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Abstract Let X be a projective variety which is algebraic Lang hyperbolic. We show that
Lang’s conjecture holds (one direction only): X and all its subvarieties are of general type
and the canonical divisor K X is ample at smooth points and Kawamata log terminal points
of X , provided that K X is Q-Cartier, no Calabi–Yau variety is algebraic Lang hyperbolic and
a weak abundance conjecture holds.
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1 Introduction

We work over the field C of complex numbers. A variety X is Brody hyperbolic (resp. alge-
braic Lang hyperbolic) if every holomorphic map V → X , where V is the complex line C

(resp. V is an abelian variety), is a constant map. Since an abelian variety is a complex torus,
Brody hyperbolicity implies algebraic Lang hyperbolicity. When X is a compact complex
variety, Brody hyperbolicity is equivalent to the usual Kobayashi hyperbolicity (cf. [13]).

In the first part (Theorem 1.4 and its consequences 3.7, 3.8) of this paper, we let X be a
normal projective variety and aim to show the ampleness of the canonical divisor K X of X ,
assuming that X is algebraic Lang hyperbolic. We allow X to have arbitrary singularities and
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1180 F. Hu et al.

assume only that X is Q-Gorenstein (so that the ampleness of K X is well-defined), i.e., K X

is Q-Cartier: mK X is a Cartier divisor for some positive integer m.
For related work, it was proven in [18] that a 3-dimensional hyperbolic smooth projective

variety X has ample K X unless X is a Calabi–Yau manifold where every non-zero effective
divisor is ample. The authors of [7] proved the ampleness of K X when X is a smooth
projective threefold having a Kähler metric of negative holomorphic sectional curvature;
they also generalized the results to higher dimensions with some additional conditions.

In the second part of the paper (Theorem 1.5 and its more general form Theorem 3.1),
we make some contributions toward Lang’s conjecture in Corollary 1.6, where even the
normality of X is not assumed. Our approach is to take a projective resolution of X and run
the relative Minimal Model Program (MMP) over X . We use only the frame work of MMP,
but not its detailed technical part. Certain mild singularities occur naturally along the way.
See [12, Definitions 2.34 and 2.37] for definitions of canonical, Kawamata log terminal (klt),
and divisorial log terminal (dlt) singularities.

In the last part (Proposition 1.7 and its more general form Theorem 3.2), we try to avoid
assuming conjectures.

We now state two conjectures. Conjecture 1.1 below is long standing. When dim X ≤ 2,
it is true by the classification of complex surfaces and the following:

Fact (∗). A (smooth) K 3 surface has infinitely many (singular) elliptic curves; see [16,
Theorem in Appendix] or Proposition 2.2.

In Conjecture 1.1, the conclusion means the existence of at least one non-constant holo-
morphic map f : V → X from an abelian variety V , but does not require the image f (V )

(or the union of such images) to be Zariski-dense in X . This does not seem sufficient for
our purpose to show the non-existence of subvariety X ′ of Kodaira dimension zero in an
algebraic Lang hyperbolic variety W as in Corollary 1.6 below (see 1.9, and think about a
proof of the non-hyperbolicity of every normal K 3 surface using the Fact (∗) above). Fortu-
nately, we are able to show in Corollary 1.6 (or Theorems 1.5 and 3.1) that the normalization
X of X ′ ⊆ W is a Calabi–Yau variety and hence f composed with the finite morphism
X → X ′ ⊆ W produces a non-constant holomorphic map from the abelian variety V , thus
deducing a contradiction to the hyperbolicity of W .

Conjecture 1.1 Let X be an absolutely minimal Calabi–Yau variety (cf. 2.1). Suppose further
that every birational morphism X → Y onto a normal projective variety is an isomorphism.
Then X is not algebraic Lang hyperbolic.

We need the result below about nef reduction map and nef dimension. A meromorphic
map f : X ��� Y between complex varieties is almost holomorphic if it is well defined on a
Zariski dense open subset U of X and the map f |U : U → Y has compact connected general
fibres.

