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Abstract We construct a 2-torus homeomorphism h homotopic to the identity with an attract-
ing R. H. Bing’s pseudocircle C such that the rotation set of h|C is not a unique vector. The
only known examples of such an attractor were Birkhoff’s attractors, arising for dissipative
maps with a twist. Our construction relies heavily on the Barge–Martin method for construct-
ing attractors as inverse limits of graphs.

1 Introduction

The most popular definition of an attractor is that it is a closed invariant set with isolating
neighborhood. Many authors strengthen this condition by demanding that there is a point
with dense orbit, that is the map is transitive when restricted to the attracting set. In other
words an attractor should be in some sense indecomposable. Milnor generalized this approach
even further, saying that attraction should be “observable” in the sense that there is positive
probability that a point will converge to it and no subset of attractor has such a property
(see [29] for a review on various concepts of attractor and evolution of this notion in the
mathematical literature). Unfortunately, when it comes to the definition of strange or chaotic
attractors then there is even less agreement, neither one good definition. Veerman [36] calls
an attractor in S

1×R strange if it has two orbits with different (rational) rotation numbers and
the associated dynamics is then referred to as rotational chaos [12]. Probably the first example
of a strange attractor in the above meaning dates back to the work of Birkhoff [7] published
in 1932. Roughly speaking, a Birkhoff attractor is an attractor for a (properly chosen) map
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690 J. P. Boroński, P. Oprocha

f = ( f1, f2) : S1 × R → S
1 × R which is dissipative and satisfies twist condition, that is

supx∈S1×R | det(D f (x))| < 1 and ∂
∂y f1(x, y) > δ > 0, respectively. Maps of the above type,

and Birkhoff attractors, received considerable attention in the mathematical literature (e.g.
see [27] or [11]). An accessible summary of the results obtained in that field can be found in
a book by Arrowsmith and Place [1].

The name “strange attractor” was to some extent motivated by the fact that, while plane
separating, (Birkhoff) attractor with two different rotation numbers must be different from the
circle, where the rotation number of a homeomorphism is always well defined and unique.
Indeed, by the result of [4] any attracting cofrontier in an annulus with a non-degenerate
rotation set must be indecomposable. Therefore probably the most “strange” attractor that
can be expected is the pseudocircle, a peculiar continuum constructed by R.H. Bing in
1951 in [6]. It is characterized as a hereditarily indecomposable plane separating circle-
like continuum. Therefore the pseudocircle is a topologically unique cofrontier. Any proper
subcontinuum of the pseudocircle is a pseudoarc, the unique hereditarily indecomposable
arc-like continuum [6,25,30]. Because of this equivalence of all subcontinua, the pseudocir-
cle exhibits a kind of local self-similarity structure and therefore one can see it as fractal.
After a decade since its construction, the pseudocircle was found to be non-homogeneous
[18,34], despite homogeneity of the pseudoarc. Subsequently, Kennedy and Rogers proved
it to be uncountably non-homogeneous [24] in the sense, that the homeomorphism group
acting on the pseudocircle has uncountably many orbits (there are uncountably many dif-
ferent types of points). An interesting phenomenon to point out is also the fact that the
two-point compactification of the universal cover of the pseudocircle is a pseudoarc [5,
Fact p.1148] but no subcontinuum of the universal covering space covers the pseudocircle.
Indeed, any such subcontinuum is the pseudoarc, and the pseudoarc cannot be mapped onto
the pseudocircle [33]. This peculiarity cannot be observed in “nice” spaces, such as cir-
cle or surfaces. The pseudocircle admits periodic homeomorphisms (rational rotations) that
extend to orientation-preserving and orientation-reversing homeomorphisms of the annulus
or 2-sphere [9,24]. It occurs also as an attracting minimal set for a C∞-smooth planar dif-
feomorphism [21,22], the minimal set of a volume-preserving planar diffeomorphism [21],
or as the boundary of a Siegel disk for a holomorphic map in the complex plane [14]. It
is worth mentioning that the diffeomorphism constructed in [21] can be easily modified to
an annulus homeomorphism (equal to the identity on the boundary), which gives a homeo-
morphism of the 2-torus, with a pseudocircle as an attractor. However, this attractor is not
strange (according to Veerman’s definition), since it has a well-defined irrational rotation
number.

In view of the aforementioned results, the following question has been known in the field
of surface dynamics.

Question Is there a 2-torus homeomorphism homotopic to the identity with a pseudocircle
as a strange attractor (in the sense of Veerman)?

