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Abstract The dominant dimension of algebras in the class A of 1-quasi-hereditary algebras
introduced in Pučinskaitė (J Lond Math Soc (2) 87(2):478–496, 2013) is at least two. By
the Morita–Tachikawa Theorem this implies that A is related to a certain class B of pairs
consisting of an (another) algebra and a module satisfying the double centralizer condition.
In this paper we determine the class B, and show the connection between the partial order
of a 1-quasi-hereditary algebra and the structure of the related pair in B (see Theorem A). If
the first component of a pair in B is a commutative algebra, then the corresponding algebra
in A receives additional features described in Theorem B. Finally we introduce the Ringel
dual for objects in B. Of particular interest are those pairs in B which occur as Ringel dual
(see Theorem C).

1 Introduction

Let A, B be algebras. An A-B-bimodule AMB satisfying the double centralizer condition
A ∼= EndB(MB) and B ∼= EndA(AM) provides a relationship between the representation
theories of the algebras A and B that may differ in terms of their homological proper-
ties. Soergel’s ’Struktursatz’ relating an algebra A�(g) corresponding to a block � of the
Bernstein-Gelfand-Gelfand category O(g) of a complex semisimple Lie algebra g with a sub-
algebra of the corresponding coinvariant algebra as well as the Schur-Weyl duality between
the Schur algebra S(n, r) for n ≥ r and the group algebra K�r of the symmetric group are
prominent examples for this connection (see for instance [10]).

In this paper we present a further example for this situation which relates a 1-quasi-
hereditary algebra A defined in [11] with a local self-injective algebra B via an A-B-bimodule
L whose structure has a precise description: The A-module L is a projective-injective inde-

Partly supported by the D.F.G. priority program SPP 1388 “Darstellungstheorie”.
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642 D. Pučinskaitė

composable and the EndA(L)op-module L decomposes into a direct sum of local ideals
of B := EndA(L) generated by the endomorphisms corresponding to certain paths in the
quiver of A (see Proposition 3.4). The B-module L is a generator–cogenerator of mod B
(i.e., any projective and any injective indecomposable B-module is a direct summand of
L). Thus, any 1-quasi-hereditary algebra can be defined as an endomorphism algebra of a
generator–cogenerator of a local self-injective algebra.

The algebras A�(g) and S(n, r) belong to the class A of quasi-hereditary algebras with
a duality (induced by an anti-automorphism) and with dominant dimension at least two (see
[10] and [6]). The class of 1-quasi-hereditary algebras has a non-empty intersection with A .
Many factor algebras of A�(g) related to certain saturated subsets of weights are 1-quasi-
hereditary. Note that a 1-quasi-hereditary algebra does not have a duality in general. The
results in this paper clarify the connection between A�(g) and the coinvariant algebras (see
Remark 5.7).

Throughout this paper K is an algebraically closed field. Our first result presents a one-
to-one correspondence (up to isomorphism) between the class of 1-quasi-hereditary algebras
and the class of pairs (B, L) yielding 1-quasi-hereditary algebras via the double centralizer
condition. There B is a local self-injective algebra and L ∈ mod B satisfies certain properties.
Any algebra A in this paper is basic, thus given by a quiver and relations (Q(A), I(A)).

Theorem A Let A, B be finite dimensional basic K -algebras and L be a B-module. Let
n ∈ N and (� := {1, . . . , n} , �) be a partially ordered set. The following statements are
equivalent:

(i) A with (�, �) is 1-quasi-hereditary (here we identify � with the vertices in Q(A)), i.e.,
A ∼= EndB(L)op, where L is a multiplicity-free generator–cogenerator of mod B.

(ii) B is local, self-injective with dimK B = n and L ∼=
⊕

i∈�
L(i) where L(i) are local

submodules of B and L(1) = B, moreover, for all i, j ∈ � the following properties hold:

(a) There exists an epimorphisms L(i) � L( j) if and only if i � j ,
(b) rad(L(i)) =

∑
i< j

L( j).

Recall that an algebra of the form A�(g) is 1-quasi-hereditary if rank(g) ≤ 2, hence
Theorem A is applicable for these algebras.

Dlab, Heath and Marko have shown in [3] that a pair (B, L) with the properties in (i i)
and if B is commutative yields a quasi-hereditary BGG-algebra (defined by Irving in [8]).
The next theorem strengthens the main theorem in [3] by determining the properties of a
1-quasi-hereditary algebra A ∼= EndB(L)op for which B is commutative.

In the quiver Q of a 1-quasi-hereditary algebra (A, �) between two vertices i and j
either there are no arrows or two arrows pointing in opposite directions i � j and i, j are
neighbours with respect to � (see [11, Theorem 2.7]). Thus for any path p in Q there exists
an uniquely determined path pop running through the same vertices in the opposite direction.

Theorem B Let B be an algebra and L a B-module with the conditions (i i) in Theorem A,
and A ∼= EndB(L)op . The following statements are equivalent:

(i) B is commutative.
(ii) If ρ ∈ I (A) is a relation of A, then ρop is also a relation of A.

(iii) A has a duality induced by the anti-automorphism p �→ pop .
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Quasi-hereditary algebras via generator–cogenerators 643

Theorem B implies that for a 1-quasi-hereditary algebra A ∼= EndB(L)op ∼= K Q/I with
B is commutative there exists a set R of relations with I = 〈R〉 such that ρ ∈ R if and
only if ρop ∈ R. The coinvariant algebra B := B�(g) related to the algebra A := A�(g)

is commutative. Moreover, A ∼= EndB(M)op for a B-module M (Soergel’s ’Struktursatz’).
Note that the properties (i i) and (i i i) in Theorem B are satisfied for all algebras A�(g) that
have been computed in the literature so far, also for some algebras which are not 1-quasi-
hereditary, for example A0(sl4) (see [15]).

Moreover, according to [5], any 1-quasi-hereditary algebra A = EndB(L)op , where B
is commutative, is isomorphic to HomA(D(A), A) as an A-A-bimodule (here D denotes
the standard duality), A is also a Morita algebra in the sense of Kerner and Yamagata
(see [9]).

The concept of Ringel duality introduced in [13] is essential in the theory of quasi-
hereditary algebras: For a (basic) quasi-hereditary algebra A there exists another quasi-
hereditary algebra R(A) such that R(R(A)) ∼= A. In this paper we show how the Ringel
duality induces a corresponding concept R(−) on the class of pairs (B, L) with the proper-
ties (i i) in Theorem A: For a pair (B, L) there exists another pair (R(B), B(L)) such that
R(R(B)) ∼= B and R(R(L)) ∼= L (we will show B ∼= R(B), see Lemma 5.2). The class of
1-quasi-hereditary algebras is not closed under Ringel duality thus the pair (R(B), R(L)) do
not satisfies the conditions (i i) in Theorem A. However the ”Ringel dual” of (R(B), R(L))

yields a pair with properties (i i) in Theorem A. I would like to emphasize that the consider-
ation of the structure of L(R) is related to the consideration of the algebras A�(g) because
they also come from an algebra B and a B-module M.

Our next result explicitly determines the aforementioned correspondence for those 1-
quasi-hereditary algebras, whose Ringel duals are also 1-quasi-hereditary.

Theorem C Let (A, �) and (R(A), �) be 1-quasi-hereditary algebras as well as (B, L)

and (R(B), R(L)) the corresponding pairs (w.r.t. Theorem A (ii)), where L ∼=
⊕

i∈�
L(i)

and R(L) ∼=
⊕

i∈�
R(L(i)). Then B ∼= R(B) and for every i ∈ � we have

R(L(i)) ∼= B/

⎛

⎝
∑

j 
�i

L( j)

⎞

⎠ ∼=
⋂

j 
�i

ker (B � L( j)).

In particular, if a 1-quasi-hereditary algebra is Ringel self-dual, then L ∼= R(L). There
exists a permutation σ ∈ Sym(dimK B) with L(σ (i)) ∼= R(L(i)). The algebras of the form
A�(g) are Ringel self-dual. In case of rank(g) ≤ 2 the algebra A�(g) is 1-quasi-hereditary,
we have for them the situation described in Theorem C. (See Example 2.6 and Remark 5.6
for the pairs (B, L) and (B, R(L)) corresponding to the algebra A0(sl3).)

The paper is organized as follows: In Sect. 1, we introduce the Morita–Tachikawa The-
orem which shows that a minimal faithful module over an algebra of dominant dimension
at least two has the double centralizer property. The results of this paper build upon on
this theorem. We also recall the relevant definitions and give some examples which show
the diversity of modules over a local self-injective algebra satisfying the double centralizer
condition.

Section 2 is devoted to the proof of Theorem A. The paths in the quiver of a 1-quasi-
hereditary algebra of the form p( j, i, k) defined in [11, Section 3] play an important role.
The other part of the proof is based on the structure of the B-module L which will be analyzed
in Lemma 3.5. We also determine an easier transition from the B-maps of L to the relations
of the algebra A = EndB(L)op (see Remark 3.10).
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644 D. Pučinskaitė

This is used in the proof of Theorem B in Sect. 3.
In Sect. 4 we describe the transfer of Ringel duality. Consequently we obtain a decom-

position of the class of 1-quasi-hereditary algebras with their Ringel duals into subclasses
which are closed under Ringel duality. Moreover, the algebras in a fixed subclass arise from
the same local self-injective algebra. Subsequently we present the proof of Theorem C.

2 Preliminaries

Unless otherwise specified, any algebra A is an associative, finite dimensional, basic K -
algebra over an algebraically closed field K . Thus A is determined by a quiver Q := Q(A) =
(Q0, Q1) = ({the set of vertices}, {the set of arrows}) and relations I, or in other words,
A = K Q/I is a quotient algebra of the path algebra K Q by an admissible ideal I (Theorem
of Gabriel). The algebra K Q/I is is said to be a bound quiver algebra. The product of arrows
(k → i) and (i → j) is given by the path (k → i → j) = (i → j) · (k → i). If we say
that p is a path in Q (resp. in A), then this means that p is an element in K Q (resp. p the
corresponding residue class in K Q/I). The relevant material can be found in [1, Chapter III].
Furthermore, mod A is the category of finite dimensional left A-modules. For M ∈ mod A
we denote by soc M, rad M and top M the socle, the radical and the top of M, respectively,
and add(M) is the full subcategory of mod A whose objects are the direct sums of direct
summands of M (for references see [1]).

We repeat some notations and facts about bound quiver algebras A = K Q/I. Throughout,
we identify the set of vertices Q0 := Q0(A) with the set � = {1, . . . , |Q0|}. We denote by
P(i), I (i), S(i) and ei the projective indecomposable, injective indecomposable, simple A-
module and the primitive idempotent, respectively, corresponding to i ∈ �. The module P(i)
as a vector space is generated by all paths in A which start in the vertex i . Let M ∈ mod A,
then for M as a K -space we have M ∼= ⊕

i∈� Mi with Mi ∼= HomA(P(i), M) via
m �→ f(m) : P(i) → M, where f(m)(a · ei ) = a · m for all a ∈ A. In particular, P( j)i ∼=
HomA(P(i), P( j)) = spanK

{
f(p) | p is a path in A, p starts in j and ends in i

}
. Recall

that EndA(M)op is a K -algebra with the product F ◦ G =
(
M G→M F→M

)
. The (left)

EndA(M)op-module M is isomorphic to
⊕

i∈� HomA(P(i), M), written EndA(M)op M.
The Jordan-Hölder multiplicity of S(i) in M is denoted by [M : S(i)]. In particular, we
have dimK HomA(P(i), M) = [M : S(i)].
2.1 Theorem of Morita–Tachikawa

Based on various works by Morita and Tachikawa (see [16,17]), in [14] is described a
relationship between the algebras A and EndA(M)op via an A-module M having the double
centralizer condition. We recall some notations and terminology needed in the statement of
the theorem below.

The dominant dimension of A is at least 2 (written dom. dim A ≥ 2), if there exists an
exact sequence 0 → AA→M1 →M2 such that M1, M2 are projective and injective A-
modules. An A-module M is called faithful if AA can be embedded into a direct sum of copies
of M. An A-module M is minimal faithful if M is faithful, and M is a direct summand of
any faithful A-module. A minimal faithful A-module is unique up to isomorphism and will be
denoted by M (A). An A-module G is a generator–cogenerator of mod A if every projective
indecomposable as well as every injective indecomposable A-module is a direct summand
of M. We denoted by [A] resp. [A, G ] the isomorphism class of A and a A-module G .
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Quasi-hereditary algebras via generator–cogenerators 645

Theorem 2.1 (Morita–Tachikawa) There are bijections � and � between

X:= {[A] ∣∣A is a basic artin algebra, dom. dim A ≥ 2
}

and

Y:=
{
[B, G ]

∣∣∣∣
B is a basic artin algebra,
G is a multiplicity-free, generator–cogenerator of mod B

}

defined as follows:

X
�−→ Y

[A] �→ [B(A) := EndA (M (A))op , B(A)M (A)
] and Y

�−→ X
[B, G ] �→ [

EndB(G )op
] ,

such that � ◦� = IdX and � ◦� = IdY.

