg/2(p) zngp/a;
and the proof of the proposition follows directly from estimate (79). O
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Bounds for Green’s functions 121

Remark 5.8 For any z € Y., combining Propositions 5.6 and 5.7, we obtain the following
upper bound for the second line on the right-hand side of Eq. (97)

IPx| Bx ei2,a,8 _ 3 |Px|log(e/2) i 16 CX,par 2w ex — 1|
2gx gx gx gx Volpyp(X)’

forany & € (0, Ax,1) and § € (0,%).

Proposition 5.9 We have the following upper bound

_ [Px|log(e/2)
gx

=

/w Px(z) Mshyp(z)
Y

&/2

2x

Proof Since Px(z) is a non-negative function on X, we have

‘ [ o Px@ o
Ys/2

< /Y e PX@uap@=2" > / v Peenp(12) ey 2).

&/2,p pePx nel’x )\I'x ” “¢/2,p
(107)

The interchange of summation and integration in the above equation is valid, provided that
the latter series converges absolutely. As the function Px(z) is a non-negative function, to
prove the absolute convergence of the latter series, it suffices to prove that

S X[ Pensomng@ < -2Pxlloge/d. (108

pEPX WEFX,p\FX &/2,p

For every p € Py, after making the substitution z +> 1~! 0z, from the PSL; (R)-invariance

of the metric shyp(z), from estimate (40) from Proof of Lemma 3.2, and using the fact that
27w < volpyp(X), we get

Z z /.par Pgen,p(’]Z) Mshyp(Z) = Z Z /71 par Pgen,p(O'pZ) /“Lshyp(z)

pePx nelx p\I'x * "¢/2.p pePx nelx y\[x 70 ez

1 /—log(s/Z)/er /l dxdy
=— Pgen, p(0p2) ——
volpyp (X) p;x 0 o EMPTPT g2

. 1 /-710g(s/2)/27r /l 30,2 dxdy _ 16 |Px|log(e/2)
= Volyyp(X) 5o 0 y2 7 VOlhyp (X)

< —2|Pxllog(e/2),

which proves upper bound (108), and completes the proof of the proposition. O
Proposition 5.10 We have the following upper bound

|Cx hyp| s (dx + 1)?
Sg%( T Ax1 VOlhyp(X).

Proof Recall that Cx nyp is defined as

CX.hyp:/X/XgX.hyp(f’S)(/O AhypKX,hyp(ﬂé‘)dt)

X (/0 Anyp Kx hyp(#; ‘i:)dt) Hhyp(§) pnyp(£)-
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From formulae (36), (37), we have

Anyp px () = T Hen@ __4n :>/ Anyp $x(2) 1tnyp(2) =0, (109)
7) = — Z Z) =0,
hyp PX by (2) Volnyp (X) . hyp Px (2) Khyp
1 OO . Cx.hyp
ox(2) = — gX,hyp(Zy $) Ahyp KX,hyp(ts ¢)de Nhyp(é-) - 5
2gx Jx 0 88x

respectively. So combining the above two equations, we get
1
- E ¢x(2) Ahyp ¢x(2) Mhyp(z)

- 2gx//g“yp(z ;)(/ AhypKXshyp(t;E)dt)ﬂhyp(g)ﬂcan(Z). (110)

Observe that

o0 Cyx,
/ gX,hyp(Z» {)(/ Anyp Kx hyp(t C)dt) llhyp(é') =2gx¢x(2) + —/——— 4 € Cype(X).
X 0 196