Theorem 1.2 (cf. [1, Theorem 2.1]) Let L be a nef Q-Cartier divisor on a normal projective
variety X. Then there exists an almost holomorphic, dominant rational map f : X ��� Y
with connected fibres, called a “nef reduction map” such that

(1) L is numerically trivial on all compact fibres F of f with dim F = dim X − dim Y ;
(2) for every general point x ∈ X and every irreducible curve C passing through x with

dim f (C) > 0, we have L .C > 0.

The map f is unique up to birational equivalence of Y . We call dim Y the “nef dimension”
of L and denote it as n(L).
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Ampleness of canonical divisors 1181

Proof See [1] for the proof. �	

Next we state Conjecture 1.3. We stress that 1.3 without the extra “Hyp(A)” is the usual
abundance conjecture and stronger than our one here. When K X is nef and big or when
dim X ≤ 3, both Conjectures 1.3 (1) and 1.3 (2) (and their log versions, even without the
extra Hyp(A)) are true; see [12, Theorem 3.3, §3.13], or Proposition 2.2.

Conjecture 1.3 Let X be an n-dimensional minimal normal projective variety, i.e., the
canonical divisor K X is a nef Q-Cartier divisor. Assume Hyp(A): the nef dimension n(K X )

satisfies n(K X ) = n.

(1) If X has at worst klt singularities, then K X is semi-ample, i.e., the linear system |mK X |
is base-point free for some m > 0.

(2) If X has at worst canonical singularities and K X 
≡ 0 (not numerically zero), then the
Kodaira dimension κ(X) > 0.

Theorems 1.4 and 1.5 below are our main results. When X has at worst klt singularities,
Theorem 1.4 below follows from the MMP and has been generalized to the quasi-projective
case in [14]. In Theorem 1.4, we do not impose any condition on the singularities of X , except
the Q-Cartierness of K X . This assumption is necessary to formulate the conclusion that K X

be ample. Without assuming Conjecture 1.1 or 1.3 as in Theorem 1.4, we can at least say that
K X is movable or nef in codimension-one (cf. Remark 1.8). See also Corollaries 3.7 and 3.8
when dim X ≤ 3.

Theorem 1.4 Let X be a Q-Gorenstein normal projective variety which is algebraic Lang
hyperbolic. Assume that Conjecture 1.1 holds for all varieties birational to X, or to any
subvariety of X. Further, assume that Conjecture 1.3 (1) holds for all varieties birational to
X.

Then K X is ample at smooth points and klt points of X. To be precise, there is a birational
morphism fc : Xc → X such that Xc has at worst klt singularities, K Xc is ample, and
Ec := f ∗

c K X − K Xc is an effective and fc-exceptional divisor with fc(Ec) ⊆ Nklt(X), the
non-klt locus of X.

In particular, fc = id and K X is ample, if X has at worst klt singularities.

The normality of X is not assumed in Theorem 1.5 below which is a special case of
Theorem 3.1 by letting g : X → W there be the identity map idX : X → X . When
dim X ≤ 3, Case (3) below does not occur.

Theorem 1.5 Let X be an algebraic Lang hyperbolic projective variety of dimension n.
Assume either n ≤ 3 or Conjecture 1.3 (2) (resp. either n ≤ 3 or Conjecture 1.3 (2) without
the extra Hyp(A)) holds for all varieties birational to X.

Then there is a birational surjective morphism gm : Xm → X such that Xm is a minimal
variety with at worst canonical singularities and one of the following is true.

(1) K Xm is ample. Hence both Xm and X are of general type.
(2) gm : Xm → X is the normalization map. Xm is an absolutely minimal Calabi–Yau

variety with dim Xm ≥ 3.
(3) There is an almost holomorphic map τ : Xm ��� Y (resp. a holomorphic map τ :

Xm → Y ) such that its general fibre F is an absolutely minimal Calabi–Yau variety
with 3 ≤ dim F < dim Xm, and (gm)|F : F → gm(F) ⊂ X is the normalization map.
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1182 F. Hu et al.

Given a projective variety W , let ˜W
σ→ W be a projective resolution. We define the

albanese variety of W as Alb(W ) := Alb( ˜W ), which is independent of the choice of the
resolution ˜W , since every two resolutions of W are dominated by a third one and the albanese
variety, being an abelian variety, contains no rational curves. We define the albanese (rational)
map albW : W ��� Alb(W ) as the composition

W
σ−1

��� ˜W
alb

˜W−→ Alb( ˜W ).