This theorem also provides correspondences between the subsets of X and their image
under � in Y. By the Theorem of König et al. [10, Theorem 1.3] the algebras of blocks of the
BGG-categoy O as well as Schur algebras S(n, r) (with n > r ) have dominant dimension at
least two. The Theorem 2.1 covers this kind of algebras. Especially the module M (A) has
the double centralizer condition.

Note that the Theorem of Morita–Tachikawa provides some connections between a finite
dimensional algebra A = K Q/I with dom. dim A ≥ 2 and a pair (B, G ) with �[A] =
[B, G ]. Because A ↪→ M (A)m for some m ∈ N, we have [M (A) : S(i)] 
= 0 and conse-
quently HomA(P(i), M (A)) 
= 0 for all i ∈ �(= Q0). Obviously B ∼= EndA(M (A))op

and BM (A) ∼=⊕
i∈� HomA(P(i), M (A)). Since A ∼= EndB(BM (A))op is basic, the num-

ber of vertices of the quiver of A is the number of indecomposable summands of BM (A).
Therefore HomA(P(i), M (A)) is indecomposable for any i ∈ �. The B-module G has |�|
pairwise non-isomorphic, indecomposable direct summands.

2.2 Quasi-hereditary algebras and local self-injective algebras

In this paper we consider a subclass of quasi-hereditary algebras with dominant dimension
at least 2 which are related to local self-injective algebras. We recall some definitions.

Quasi-hereditary algebras were defined by Cline et al. in [2]. We use the equivalent def-
inition and terminology given by Dlab and Ringel in [4]: Let A be a bound quiver algebra
and (�, �) a poset (so � is the set of vertices). For every i ∈ � the standard module 
(i) is
the largest factor module of P(i) such that [
(i) : S(k)] = 0 for all k ∈ � with k 
� i . We
denote by F(
) the full subcategory of mod A consisting of modules having a filtration such
that each subquotient is isomorphic to a standard module. The modules in F(
) are called

-good and these filtrations are 
-good filtrations. For M ∈ F(
) we denote by (M : 
(i))
the (well-defined) number of subquotients isomorphic to 
(i) in a 
-good filtration of M .

An algebra A with (�, �) is quasi-hereditary if for all i, k ∈ � the following conditions
are satisfied:

• [
(i) : S(i)] = 1,
• P(i) is a 
-good module with (P(i) : 
(k)) = 0 for all k 
� i and (P(i) : 
(i)) = 1.

Throughout, (A, �) denotes an algebra A with a partial order � on �.
We can identify the vertices of the quivers of A and Aop . An algebra (A, �) is quasi-

hereditary if and only if (Aop, �) is quasi-hereditary (see [4]). The standard duality D :=
HomK (−, K ) provides the costandard A-module ∇(i) ∼= D(
Aop (i)) corresponding to
i ∈ � and also the subcategory F(∇) of mod A of all ∇-good modules.

We recall the definition of a 1-quasi-hereditary algebra from [11] and we will show that
the dominant dimension of them is at least two. To distinguish between an arbitrary algebra
A and a 1-quasi-hereditary algebra, we denote the latter by A.
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646 D. Pučinskaitė

Definition 2.2 (1-Quasi-hereditary) A quasi-hereditary algebra A with (�, �) is called 1-
quasi-hereditary if for all i, j ∈ � = {1, . . . , n} the following conditions are satisfied:

(1) There is a smallest and a largest element with respect to �,
without loss of generality we will assume them to be 1 and n, respectively,

(2) [
(i) : S( j)] = (
P( j) : 
(i)

) = 1 for j � i ,
(3) soc P( j) ∼= top I ( j) ∼= S(1),
(4) 
(i) ↪→ 
(n) and ∇(n) � ∇(i).

Proposition 2.3 Let (A, �) be a quasi-hereditary algebra and let I be a projective-injective
A-module. For any i ∈ � assume that

• soc(
(i)) ∈ add (soc I ) and
• P(i) ↪→ I with I/P(i) ∈ F(
).

Then dom. dim A ≥ 2.

Proof Let 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dr = I/P(i) be a 
-good filtration with Dk/Dk−1 ∼=

( jk). Then soc (I/P(i)) ∈ add

(⊕r
k=1 soc(
( jk))

) ⊆ add (soc I ). Therefore I/P(i) can
be embedded into some copies of I for any i ∈ �. There exists an exact sequence 0 →
P(i) → I → I r(i) for some r(i) ∈ N. Since AA ∼= ⊕

i∈� P(i), there exist m, r ∈ N such
that the sequence 0 → AA→ I m → I r is exact. ��
Lemma 2.4 Let (A, �) be a 1-quasi-hereditary algebra with {1} = min(�, �). Then P(1)

is a minimal faithful A-module and dom. dim A ≥ 2.

Proof According to [11, 2.6] we have P(1) ∼= I (1) and 
(i) ↪→ P(i) ↪→ P(1) for every
i ∈ �. Thus we have soc 
(i) ∈ add (soc I (1)). Moreover, P(1)/P(i) ∈ F(
) for any i ∈ �

(see [11, 4.3]). Therefore dom. dim A ≥ 2 according to Proposition 2.3.
In particular, P(1) is a minimal faithful A-module because P(1) is indecomposable, and

A A ↪→ P(1)|�|. We have M (A) ∼= P(1). ��
To distinguish between an arbitrary algebra and a local, self-injective algebra, we denote

the latter by B. Recall that an (finite dimensional, basic) algebra B is local and self-injective
if and only if the socle and the top of B B are simple. An ideal I of B is a two-sided, local
ideal if B · I ⊆ I as well as I · B ⊆ I and rad(I ) is the unique maximal submodule of I .

Definition 2.5 ( � ). Let B be an algebra, L ∈ mod B and (� = {1, . . . , n} , �) be a poset.

We say that the pair (B, L) satisfies the condition � if

(1) B is a local, self-injective algebra, dimK B = n,
(2) L =

⊕
i∈�

L(i), where L(1), . . . , L(n) are two-sided local ideals of B such that L(1) =
B and for all i, j ∈ � the following is satisfied:

(a) L(i) � L( j) if and only if i � j , (b) rad (L(i)) =
∑

i< j
L( j).

If (B, L) satisfies the condition � , then [B, L] ∈ Y: Since B is local and self-injective,
any projective (resp. injective) indecomposable B-module is isomorphic to B B. Hence L
is a generator–cogenerator of mod B, because B B(= L(1)) is a direct summand of L . The
condition (a) implies L(i) ∼= L( j) if and only if i = j , therefore L is multiplicity-free.
The quiver of B consists of one vertex and finitely many loops. To distinguish between an
arbitrary generator–cogenerator G of mod B and a generator–cogenerator related to � , we
denote the latter by L .

It should be noted that for a fixed local, self-injective algebra B, the poset (�, �) and the
B-module L which satisfy the condition � are not uniquely determined.
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Quasi-hereditary algebras via generator–cogenerators 647

Example 2.6 The algebra B = C[x, y]/ 〈xy, x3 − y3
〉

is local and self-injective with
dimC B = 6. The next diagrams present the partial orders �(k) on � = {1, . . . , 6} and
the generators-cogenerators Lk = ⊕6

i=1 Lk(i) of mod B for k = 1, 2, 3. The arrow
Lk(i) → Lk(i ′) means i <(k) i ′ and i, i ′ are neighbours. In the diagram on the right-hand

side, ω = 1
2 + i

√
3

2 is a 6th root of unity, where i2 = −1.

L1(6) = X3

L1(4) = X2 Y 2 = L1(5)

L1(2) = X Y = L1(3)

L1(1) = 1

L2(6) = X3

L2(4) = X2 Y 2 = L2(5)

L2(2) = X X + Y = L2(3)

L2(1) = 1

L3(6) = X3

L3(4) = X2 + ω2Y 2 ω2X2 + Y 2 = L3(5)

L3(2) = X + ωY ωX + Y = L3(3)

L3(1) = 1

It is easy to check that (B, Lk) satisfies the condition �(k) . Therefore, [B, Lk] ∈ Y. In

view of Theorem A, the module Lk is an Ak-B-bimodule, where Ak = EndB(Lk)
op is a

1-quasi-hereditary algebra for k = 1, 2, 3. Note that the algebra A3 is associated to a regular
block of the BGG-category O(sl3). The quiver and relations of A3 are presented in [12,
Example 1].

The Morita–Tachikawa Theorem 2.1 and Lemma 2.4 yield that for any 1-quasi-hereditary
algebra A there exists an (up to isomorphism) uniquely determined pair (B, G ) with A ∼=
EndB(G )op , where B is an algebra and G a generator–cogenerator of mod B. In other words
when A ∼= EndB(G )op for some generator–cogenerator G of mod B, then A and B are related
by double centralizer properties.

In the next section we prove Theorem A which can be rewritten as follows:
Theorem A. Let A, B be finite dimensional basic K -algebras and n ∈ N. Moreover, let

(� := {1, . . . , n} , �) be partially ordered. The following statements are equivalent:

(i) The algebra (A, �) is 1-quasi-hereditary, i.e., A ∼= EndB(L)op and L is a (multiplicity-
free) generator–cogenerator of mod B,

(ii) The pair (B, L) satisfies the condition � .

Theorem A provides bijections between the isomorphism classes of 1-quasi-hereditary
algebras and the pairs defined in 2.5. In the Example 2.6 the algebra B is commutative. In
the next subsection we consider this situation. In general B does not have to be commutative.

Example 2.7 Let n ≥ 3 and C = (
ci j

)
2≤i, j≤n−1 ∈ GLn−2(K ). We define B := Bn(C) =

K 〈x2, . . . , xn−1〉 /I with I := 〈{
cmk · xi · x j − ci j · xm · xk, x3

i | 2 ≤ j, i, k, m ≤ n − 1
}〉

.
Let Xk = xk +I for any k ∈ � := {2, . . . , n − 1}. Since det C 
= 0, for every i ∈ � there

exist l(i), r(i) ∈ � such that cl(i)i 
= 0 and cir(i) 
= 0, therefore cl( j) j Xi Xr(i) = cir(i) Xl( j) X j

Furthermore, we have cik = 0 iff Xi Xk = 0. For any j ∈ � there exists λ j ∈ K such that
Xi X j = λ j Xi Xr(i). Since X3

m = 0 for all m ∈ �, we have Xi X j Xk = 0 for all i, j, k ∈ �.
Thus

〈Xi 〉 = B · Xi = spanK

{
Xi , Xl(i) Xi

} = spanK

{
Xi , Xi Xr(i)

} = Xi · B

is a two-sided local ideal of B and soc B = 〈
Xi Xr(i)

〉
for all i ∈ �. The algebra B is self-

injective and dimK B = n. Let (� = {1, . . . , n} , �) be the poset given by 1 � i � n for all
2 ≤ i ≤ n − 1 and let the B-module L :=⊕n

i=1 L(i) be given by L(1) = B, L(i) = 〈Xi 〉
for all i ∈ � and L(n) = soc B. The pair (B, L) satisfies the property � . The quiver
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648 D. Pučinskaitė

and relations of the 1-quasi-hereditary algebra An(C) := EndB(L)op can by found in [12,
Example 3]. The algebra B is commutative if and only if C = Ct .

L(n)

L(2) · · · L(i) · · · L(n − 1)

L(1)

2.3 BGG-algebras

We refer to the definition of BGG-algebras given by Xi in [18]: A quasi-hereditary algebra
A is called a BGG-algebra if there is a duality δ of mod A such that δ(S(i)) ∼= S(i) for all
i ∈ Q0(A).

Recall that an anti-automorphism ε̄ : A → A of A is a K -map such that ε̄(a · a′) =
ε̄(a′) · ε̄(a) and ε̄2(a) = a for all a, a′ ∈ A.

Moreover, Xi has shown that if there is an anti-automorphism ε̄ of A such that A · ε̄(ei ) ∼=
A · ei for all i ∈ Q0(A), then A is a BGG-algebra (see [18, Theorem 1.5]).

We recall some properties of 1-quasi-hereditary algebras which we need. According to
[11, Theorem 2.7], the quiver Q(A) of a 1-quasi-hereditary algebra (A, �) is the double of
the quiver of the incidence algebra of (�, �): Let i, j ∈ �, we write

i � j and i � j

if i is a smaller neighbour of j and i is a larger neighbour of j , respectively. We have
∣∣∣
{
α ∈ Q1(A) | i

α→ j
}∣∣∣ =

⎧
⎨

⎩

1 if i � j,
1 if i � j,
0 else.

Thus for any path p = (i1 → i2 → · · · → im) there exists a uniquely determined path
pop := (im → · · · → i2 → i1) in Q(A) running

n

1

t1

l1

tv

lw

i1 · · · ir

j

k1 · · · km

through the same vertices in the opposite direction. Obviously, (pop)op = p. Since the set of
paths is a K -basis of K Q, the map p �→ pop can be lifted to the K -linear map ε : K Q → K Q.
Note that in general ε do not induces a K -map ε̄ : A → A given by ε̄(p + I) = pop + I.