We learned about the problem from Tobias Oertel-Jäger during Workshops on Complexity
and Dimension theory of Skew Products Systems held at the Erwin Schrödinger International
Institute for Mathematical Physics in Vienna, September 16 - 20, 2013 (see also [32, p.3]). The
question has been known also in the context of the much more difficult Franks-Misiurewicz
Conjecture [20], which states that if the rotation set on 2-torus is a line segment of positive
length, then it either contains infinitely many rational vectors or it has a rational endpoint.

In the present paper we show that the pseudocircle admits the desired dynamics indeed.
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Rotational chaos and strange attractors on the 2-torus 691

Theorem 1.1 There is a torus homeomorphism h : T2 → T
2 homotopic to the identity, with

a lift ĥ : R2 → R
2, such that h has an attracting pseudocircle C and the rotation set ρ(ĥ, C)

is not a unique vector. Furthermore, h|C is topologically mixing, has the shadowing property
and positive topological entropy.

Curiously, at present time it is unknown if there are homeomorphisms of the pseudocircle
with finite, non-zero entropy [31], although the homeomorphism of the pseudocircle that we
construct has positive entropy. It is also not clear if pseudocircle can be nonchaotic strange
attractor, i.e. strange attractor with zero topological entropy. Such a construction, if possible,
cannot be obtained by an application of the results of [26] (see also [23]) which is an essential
ingredient of our approach (see Lemma 3.1).

Our paper is organized as follows. Section 2 contains definitions. In Sect. 3 we first dis-
cuss the existence of a particular degree 1 circle map f with non-unique rotation number.
The map is modified to a circle map g to preserve this dynamical property but, at the same
time, to produce the pseudocircle in the inverse limit, when used as a sole bonding map. This
map also induces a shift map on the inverse limit that will give the desired homeomorphism
on the pseudocircle. To that end we also recall Barge and Martin’s method of constructing
attractors and apply it to the aforementioned inverse limit. Briefly, each factor space (circle)
in the inverse limit is embedded in an annulus, and this way a new inverse limit of annuli is
formed with the resulting space being the annulus. Consequently an appropriate embedding
of the pseudocircle C is obtained with the shift homeomorphism extending to an annulus
homeomorphism F . In order to control the rotation number of this homeomorphism, we
construct a universal covering space of the annulus as the inverse limit of universal cover-
ings of factor spaces (annuli). This ensures that the annulus homeomorphism F has a lift F̂
with similar dynamical properties as the initially constructed circle maps f and g. This is
manifested in the fact that F̂ has a fixed point, as well as an unbounded orbit, which ensures
non-uniqueness of the rotation vector of F on C . Finally, in Sect. 4 the torus homeomorphism
with non-unique rotation vector on the pseudocircle is obtained from the annulus homeo-
morphism described in Sect. 3. This last section also contains some open questions for future
study.

2 Preliminaries

2.1 Notational convention

In the present paper we will use the following notational convention. Coordinates of points
in cartesian products will be enumerated in the subscript e.g. (x1, x2, x3, . . .). Sets will be
enumerated in the superscript e.g. U 1, U 2, U 3, . . .. Inverse limit spaces will hold an arrow
in their subscripts e.g. X←. Covering spaces and lifts of functions to such spaces will hold a
hat e.g. ĥ : Â → Â. A map will be always a continuous function. For a given space X , by
id we will denote the identity map given by id(x) = x for all x ∈ X . We shall use symbols
R, S

1, A, T
2, and R

2 to denote respectively the real line, unit circle, annulus, 2-torus and
the plane. For a set B the symbols B and int(B) will denote the closure and interior of B
respectively. A vector in R

2 will be denoted by 〈a1, a2〉, whereas intervals in R will denoted
by [a, b], (a, b), [a, b), and (a, b]. The Cartesian product of two spaces A and B will be
denoted by A × B. For infinitely many spaces X1, X2, ... this product will be denoted by∏∞

i=1 Xi . If Xi = X for every i then we write
∏∞

i=1 Xi = XN. The space of continuous self
maps of a compact space (X, d) is always endowed with the metric of uniform convergence
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d( f, g) = sup
x∈X

d( f (x), g(x))

which makes it a complete metric space.

2.2 Inverse limit spaces

Suppose a map f : X → X is given on a metric space X . The inverse limit space X← =
lim←−{ f, X} is the space given by

X← =
{
(x1, x2, x3, . . .) ∈ XN : f (xi+1) = xi

}
.

The topology of X← is induced from the product topology of XN, with the basic open sets
in X← given by

U← =
(

f i−1(U ), f i−2(U ), . . . , U, f −1(U ), f −2(U ), . . .
)
,

where U is an open subset of the i th factor space X , and i ranges over N (see e.g. Theorem
3 on p.79 in [16]). The map f is called a bonding map.1 There is a natural homeomorphism
σ f : X← → X←, called the shift homeomorphism, given by

σ f (x1, x2, x3, . . .) = ( f (x1), f (x2), f (x3), . . .) = ( f (x1), x1, x2, . . .).