One direction of Lang’s [13, Conjecture 5.6] follows from Conjectures 1.1 and 1.3 (2).
See Remark 1.8 (6) for the other direction.

Corollary 1.6 Let W be an algebraic Lang hyperbolic projective variety of dimension n.
Assume either n ≤ 3 or Conjecture 1.3 (2) holds for all varieties of dimension ≤n. Then we
have:

(1) If Conjecture 1.1 holds for all varieties of dimension ≤n, then W and all its subvarieties
are of general type.

(2) If the albanese map albW : W ��� Alb(W ) has general fibres of dimension ≤2, then W
is of general type.

Without assuming Conjecture 1.3 (or 1.1), we have the following (see Theorem 3.2 for a
generalization). For a singular projective variety Z , we define the Kodaira dimension κ(Z)

as κ(˜Z) (cf. [12, §7.73]) for some (or equivalently any) projective resolution ˜Z → Z .

Proposition 1.7 Let X be an algebraic Lang hyperbolic projective variety. Assume one of
the following conditions.

(i) X has maximal albanese dimension, i.e., the albanese map albX : X ��� Alb(X) is
generically finite (but not necessarily surjective).

(ii) The Kodaira dimension κ(X) ≥ dim X − 2.
(iii) κ(X) ≥ dim X − 3, and Conjecture 1.1 holds in dimension three.

Then X is of general type.

Remark 1.8 (1) In Theorem 1.4, by the equality f ∗
c K X = K Xc + Ec and the ampleness of

K Xc , the exceptional locus Exc( fc) (the subset of Xc along which fc is not isomorphic)
is contained in Supp Ec. Indeed, if C is an fc-contractible curve, then 0 = C. f ∗

c K X =
C.K Xc + C.Ec > C.Ec, so C ⊆ Supp Ec. This and the effectivity of Ec justify the
phrasal: K X is ample outside fc(Ec).

(2) Without assuming Conjecture 1.1 or 1.3, the proof of Theorem 1.4 (Claim 3.3 and the
equality (2) above it) shows that ( f ′)∗K X = K X ′ + E ′ with K X ′ nef and E ′ ≥ 0
f ′-exceptional. Hence K X = f ′∗K X ′ is movable, or nef in codimension-one.

(3) Let X2 → X1 be a finite morphism (but not necessarily surjective). If X1 is Brody
hyperbolic or algebraic Lang hyperbolic then so is X2. The converse is not true.

(4) Every algebraic Lang hyperbolic projective variety X1 is absolutely minimal in the sense
of 2.1, i.e., every birational map h : X2 ��� X1 from a normal projective variety X2

with at worst klt singularities, is a well defined morphism. This result was proved by
S. Kobayashi when X2 is nonsingular. Indeed, let Z be a resolution of the graph of h
such that we have birational surjective morphisms pi : Z → Xi satisfying h ◦ p2 = p1.
Then every fibre p−1

2 (x2) is rationally chain connected by [6, Corollary 1.5] and hence
p1(p−1

2 (x2)) is a point since hyperbolic X1 contains no rational curve. Thus h can be
extended to a well defined morphism by [8, Proof of Lemma 14], noting that X2 is
normal and p2 is surjective, and using the Stein factorization.
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Ampleness of canonical divisors 1183

(5) If Y is an algebraic Lang hyperbolic Calabi–Yau variety (like Xm and F in Theorem
1.5 (2) and (3), respectively), then every birational morphism h : Y → Z onto a
normal projective variety is an isomorphism. Indeed, by [11, Corollary 1.5], Z has
only canonical singularities. Thus the exceptional locus Exc(h) is covered by rational
curves by [6, Corollary 1.5]. Since Y is hyperbolic and hence has no rational curve, we
have Exc(h) = ∅ and hence h is an isomorphism, Z being normal and by the Stein
factorization.