In the Example 2.7 for the algebra A := A4(C) with C =
(

1 q
0 1

)
and q 
= 0, we have that

the residue class of the path p = (3 → 1 → 2) is zero, but the residue class of pop is
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non-zero. In general, 1-quasi-hereditary algebras are not BGG-algebras (see [12, Example
3]).

Definition 2.8 We say that a 1-quasi-hereditary algebra A = K Q/I is a BGG(�) -algebra,
if the map ε̄ : A → A with ε̄(p+I) = pop+I, induced by K -map K Q → K Q, p �→ pop ,
is an anti-automorphism of A.

It should be noted that it is not known in general whether a duality δ of mod A comes
from an anti-automorphism of A. It is also not known how an anti-automorphism with the
properties in [18, Theorem 1.5] does look like (the condition A · ε̄(ei ) ∼= A · ei does not
imply ε̄(ei ) = ei ). It is not known in general whether a 1-quasi-hereditary BGG-algebra is a
BGG(�)-algebra. In the Example 2.7 the algebra An(C) is a BGG(�)-algebra if and only
if C = C tr.

Theorem B. Let A ∼= EndB(L)op ∼= K Q/I with (�, �) be a 1-quasi-hereditary algebra
such that (B, L) satisfies the condition � . The following statements are equivalent:

(i) B is commutative.
(ii) A is a BGG(�)-algebra.

(iii)
∑r

t=1
ct · pt ∈ I if and only if

∑r

t=1
ct · pop

t ∈ I.

Note that for a BGG(�)-algebra A = K Q/I there exists a set R of relations generating
I such that ρ ∈ R implies ρop ∈ R. This set can be written as R = R0∪̇R1∪̇R2, where the
starting and ending vertex of the paths pt in a relation ρ =∑r

t=1 ct · pt of R0 is the same. The
paths of a relation in R1 start and end in different vertices such that R2 = {ρop | ρ ∈ R1}.

Dlab, Heath and Marko have shown in [3] that if for a commutative algebra B and a
B-module L the pair (B, L) satisfies the condition � , then the algebra EndB(L)op is a
BGG-algebra as defined by Irving in [8]. Our Theorem B provides a strong form of the main
Theorem [3].

The correspondence between the isomorphism classes of 1-quasi-hereditary algebras and
the pairs satisfying the property � is a restriction of the Morita–Tachikawa correspondence

2.1 which is unrelated to the statements of Theorems A and B. For the subsets X(1) :=
{[A] | A is a 1-quasi-hereditary algebra}, X′ := {[A] | A is a BGG(�) -algebra

}
and

Y(1) :=
{
[B, L] |(B, L) has the property �

}
, Y′ := {[B, L]∈Y(1) | Bis commutative} of

X and Y, respectively, (defined in 2.1) we have �(X(1)) = Y(1) and � (Y(1)) = X(1)

as well as �
(
X′

) = Y′ and �
(
Y′

) = X′. The function � restricted to X(1) maps [A, �]
to

[
EndA(P(1))op, P(1)

]
, where {1} = min(�, �). The relation between X(1) and Y(1) as

well as X′ and Y′ yields the precise version of the Morita–Tachikawa correspondence. It may
be visualised as follows.
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3 Proof of the Theorem A

In this section let (�, �) be a poset. Until the end of this paper for any j ∈ � we denote by
�( j) and �( j) the following subsets of �:

�( j):= {i ∈ � | i � j} and �( j) := {i ∈ � | i � j} .
We also adopt all notation of the previous section.

3.1 Proof of the Theorem A (i)⇒ (i i)

In this subsection the algebra A with the ordering (�, �) denotes a 1-quasi-hereditary
algebra. We assume 1 is the unique minimal element in (�, �). Then P(1) is a mini-
mal faithful A-module, and Morita–Tachikawa Theorem 2.1 as well as Lemma 2.4 imply
that for any [B, G ] ∈ Y with A ∼= EndB (G )op we obtain B ∼= EndA(P(1))op and
G ∼= EndA(P(1))op P(1) ∼=⊕

k∈� HomA(P(k), P(1)). Until the end of this section we write

B = EndA(P(1))op and G (k) = HomA(P(k), P(1)) for any k ∈ �.

Remark 3.1 We recall some notations and properties of 1-quasi-hereditary algebras from
[11] and [12]: Let Q be the quiver of A and I be the corresponding ideal of K Q generated by
the relations of A. The structure of Q (see Subsection 1.3.2) shows that for all j, i, k ∈ � with
i ∈ �( j)∩�(k) there exists a path ( j → λ1 → · · · → λm → i) with j � λ1 � · · · � λm � i
and a path (i → μ1 → · · · → μr → k) with i � μ1 � · · · � μm � k. We write p↑( j, i)
resp. p↓(i, k) for the residue class A of a such path. If i 
= j then a path of the form p↑( j, i)
runs strictly increasing from j to i and p↓(i, j) runs strictly decreasing from i to j (the
arrows ↓ and ↑ in the notations accent the shape of these paths). The concatenation of these
two paths is denoted by p( j, i, k) = p↓(i, k) · p↑( j, i). For any i ∈ �( j) ∩ �(k) we fix a
path of the form p↑( j, i) and p↓(i, k). Note that for i = k we have p( j, i, k) = p↑( j, i),
and for j = i we have p( j, i, k) = p↓(i, k). By f

↑
( j,i), f

↓
(i,k) and f( j,i,k) we denote the A-maps

corresponding to p↑( j, i), p↓(i, k) and p( j, i, k) respectively. In particular, the map f
↑
( j,i) is

injective (see [11, 3.1(a)]).

f( j,i,k) = f
↑
( j,i) ◦ f

↓
(i,k) :

(
P(k)

f
↓
(i,k)−→ P(i)

f
↑
( j,i)
↪→ P( j)

)
; ek �→ p( j, i, k)= p↓(i, k) · p↑( j, i).

Remark 3.2 According to [11, Theorem 3.2], the set
{

p( j, i, k) | i ∈ �( j) ∩�(k)
}

is a K -
basis of the K -subspace P( j)k of P( j), thus for all j, k ∈ � we have

(1)
{
f( j,i,k) | i ∈ �( j) ∩�(k)

}
is a K -basis of HomA(P(k), P( j)).

(2)
⋃̇

k∈�

{
f(1,i,k) | i ∈ �(k)

}
is a K -basis of the B-module B P(1) ∼=

⊕

k∈�

HomA(P(k), P(1)).

The proof of of Theorem A 1.2.6 (i) ⇒ (i i) is based on the following properties of
B-modules generated by the maps f(1,i,k).

Lemma 3.3 Let i ∈ �. The following statements hold.

(1) B ◦ f(1,i,k) = spanK

{
f(1,t,k) | t ∈ �(i)

}
where k ∈ �(i).

(2) B ◦ f
↑
(1,i)

∼= B ◦ f(1,i,1).

(3) B ◦ f(1,i,1) = f(1,i,1) ◦ B = spanK

{
f(1,t,1) | t ∈ �(i)

}
.
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Proof (1) We have F ◦ f
↑
(1,i) ∈ HomA(P(i), P(1))

2.1.2(1)∈ spanK

{
f(1,t,i) | t ∈ �(i)

}
for

any F ∈ B. Thus F ◦ f
↑
(1,i) =

∑
t∈�(i) ct · f(1,t,i) for some ct ∈ K . Since p(1, t, k) =

p↓(i, k) · p(1, t, i), this implies f(1,t,k) = f(1,t,i) ◦ f
↓
(i,k) (we may visualise the situation as in

the following picture).
Thus we obtain B ◦ f(1,i,k) ⊆ spanK

{
f(1,t,k) | t ∈ �(i)

}
because

F ◦ f(1,i,k) = F ◦
(
f
↑
(1,i) ◦ f

↓
(i,k)

)
=

∑

t∈�(i)

ct ·
(
f(1,t,i) ◦ f

↓
(i,k)

)

=
∑

t∈�(i)

ct · f(1,t,k) ∈ spanK

{
f(1,t,k) | t ∈ �(i)

}

p(1, t, i)

p(1, t, k)

p↑(1, i)

p↓(i, k)

n

1

t

i

k

Since f
↑
(1,i) : P(i) ↪→ P(1) ∼= I (1), the universal property of injective modules implies

that for any t ∈ �(i) there exists F(t) ∈ B such that F(t) ◦ f
↑
(1,i) = f(1,t,i). Let k ∈ �(i), then

f
↑
(1,i) ◦ f

↓
(i,k) = f(1,i,k) provides the commutative diagram

f(1,t,k) : P(k)
f
↓
(i,k)−→ P(i)

f(1,t,i)−→ P(1)

|| ↓ f
↑
(1,i) ||

F(t) ◦ f(1,i,k) : P(k)
f(1,i,k)−→ P(1)

F(t)−→ P(1)

F(t) ◦ f(1,i,k) = f(1,t,i) ◦ f
↓
(i,k) = f(1,t,k) for any t ∈ �(i) implies B ◦ f(1,i,k) ⊇ spanK{

f(1,t,k) | t ∈ �(i)
}
.

(2) We consider the map
(
− ◦ f

↓
(i,1)

)
: B ◦ f

↑
(1,i) → B ◦ f(1,i,1), F ◦ f

↑
(1,i) �→ F ◦ f(1,i,1).

Obviously, this map is a surjective B-map. The set
{
f(1,t,k) | t ∈ �(i)

}
(as a subset of a K -

basis) is K -independent for any k ∈ �(i) (see 3.2(1)). Thus for k = 1 and k = i we have

dimK

(
B ◦ f

↑
(1,i)

)
(1)= dimK

(
B ◦ f(1,i,1)

) = ∣∣�(i)
∣∣. This implies B ◦ f

↑
(1,i)

∼= B ◦ f(1,i,1).

(3) Since B ◦ f(1,i,1)
(1)= spanK

{
f(1,t,1) | t ∈ �(i)

}
, it is enough to show f(1,i,1) ◦ B =

spanK

{
f(1,t,1) | t ∈ �(i)

}
: We have f

↓
(i,1) ◦ F ∈ HomA (P(1), P(i))

2.1.2= spanK

{
f(i,t,1) | t ∈

�(i)
}

for all F ∈ B. With similar arguments as in the proof of (1) we obtain f(1,t,1) =
f
↑
(1,i) ◦ f(i,t,1). This yields f(1,i,1) ◦ F = f

↑
(1,i) ◦

(
f
↓
(i,1) ◦ F

)
∈ spanK

{
f
↑
(1,i) ◦ f(i,t,1) |

t ∈ �(i)
} = spanK

{
f(1,t,1) | t ∈ �(i)

}
for every F ∈ B. We obtain f(1,i,1) ◦ B ⊆

spanK

{
f(1,t,1) | t ∈ �(i)

}
.
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The A-module A · p(1, t, 1) is a submodule of A · p(1, i, 1) for any t ∈ �(i) (see [12, 2.2
(a)]). There exists p(t) ∈ P(1)1 with p(1, t, 1) = p(t) · p(1, i, 1). Let F(t) ∈ B be given by
F(t)(e1) = p(t), then f(1,t,1) = f(1,i,1) ◦ F(t). Thus f(1,i,1) ◦ B ⊇ spanK

{
f(1,t,1) | t ∈ �(i)

}
.
��

For the implication (i)⇒ (i i) in Theorem A we have to show that the pair (B,
⊕

i∈� G (i))

satisfies the property � , where G (i) = HomA(P(i), P(1)). We have to show

1. The algebra B is local, self-injective, and dimK B = |�|.
2. G ( j) � G (i) if and only if j � i , and B B ∈ {G (i) | i ∈ �}.
3. G (i) = B ◦ f

↑
(1,i) for any i ∈ �.

4. rad
(
B ◦ f(1,i,1)

) =
∑

i<t

(
B ◦ f(1,t,1)

)
for any i ∈ �.

Recall that an (left) ideal I of an (basic local) algebra B is local if and only if it is generated by
some non-zero element in B. Moreover, dimK (rad I ) = dimK (I )− 1. According to Lemma
3.3 (2) and (3) the statement G (i) = B ◦ f

↑
(1,i) implies that G (i) ∼= B ◦ f(1,i,1) = f(1,i,1) ◦ B

is a two-sided local ideal of B.

Proof 1. The algebra B = EndA(P(1))op is local, since P(1) is indecomposable. According
to Remark 3.2(1) for j = k = 1 we have dimK B = |�|. It is enough to show that soc(B B)

is simple: Since P(1) ∼= I (1) there exists S ∈ B with im(S) = soc P(1) ∼= S(1). For any
non-invertible h ∈ B we have soc P(1) ⊆ ker(h). Since h ◦ S = 0 for all non-invertible
h ∈ B, the submodule B ◦ S of B B is simple.