It is well known that σ f preserves many dynamical properties of f , such as shadowing
property, topological mixing and topological entropy (e.g. see [13]). It is also easy to see that
if c is a p-periodic point of f then

(
f p−1(c), f p−2(c), . . . , c, f p−1(c), f p−2(c), . . .

)

is a p-periodic point of σ f . For more on inverse limits see [15].
A near-homeomorphism is a surjection that is the uniform limit of a sequence of homeo-

morphisms. The following special case of a beautiful result due to M. Brown [10, Theorem
4] will be important to our constructions. One of the main applications of this theorem in our
context, is that special types of continua can be embedded in the given space X by a careful
choice of map H .

Theorem 2.1 (Brown) Let H : X → X be a near-homeomorphism of a compact metric
space X. Then the inverse limit space X← = lim←−{H, X} is homeomorphic to X.

2.3 Continua

A continuum is a compact and connected metric space that contains at least two points. A
continuum is arc-like (resp. circle-like) if it can be expressed as the inverse limit of arcs (resp.
circles).2 A continuum is indecomposable if it cannot be expressed as the union of two proper
subcontinua. It is hereditarily indecomposable if each subcontinuum is indecomposable.
Among many other properties, hereditarily indecomposable continua are nowhere locally
connected and contain no arcs. A cofrontier is a continuum that separates the plane into
exactly two components, is the boundary of each, and none of its subcontinua is plane
separating. In other words, continuum C ⊂ R

2 is a cofrontier if R
2\C has two connected

1 In general, neither the bonding map needs to be unique, nor the factor spaces in the inverse system need to
be the same. However, the given definition will be sufficient for our considerations.
2 This, in general, may not need to be obtained with a single bonding map.
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Rotational chaos and strange attractors on the 2-torus 693

components and R
2\K has exactly one connected component for every proper subcontinuum

K ⊂ C .

2.4 Dynamical systems

A dynamical system is a pair consisting of a continuous map f : X → X and a com-
pact metric space (X, d). By convention f 0 = id and f n+1 = f ◦ f n for all integers
n ≥ 0. A point p ∈ X is periodic if f n(p) = p for some n > 0. The minimal such
number is called a period of p. If p is a point of period 1 then we say that p is a fixed
point.

The orbit of a point x ∈ X is the set Orb(x, f ) = { f n(x) : n ∈ N}. The set of limit
points of the orbit Orb(x, f ) is called the ω-limit set of x , and is denoted by ω(x, f ).
Similarly, for any set U ⊂ X we denote by ω(U, f ) the set of points y such that there are
yk ∈ U and an increasing sequence nk satisfying limk→∞ f nk (yk) = y. Clearly ω({x} , f ) =
ω(x, f ).

A nonempty set A ⊂ X is an attractor if there exists an open neighborhood U ⊃ A such
that f (cl U ) ⊂ U and ω(U, f ) = A. Observe that by the definition, every attractor A is
nonempty, closed and strongly invariant (i.e. f (A) = A). We say that f is (topologically)
mixing if for all nonempty open sets U, V ⊂ X there is N such that f n(U )∩V 
= ∅ for every
n > N , and (topologically) exact if for every nonempty open set U there is n > 0 such that
f n(U ) = [0, 1]. Clearly, each exact map is mixing but not conversely. In both cases there is
a point x ∈ X (in fact a residual set of such points) such that ω(x, f ) = X .

2.5 Covering spaces

We say that τ : Ŷ → Y is a covering map if for every y ∈ Y there is an open neighborhood
W of y such that τ−1(W ) consists of pairwise disjoint sets {Ŵ n : n ∈ N}, each of which is
mapped by τ homeomorphically onto W ; i.e. τ |Ŵ n is a homeomorphism. In such a case the
open sets Ŵ n are called sheets of W . A lift of a map f : Y → Y is a map f̂ : Ŷ → Ŷ such
that τ ◦ f̂ = f ◦ τ . For simplicity, we shall also call a point ŷ ∈ Ŷ a lift of a point y ∈ Y if
ŷ ∈ τ−1(y). A universal cover (Ŷ , τ ) of Y is a cover such that if (Ŷ ′, τ ′) is any other cover
then there is a covering map p : Ŷ → Ŷ ′.