So combining Egs. (38) and (110), we derive

/¢X(Z)Ahyp¢X(Z)thyp(Z):l2//gX,hyp(Zy %) (/ AhypKX,hyp(l‘;é‘)dt)
X 8x /X JX 0

o0 7 CX hyp
X Anyp Kx hyp (75 2)d1 ) pinyp(§) pnyp(2) = —=—. (111)
0 X
Using Eq. (109), we have
4 (2) 4 4 (dx + 1)
sup | Anyp $x (2)] < sup foan - RNGIF)
zeX zeX VOlhyp (X) Mshyp (2) VOlhyp(X ) VOlhyp(X )

where dy is as defined in (8). As the function ¢x (z) € L2(X), it admits a spectral expansion
of the form (17). So from the arguments used to prove Proposition 4.1 in [11], we have

| Anyp dx ()
<sup —BT2T Mhyp(2)- (113)
eX AX,1 X

’ /X ¢x(2) Ahyp ox(2) Mhyp(z)

Hence, from Eq. (111), and combining estimates (112) and (113), we arrive at the estimate

/X ox(2) Ahyp ox(2) Mhyp (2)

|CX,hyp| = ?X

2 2 2
&x / 2 lomwgy (dx + 1)
= | Anyp ¢x (DI phyp(2) <= ———————,
ThxaJx P P Ax,1 Volnyp(X)
which completes the proof of the proposition. O

Lemma 5.11 We have the following upper bound

1 5cx.ell
ngx /X Ex(¢) Mshyp(f) VOlhyp(X) z (me —
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Proof For any z € X and Eq. (53), we have

me—1
[ Ex@um@ = [ 3 33 utor vl v
X XQEEX ﬂng,e\FX n=lI
me—1

=2 2 Z/XgH(USl'IZ,Vi”OSInz)ushyp(i).

ecEx nelx \I'y n=1

The interchange of summation and integration in the above equation is valid, provided that
the latter series converges absolutely. As the function Ex(z) is a non-negative function, to
prove the absolute convergence of latter series, it suffices to prove

me—1

_ _ 9cx.en|€x|
(07 'z, ' 7 n2) pshyp () < —50 D (me — 1.
X 33 [ e o @ < SIS 3 o

ecfy r]EFx_e\Fx n=1
(114)

Forany e € Ex, ¥i € I'x.e, and n € 'y \I'x, from computation (54), and from definition
of constant cx ¢y in (55), we have

1
(0. 'nz, v'o. nz) = o (1+ ) (115)
SHL0e eV 0e M= ORI G fme) sinh® (o (0 1))
1
< cxell log (1 + —_) (116)
‘ sinh2(p (05 'n2))

Furthermore, recall that the hyperbolic metric (hyp(z) in elliptic coordinates is given by

Hhyp(z) = sinh(p(2))dp A d6.
From estimate (115), we find

me—1

>0 > /XgH(Ge_lnz, ylos 12) tsnyp(£)

QGSX nerxyg\l—‘x n=1

1
¢ e —1 log{l1+ ——— ) s . 117
Scxen D me—=1) Y /X og( +smh2(p(ae_lm)))uhyp(z> (117

eeEx r]EFx_e\FX

For every ¢ € Ex, after making the substitution z n_laez, from the PSL; (R)-invariance
of the metric pshyp(z), we compute

1
| 14— S
2. /x Og( - sinhz(p(ae_lnz))) Hatp )

nelx e \I'x

J oo/ 7 log (coth(p(ey) S0 N8 dlogd 9
= og(co z = = ’
0 0 g p VOlhyp (X) VOlhyp (X) VOlhyp X)

which together with upper bound (117) proves upper bound (114), and completes the proof
of the lemma. O
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Remark 5.12 For any elliptic fixed point ¢ € Ex, from Corollary 4.11, we have

-1 )
sup Z 2e |gX,hyp(Z,e)| < sup Z me — 1

z€Ye eeSXZnge z€Ye)2 cely 2gxm,

|gx,hyp(z, E)|

- |Ex | Bx e/2,a,5
2gx

)

forany @ € (0, Ax,1)and § € (0, ¢). Forany z € Yfar, combining Propositions 5.9 and 5.10,
and Lemma 5.11 with the above upper bound, we obtain the following upper bound for the
third line on the right-hand side of Eq. (97)

|Ex| Bxei2,a5 _ |Pxllog(e/2) 5cx el S me—1) + 27 (dx + 1)
2gx gx gx Volnyp (X) £ Ax,1 Volhyp(X)”
forany o € (0, Ax,1) and § € (0, €).