Let f ∈ B\ {0} and f̃ ∈ HomA(P(1), im( f )) with f̃ (p) = f (p) for all p ∈ P(1).
Since top(im f ) ∼= S(1), there exist a surjective A-map g̃ : im( f ) � S(1). The A-module
P(1) ∼= I (1) is an injective envelope of P(1), im( f ) and S(1), because the socles of these
modules are S(1). Thus there exist g ∈ B and inclusions ι1, ι2 such that the diagram

g̃ ◦ f̃ : P(1)
f̃

� im( f )
g̃
� S(1)

|| ↓ ι1 ↓ ι2

g ◦ f : P(1)
f−→ P(1)

g−→ P(1)

is commutative. The map ι2 ◦ g̃ ◦ f̃ = g ◦ f is a scalar multiple of the map S. This implies
B ◦ S ⊆ B ◦ f . Thus B ◦ S is a submodule of any non-zero submodule of B B. Therefore
B ◦ S is the socle of B B.

2. Since the map f
↑
( j,i) : P(i)→ P( j) is an inclusion and P(1) ∼= I (1), the contravariant

functor HomA(−, P(1)) : mod A → mod B is exact. Therefore f
↑
( j,i) induces a surjective B-

map HomA(P( j), P(1))︸ ︷︷ ︸
G ( j)

� HomA(P(i), P(1))︸ ︷︷ ︸
G (i)

with g �→ g ◦ f
↑
( j,i). We have P(i) ↪→ P( j)

if and only if i ∈ �( j) (see [11, 2.2]). Thus G ( j) � G (i) if and only if j � i . Moreover,
B B = G (1) ∈ {G (i) | i ∈ �}.

3. The surjection G (1) � G (i), f �→ f ◦ f
↑
(1,i) provides G (i) = B ◦ f

↑
(1,i) for any i ∈ �.

4. The B-module B ◦ f(1,i,1) is local and B ◦ f(1,t,1) ⊂ B ◦ f(1,i,1) for all t ∈
�(i)\ {i} = {t ∈ � | i < t} (see Lemma 3.3 (1)). This implies

∑
i<t

(
B ◦ f(1,t,1)

) ⊆
rad

(
B ◦ f(1,i,1)

)
. Since the set

{
f(1,t,1) | i < t

}
is linearly independent and

{
f(1,t,1) | i < t

} ⊆∑
i<t

(
B ◦ f(1,t,1)

)
, we have dimK

(∑
i<t

(
B ◦ f(1,t,1)

)) ≥ ∣∣�(i)
∣∣−1 = dimK

(
B ◦ f(1,i,1)

)−
1 = dimK rad

(
B ◦ f(1,i,1)

)
. We obtain

∑
i<t

(
B ◦ f(1,t,1)

) = rad
(
B ◦ f(1,i,1)

)
for all i ∈ �.

��
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Moreover, there is the following explicit expression of the B-module P(1):

Proposition 3.4 For a 1-quasi-hereditary algebra (A, �) with {1} = min (Q0(A), �) and
B = EndA(P(1))op we have B P(1) ∼=⊕

i∈� B ◦ f(1,i,1), where f(1,i,1) is the endomorphism
of P(1) as described in Remark 3.1.

3.2 Proof of the Theorem A (i i)⇒ (i)

In this subsection let B be a local, self-injective K -algebra with dimK B = n. Let the set (� =
{1, . . . , n} , �) be partially ordered. For any i ∈ � let L(i) be a two-sided local ideal of B
with L(1) = B. Moreover, let L( j) � L(i) if and only if j � i , and rad L( j) =∑

j<i L(i).

In other words B and L := ⊕
i∈� L(i) satisfy the condition � (see Definition 2.5). The

letter L is used to accent the property ”local” of a generator–cogenerator L of mod B.
Recall that L(i) = B · xi for some xi ∈ B\ {0} and L(i) = spanK

{
xi ∪̇ rad L(i)

}
for

any i ∈ �. Moreover, for a submodule N of B, any B-map g : L(i) → N is induced by

right multiplication by an element b ∈ B (in this case we write L(i)
·b→ N ). The element

g(xi ) = xi · b generates im(g) = B · g(x). In particular, we have HomB(L(i), B) ={
L(i)

·b→ B | b ∈ B
}

. The annihilator of L(i) is Ann(L(i)) := {b ∈ B | b · L(i) = 0}.
The proof of Theorem A 1.2.6 (i i)⇒ (i) is based on some properties of the B-module L

which we consider in the next Lemma.

Lemma 3.5 Then for all i, j, k ∈ � the following properties are satisfied:

(1) There exists a uniquely determined minimal element and a unique determined maximal
element in (�, �) (without loss of generality, 1 is the minimal and n = |�| is the maximal
element).

(2) Let x j ∈ B be a generator of L( j) and W ( j) := {
xi | i ∈ �( j)

}
. Then we have:

(2.1) The set W ( j) is a K -basis of L( j). In particular, for any subset � ⊆ � the set⋃
j∈�

W ( j) is a K -basis of
∑

j∈�
L( j), and

⋂
j∈�

W ( j) is a K -basis of
⋂

j∈�
L( j).

(2.2) L( j) = B · x j = x j · B.

(3) Let N be a submodule of B, then im(g) ⊆ L( j) ∩ N for all g ∈ HomB(L( j), N ).
(4) We have L(i) ↪→ L( j) resp. L( j) � L(i) if and only if i ∈ �( j). Moreover,

(4.1) im (L(i) ↪→ L( j)) = L(i) for any injective B-map from L(i) to L( j),
(4.2) ker (L( j) � L(i)) = Ann(L(i)) · L( j) for any surjective B-map from L( j) to L(i).

(5) For i ∈ �( j) ∩ �(k) let g(i ↪→k) : L(i) ↪→ L(k) be an injective, g( j�i) : L( j) � L(i)

a surjective B-map and g(k,i, j) := g(i ↪→k) ◦ g( j�i) :
(

L( j)
g( j�i)
� L(i)

g(i ↪→k)

↪→ L(k)

)
.

Then

(5.1) B( j, k) := {
g(k,i, j) | i ∈ �( j) ∩�(k)

}
is a K -basis of HomB(L( j), L(k)),

(5.2) every map g ∈ HomB(L( j), L(k)) factors through
⊕

i∈�( j)∩�(k) L(i).

Proof (1) Since B(= L(1)) is a projective cover of any local B-module, we have
L(1) � L(i). The condition ”L( j) � L(i) if and only if j � i” implies 1 � i for all i ∈ �.
Let n ∈ � be maximal, then the condition rad L(n) = ∑

n<i L(i) yields rad L(n) = 0.
The local submodule L(n) of B is simple. Thus L(n) = soc(B), because the socle of a local
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self-injective algebra is simple, and L(n) belongs to any non-zero submodule of B. Therefore
L(n) ⊆ L( j) for every j ∈ �. Since L(n) ∼= L( j) if k = j , we have L(n) ⊆ rad L( j) for
all j ∈ � with j 
= n. The condition rad L( j) =∑

j<i L(i) implies j � n for all j ∈ �.
(2.1) This is proved by induction on dimK (L( j)): If dimK (L( j)) = 1, then L( j) is simple,

thus j = n and W (n) = {xn} is a K -basis of L(n) = soc B. Let j ∈ � with dimK (L( j)) =
m + 1, then for any i ∈ �( j)\ { j} = {i ∈ � | j < i} we have L(i) ⊆ rad L( j). This implies
dimK L(i) ≤ dimK (rad L( j)) = m. The induction assumption implies L(i) = spanK W (i).
Thus rad L( j) = ∑

j<i L(i) is spanned by
⋃

j<i W (i) = {xi | j < i} and consequently

W ( j) = {
x j

} ∪ ⋃
j<i W (i) spans the K -space L( j). Since W (1) = {x1, . . . , xn} spans

B = L(1) and dimK B = n, the set W (1) is a K -basis of B. Consequently, the subset W ( j)
of W (1) is linearly independent.

Let � ⊆ �. The subsets
⋃

j∈� W ( j) = {
xk | k ∈ �(i), for some i ∈ �

}
and

⋂
j∈� W ( j)

=
{

xk | k ∈⋂
j∈� �( j)

}
of W (1) generate

∑
j∈� L( j) and

⋂
j∈� L( j) as K -spaces, respec-

tively.

(2.2) Since L( j) � L(i), there exists bi ∈ B with L( j)
·bi� L(i) and xi = x j · bi for

any i ∈ �( j). Let y ∈ L( j) = B · x j , then y
(2.1)= ∑

i∈�( j) ci · xi = ∑
i∈�( j) ci · x j · bi =

x j ·
(∑

i∈�( j) ci · bi
)

(here ci ∈ K ). We obtain B ·x j ⊆ x j ·B. Since L( j) is a two-sided ideal,
we have B · x j · B ⊆ B · x j , thus x j · B ⊆ B · x j and consequently L( j) = B · x j = x j · B.

(3) For g ∈ HomB(L( j), N ) there exists some b ∈ B with g : L( j)
·b→ N . Let x j be a

generator of L( j), then g(x j ) = x j · b = b̃ · x j for some b̃ ∈ B by (2.2). Thus g(x j ) ∈ L( j)
and consequently im(g) ⊆ L( j) ∩ N .

(4.1) Let N be a submodule of L(k) with N ∼= L(i) and g ∈ HomB(L(i), N ) be an
isomorphism, then g(L(i)) = N ⊆ L(i) ∩ N (see (3)). We obtain g(L(i)) = L(i) = N .

(4.2) Let πi : L( j) � L(i) be a surjection and x j a generator of L( j). Then xi := πi (x j )

generates L(i). Let x ∈ L( j), then x = b · x j for some b ∈ B. Obviously, x ∈ ker (πi ) if

and only if πi (x) = b · xi = 0 and this holds if and only if b · xi · B
(2.2)= b · L(i) = 0. We

obtain ker(πi ) =
{
b · x j ∈ L( j) | b ∈ Ann(L(i))

} = Ann(L(i)) · L( j).
(5.1) Let x j be a generator of L( j). Then xi := g(k,i, j)(x j ) generates the submodule

L(i) of L( j) ∩ L(k). The set
{

xi | i ∈ �( j) ∩�(k)
} (2.1)= W ( j) ∩ W (k) is a K -basis of

L( j) ∩ L(k). Let g ∈ HomB(L( j), L(k)), then im(g) ⊆ L( j) ∩ L(k) (see (3)). Thus
g(x j ) =∑

i∈�( j)∩�(k) ci · xi and consequently g =∑
i∈�( j)∩�(k) ci · g(k,i, j).

(5.2) Let h1, h2 be the B-maps given by h1 :
(

L( j) −→ ⊕
i∈�( j)∩�(k) L(i)

x j �→ (
g( j�i)(x j )

)
i∈�( j)∩�(k)

)
and

h2 :
(⊕

i∈�( j)∩�(k) L(i) −→ L(k)

(yi )i∈�( j)∩�(k) �→ ∑
i∈�( j)∩�(k) ci · g(i ↪→ j)(yi )

)
. We have g = h2 ◦ h1. Thus g

factors through
⊕

i∈�( j)∩�(k) L(i). ��

Remark 3.6 Let the pair (B, L) be as above. We denote by B the algebra Bop and by L(i)
the B-module D(L(i)), where D : mod B → mod B is the standard duality functor. Since
top L(i) and soc L(i) are simple, we obtain that socL(i) and topL(i) are simple. In particular,
B is a local, self-injective algebra ince as a module B = L(1), and dimK B = dimK B = n.
For any i ∈ � the module L(i) can by considered as a local (left) ideal of B.

We denote by g( j,i,k) the B-map D (
g(k,i, j)

) : L(k) → L( j) for all i, j, k ∈ � with
i ∈ �( j) ∩ �(k), where g(k,i, j) is the B-map described in 3.5(5). As D is duality, we have
g(k�i) = D(g(i ↪→k)) and g(i ↪→ j) = D(g( j�i)) as well as
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D
(

g(k,i, j) : L( j)
g( j�i)
� L(i)

g(i ↪→k)

↪→ L(k)

)
= g( j,i,k) : L(k)

g(k�i)
� L(i)

g(i ↪→ j)
↪→ L( j).

Proposition 3.7 A pair (B, L) satisfies the condition � if and only if (Bop, D(L)) satisfies

the condition � .

Proof Any two injections ι1, ι2 : L(i) ↪→ L( j) are induced by some surjections π1, π2 :
L( j) � L(i). Since ker(π1)

2.2.1(4)= ker(π2), we obtain im(ι1) = im(ι2) = L(i) for all
i ∈ �( j).

Let 1 := 1B , then yi := g( j,i,1)(1) is a generator of the submodule L(i) of L( j) for any
i ∈ �( j). The set

{
g( j,i,1) | i ∈ �( j)

}
is a K -basis of HomB(L(1),L( j)) (see Lemma 3.5(5)).

Thus W( j) := {
yi | i ∈ �( j)

}
is a K -basis of L( j), since dimK L( j) = dimK L( j)

2.2.1(2)=
|W( j)|.