2.6 Rotation sets

Let h : T
2 → T

2 be a homeomorphism of the 2-torus homotopic to the identity, and let
ĥ : R

2 → R
2 be its lift to the universal covering space (R2, τ ). For the reminder of this

article, τ will be acting in polar coordinates, that is τ(x, p) = τ(y, q) iff x− y, p−q ∈ 2πZ.
The same convention will be applied in the case of covering spaces of S

1 and A. The rotation
set of ĥ is given by

ρ(ĥ) =
{

ρ ∈ R
2

∣
∣
∣
∣ ∃zi ∈ R

2, ni ↗∞ : lim
i→∞

ĥni (zi )− zi

2πni
= ρ

}

.

Note that the rotation set ρ(ĥ) is contained in the set of accumulation points of the set

{
ĥn(z)− z

2πn

∣
∣
∣
∣ z ∈ R

2, n ∈ N

}

.
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Given a subset W , the rotation set of ĥ on W is given by

ρ(ĥ, W ) =
{

ρ ∈ R
2

∣
∣
∣
∣ ∃zi ∈ τ−1(W ), ni ↗∞ : lim

i→∞
ĥni (zi )− zi

2πni
= ρ

}

.

When W , in the above definition, is a singleton (say W = {p}) we shall just write ρ(ĥ, p).
The rotation sets of degree 1 annulus maps and circle maps are defined in an analogous way,
as subsets of R.

Note that if h : A→ A is identity on the boundary of A then, identifying respective points
on boundaries, we can naturally view h as a map on h : T

2 → T
2 and furthermore, every

v ∈ ρ(h) is of the form v = (a, 0) for some a ∈ R. By the result of [4, Theorem 2.7], if
C ⊂ int A ⊂ R2 is a cofrontier invariant under a homeomorphism h : A→ A and ρ(h, C)

does not degenerate to a unique point, then C is indecomposable.

3 Auxiliary lemmas

Before we start our construction of a torus homeomorphism, we need to construct a map of
the circle, whose inverse limit is the pseudocircle and the induced shift homeomorphism has
two properly chosen periodic orbits.

Lemma 3.1 Consider a piecewise linear map ĝ : [0, 2π] → R determined by the following
conditions (see Fig. 1): ĝ(0) = 2π/3, ĝ(2π/3) = 10π/3, ĝ(4π/3) = 0, ĝ(2π) = 8π/3,
and ĝ is linear on the intervals [0, 2π/3],[2π/3, 4π/3] and [4π/3, 2π]. Extend ĝ to a map
ĝ : R→ R periodically, putting ĝ(x + 2π) = f (x)+ 2π . Then

(i) ĝ is a lift to the universal cover (R, τ ) of a degree 1 map g : S1 → S
1,

(ii) there is a fixed point p̂ of ĝ in the interval (0, 1),
(iii) q̂ = 0 is a lift of a 3-periodic point q of g,
(iv) the orbit of q̂ under ĝ is unbounded,
(v) ρ(ĝ, τ ( p̂)) = {0} and ρ(ĝ, q) = {1/3},

(vi) the map g is topologically exact.

Proof The only statement that needs clarification is that g is exact. First observe that on
each interval of linearity the map ĝ is expanding with factor at least 3. Fix any open subset
U of S

1 and let Î be an open interval in (0, 2π) such that τ( Î ) ⊆ U . Observe that if we
apply ĝ to Î then there is n ≥ 0 such that ĝn(I ) contains two critical points, that is points
of the form 2πk/3 for some k ≥ 0 (it is because ĝ has slope at least 3 over each interval
of linearity). Then it is not hard to see that after at most 3 more iterations we will cover the
whole interval [2πm, 2π(m + 1)] for some m ∈ N. In other words, there exists s > 0 such
that [2πm, 2π(m + 1)] ⊂ ĝs(I ). But in terms of dynamics of g it means that gm(U ) = S

1

showing that indeed g is topologically exact. ��
The following result from [26] will allow us to produce a circle map f with similar

dynamical properties to the map g from Lemma 3.1, but with the pseudocircle as the inverse
limit space lim←−{ f, S

1}.
Theorem 3.2 Let G be a topological graph and let K = {a1, . . . , as} ⊂ G be a finite set. For
every topologically exact map g : G → G and every δ > 0 there is a topologically mixing
map gδ : G→ G with the shadowing property, such that d(g, gδ) < δ, gδ(a j ) = g(a j ) for
every j and the inverse limit lim←−{gδ, G} is hereditarily indecomposable.
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Rotational chaos and strange attractors on the 2-torus 695

Fig. 1 A sketch of the graph of
map ĝ from Lemma 3.1

Corollary 3.3 There is a map f : S1 → S
1, its lift f̂ : R→ R, a fixed point p ∈ S

1, periodic
point of period three q ∈ S

1, and there are points p̂ and q̂, lifts of p and q respectively,
such that p̂ is a fixed point for f̂ , ρ( f̂ , q) = { 13 } (in particular orbit of q̂ is unbounded) and
lim←−{ f, S

1} is the pseudocircle.