(6) Consider the converse of Corollary 1.6, i.e., the other direction of Lang [13, Conjecture
5.6], but with the assumption that every non-uniruled projective variety has a minimal
model with at worst canonical singularities and that abundance Conjecture 1.3 (2) holds.
To be precise, supposing that a projective variety W and all its subvarieties are of general
type, we see that W is algebraic Lang hyperbolic. Indeed, let f : V → W be a morphism
from an abelian variety V and let V → X → f (V ) be its Stein factorization, where
V → X has a connected general fibre F and X → f (V ) is a finite morphism. Since V is
non-uniruled, so is F . Hence κ(F) ≥ 0 by the assumption. The assumption and Iitaka’s
Cn,m also imply that 0 = κ(V ) ≥ κ(F) + κ(X) ≥ κ(X) ≥ κ( f (V )) = dim f (V )

(cf. [9, Corollary 1.2]). Hence f is a constant map.

1.9 Comments about the proofs

In our proofs, neither the existence of minimal model nor the termination of MMP is assumed.
Let W be an algebraic Lang hyperbolic projective variety. To show that every subvariety X of
W is of general type, one key observation is the existence of a birational model X ′ of X with
K X ′ relative nef over W , by using the main Theorem 1.2 in [2]. K X ′ is indeed nef since W is
hyperbolic (cf. Lemma 2.5 or 2.6). One natural approach is to take a general fibre F (which
may not even be normal) of an Iitaka (rational) fibration of X (assuming κ(X) ≥ 0) and prove
that F has a minimal model Fm . Next, one tries to show that q(Fm) = 0 and Fm is a Calabi–
Yau variety and then tries to use Conjecture 1.1 to produce a non-hyperbolic subvariety S
of Fm , but this does not guarantee the same on F ⊂ X (to contradict the hyperbolicity of
X ) because such S ⊆ Fm might be contracted to a point on F . In our approach, we are
able to show that the normalization of F is a Calabi–Yau variety, which is the key of the
proofs. It would not help even if one assumes the smoothness of the ambient space W since
its subvariety X may not be smooth, or at least normal or Cohen–Macaulay to define the
canonical divisor K X meaningfully to pull back or push forward.

2 Preliminary results

2.1 Convention, notation and terminology

In this paper, by hyperbolic we mean algebraic Lang hyperbolic.

(i) We use the notation and terminology in the book of Hartshorne and the book [12].
(ii) Given two morphisms gi : Yi → Z (i = 1, 2) between varieties, a rational map

Y1 ��� Y2 is said to be a map over Z , if the composition Y1 ��� Y2
g2→ Z coincides

with g1 : Y1 → Z .
(iii) For a rational map h : X ��� Y , we take a birational resolution π : W → X of

the indeterminacy of h such that the composition h ◦ π is a well defined morphism:
h1 : W → Y . For a point y ∈ Y , we defined the fibre h−1(y) as π(h−1

1 (y)). This
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definition does not depend on the choice of the resolution π of h, since every two such
resolutions are dominated by a third one.

(iv) For a singular projective variety Z , we define the Kodaira dimension κ(Z) as κ(˜Z)

(cf. [12, §7.73]) for some (or equivalently any) projective resolution ˜Z → Z . When
κ(˜Z) ≥ 0, there is a (rational) Iitaka fibration, unique up to birational equivalence,
IZ : Z ��� Y such that its very general fibre F has κ(F) = 0 and that dim Y = κ(Z).

(v) For two Weil Q-divisors Di on a normal variety X , if m(D1 − D2) ∼ 0 (linear
equivalence) for some integer m > 0, we say that D1 and D2 are Q-linearly equivalent
and denote this relation as: D1 ∼Q D2.

(vi) Let X be a normal projective variety. X is a Calabi–Yau variety if X has at worst
canonical singularities, its canonical divisor is Q-linearly equivalent to zero: K X ∼Q 0,
and the irregularity q(X) := h1(X, OX ) = 0. If this is the case, X has Kodaira
dimension κ(X) = 0.

(vii) A projective variety X is of general type if some (equivalently every) projective reso-
lution X ′ of X has maximal Kodaira dimension: κ(X ′) = dim X ′.

(viii) A Q-Gorenstein variety X is minimal if the canonical divisor K X is numerically effec-
tive (=nef). A projective variety X1 is absolutely minimal if every birational map
h : X2 ��� X1 from a normal projective variety X2 with at worst klt singularities, is
a well defined morphism.