Theorem 5.13 For any o € (0, Ax 1) and § € (O, min{e, E}), we have the following upper
bound

sup |px ()| < Cx.e.080

2er
By e/2.a.5 CX ' par 4|Px| log(¢/2)
h C = 2222 P 1] — — 2% £ 1) = 1Al e
where Cyx ¢ 4,5 22y (I xl( 2 Tog(e/2) + [Ex| + o
16C 5¢
+ X, par + Xell Z (me _ 1)
gx 8x Volnyp(X) < =
2r (dx + D? 2mex — 1] B 7 [Px| CXlhar

. (118)
Ax.1Volhyp(X) — gx volnyp(X)  gx Volnyp(X) log(e/2)

Proof The proof of the theorem follows from Corollary 5.2, and combining the upper bounds
stated in Remarks 5.5, 5.8, and 5.12. O

Corollary 5.14 Let p € Px be any cusp. Then, for any « € (0, 1x,1), 8 € (O, min{s,?sv}),
and z € Ug(p), we have

P p— A (1°g'1’1’(“’)'

Volhyp (X) loge ) +ép @

where ¢ (2) is a subharmonic function for z € U (p), which satisfies the following upper
bound

sup |¢p(z)| = CX,E,a,cS .
ZEUS(I,)

Proof For any p € Px and z € U.(p), using Eq. (36), we find

o (lOg |ﬂp(w)|)) _ 47 fean(2) >0
VOlnyp (X) loge e

Anyp (¢x (@) +

’

which implies that

B 4z log |9, (w)|
o= (e 4 7 g (L))
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is a subharmonic function. From Theorem 5.13 and maximum principle for subharmonic
functions, we derive

sup [pp(2)l = sup [¢p(2)l = sup [9(2)] < Cx o,
z€U¢(p) z€0Ux(p) z2€dU(p)

which completes the proof of the lemma. O

Corollary 5.15 Let ¢ € Ex be any elliptic fixed point. Then, for any o € (0, 1x.1), § €

(O, min{s,’ev}), and 7 € Ug(¢), we have

47 log (1 — [9e(2)]?/™)
Volpyp (X)

ox(2) = — + ¢ (2),

where ¢.(z) is a subharmonic function on 7 € Ug(e), which satisfies the following upper
bound

sup @e(2)] =< Cx e,as -
zeUg(e)

Proof The proof of the corollary follows from similar arguments as in Corollary 5.14. O

Theorem 5.16 Forany o € (0, x,1) and § € (O, min{e, 5}), we have the following upper
bounds

Sup | gx.hyp(2, W) — gx.can (@, W)| < 2Cx e.a.5 (119)
Z,WeYe
sup | gxean@w) = D gu(z yw)| <2Cxcas+Bxeas- (120)
Z,weYe

yESry (8;2,w)

Proof Upper bound (119) follows directly from formula (36) and Theorem 5.13. From tri-
angle inequality, for any z, w € Y, we have

8X,can (2, W) — Z gu(z, yw)| < |gX,can(Z7 w) — gX,hyp(Za w)‘
y€Sry (652,w)

+

gxnp@w)— > eu, yw)‘. (121)
YESTy (852,w)

Hence, upper bound (120) follows directly from combining Theorem 5.13 and Proposi-
tion 4.8. O

Corollary 5.17 Let p,q € Px and p # q be two cusps. Then, for any a € (0, Lx 1) and
d e (0, min{e, E}), we have the following upper bounds

sup gX,Can(Z7 w) — Z gH(Z, yw) <2 CX.s,ot,B +BX.€.1¥,5; (122)
sup  fgxen(@w)— D gz yw)— Y gu, yw)’ <2CxcastBxcas-
2wele(p) Y €Sty (8:2,w)\(id) yelx,

(123)

@ Springer



126 A. Aryasomayajula

Proof Upper bound (122) follows directly from triangle inequality (121), and combining
Corollaries 4.13 and 5.14.