Proof Let g be the map from Lemma 3.1 and let ĝ be its lift to the universal cover (R, τ ). Let
p and q denote the fixed point and point of period 3, respectively, provided in Lemma 3.1.
Denote K = {

p, q, g(q), g2(q)
}
. Without loss of generality we may assume that τ(0) = p.

Let δ > 0 be small enough, so that if d(g, f ) < δ then f is a map of degree 1. Let ĝ be a lift
of g such that ĝ(0) = 0 and let q̂ ∈ [0, 2π ] be a lift of q .

Let f = gδ be provided by Theorem 3.2. Then g(x) = f (x) for each x ∈ K, p is fixed
point and q is point of period 3 for both f and g. Let f̂ be lift of f such that f̂ (0) = 0. We have
ĝ(0) = f̂ (0) and hence we also must have f̂ (q) = ĝ(q) as otherwise there is p ∈ (0, q)

such that | f̂ (q) − ĝ(q)| ∈ (δ, 1) which yields d( f, g) > δ. By induction we obtain that
f̂ i (q̂) = ĝi (q̂) for every i . The above observation implies that ρ( f̂ , q) = ρ(ĝ, q) = {1/3}.
We remark here that ĝ could also be obtained by a direct modification of f̂ but it would
involve another proof, analogous to the one of Theorem 3.2.

Finally, the inverse limit lim←−{ f, S
1} is the pseudocircle, since f has degree 1, by the result

of Fearnley [17, Theorem 6.3] (for more details see also [19] or [26, Corollary 24] and
comments therein) which completes the proof. ��

The following lemma exhibits a special type of embedding into the annulus for a graph
of a degree 1 map. This kind of an embedding will be useful in the proof of Lemma 3.7.

Lemma 3.4 Let ĝ : R→ R be a lift of a map of degree 1. Then the map ωĝ : [0, 2π) � t �→
(ĝ(t) (mod 2π), ĝ(t)− t) ∈ S

1 × R defines a simple closed curve (Fig. 2).

Proof Denote α = ωĝ([0, 2π)) and observe that α is a closed curve since

(ĝ(2π) (mod 2π), ĝ(2π)− 2π) = (ĝ(0)+ 2π (mod 2π), ĝ(0)).

Next observe that if α has self-intersections then there are distinct s, t ∈ [0, 2π) such that
(ĝ(t) (mod 2π), ĝ(t)− t) = (ĝ(s) (mod 2π), ĝ(s)− s). But then, without loss of generality,

123



696 J. P. Boroński, P. Oprocha

0 2π

2π/3

8π/3

−2π/3

2π/3 4π/3 8π/3 10π/3

0

t = 0

t = 2π/3

t = 4π/3

t = 2π

Fig. 2 The graph of the map ωĝ in Lemma 3.4

there is k ∈ N such that ĝ(s) = ĝ(t)+ 2πk and then ĝ(t)− t = ĝ(s)− s = ĝ(t)− s + 2πk.
If k = 0 then t = s which is impossible, and when k ≥ 1 then −t ≤ 0 < 2πk − s which is
again a contradiction, since −t = 2πk − s. ��

Remark 3.5 Note that if π : (x, y) �→ (x, 0) and we identify [0, 2π) with S
1 × {0} then the

action of π ◦ ωĝ coincides with the projection of ĝ onto S
1.

The following theorem summarizes a result of Barge and Martin from [2] that allows to
present any arc-like continuum as a global attractor of a planar homeomorphism.

Theorem 3.6 (Barge and Martin) Every continuum K← = lim←−{ f, [0, 1]}, can be embedded
into a disk D in such a way that

(i) K← is an attractor of a homeomorphism h : D→ D,
(ii) h|K← = σ f ; i.e. h restricted to K← agrees with the shift homeomorphism induced by

f , and
(iii) h is the identity on the boundary of D.

It was pointed out in [3, p.19] that the same is true if f is a degree ±1 circle map and h
is an annulus homeomorphism. Because it seems that the proof of this fact has never been
published, for completeness sake we recall the procedure from [2], and adopt it to the case
of degree 1 circle maps.