Now we show L(k) = B · yk = yk · B. Let g(k�i) : L(k)
·bi� L(i) such that yi = yk · bi

for any i ∈ �(k). Let y ∈ B · yk , then y =∑
i∈�(k) ci · yi = yk ·

(∑
i∈�(k) ci · bi

) ∈ yk · B,
thus B · yk ⊆ yk · B. On the other hand, if y ∈ yk · B, then y = yk · b for some b ∈ B. Let

g ∈ HomB (L(k),L(1)) = spanK

{
g(1,i,k) | i ∈ �(k)

}
be given by g : L(k)

·b→ L(1) = B,
then y ∈ im(g). Since im

(
g(1,i,k)

) = L(i) ⊆ L(k), we have im(g) ⊆ L(k). Thus y ∈
L(k) = B · yk . Therefore B · yk ⊇ yk · B. This implies that L(k) is a two-sided local ideal of
B for any k ∈ �.

If i 
= j , then L(i) 
= L( j), thus L(i) ⊆ rad(L( j)) for any i ∈ �( j)\ { j}. Conse-
quently,

∑
j<i L(i) ⊆ rad(L( j)). The set

⋃
j<i W(i) = {

yi | i ∈ �( j)\ { j}} is a K -basis

of
∑

j<i L(i), since W(i) is a K -basis of L(i). Thus dimK

(∑
j<i L(i)

)
= ∣∣�( j)\ { j}∣∣ =

∣∣�( j)
∣∣− 1 = dimK L( j)− 1 = dimK (rad L( j)) and we obtain

∑
j<i L(i) = rad(L( j)) for

all j ∈ �. ��
Furthermore, we consider the algebra A := EndB(L)op ∼= EndB (L). Because L is

multiplicity-free and has n direct summands, A is basic and the quiver Q(A) has n vertices. We
identify these with the elements in �. The evaluation functor HomB(L,−) : mod B→ mod A
provides an isomorphism HomB(L(i),L( j)) ∼= HomA(P(i), P( j)) (see [1, Proposition
2.1]). Moreover, because HomB(L,−) is left exact, an injective B-map L(i) ↪→ L( j) induces
an injective A-map P(i) ↪→ P( j).

The properties described in Lemma 3.5 are also satisfied for theB-idealsL(i) (see Proposi-
tion 3.7). Since im (L(i) ↪→ L( j)) = L(i) for any injective B-map (see 3.5(4)), a submodule
of P( j) isomorphic to P(i) is uniquely determined for any i ∈ �( j). We consider

∑
i∈� P(i)

as a submodule of P( j) for any subset � of �( j).

Remark-Notations 3.8 By f
↑
( j,i) and f

↓
(i,k) we denote the A-maps induced by B-maps g(i ↪→ j)

and g(k�i) respectively (described in 3.6). And the A-map f( j,i,k) is induced by g( j,i,k) ∈
HomB(L(k),L( j)). Since g( j,i,k) = g(i ↪→ j) ◦ g(k�i) and g(i ↪→ j) is injective, we obtain

f( j,i,k) = f
↑
( j,i) ◦ f

↓
(i,k) :

(
P(k)

f
↓
(i,k)−→ P(i)

f
↑
( j,i)
↪→ P( j)

)
.

Obviously, im
(
f( j,i,k)

)
belongs to the submodule P(i) of P( j). For any f ∈ HomA(P(k),

P( j)) we have im( f ) ⊆ ∑
i∈�( j)∩�(k) im

(
f( j,i,k)

) ⊆ ∑
i∈�( j)∩�(k) P(i). In particular, if

k 
� j we have im( f ) ⊆∑
j<i P(i) for all f ∈ HomA(P(k), P( j)).
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Recall that for any A-module M the K -subspaces Mk = { f (ek) | f ∈ HomA(P(k), M)}
of M yield a direct decomposition M =⊕

k∈� Mk as a vector space.

Lemma 3.9 Let i, j, k ∈ � with i ∈ �( j)∩�(k). Let p( j, i, k) := f( j,i,k)(ek) and B j (i, k) :={
p( j, t, k) | t ∈ �(i) ∩�(k)

}
. For any subset � of �( j) the following hold:

(1) B j (�, k) :=⋃
i∈� B j (i, k) is a K -basis of the subspace

(∑
i∈� P(i)

)
k of P( j)k .

(2) B j (�) :=⋃
k∈� B j (�, k) is a K -basis of the submodule

∑
i∈� P(i) of P( j).

Proof (1) Note that B j ({i}, k) = B j (�
(i), k). According to Lemma 3.5(5) the set{

f( j,i,k) | i ∈ �( j) ∩�(k)
}

is a K -basis of HomA(P(k), P( j)) for each j, k ∈ �. Since
the K -map HomA(P(k), P( j)) → P( j)k with f �→ f (ek) is an isomorphism, the set
B j ({ j}, k) = {

f( j,i,k)(ek) = p( j, i, k) | i ∈ �( j) ∩�(k)
}

is a K -basis of P( j)k . By apply-

ing HomA(P(k),−) to f
↑
( j,i) : P(i) ↪→ P( j), ei �→ f

↑
( j,i)(ei ), we obtain

HomA(P(k), P(i)) ↪→ HomA(P(k), P( j)) with f(i,t,k) �→ f
↑
( j,i) ◦ f(i,t,k) = f( j,t,k)

or, equivalently, P(i)k ↪→ P( j)k with p(i, t, k) �→ p( j, t, k). This injection maps Bi ({i}, k)

to B j ({i}, k). Thus B j ({i}, k) is a K -basis of the subspace P(i)k of P( j)k .
Obviously, B j (�, k) = {

p( j, t, k) | t ∈⋃
i∈�

(
�(i) ∩�(k)

)}
. Since �(i)∩�(k) ⊆ �( j)∩

�(k) for all i ∈ �, we have B j (�, k) ⊆ B j ({ j}, k). Thus B j (�, k) is linearly independent
and the subspace

(∑
i∈� P(i)

)
k of P( j)k is spanned by B j (�, k).

(2) The union
⋃

k∈� B j (�, k) is disjoint, thus B j (�) is a K -basis of
∑

i∈� P(i). ��
The poset (�, �) has a uniquely determined minimal element and a uniquely determined

maximal element (see 3.5(1)). In order to prove that (A, �) is a 1-quasi-hereditary algebra
(see Definition 2.2) we have to show that for all j ∈ � the following holds:

1. [
( j) : S(k)] = 1 for all k ∈ �( j),

2. P( j) has a 
-good filtration with (P( j) : 
(i)) =
{

1 if i ∈ �( j),

0 else,
3. soc P( j) ∼= top I ( j) ∼= S(1),
4. 
( j) ↪→ 
(n) and ∇(n) � ∇( j).

Proof 1. The definition of the standard modules provides
( j) = P( j)/N ( j), where N ( j) =
∑

k 
� j
∑

f∈HomA(P(k),P( j)) im(f)
2.2.4⊆ ∑

j<i P(i). Since P(i) = im
(
f
↑
( j,i)

)
⊆ N ( j) for any

j < i , we obtain N ( j) ⊇∑
j<i P(i), thus 
( j) = P( j)/

(∑
j<i P(i)

)
.

Lemma 3.9(1) yields P( j)k = spanK B j
(
�( j), k

)
and

(∑
j<i P(i)

)

k
= spanK B j (�

( j)\
{ j} , k). By assumption k ∈ �( j) (i.e., �( j) ∩ �(k) = �( j)), hence we obtain∣∣B j (�

( j), k)
∣∣ = ∣∣B j (�

( j)\ { j} , k)
∣∣ + 1. Thus [
( j) : S(k)] = dimK 
( j)k =

dimK

(
P( j)k/

(∑
j<i P(i)

)

k

)
= 1.

2. Let i ∈ L( j) := {
(i1, i2, . . . , ir ) | im ∈ �( j), il 
� it , 1 ≤ l < t ≤ r := ∣∣�( j)

∣∣} (see
[11, 4.2]). Obviously, P(it ) ⊆ P( j) = P(i1) for all 1 ≤ t ≤ r . Denote by D(i) the filtration
0 = D(r + 1) ⊂ D(r) ⊂ · · · ⊂ D(t) ⊂ · · · ⊂ D(1) with D(t) :=∑r

m=t P(im). It is easy to
check that B j

(
�(it )\ {it }

) = B j ({it })∩B j ({it+1, . . . , ir }) for all 1 ≤ t ≤ r−1. This implies∑
it <k P(k) = P(it ) ∩

(∑r
m=t+1 P(im)

)
(see 3.9(2)) and consequently D(t)/D(t + 1) ∼=

P(it )/
(∑

it <k P(k)
) ∼= 
(it ) for all 1 ≤ t ≤ r . The filtration D(i) of P( j) is 
-good.

Since {i1, i2, . . . , ir } = �( j) and l 
= t implies il 
= it , we obtain (P( j) : 
(i)) = 1 for any
i ∈ �( j) and (P( j) : 
(i)) = 0 if i ∈ �\�( j).
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3. Since P(i) ↪→ P(1) for all i ∈ �, it is enough to show that soc P(1) ∼= S(1). We
consider the map f(1,n,1) : P(1) → P(1) induced by g(1,n,1) : L(1) � L(n) ↪→ L(1),
here L(n) = socL(1) since n is maximal. We show that im

(
f(1,n,1)

) ⊆ im (f) for all f ∈
HomA(P(i), P(1))\ {0} and all i ∈ � (this implies that im

(
f(1,n,1)

)
is contained in every

local submodule of P(1) and therefore in every non-zero submodule of P(1)): Let f be induced
by g ∈ HomB (L(i),L(1)), then g 
= 0 and consequently L(n) ⊆ im (g). There exists some
x ∈ L(i) with g(x) = bn , where bn is a generator of L(n). Let h ∈ HomA(P(1), P(i))

be induced by h : L(1)
·x→ L(i). We have g ◦ h = g(1,n,1). This implies f ◦ h = f(1,n,1)

and consequently im
(
f(1,n,1)

) ⊆ im (f). Thus im
(
f(1,n,1)

)
is the uniquely determined simple

submodule of P(1). Since top
(
im

(
f(1,n,1)

)) ∼= S(1), we have im
(
f(1,n,1)

) ∼= S(1).
According to 3.7 for the algebra Aop ∼= EndB(L) ∼= EndBop (D(L)) we have soc PAop (i) ∼=

SAop (1), thus top I (i) ∼= S(1) holds for all i ∈ �.
4. Let f

↓
(n, j) : P( j)→ P(n) be the A-map induced by the B-map g( j�n) : L( j) � L(n).

It is enough to show
∑

j<i P(i) = ker
(
f
↓
(n, j)

)
, because this implies P( j)/

(∑
j<i P(i)

)
1=


( j) ↪→ P(n) = 
(n) for any j ∈ �: Let i ∈ �( j)\ { j}, then the functor HomB(L,−) maps

a B-map g :
(
L(i)

g(i ↪→ j)
↪→ L( j)

g( j�n)

� L(n)

)
to the A-map f :

(
P(i)

f
↑
( j,i)
↪→ P( j)

f
↓
(n, j)→ P(n)

)
.

Since L(n) = socB is simple, we have ker
(
g( j�n)

) = rad L( j). Because j < i , we have
L(i) ⊆ rad L( j). Hence g and therefore f are zero-maps. Consequently, the submodule P(i)

of P( j) belongs to ker
(
f
↓
(n, j)

)
for any j < i . We obtain

∑
j<i P(i) ⊆ ker

(
f
↓
(n, j)

)
.

Because 
( j) = P( j)/
(∑

j<i P(i)
)

, there exists a submodule U of 
( j) such that

P( j)/
(

ker f
↓
(n, j)

) ∼= 
( j)/U . For the K -subspace im
(
f
↓
(n, j)

)

k
of im

(
f
↓
(n, j)

)
we have

dimK

(
im f

↓
(n, j)

)

k
= dimK

(
P( j)/ ker f

↓
(n, j)

)

k
= dimK (
( j)/U )k ≤ dimK (
( j))k .

Let k ∈ �( j), then the B-map g :
(
L(k)

g(k� j)
� L( j)

g( j�n)

� L(n)

)
is non-zero. Thus

the induced A-map f :
(

P(k)
f
↓
( j,k)−→ P( j)

f
↓
(n, j)−→ P(n)

)
is non-zero. Hence 0 
= f(ek) ∈

(
im f

↓
(n, j)

)

k
, thus dimK

(
im f

↓
(n, j)

)

k

= 0 and consequently for all k ∈ � we have

dimK

(
im f

↓
(n, j)

)

k
= dimK (
( j))k

1=
{

1 if k ∈ �( j),

0 else
. We obtain U = 0 and therefore

∑
j<i P(i) = ker

(
f
↓
(n, j)

)
.

Proposition 3.7 implies that the functor HomB(L ,−) : mod B → mod Aop yields an
inclusion 
Aop ( j) ↪→ 
Aop (n). By applying the duality we get a surjection ∇(n) � ∇( j)
for each j ∈ �.

This finishes the proof of Theorem A 1.2.6. ��
The features of the B-module L = ⊕

i∈� L(i), for a pair (B, L) with � , imply some

properties for the quiver and relations of the 1-quasi-hereditary algebra A = EndB(L)op .