Similarly upper bound (123) follows directly from triangle inequality (121), and combin-
ing Corollaries 4.14 and 5.14. O

Remark 5.18 Let p,q € Px and p # q be two cusps. Then, for any o € (0, Ax 1) and
S e (0, min g, E}), from upper bound (122), we have the following upper bound

gem(P @) — D gH(p,yq)‘=|gx,can(p,q)|szcx,a.a,wa,a,a,s. (124)
yE€STy (652,w)

In an upcoming article, we will derive an upper bound for gx can(p, g) using a different
method, and the upper bound does not depend on the choice of ¢.

Corollary 5.19 Let ¢, f € Ex and ¢ # § be two elliptic fixed points. Then, for any o €
0,Ax.1)andé € (0, g, '5}), we have the following upper bounds

sup | gx,can (2, w) — Z gz, yw)| <2 Cx.ea,8 +Bxeas
sup | gxean(@w)— D gu@yw)— D g yw)‘
zwele(e) y€Sry (3:z.w)\fid) yelx.e

<2Cxeas+Bxeas-

Proof The proof of the corollary follows from triangle inequality 121, and combining Corol-
laries 5.15 and 4.15. O

Remark 5.20 In order to understand the dependence of our bounds for the canonical Green’s
function on ¢, it suffices to analyze the dependence of By ¢ 4,5 and Cx ¢ q.s On €. From
the formula for Cx ¢ o s from Theorem 5.13, and the dependence of By ¢ 4,5 on ¢ from
Remark 4.16, we arrive at the following estimate for Cx ¢ s

CX,s,ot,S = Ox (8_3)~

6 Bounds for families of modular curves

In this section, we investigate the bounds obtained in previous subsections for certain
sequences of Riemann orbisurfaces similar to the study conducted in Section 5 of [10].

We start by recalling the definition of an admissible sequence of non-compact hyperbolic
Riemann orbisurfaces of finite volume.

Definition 6.1 Let {Xy}nyen indexed by N € N C N be a set of non-compact hyperbolic
Riemann orbisurfaces of finite volume of genus gy > 1, which can be realized as a quotient
space I'x,, \H, where I'x,, is a Fuchsian subgroup of the first kind acting by fractional linear
transformations on the upper half-plane H. We say that the sequence is admissible if it is one
of the following two types:

(1) f N =Nand N € N, then Xy is a finite degree cover of X .
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(2) For N € N, let
Yo(N) = To(N)\H, Yi(N) =T (N)\H, Y(N)=T(N)\H,

with the congruence subgroups I'g(N), I'1 (N), I'(N), respectively. In each of the three
cases above, let V' C N be such that Yo(N), Y1 (N), Y (N) has genus bigger than zero for
N € N, respectively. We then consider here the families {X y}yens given by

Yo(Minen, (Y1(Minvenv, {(Y(N)Inewn.

Denote by gnr € N the minimal element in Case (1), i.e., gor = 0; and the smallest
prime in A/ in Case (2).

Remark 6.2 1tis to be noted that the family of hyperbolic modular curves do not form a single
tower of hyperbolic Riemann orbisurfaces, hence, the distinction in the above definition.
However, they form a different structure which we call a net. We refer the reader to Section
5 of [11] for further details.

Notation 6.3 Let { X y}nyen be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite volume. We fix an 0 < ¢ < 1 satisfying the conditions elucidated in
Notation 4.1 for the Riemann orbisurface X,

Then, for any N € N, to emphasize the dependence on N, we denote the open coordinate
disks around a cusp p € Py, and an elliptic fixed point ¢ € Ex, described in Notation
4.1 by Un ¢(p) and Uy ¢(e), respectively. Furthermore, we denote the compact subset Y,
associated to the Riemann orbisurface X by Y ¢.