Lemma 3.7 Suppose f : S1 → S
1 is of degree 1 and let C← = lim←−{ f, S

1}. Then there is an
annulus homeomorphism F : A→ A and an embedding e : C← → A such that

(i) e(C←) is an attractor of F,
(ii) F |e(C←) is conjugate to the shift homeomorphism σ f ,

(iii) F is the identity on the boundary of A.

Proof In our construction, as usual, we will be using polar coordinates, with the angular
projection πθ given by πθ (r, θ) = θ . For i = 1, 2, 3 let Ai = {(r, θ) : 4 − i ≤ r ≤ 4 + i}
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Fig. 3 The idea behind the construction of maps Gt in Lemma 3.7

and S = {(r, θ) : r = 4}. In order to define a homeomorphism h : A3 → A3 we first
put h|(A3\A2) = id. Additionally, we can apply Lemma 3.4 and define h(S) as a simple
closed curve with the property that πθ (h(r, θ)) = f (θ) (i.e. after angular projection h reverts
to f ) and h(S) ⊂ int A1. Then, by Annulus Theorem (see [35]), h can be extended to a
homeomorphism of the entire annulus A3.

As the next step of our proof we will define a homotopy G : A3 × [0, 1] → A3, putting
Gt = G(·, t) : (r, θ)→ (ηt (r), θ) for t ∈ [0, 1]}, where ηt is a piecewise linear map defined
by ηt (1) = 1, ηt (3) = 3 + t , ηt (5) = 5 − t , and ηt (7) = 7 (see Fig. 3). Observe that the
following conditions are satisfied (Fig. 4):

(i) G0 = id,
(ii) Gt is a homeomorphism for each t 
= 1,

(iii) Gt |Bd(A3) = id, for all t ∈ [0, 1].
(iv) for each θ ∈ [0, 2π) we have {(r, θ) : 3 ≤ r ≤ 5} ⊆ G−1

1 (4, θ),
(v) G1(A1) = S, and

(vi) for every x ∈ int(A3) there is n such that Gn
1 ∈ S.

Now we set H = G1 ◦ h. By the construction, H is a near-homeomorphism, hence by
Theorem 2.1 it follows that A← = lim←−{H, A3} is homeomorphic to A. We also have a natural

embedding e : C← → A← since H |S coincides with f (up to identification of S with S
1).

Note that if we put U = {∏∞
i=1(ri , θi ) ∈ A← : 3 < r1 < 5

}
then by the definition of H we

see that σH (U ) ⊂ {∏∞
i=1(ri , θi ) ∈ A← : r1 = 4

} ⊂ U and ω(U, σH ) ⊂ A← ∩ SN ≈ C←.
This shows that C← is an attractor, hence the proof is completed by setting F := σH . ��

In what follows we will make no distinction between the inverse limit space C← and
its copy e(C←) embedded essentially in the annulus A ≈ A←. In the following lemma we
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Fig. 4 Graph of the map ηt

show how a lift of a circle map f can be related to a lift of the annulus homeomorphism F
constructed in the Lemma 3.7.

Lemma 3.8 Let f : S1 → S
1, f̂ : R→ R be the maps from Corollary 3.3 and F : A← →

A← be the coresponding annulus homeomorphism from Lemma 3.7. There is a universal
cover (Â←, τ←) of A← and a lift F̂ : Â← → Â← of F with the property F̂ |τ−1(C←) = σ f̂ .

Proof Let h : A3 → A3 and Gt : A3 → A3 for every t ∈ [0, 1] be as in the proof of
Lemma 3.7 and (Â, τ ) be a universal cover of A3. Letp ∈ S be the fixed point of f = H |S
provided by Corollary 3.3, where as we remember H = G1 ◦ h. Fix p̂ ∈ τ−1(p). There are
unique lifts ĥ : Â→ Â and Ĝt : Â→ Â, of h and Gt respectively (where t ∈ [0, 1]), such that
ĥ( p̂) = Ĝt ( p̂) = p̂ for every t ∈ [0, 1]. In addition ĥ and Ĝt are homeomorphisms for every
t ∈ [0, 1). Setting Ĥ = Ĝ1 ◦ ĥ we obtain a lift of H which is also a near-homeomorphism.