Remark-Notations 3.10 For every i ∈ � we fix a generator xi ∈ B of the direct summand
L(i) of L and x1 = 1 := 1B , here {1} = min (�, �). For all i, j ∈ � with j < i there exists
bi j ∈ B with x j · bi j = xi , because xi ∈ L(i) ⊂ L( j) = B · x j = x j · B (see 3.5(2)). We
define an injective and a surjective B-map between L(i) and L( j) by
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g(i ↪→ j) : L(i)
·1
↪→ L( j) and g( j�i) : L( j)

·bi j
� L(i)

Note that for an inclusion g(i ↪→ j) described in Lemma 3.5(5) there exist c ∈ K\ {0} and
r ∈ rad L(i) ⊆ L( j) such that g(i ↪→ j)(xi ) = c ·xi+r . In other words g(i ↪→ j) = c ·g(i ↪→ j)+g

where g : L(i)
·r→ L( j) with xi · r = r . The maps g( j�i) and g( j�i) are related in a similar

way.
For any l, t ∈ � let X(L(l), L(t)) be the space of non-invertible maps g ∈

HomB (L(l), L(t)) with the property ” if g = g2 ◦ g1 factors through add L , then either
g1 is a split monomorphism or g2 is a split epimorphism”. The number of arrows from l to t
in the quiver of the algebra A is dimK X(L(l), L(t)) (see [1]).

According to 3.5 (5), any map g ∈ HomB (L(l), L(t)) factors through
⊕

i∈�(l)∩�(t) L(i).
If l and t are incomparable, then l, t 
∈ �(l) ∩ �(t), thus X(L(l), L(t)) = 0. Assume l < t

and g : L(l) → L(t). There exists b ∈ B with xt · b = g(xl), since L(t) = B · xt
2.2.1(2)=

xt · B and hence g :
(

L(l) � L(t)
·b→ L(t)

)
. If g is not surjective, then b is not invertible

and consequently g 
∈ X(L(l), L(t)). If g is surjective but l and t are not adjacent, then
g : L(l) � L( j) � L(t) for some j ∈ � with l < j < t and therefore g 
∈ X(L(l), L(t)).

Let l � t and h : L(l) � L(t) with h :
(

L(l) � L(t)
·b
� L(t)

)
, then L(t)

·b
� L(t) is a

split epimorphism if b = c · 1 for some c ∈ K\ {0}, in other words h = c · g(l�t). Using

analogous arguments also for j > t , we obtain X(L(l), L(t)) =
⎧
⎨

⎩

spanK

{
g(l↪→t)

}
if l � t,

spanK

{
g(t�l)

}
if l � t,

0 else.
(1) In the quiver of a 1-quasi-hereditary algebra A two vertices i and j are connected by an

arrow if they are neighbours with respect to �. More precisely, we have i � j . Assume j � i ,
then the B-maps g(i ↪→ j) and g( j�i) can by considered as the maps corresponding to the arrows

i → j and j → i respectively. In this case we use the notation L(i)
·1
�
·bi j

L( j). In general the

notation L(i)
·a
�
·b

L( j) means that i and j are neighbours and (a,b) =
{

(1, bi j ) if j � i,
(b j i ,1) if j � i.

We always have (xi · a, x j · b) =
{

(xi , xi ) if j � i,
(x j , x j ) if j � i.

(2) Let pt = (i, i (t)1 , . . . , i (t)mt , j) for 1 ≤ t ≤ r be some paths in Q(A) (obviously, i (t)k and

i (t)k+1 are neighbours). Then
∑r

t=1 ct · pt ∈ I(A) if and only if

r∑

t=1

ct ·
(

L(i)
·b(t)

0−→ L(i (t)1 )
·b(t)

1−→ · · · ·b
(t)
mt−1−→ L(i (t)mt

)
·b(t)

mt−→ L( j)

)
= 0,

here the maps L(i (t)k )
·b(t)

k−→ L(i (t)k+1) are of the form g(l↪→t) or g(t�l).

Lemma 3.11 Let A ∼= EndB (L)op ∼= K Q/I with (�, �) be a 1-quasi-hereditary algebra,
where

(
B, L =⊕

i∈� L(i)
)

satisfies the property � .

(1) If p and q are some paths in Q of the form p( j, i, k) (see Subsection 2.1), then p−q ∈ I.
In particular, p( j, i, k)op = p(k, i, j).

(2) Let � be the set of (larger) neighbours of 1, where {1} = min(�, �) and xi be some
generator of L(i) for any i ∈ �. Then the set {xi | i ∈ �} is a generating system of B. In
particular, B is a factor algebra of K 〈y1, . . . , ym〉, where m = |�|.
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Proof (1) Let j < i andv,w be some increasing paths from j to i . There exists i = i0�i1�· · ·�
im = j and i = j0 � j1 �· · ·� jr = j with v = (i, i1, . . . , im, j) and w = (i, j1, . . . , jr , j) as
well as vop = ( j, im, . . . , i1, i) and wop = ( j, jr , . . . , j1, i). For the corresponding B-maps
g(v) := g(im ↪→ j)◦· · ·◦g(i1↪→i2)◦g(i ↪→i1)

and g(w) := g( jr ↪→ j)◦· · ·◦g( j1↪→ j2)◦g(i ↪→ j1) as well
as g(vop) = g(i1�i) ◦ g(i2�i1)

◦ · · · ◦ g( j�im ) and g(wop) = g( j1�i) ◦ g( j2� j1) ◦ · · · ◦ g( j� jr )
we obtain g(v) − g(w) = 0 and g(vop) − g(wop) = 0.

For some i, j, k ∈ �with i � j, k let p and q be some paths in Q of the form p( j, i, k), then
p = v

op
1 ·v2 and q = w

op
1 ·w2 with some increasing paths v1, w1 from k to i and v2, w2 from

j to i . For the corresponding B-maps we have g(p) = g(v
op
1 ) ◦g(v2) and g(w) = g(w

op
1 ) ◦g(w2).

Since g(v2) = g(w2) and g(v
op
1 ) = g(w

op
1 ), we obtain g(p) = g(q). This implies p − q ∈ I.

(2) For any i ∈ � with i 
= 1 there exists j ∈ � with j � i . Thus L(i) ⊆ L( j) and

consequently rad B = ∑
i∈�\{1} L(i)

1.2.4(2)(b)= ∑
i∈� L(i). The set {xi | i ∈ �} generates

rad B. Since B is local, we obtain that B is a factor algebra of K
〈
y1, . . . , y|�|

〉
. ��

4 Proof of Theorem B

In this section let (�, �) be a poset, (B, L = ⊕
i∈� L(i)) is a pair with the property � ,

and let A ∼= EndB(L)op ∼= K Q/I be the corresponding 1-quasi-hereditary algebra.
Recall that two vertices in the quiver of A are connected by an arrow iff they are neighbours

with respect to �, and in this case there is a pair of arrows, i � j . For any path p in the
quiver of A there exists a uniquely determined path pop running through the same vertices
in the opposite direction.

For a relation ρ =∑r
t=1 ct · pt in I we can define ρop =∑r

t=1 ct · pop
t . Recall that A is

a BGG(�)-algebra if (−)op : A → A, p + I �→ pop + I is an anti-automorphism.
For the proof of Theorem B we have to show the equivalence of the following statements:

1. B is commutative, 2. A is a BGG(�)−algebra, 3. ρ ∈ Iif and only if ρop ∈ I
For every i ∈ � we fix a generator xi ∈ B of L(i) and x1 = 1 := 1B . For i, j ∈ � with

i � j or i � j we denote by L(i)
·a
�
·b

L( j) the B-maps described in 3.10(1). Note, if i � j , the

map L(i)
·a→ L( j) is surjective with xi · a = x j , and the map L( j)

·b→ L(i) is injective with
b = 1, because x j · b = x j . In particular, if i = 1 we have a = 1 · a = x j .

Lemma 4.1 The following statements are equivalent:

(i) B is commutative.

(ii) Let p = (i0, i1, . . . , im) be some path in Q and L(i0)
·a1
�
·b1

L(i1)
·a2
�
·b2

· · · ·am
�
·bm

L(im) be the

corresponding B-maps. Then xi0 · a1 · a2 · · ·am = xim · bm · · ·b2 · b1.
(iii) Statement (i i) holds for m = 4.

Proof (i) ⇒ (i i) We show this by induction on m: If m = 1, then for L(i0)
·a1
�
·b1

L(i1) we

have
(
xi0 · a1, xi1 · b1

) ∈
{ (

xi0 , xi0

)
,
(
xi1 , xi1

) }
(see 3.10(1)), thus xi0 · a1 = xi1 · b1.

Assume xi0 · a1 · a2 · · ·am−1 = xim−1 · bm−1 · · ·b2 · b1, then by multiplication with am we
obtain

xi0 · a1 · a2 · · ·am−1 · am = xim−1 · am · bm−1 · · ·b2 · b1, (�)
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because B is commutative. If im−1 � im , then am = 1 and xim−1 = xim · bm . The equation
(�) yields xi0 · a1 · a2 · · ·am−1 · am = xim · bm · bm−1 · · ·b2 · b1. If im−1 � im , we obtain
xim−1 · am = xim and bm = 1, thus the equation (�) is xi0 · a1 · a2 · · ·am−1 · am =
xim · bm · bm−1 · · ·b2 · b1.

(i i)⇒ (i i i) This is trivial.

(i i i) ⇒ (i) Let i, j ∈ {l ∈ � | 1 � l} and L(1)
·a1
�
·b1

L(i)
·a2
�
·b2

L(1)
·a3
�
·b3

L( j)
·a4
�
·b4

L(1). Since

1 � i � 1 � j � 1, we have (a1,b1) = (xi ,1), (a2,b2) = (1, xi ), (a3,b3) = (x j ,1), and
(a4,b4) = (1, x j ). By the assumption, we have x1 · a1 · a2 · a3 · a4 = x1 · b4 · b3 · b2 · b1,
in other words, 1 · xi ·1 · x j ·1 = 1 · x j ·1 · xi ·1. This implies xi · x j = x j · xi . The algebra
B is commutative, because {xk | 1 � k} is a generating system of B (see Lemma 3.11(2)).

��

Proof 1⇒3 Let ρ = ∑r
t=1 ct ·

(
i (t)0 , i (t)1 , . . . , i (t)mt

)
be a relation with i = i (t)0 , j =

i (t)mt , and L(i (t)v−1)
·a(t)

v

�
·b(t)

v

L(i (t)v ) the corresponding B-map for 1 ≤ t ≤ r . We obtain

∑r
t=1 ct ·

(
L(i)

·a(t)
1→ L(i (t)1 )

·a(t)
2→ · · · ·a

(t)
mt→ L( j)

)
= 0 (see 3.10(2)). Hence,

∑r
t=1 ct ·

(
xi · a(t)

1 · · ·a(t)
mt

)
= 0. We have

∑r
t=1 ct ·

(
x j · b(t)

mt · · ·b(t)
1

)
3.1= 0. This implies ρop =

∑r
t=1 ct ·

(
i (t)mt , · · · , i (t)1 , i (t)0

)
∈ I, because

∑r
t=1 ct ·

(
L( j)

·b(t)
mt−→ · · · ·b

(t)
2−→ L(i (t)1 )

·b(t)
1−→ L(i)

)

= 0.
3⇒1 Let � := {k ∈ � | 1 � k}. It is enough to show xk · x j = x j · xk for all k, j ∈ �

(see 3.11): Let k, j ∈ �, then we have L(1)
·xk
�
·1

L(k)
·1
�
·xk

L(1)
·x j

�
·1

L( j)
·1
�
·x j

L(1), since

1 � k, j � 1. Let g and h be the composition of the maps which goes from left to right

and from right to left, respectively, i.e., g :
(

L(1)
·xk� L(k)

·1
↪→ L(1)

·x j
� L( j)

·1
↪→ L(1)

)
and

h :
(

L(1)
·x j
� L( j)

·1
↪→ L(1)

·xk� L(k)
·1
↪→ L(1)

)
. We obtain xk ·x j = g(1) = h(1) = x j ·xk

if and only if g = h. Since g and h correspond to the paths (1, k, 1, j, 1) and (1, j, 1, k, 1)

respectively, we have to show that (1, j, 1, k, 1) = (1, k, 1, j, 1) in A.
According to [11, Theorem 3.2] for the path ( j, 1, k) there exists some ci ∈ K

with ρ = ( j, 1, k) − ∑
i∈�( j)∩�(k) ci · p( j, i, k) ∈ I. Since ( j, 1, k)op = (k, 1, j) and

p( j, i, k)op = p(k, i, j), by our assumption we obtain ρop = (k, 1, j) −∑
i∈�( j)∩�(k) ci ·

p(k, i, j) ∈ I. Obviously, (1, j, 1, k, 1) = (k → 1) · ( j, 1, k) · (1 → j) and (1, k, 1, j, 1) =
(1, j, 1, k, 1)op = ( j → 1) · (k, 1, j) · (1 → k). The relations ρ and ρop imply the following
equations in A:

(1, j, 1, k, 1) =
∑

i∈�( j)∩�(k)

ci · ((k → 1) · p( j, i, k) · (1 → j))

(1, k, 1, j, 1) =
∑

i∈�( j)∩�(k)

ci · (( j → 1) · p(k, i, j) · (1 → k))

For every i ∈ �( j) ∩ �(k) the paths p(i) = (k → 1) · p( j, i, k) · (1 → j) and q(i) =
( j → 1) · p(k, i, j) · (1 → k) are of the form p(1, i, 1) (in the picture below the black
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Quasi-hereditary algebras via generator–cogenerators 661

and the inner gray path respectively). Thus Lemma 3.11(1) implies p(i) = q( j) in A, hence
(1, j, 1, k, 1) = (1, k, 1, j, 1).

n

1

i

j · · · k

2⇔3 Assume the K -map (−)op : A → A with p �→ pop is an anti-automorphism of A.
If for some paths p1, . . . , pr , which start in i and end in j we have

∑r
t=1 ct · pt = 0, then(∑r

t=1 ct · pt
)op =∑r

t=1 ct · pop
t = 0 (in other words, if ρ ∈ I, then ρop ∈ I ). On the other

hand, if I = {ρop | ρ ∈ I}, then (−)op : A → A is obviously an anti-automorphism. ��

5 Ringel-duality on generators-cogenerators of local self-injective algebras

Let (A, �) be a quasi-hereditary algebra, then for any i ∈ Q0(A) there exists a (up to isomor-
phism) uniquely determined indecomposable module T (i) ∈ F(
)∩F(∇) with the following
properties: For all j ∈ Q0(A) with j 
� i we have [T (i) : S( j)] = 0 and [T (i) : S(i)] =
(T (i) : 
(i)) = (T (i) : ∇(i)) = 1, moreover, F(
) ∩ F(∇) = add

(⊕
i∈Q0(A) T (i)

)
. Note

that for a minimal vertex i we always have T (i) ∼= 
(i) ∼= ∇(i) ∼= S(i).
For any 1-quasi-hereditary algebra (A, �) with 1 � i � n we have T (1) ∼= S(1), and

P(1) ∼= I (1) ∼= T (n), since P(1) ∈ F(
) ∩ F(∇) is indecomposable and (P(1) : 
(n)) =
(I (1) : ∇(n)) = 1.

The module T :=⊕
i∈Q0(A) T (i) is called the characteristic tilting module. The Ringel-

dual R(A) := EndA(T )op of A is a basic algebra on the same vertex set Q0(R(A)) =
Q0(A). Also, R(A) is quasi-hereditary with the opposite order � (we use the notation �(R)).
Moreover, R(R(A)) ∼= A as quasi-hereditary algebras. The functor R := HomA(T,−) :
mod A −→ mod R(A) yields an exact equivalence between the subcategories F(∇A) and
F(
R(A)). Moreover, PR(A)(i) ∼= R(T (i)), TR(A)(i) ∼= R(I (i)) and 
R(A)(i) ∼= R(∇(i))
for all i ∈ Q0(A) (for more details, see [13]).

The class of 1-quasi-hereditary algebras is not closed under Ringel duality. Example 4
in [12] presents a 1-quasi-hereditary algebra A for which R(A) is not 1-quasi-hereditary.
However, the properties of R(A) for a 1-quasi-hereditary algebra A considered in [11,
Lemma 6.2] yield the following lemma. (For R(A)-modules we will use the index (R), note
that 1 � i � n implies n �(R) i �(R) 1 for all i ∈ � := Q0(R(A)) = Q0(A).)

Lemma 5.1 Let (A, �) be a 1-quasi-hereditary algebra with 1 � i � n for any i ∈ � and
let (R(A), �(R)) be the Ringel dual of (A, �). Then dom. dim R(A) ≥ 2 and P(R)(n) is a
minimal faithful R(A)-module.

Proof Since {1} = max
(
�, �(R)

)
, the definition of standard modules implies P(R)(1) =


(R)(1). According to [11, Lemma 6.2] we obtain 
(R)(i) ↪→ 
(R)(1) = P(R)(1) ↪→
P(R)(n) ∼= I(R)(n). We have soc

(

(R)(i)

) ∈ add
(
soc I(R)(n)

)
for all i ∈ �. According
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to Proposition 2.3, it is enough to show P(R)(i) ↪→ P(R)(n)ri (for some ri ∈ N) and
P(R)(n)ri /P(R)(i) ∈ F(
(R)) for any i ∈ �.

Since T (i) ∈ F(
), we have soc T (i) ∈ add
(⊕

j∈� soc 
( j)
)

1.2.1= add (S(1)). Let

soc T (i) ∼= S(1)ri , then T (i) ↪→ T (n)ri since T (n) ∼= I (1) (see [11, 5.3]). The exact
sequence ξ : 0 → T (i) → T (n)ri → T (n)ri /T (i) → 0 yields T (n)ri /T (i) ∈ F(∇),
because F(∇) is closed under cokernels of injective maps (see [13]). By applying R(−) to
ξ we obtain an exact sequence 0 → P(R)(i) → P(R)(n)ri → P(R)(n)ri /P(R)(i) → 0 with
P(R)(n)ri /P(R)(i) ∈ F(
(R)) for any i ∈ �. ��

5.1 Transfer of Ringel duality

Throughout, we keep the notation for the sets X, Y, X(1), Y(1) and for the functions X
�

�
�

Y

used in Sect. 1. Moreover, we denote by X(R(1)) the set of isomorphism classes of Ringel-
duals of 1-quasi-hereditary algebras. Lemma 5.1 implies that X(R(1)) ⊆ X. We denote by
Y(R(1)) the image of �|X(R(1)). Moreover, let X := X(1) ∪ X(R(1)) and Y := Y(1) ∪
Y(R(1)) as well as X̂ := X(1) ∩ X(R(1)) and Ŷ := Y(1) ∩ Y(R(1)).

Note that the second component of a pair in Y is not necessarily a direct sum of local
modules. We use again the notation G for a generator–cogenerator.

The map R : X → X with R ([A]) = [R(A)] is obviously bijective and R2 = idX . The
Morita–Tachikawa Theorem 2.1 and Theorem A 1.2.6 yield the transfer of Ringel-duality
for X on Y (we may visualise the situation as in the following picture).

Obviously, for any pair [B, G ] ∈ Y with [A] = � ([B, G ]), the algebra (A, �) or (R(A),

�(R)) is 1-quasi-hereditary. Without loss of generality assume that A with partial order (�, �)

by 1-quasi-hereditary. Since G has |�| = dimK B (pairwise non-isomorphic, indecompos-
able) direct summands, the quiver of the algebra A as well as the quiver of R(A) has |�|
vertices. Thus for R[B, G ] = [R(B), R(G )] we obtain that the generator–cogenerator R(G )

of R(B) has also |�| direct summands, which are denoted by R(G (i)) for i ∈ �.

Lemma 5.2 Let [B, L] ∈ Y(1) and [A] = � ([B, L]) ∈ X(1). Then for R([B, L]) =
[R(B), R(L)] with R(L) ∼=⊕

i∈� R(L(i)) we have

B ∼= R(B) and R(L(i)) ∼= HomA(T (i), T (n)).

Proof The Morita–Tachikawa Theorem 2.1 and Lemma 5.1 yield B ∼= EndA(P(1))op and
R(B) ∼= EndR(A)(P(R)(n))op . Since R(A) = EndA(T )op and P(R)(i) ∼= HomA(T, T (i)), the
functor HomA(T,−) : mod A → mod R(A) yields an isomorphism HomA(T (i), T (n)) ∼=
HomR(A)(P(R)(i), P(R)(n)) for all i ∈ � (see [1, 2.1]). Since T (n) ∼= P(1), we have

B ∼= EndA(P(1))op ∼= EndR(A)(P(R)(n))op ∼= R(B).
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Since P(R)(n) is the minimal faithful R(B)-module, R(L) is isomorphic to R(B) P(R)(n).
Thus

R(L) ∼=
⊕

i∈�
HomR(A)(P(R)(i), P(R)(n)) ∼=

⊕
i∈�

HomA(T (i), T (n)).

��
Lemma 5.2 implies that for any [B, G ] ∈ Y we have R([B, G ]) = [B, R(G )]. Since

[B, G ] ∈ Y(1) or R([B, G ]) ∈ Y(1), the algebra B is a local self-injective algebra having a
module with the property � in Definition 2.5 for some (�, �). Let B be an algebra and

M(B):=
{

M ∈ mod B | (B, M) or (B, R(M)) has the property � , for some (�, �)
}

.

Obviously, there exist finitely many partial orders on �. However, M(B) has infinitely many
pairwise non-isomorphic B-modules.

Proposition 5.3 Let L :={[B] |M(B) 
=∅}and [B] ∈ L. Then Y(B) :={[B, M] |M ∈M(B)}
and X (B) := {[

EndB(M)op
] | M ∈M(B)

}
is closed under Ringel-duality R and R, respec-

tively. Moreover, Y =
·⋃
[B]∈LY(B) and X =

·⋃
[B]∈LX (B).

Proof It is easy to see that for all [B] ,
[
B ′

] ∈ L with [B] 
= [
B ′

]
we have Y(B)∩Y(B ′) = ∅,

and any pair in Y belongs to Y(B) for some [B] ∈ L.
Let M ∈M(B), then there exists � on � such that (B, M) or (B, R(M)) has the property

� . Since R[B, R(M)] = [B, R(R(M))] = [B, M], the pair (B, R(M)) or (B, R(R(M)))

has the property � . Thus R(M) ∈ M(B), and consequently R[B, R(M)] ∈ M(B). The

Morita–Tachikawa Theorem 2.1 yields that for any [A] ∈ X (B) we have [R(A)] ∈ X (B).
Obviously, [B] 
= [B ′] implies X (B) ∩ X (B ′), and any [A] ∈ X belongs to X (B) for some
[B] ∈ L. ��

Note that the function X(1)→ L with [A] �→ [EndA(P(1))] is surjective, non-injective.
The set L is not finite (for example we have [B1 ⊗ B2] ∈ L for all [B1], [B2] ∈ L). In the
picture the sets X and Y are presented as the disjoint union of X (B) and Y(B) (symbolized
by the circles, they are closed under the Ringel-duality R and R) respectively.

The dark circles inside the circle corresponding to X (B) symbolize X (B)∩ X̂ . Similarly,
a pair [B, M] in the dark circle of Y(B) has the property � and R([B, M]) has the property

� , i.e., [B, M] ∈ Ŷ . In particular, X̂ and Ŷ are the disjoint unions of the dark circles.

They are also closed under R resp. R. The observation of Ringel-duality on X and Y can by
restricted to X (B) and Y(B) respectively.

Φ

Ψ

Φ

Ψ

X (B) Y(B)

X Y
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Remark 5.4 In general for a fixed poset (�, �) the number of pairs [B, L] with the property
� is not finite. For example, the algebra B = K [x, y]/ 〈x2, y2

〉
is a local and self-injective

algebra of dimension 4. The poset ({1, 2, 3, 4} , �) is given by 1 � 2, 3 � 4. Let L(1) = 〈1B〉,
L(2) = 〈X〉, L(4) = 〈XY 〉 and Lλ(3) = 〈Y + λ · X〉 for λ ∈ K . The pair [B, Lλ] with
Lλ = Lλ(3)⊕⊕

i=1
i 
=3

4L(i) has the property � for all λ ∈ K , but Lλ(3) 
∼= Lμ(3) if λ 
= μ.

Moreover, if (B, L) and (B, L ′) satisfy the condition � , then the property [B, L] ∈ Ŷ
does not imply [B, L ′] ∈ Ŷ .

5.2 Ringel-duality on Ŷ

In [11, Sec. 5 and 6] 1-quasi-hereditary algebras whose isomorphism classes belong to X̂
have been considered. These results yield a precise description of the Ringel-duality R on Ŷ .

Let [B, L] be in Y(1) and A = EndB(L)op ∼= K Q/I be the corresponding 1-quasi-
hereditary algebra with (�, �) (here 1 � i � n for all i ∈ �). Then B ∼= EndA(P(1))op and
L ∼=⊕

i∈� B ◦ f(i), where f(i) := f(1,i,1) is the endomorphism of P(1) corresponding to the
path p(1, i, 1) of A (see Proposition 3.4). Assume that R(A) = EndA(T )op with (�, �(R))

is also 1-quasi-hereditary. According to Theorem 6.1 in [11], the direct summand T (i) of T
is a submodule and a factor module of P(1) ∼= I (1) for any i ∈ �. More precisely,

T (i) ∼= P(1)/

⎛

⎝
∑

j∈�\�(i)

P( j)

⎞

⎠ ∼=
⋂

j∈�\�(i)
ker (P(1) � I ( j))

(using the notations of Sect. 2, we have �\�(i) = { j ∈ � | j 
� i} = {
j ∈ � | i 
�(R) j

}
).