Lemma 6.4 Let {Xy}nen be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite volume. Then, we have the following upper bounds:

(1) Forany N € N, we have

dxy = Ox,,, ().

_ 8Xn
Cxy = OX‘W ()"XN 1).

txy = Ox,,, ().

(2) Forany N € N, we have

(3) Forany N € N, we have

(4) Forany N € N, we have
C{E = 0x,,, (.

Proof The first three assertions follow directly from Lemma 5.3 of [10]. Assertion (4) follows
from employing arguments similar to the ones used to prove assertion (d) in Lemma 5.3 of
[10]. O

Notation 6.5 For I' C PSL;(RR) a Fuchsian subgroup of the first kind, let M (I") denote
the set of maximal parabolic subgroups of I'. Note that for P € M, ("), we have P =
(vp) € Mpy ('), where yp denotes a generator of the maximal parabolic subgroup P.
Furthermore, there exists a scaling matrix op satisfying the condition

_ 1 1
a3 ror = s where v = (1) (125)
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Remark 6.6 Let I' be a subgroup of finite index in I'g C PSL»(R), a Fuchsian subgroup of
the first kind. Then, there is a bijection

(2 Mpar(r) — Mpar(FO),
which is given as follows. For each P € M, (I"), there exists a maximal parabolic subgroup
Py C T'p containing P, and we set o(P) = Py; the inverse map is given by <p_] (Py) = PyNT.

Furthermore, the scaling matrices op, and op of the parabolic subgroups Py and P,
respectively, can be chosen such that they satisfy the relation

1 0
or, = o ( [VIRE W) , (126)

where np,p =[Py : P].
Proposition 6.7 Let {X y}nen be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite volume. Then, we have the following upper bounds:

(1) Forany N € N, we have

Cxy.par = Ox, . (1).
(2) Forany N € N, we have

CE L = Ox, (D).
(3) Forany N € N, we have

Scxy el I€xy |
= Oy, (1); —— 22— -H=0 ).
CXy.ell X5 (D) 2y VOlnyp (Xy) 2 (me — 1) qu( -

(4) Forany N € N, we have
Cx.en = Ox, . (D).

Proof We first prove assertion (1) for { X v } yens, an admissible sequence of Riemann orbisur-
faces of type (1). In order to do so, we need to consider the pair of Riemann orbisurfaces X y
and Xg,,, where Xy is a finite degree cover of Xg,,.

For any N € N and Xy = I'x, \H, from Eq. (77), recall that

CXN,par = Ssup Z (5XN,par(Za 2) — Im(GI;IZ)Z)-
ZEXN PEPXN
Consider the set
P(FXN) = {FXN,p | P € PXN}a

where ', , denotes the stabilizer subgroup of the cusp p € Px, . Keeping in mind that the
set Py, is in bijection with the set of conjugacy classes of maximal parabolic subgroups of
I'x,, for any z € H, we have the equality

U U »tem= U »

PEPxy n€lxy p\I'xy PeMpar(Txy)
nid P#P(xy)
_ — 2
= Z (Exy.par(z.2) — Im(o, 12)2) = Z Im (0 lz) . (127)
PEPxy PeMpar(Txy)

P#P(Tx,)
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From Remark 6.6, we have a bijective map

PNy Mpar(Txy) — MPQT(FXqN)’

sending P € Mpu(I'xy) to Py = ¢y g, (P) € Mpar(FXqN)- Then, for z € H, using the
relation stated in Eq. (126), we have

_ 1/./n 0 _
yp =Im(op'2) :( / OPOP W)Im(af,olz) - nyP‘:‘;, (128)

where np,p = [Py : P]. For z € H, using relations (127) and (128), and the bijection
between the sets Mpa(I'x,) and Mpa (I, " ), we derive

_ 2
Im (0 ')
—1.7\2 Py —1.\2
> meys Y Ml v e
PEMpar(FXN) POEMpar(FXqN) PP POGMpar(FXqN)
PEP(Txy) PogB(Tx, ) PogP(Tx, )

using which, we deduce that

CXN,par = CXqN,par = OXqN(l),

which proves assertion (1) for the case of an admissible sequence of type (1).