Let Â±∞ = Â∪{−∞,∞} be a two-point compactification of Â by−∞ and∞. Note that
Â±∞ is topologically a disk. Since ĥ and Ĝt for every t ∈ [0, 1] are homotopic to the identity,
they extend uniquely to Â±∞. This is simply obtained by setting ĥ(∞) = Ĝt (∞) = ∞ and
ĥ(−∞) = Ĝt (−∞) = −∞ for every t ∈ [0, 1]. Then the extended map Ĥ : Â±∞ → Â±∞
is a near-homeomorphism and it is the identity on the boundary of the disc Â±∞. Now consider
the inverse limit space D← = lim←−{Â±∞, Ĥ}. The space D← is a disk, by Theorem 2.1, and if
we denote−∞̂ = (−∞,−∞,−∞, . . .) and ∞̂ = (∞,∞,∞, . . .) then ∞̂ and−∞̂ are on
the boundary of D←. In particular D← is simply connected. Let τ←: D←\{−∞̂, ∞̂} → A←
be given by τ←(x1, x2, x3, . . .) = (τ (x1), τ (x2), τ (x3), . . .). Recall that A← = lim←−{H, A3}.

We claim that Â← = D←\{−∞̂, ∞̂} is a universal cover of A← with τ← as the covering
map. Since D←\{−∞̂, ∞̂} ∼= R× [0, 1], we only need to show that τ← is a covering map.

Note that
τ ◦ Ĥ = H ◦ τ. (3.1)

Since τ is a covering map, there is a disk neighborhood U of x1 such that τ−1(U ) =⋃{Û n : n ∈ N}, where all sets Û n are pairwise disjoint, each Û n is open in Â

and mapped homeomorphically onto U by τ , i.e. Û n are the sheets of U . We shall
show that, for a fixed n, the set Û n← = (Û n, Ĥ−1(Û n), Ĥ−2(Û n), . . .) is a sheet of
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U← = (U, H−1(U ), H−2(U ), . . .). Note that Û n← is open, as it is a basic set for the
topology of A←. By (3.1) it should be clear that τ←(Û n←) = U← for each n ∈ N and
τ−1← (U←) =⋃{Û n← : n ∈ N}. It remains to show that τ←|Û n← is injective for every n ∈ N.

We will prove by induction that τ is injective on Ĥ−k(Û n) for every k ≥ 0. For k = 0
there is nothing to prove, so assume that τ is injective on Ĥ−k(Û n) but not on Ĥ−k−1(Û n)

for some k ≥ 0. Take any distinct x, y ∈ Ĥ−k−1(Û n) such that τ(x) = τ(y). Then x = y+v

for some v ∈ 2πZ and Ĥ(x) = Ĥ(y + v) = Ĥ(y)+ v since H is of degree 1. But then by
(3.1) and the fact that Ĥ(x), Ĥ(y) ∈ Ĥ−k(Û n) we obtain that

H(τ (x)) = τ(Ĥ(x)) 
= τ(Ĥ(y)) = H(τ (y)) = H(τ (x))

which is a contradiction. But this shows that

τ←|Û n←
=

(
τ |Û n , τ |Ĥ−1(Û n)

, τ |Ĥ−2(Û n)
, . . .

)

is injective and so the claim is proved.
The proof is completed by putting F̂ := σĤ .

In the following lemma we relate the rotation set of f to the rotation set of F . In the proof,
we use the same notation as in the proof of the previous lemma (Fig. 5).

Lemma 3.9 Let f, f̂ , F and F̂ be as in Lemma 3.8. Then the rotation set of F̂ contains two
distinct numbers.

Proof Recall that p is a fixed point of f with ρ( f̂ , p) = {0}, and q is a 3-periodic point of
f with ρ( f̂ , q) = { 13 }. For any q̂ ∈ τ−1(q) we have

lim
k→∞ f̂ k(q̂) = ∞.

As a consequence

lim
k→∞ σ k

f̂

(
q̂, Ĥ−1 (

q̂
)
, Ĥ−2(q̂), . . .

)
= lim

k→∞ F̂k
(

q̂, Ĥ−1(q̂), Ĥ−2(q̂), . . .
)
= ∞̂,

This shows that ρ(F̂, p) = {0}, whereas ρ(F̂, q) 
= {0}. Indeed, since the orbit {F̂n(q̂) :
n = 1, 2, 3, . . .} is unbounded, and q is 3-periodic for F , there must be an integer k 
= 0
such that F̂3(q̂) = q̂ + 2kπ . Consequently ρ(F̂, q) = 〈 k

3n , 0
〉
. ��

Combining all the previous facts together we get the following:

Theorem 3.10 There is an annulus homeomorphism F : A → A, its lift to the universal
cover F̂ and a pseudocircle C ⊆ A such that

−∞ ∞

r = 1

r = 7

Fig. 5 Approximation in the universal cover
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(i) F(C) = C,
(ii) C is an attractor of F,

(iii) the rotation set of ρ(F̂, C) contains two distinct numbers (one of which is 0),
(iv) F is the identity on the boundary components.

Remark 3.11 Note that the annulus homeomorphism F above has an m-periodic point in C
for every m ≥ 3. All such periodic points are induced from the circle map f , for which they
are guaranteed by the period-forcing result of Block [8, Theorem A].