Consequently, the subspace P(1)1
2.1.2= spanK {p(1, j, 1) | j ∈ �} of P(1) contains an ele-

ment t(i) which generates T (i)(= A · t(i)). For any i ∈ � we denote by θ(i) the following

endomorphism of P(1): θ(i) = (ι(i) ◦ π(i)) :
(

P(1)
π(i)
� T (i)

ι(i)
↪→ P(1)

)
with e1

π(i)�→ t(i)

and t(i)
ι(i)�→ t(i)

Using Lemma 3.2 [12] it is easy to show, that the pair (B, L) with L ∼= ⊕
i∈� B ◦ θ(i)

satisfies the condition �(R) .

The Ringel duality R on Ŷ provides a relationship between the endomorphisms
θ(1), . . . , θ(n) and f(1), . . . , f(n) of P(1). The following statement yields Theorem C from
the introduction.

Theorem C. Let (A, �) be a 1-quasi-hereditary algebra, B = EndA(P(1))op and
L ∼=⊕

i∈� L(i) where L(i) = B ◦ f(i) for any i ∈ � (i.e., [(B, L), �] is the corresponding
pair in Y(1)). Let [B, R(L)]with R(L) ∼=⊕

i∈� R(L(i)) be the Ringel-dual of [B, L]. Then
the following statements are equivalent:

(i) [B, L] ∈ Ŷ .
(ii) R(L(i)) ∼= B ◦ θ(i), where im

(
θ(i)

) = T (i) for every i ∈ �.

(iii) R(L(i)) ∼= B/
(∑

j∈�\�(i)
L( j)

) ∼=⋂
j∈�\�(i)

ker (B � L( j)) for every i ∈ �.

Proof According to Lemma 5.2 for any i ∈ � we have R(L(i)) ∼= HomA(T (i), T (n)).
(i) ⇒ (i i) The assumption [B, L] ∈ Ŷ implies [A] ∈ X̂ . As already explained, we

can define endomorphisms θ(i) = (ι(i) ◦ π(i)) for any i ∈ �. Since HomA(−, P(1))

is exact, the inclusion T (i)
ι(i)
↪→ P(1) yields a surjective B-map HomA(P(1), P(1)) �
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HomA(T (i), P(1)) with F �→ F ◦ ι(i). Thus HomA(T (i), P(1)) = B ◦ ι(i). The map
(− ◦ π(i)) : B ◦ ι(i) → B ◦ θ(i) is obviously a B-module isomorphism. We obtain
R(L(i)) ∼= B ◦ ι(i) ∼= B ◦ θ(i) for all i ∈ �.

(i i) ⇒ (i) Since im
(
θ(i)

) = T (i) for every i ∈ �, the top of any direct summand of
the characteristic tilting A-module is simple. According to Theorem 5.1 and 6.1 in [11] the
algebra (R(A), �(R)) is 1-quasi-hereditary. This implies R[B, L] ∈ Y(1).

(i) ⇒ (i i i) For any i ∈ � the map ϒ(i) : B � L(i) with F �→ F ◦ f(i) is a surjective
B-map. The properties of T (i) yield dimK HomA(P(i), T ( j)) = [T ( j) : S(i)] = 0 for any
j ∈ �\�(i). Thus (in the notations of Subsection 2.1) we have

(
θ( j) ◦ f(i)

) :
(

P(1)
f ↓
(i,1)→ P(i)

f ↑
(1,i)
↪→ P(1)

π( j)
� T ( j)

ι( j)
↪→ P(1)

)
= 0

For all i, j ∈ � with i 
� j we have θ( j) ∈ ker(ϒ(i)), thus R(L( j)) = B ◦ θ( j) ⊆ ker(ϒ(i))

and

∑
j∈�\�(i)

R(L( j)) ⊆ ker(ϒ(i)) as well as R(L( j)) ⊆
⋂

i∈�\�( j)
ker(ϒ(i)).

By our assumption the pairs (B, L) and (B, R(L)) satisfy the properties � and �(R)

respectively. Therefore dimK L(i)
2.2.1(2)= ∣∣�(i)

∣∣ implies dimK ker
(
ϒ(i)

) = ∣∣�\�(i)
∣∣. More-

over, dimK

(∑
j∈�\�(i) R(L( j))

)
2.2.1(2)=

∣∣∣∣∣
⋃

j∈�
j 
�(R)i

{
k ∈ � | j �(R) k

}
∣∣∣∣∣ =

∣∣�\�(i)
∣∣. This

implies
∑

j∈�\�(i) R(L( j)) = ker(ϒ(i)). Because R(L(k)) ⊆ R(L( j)) for all k ∈ �

with j �(R) k, we obtain
⋂

i∈�\�( j)
ker(ϒ(i)) = ∑

j�(R)k
R(L(k)) = R(L( j)). There-

fore L(i) ∼= B/ ker(ϒ(i)) ∼= B/
(∑

j∈�\�(i) R(L( j))
)
= B/

(∑
j 
�(R)i

R(L( j))
)

. Using

the dual arguments we obtain R(L(i)) ∼= B/
(∑

j∈�\�(i)
L( j)

)
for any i ∈ �

(i i i)⇒ (i) We have to show that (B,
⊕

i∈� R(L(i))) satisfies the property �(R) : Since

L(i) = B ◦ f(i)
2.2.1(2)= f(i) ◦ B, for f, g ∈ B there exists h ∈ B with g ◦ f ◦ f(i) = g ◦ f(i) ◦ h.

Therefore, g ∈ ker

(
B
−◦f(i)
� L(i)

)
implies g ◦ f ∈ ker

(
B
−◦f(i)
� L(i)

)
. The assumption

R(L( j)) ∼=⋂
i∈�\�(i)

ker (B � L(i)) implies R(L( j)) ◦ B ⊆ R(L( j)). Thus R(L( j)) is a
two-sided local ideal of B, since R(L( j)) is a factor module and a submodule of B.

The property � of L(i) implies R(L(k)) � R(L( j)) and also R(L( j)) ⊆ R(L(k)) if
and only if k �(R) j , because �\�(k) ⊆ �\�( j) if and only if j � k. We have rad R(L(k)) =
∑

k<(R) j R(L( j)) for all k ∈ � because R(L(k))/
(∑

k<(R) j R(L( j))
)

is simple. ��

Example 5.5 Let B := Bn(C)be the algebra given in Example 2.7 and L = B⊕⊕n−1
i=2 〈Xi 〉⊕

(soc B). The Ringel dual of the corresponding 1-quasi-hereditary algebra An(C) is also 1-
quasi-hereditary (see [12, Lemma 1.2]). Thus [B, L] ∈ Ŷ , in particular, R(L(1)) ∼= soc B,

R(L(n)) ∼= B and R(L(i)) ∼= B/

(
∑n−1

j=2
i 
= j

L( j)

)
∼=

〈∑n−1
j=2 d ji X j

〉
for 2 ≤ j ≤ n − 1,

where the di j are given by inverse of C , i.e. C−1 = (di j )2≤i, j≤n−1.

123



666 D. Pučinskaitė

Remark 5.6 If a 1-quasi-hereditary algebra A is Ringel self-dual, then (A, �) ∼= (R(A),

�(R)) implies [B, L] = �([A]) = �([R(A)]) = [B, R(L)]. In other words: The pair
[B, L] satisfies the property � and the property �(R) . Thus, there exists a permutation

σ ∈ Sym(dimK B) with L(σ (i)) ∼= R(L(i)).
The algebras associated with blocks of the category O(g) are Ringel self-dual. In the Exam-

ple 2.6 the 1-quasi-hereditary algebra (A3, �(3)) corresponding to the pair (B, L3) is related
to a regular block of O(sl3). It is easy to check that the permutation σ = (σ (1), . . . , σ (6)) =
(6, 5, 4, 3, 2, 1) ∈ Sym(6) yields L3(σ (i)) ∼= R(L3(i)).

In the same example the algebra (A1, �(1)) is also Ringel self-dual. The permutation
τ ∈ Sym(6) with L1(τ (i)) ∼= R(L1(i)) is given by τ = (6, 4, 5, 2, 3, 1).

If [B, L] ∈ Ŷ , then the socle of B/
(∑

j∈�\�(i)
L( j)

)
is simple for all i ∈ �, because

these factor modules of B are also submodules of B (see Theorem 4.2.1). In the Exam-

ple 2.6 the algebra R(A2) is not 1-quasi-hereditary, because soc(B/
(∑

j∈�\�(4)
L2( j)

)
) ∼=

soc (B/L2(5)) is not simple. Thus [A2] 
∈ X̂ .

In general, for some [B, L] ∈ Ŷ the equation [B, L] = [B, R(L)] is not satisfied (see
Example 5.5). Consequently a 1-quasi-hereditary algebra A with [A] ∈ X̂ is not Ringel
self-dual, in general.

Remark 5.7 The class of Ringel self-dual, 1-quasi-hereditary algebras is a subclass of

O :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[A]

∣∣∣∣∣∣∣∣∣∣

dom.dimA ≥ 2,

(A, �) is Ringel self-dual, and 1 � i � n for all i ∈ �,

P(1) ∼= I (1) is the minimal faithful A-module,
A has BGG reciprocity : (P(i) : 
( j)) = [
( j) : S(i)] for all i, j ∈ �,

(P(1) : 
( j)) = 1 for all j ∈ �

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⊆X

The most important examples in O are the algebras of the form A�(g) (for simplicity, let �

be a regular block)(see [6] and [7]). The vertices of the quiver of A�(g) correspond to the
elements of the Weyl group W of g and � conforms to the Bruhat ordering.

For any [A] ∈ O we have [A] = [EndB(B P(1))op], where B ∼= EndA(P(1))op . In the
case A = A�(g), the algebra B is the coinvariant algebra of W .

The methods used in the proofs for 1-quasi-hereditary algebras can be carried over to
the proofs of some properties of (B, B P(1)). In Subsect. 3.1 (proof of 1) we have seen that
B = EndA(P(1))op is a local and self-injective algebra. The proof uses only the fact that
P(1) is a projective-injective indecomposable A-module. The same argument yields that the
coinvariant algebra of W is a local self-injective algebra. Moreover, BGG reciprocity and
(P(1) : 
( j)) = 1 for all j ∈ � implies dimK P(1)1 = dimK B = |W |.

As shown in this paper, the structure of the pair (B, L) depends on the structure of the
poset (�, �) of a 1-quasi-hereditary algebra A = EndB(L)op . This raises the questions how
the structure of the coinvariant algebra depends on W and its Bruhat ordering, and what
influence the commutativity of coinvariant algebra has on the relations of A�(g).

The algebras in O are BGG-algebras, thus the number of arrows from i to j is the same as
the number the arrows from j to i (see [18, Corollary 2.6]). But this number is in general not
equal to 1, and i, j are not necessary adjacent. For adjacent vertices we have i � i ′. Thus for
any three vertices j, i, k with j, k � i we can construct the paths of the form p( j, i, k) running
through adjacent vertices strictly increasing from j to i and strictly decreasing from i to k, as
described in Remark 3.1. Using the same arguments as in the proof of [11, Lemma 3.3] it is
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possible to show that the set

{
f(i) :

(
P(1) → P(1)

ei �→ p(1, i, 1)

)∣∣∣∣ i ∈ �

}
of B-maps is a K -basis

of B. Furthermore, the arguments used in the proof of Lemma 3.3 (2) yield that if soc P(i)
is simple B ◦ f(i) is a direct summand of the B-module P(1). This raises the question of the
remaining direct summands of the B-module P(1) and their dependence on the given partial
order.

Furthermore, since A = A�(g) is Ringel self-dual, for the B-module P(1) we have
B P(1) ∼= ⊕

i∈W HomA(P(i), P(1)) ∼= ⊕
i∈W HomA(T (i), T (n)). Thus there exists

σ ∈ Sym(|W |) with HomA(P(i), P(1)) ∼= HomA(T (σ (i)), T (n)). If soc P(i) is simple,
then B ◦ f(i) ∼= HomA(P(i), P(1)) ∼= HomA(T (σ (i)), T (n)) and im(f(i)) ∼= T (σ (i)). For
each i with soc P(i) simple we obtain one indecomposable direct summand T (σ (i)) of the
characteristic tilting module. The module theoretical structure of those T (σ (i)) where i is
such that soc P(i) is not simple appears to be unknown.

For example, when g = sl4(C), the Weyl group (so the set of vertices of the quiver of
A�(g)) is Sym(4) and P(4321) is minimal faithful. All indecomposable projective A�(g)-
modules, except those who corresponds to (3412) and (4231), have simple socle. The map
σ : Sym(4)→ Sym(4) with σ(i1i2i3i4) = (4321)(i1i2i3i4) induces a permutation such that
im(f(i1i2i3i4))

∼= T (σ (i1i2i3i4)) for all (i1i2i3i4) ∈ Sym(4)\ {(3412), (4231)}. A set of the
relations of A�(g), calculated in [15], can be transformed in a set R such that ρ ∈ R implies
ρop ∈ R. This computation has been carried out and is not given here.
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