We now prove assertion (1) for { X n}near, an admissible sequence of Riemann orbisur-
faces of type (2). We prove assertion (1) only for the sequence of modular curves
{Yo(N)}nen, as the proof extends with notational changes to the other sequences of modular
curves {¥1(N)}nen and {Y (N)}yen.

Forany N € N the modular curve Yy(N) is a finite degree cover of Yy(1) = PSL,(Z)\H.
Extending our notation to the modular curve Yy(1), and adapting the arguments from the
proof for admissible sequences of Riemann orbisurfaces of type (1), for N € A/, we have

Cro.par = O(1), = Cyyv) par = Ory(gp) (-

This completes the proof for assertion (1).

For the case of admissible sequences of Riemann orbisurfaces of type (1), assertion (2) has
been established as Proposition 5.4 in [13]. Using Proposition 5.4 from [13] and adapting the
arguments from proof of assertion (1), trivially proves assertion (2) for the case of admissible
sequences of Riemann orbisurfaces of type (2).

We first prove assertion (3) for { X y } vear, an admissible sequence of Riemann orbisurfaces
of type (1). We again the consider a pair of Riemann orbisurfaces Xy and X;,,, where Xy
is a finite degree cover of X, ..

For any N € N, from Eq. (55), recall that

CxXy.ell = max{l/sinz(nn/me)| e€&xy.0 <n<me—1}.

Observe that
{meleeexyy S {melecex,, ) D me—1) <léxyl D (me—1),

eelxy e€Exq

which along with the inequality gx, < voluyp(Xy), trivially proves assertion (3) or admis-
sible sequences of Riemann orbisurfaces of type (1).

Adapting similar arguments as the ones used to prove assertion (1) for admissible
sequences of Riemann orbisurfaces of type (2), trivially proves assertion (3) for admissi-
ble sequences of Riemann orbisurfaces of type (2).
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Assertion (4) follows easily from similar arguments as the ones used to prove assertions
(1), (2), and (3). o

Proposition 6.8 Let { Xy} nen be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite volume. Then, for any N € N, o € (0, Ax,1), and § > 0, we
have the following estimate

sup gXN,hyp(Zv w) — Z gu(z, )’w)‘ = OXqN,s,a,é(l)-

LWETN . vesry,, (G:zw)

Proof The proof of the proposition follows from similar arguments as the ones used to prove
Theorem 5.5 in [10], and using Lemma 6.4 and Propositions 4.8 and 6.7. O

Theorem 6.9 Let {X n}nen be an admissible sequence of non-compact hyperbolic Riemann
orbisurfaces of finite hyperbolic volume. Then, for any N € N, we have the following
estimates

[Pxyl 4+ 1Exy] 1
sup ’gXN,can(Za 'lU) - gXN,hyp(Zy w)| = quj\f’g(( N N ) (1 + ))s

Z,WEYN ¢ Xy )LXN.I
(129)
sup gXN,can(Z’ w) — Z gu(z, Vw)‘
Z,weYy ¢ VESFXN (832,w)
(IPxy |+ 1€xy1) ( 1 ))
— Ox,.. ,3( 1+ . (130)
Kan-e 8xy Axy,1

Proof Estimate (129) follows from similar arguments as the ones used to prove Theorem 5.6
in [10], and using Lemma 6.4, and Propositions 5.16 and 6.7.