4 Main result

Theorem 1.1. There is a torus homeomorphism h : T2 → T
2 homotopic to the identity, with

a lift ĥ : R2 → R
2, such that h has an attracting pseudocircle C and the rotation set ρ(ĥ, C)

is not a unique vector. Furthermore, h|C is topologically mixing, has shadowing property
and positive topological entropy.

Proof Let A → A be the annulus homeomorphism from Theorem 3.10 with the attracting
pseudocircle C . Identify two points in A if they are on the boundary of A and share the
angular coordinates. That is, let A = {(r, ρ)|1 ≤ r ≤ 2} be given in polar coordinates and
consider a relation ∼ on A defined by

(r1, ρ1) ∼ (r2, ρ2) if and only if (r1 = r2 − 1 or r2 = r1 − 1) and ρ1 = ρ2.

Then A/∼ is homeomorphic to T
2, and F induces a homeomorphism h : T

2 → T
2. The

lift F̂ provided by Theorem 3.10 gives a lift ĥ of h to the universal covering space with two
rotation vectors 〈0, 0〉 , 〈 k

3n , 0
〉 ∈ ρ(ĥ, C). Finally, h|C is topologically mixing, has shadowing

property and positive topological entropy since h|C = σ f and f has all these properties. ��
It should be clear that our procedure of producing a connected attractor with rotation

interval will also work for other degree 1 circle maps that have two distinct numbers in their
rotation set. For example, the map g from Lemma 3.1 produces an attractor with non-unique
rotation vector that is not homeomorphic to the pseudocircle. Indeed, one easily see that the
attractor Ag = lim←−{S1, g} contain arcs (the same seems true for Birkhoff attractors [27]),
hence it is topologically distinct from the pseudocircle that does not contain any arcs. This
motivates the following two problems.

Question 1 Are there uncountably many topologically distinct connected strange attractors
in T

2?

Question 2 Characterize the inverse limits lim←−{S1, f } for degree 1 circle maps f , that admit

two distinct rotation numbers. What conditions on such f : S1 → S
1 and g : S1 → S

1 assure
that lim←−{S1, f } and lim←−{S1, g} are topologically distinct?

It is expected that, as in the case of Buckethandle Continua [37], the number of turning
points of the bonding map will determine non-homeomorphic classes of continua. For exam-
ple a piecewise monotone bonding map g5 built on a 5-periodic orbit will lead to an inverse
limit space topologically distinct from the one obtained by using the map g in Lemma 3.1.

As a reminder, we also repeat a question stated before in the introduction.

Question 3 Can the pseudocircle C be a strange non-chaotic attractor in T
2 (i.e. dynamics

on C has zero entropy and non-unique rotation vector)?
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Finally, we wonder if pseudocircles can arise as approximations of plane separating attrac-
tors for annulus homeomorphisms whose rotation set is nondegenerate.

Question 4 Suppose h is an annulus homeomorphism with an attracting circle-like cofrontier
� such that the rotation set of h|� is nondegenerate. Given ε > 0, is there an annulus
homeomorphism g and a pseudocircle C, such that d(h, g) < ε and the rotation set of g|C
is nondegenerate?

The above question is motivated by the fact that by Theorem 3.2 every topologically exact
map on S

1 can be approximated by a map that, when used as a sole bonding map of an inverse
system, gives the pseudocircle in the inverse limit. In fact the same is true for the identity
map on S

1 according to Remark on p. 209 in [23]. Therefore it seems that if � is circle-like
and h is constructed by the inverse limit technique considered in the present paper, then the
above question has an affirmative answer, but the problem may be more difficult to solve in its
full generality. Also, it may be interesting to determine if pseudocircles could approximate
other attracting cofrontiers admitting annulus homeomorphisms with non-unique rotation
number, that are not necessarily circle-like. This is motivated by the fact that the pseudoarc
approximates any continuum in R

n , for n > 1 and every map between two subcontinua in
R

m , with m > 2 can be approximated by a homeomorphism between two pseudoarcs [28].
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9. Boroński, J.P.: Periodic orientation reversing homeomorphisms of the 2-sphere with an invariant pseudo-

circle. Topol. Proc. 40, 83–90 (2012)
10. Brown, M.: Some applications of an approximation theorem for inverse limits. Proc. Am. Math. Soc. 11,

478–483 (1960)
11. Casdagli, M.: Periodic orbits for dissipative twist maps. Ergod. Theory Dyn. Syst. 7, 165–173 (1987)

123



702 J. P. Boroński, P. Oprocha
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