Estimate (130) follows from similar arguments as the ones used to prove Corollary 5.7 in
[10], and using Proposition 6.8 and estimate (129). ]

Corollary 6.10 Let {Xn}nen be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite hyperbolic volume. For any N € N, let p,q € Px, and p # q
be two cusps. Then, for any § > 0, we have the following estimates

sup gXN,can(L w) — Z gu(z, Vw)’
z€UN e (p) .
wEUl;/v,g(q) yeSrXN (8;z,w)

[Pxyl+ 1Exy] 1
ony (PR ER (1Y)
8Xy Axy.1

Sllp gXN,can(Za w) - Z gH(27 yw) - Z gH(Z7 Vw)‘

z,welUy ¢(p) yESFXN (8;z,w)\{id} )/EFXN,p

(IPxy |+ |5xN|)( 1 ))
= Ox,,, .5( I+ .
e gxy Axy.1

Proof The proof of the corollary follows directly from Corollary 5.17 and Theorem 6.9. O
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Corollary 6.11 Let {Xn}nen be an admissible sequence of non-compact hyperbolic Rie-
mann orbisurfaces of finite hyperbolic volume. For any N € N, let ¢, § € Ex,, and ¢ # f be
two elliptic fixed points. Then, for any § > 0, we have the following estimates

sup gXN,can(Z, w) — Z gu(z, Vw)‘
€UN e (e) .
weUy +() 7Sy e
(|PXN|+|5XN|) 1
= Ox,,. ,s( 1+ ;
N ‘ gXN )‘-XN,]
SUp [ gxycan (2. ) — > gu(z,yw)— > gu(, Vw)‘
zZ,welp ¢ (e) VESFXN (8;2,w)\{id} VEFXN,B
(lPXN|+|6XN|) 1
= Oy 5( 1+ .
wor 8Xy Axy.1

Proof The proof of the corollary follows directly from Corollary 5.19 and Theorem 6.9. O

Remark 6.12 Consider the admissible sequence of modular curves {Yo(N)}yen . For any
N € N, the modular curve Yy(N) is a finite degree cover of Yy(1) = PSL,(Z)\H. Further-
more, we have the following estimate for the genus gy, (n) of Yo(N)

grov) = O(Nlog N).
From Riemann—Hurwitz formula, we have the following estimates
[PSL2(Z) : To(N)] = O(grov)).  [Provl = O(N1ogN), [Eyyn)| = Oc(N€),
for any € > 0. We refer the reader to [18], pp. 2225 for details of the above estimates.

Furthermore, from work of Selberg [17], we know that Ay, (y),1 > 3/16. All the above esti-
mates also hold true for the other sequences of modular curves {Y] (N)}yen and {Y (N)}yen -

Corollary 6.13 Let {Xn}nen, an admissible sequence of Riemann orbisurfaces of type (2).
Then, for any N € N and § > 0, we have the following estimate

sup
Z,WEYN,S

Exyean(@w) — D gH(Z,Vw)‘:OXqN,a,8(1)~ (131)
YESTy (8;2,w)

Forany N € N, let p, q € Px, and p # q be two cusps. Then, for any § > 0, we have the
following estimates

sup  [gxyean(z W) — D gH(z,yw>' = Oy, .es(1); (132)
2€UN () .
weUx e (0) v €Sty i)
SUp | gxy,can (2, W) — > gu(z yw)— > gmz,yuo' = Ox,e8(1).
Z,weUn ¢(p) VESFXN (8;z,w)\{id} VEFXN,P
(133)
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Forany N € N, let e, € Ex, and ¢ # § be two elliptic fixed points. Then, for any § > 0,
we have the following estimates

sup |gxyem@w) = D gmz,yu»' = Ox,, .c.s(1); (134)
2€UN.e(e) yeSry. (B:z,w)
welUp ¢(f) N
SUp | 8xy.can(2, W) — > gu(z yw)— > gH(z,yw)‘ = 0x,,.65(1).
Zwely.e(e) vesry, Gzw\(id) yelxy.c
(135)

Proof Estimate (131) follows directly from combining Remark (6.12) with Theorem 6.9.
Estimates (132) and (133) follow directly from combining Remark (6.12) with Corollary 6.10.
Estimates (134) and (135) follow directly from combining Remark (6.12) with Corollary 6.11.

O
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