Proposition 2.2 (1) Let X be a projective surface. Then either it has infinitely many rational
curves or elliptic curves, or it is of general type, or it is birational to a simple abelian
surface.

(2) Let Y be a normal projective surface such that KY ∼Q 0 and Y is birational to an
abelian surface A. Then Y is isomorphic to A.

(3) Let Z be a normal projective surface with K Z ∼Q 0. Then Z is not algebraic Lang
hyperbolic. In particular, Conjecture 1.1 holds when dimension ≤2.

(4) In dimension ≤3, both Conjectures 1.3 (1) and (2) even without the extra Hyp(A) (and
even for log canonical pairs) hold.

(5) Both Conjectures 1.3 (1) and (2) even without the extra Hyp(A) hold for varieties of
general type.

(6) Let X be a variety with maximal albanese dimension, i.e., dim albX (X) = dim X. If
X has only canonical singularities and K X is nef, then K X is semi-ample. In particu-
lar, Conjecture 1.3 (2) even without the extra Hyp(A) holds for varieties with maximal
albanese dimension.

Proof (1) It is well known that every Enrique surface has an elliptic fibration. By [16,
Theorem in Appendix], every K 3 surface has infinitely many singular elliptic curves.
Thus (1) follows from the classification of algebraic surfaces.

(2) Take a common resolution Z of Y and A, i.e., let p : Z → A and q : Z → Y
be two biraitonal morphisms. Write K Z = p∗K A + E p = E p where E p ≥ 0 is p-
exceptional and Supp E p is equal to Exc(p), the exceptional locus of p. Write K Z =
q∗KY + E1 − E2 ∼Q E1 − E2 where both Ei ≥ 0 are q-exceptional and there is no
common irreducible component of E1 and E2.

Equating the two expressions of K Z , we get E1 ∼Q E2 + E p . Since E1 is q-exceptional,
its Iitaka D-dimension is zero, so E1 = E2 + E p . Thus Exc(p) = Supp E p ⊆ Supp E1 ⊆
Exc(q). Hence there is a birational surjective morphism h : A → Y such that q = h
◦ p:
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Ampleness of canonical divisors 1185

Z A Y
p h

q

.

If h : A → Y is not an isomorphism, then it contracts a curve C on A to a point on Y .
Clearly, C2 < 0. By the genus formula, 2g(C) − 2 = C2 + C.K A = C2 < 0. So C ∼= P1.
This contradicts the fact that there is no rational curve on the abelian variety A. Thus h is an
isomorphism.
(3) Since K Z ∼Q 0, Z is not of general type. By (1), either Z is birational to an abelian

surface, or Z has infinitely many rational or elliptic curves. In the first case, Z is an
abelian surface by (2). Thus Z is not algebraic Lang hyperbolic in all cases.

(4) We refer to [12, §3.13] for its proof or references.
(5) This follows from the base point freeness result for nef and big canonical divisors of klt

varieties (cf. [12, Theorem 3.3]).
(6) It is proven in [5, Theorem 3.6].

�	
The result below is just [9, Theorem 8.3]; see also [9, Lemma 8.1] and [8, Theorem 1] for

the assertion (1).

Lemma 2.3 Let X be a normal projective variety with only canonical singularities and
K X ∼Q 0. Suppose that the irregularity q(X) > 0. Then we have:

(1) The albanese map albX : X → A := Alb(X) is a surjective morphism, where dim A =
q(X).

(2) There is an étale morphism B → A from another abelian variety B such that the fibre
product X ×A B ∼= Z × B for some variety Z.

(3) X is covered by images of abelian varieties {z} × B (z ∈ Z).

Lemma 2.4 Let X be a normal projective variety of dimension n such that K X is Q-Cartier.
Suppose that X is not uniruled and K X ≡ 0 (numerically). Then X has at worst canonical
singularities and K X ∼Q 0.

Proof Let γ : ˜X → X be a projective resolution and write K
˜X = γ ∗K X + (E1 − E2) ≡

E1 − E2 such that Ei ≥ 0 (i = 1, 2) are γ -exceptional and have no common components.
Since X and hence ˜X are non-uniruled, K

˜X is pseudo-effective by [3, Theorem 2.6]. Let
K

˜X = P1 + N1 be the σ -decomposition in [17, ChIII, §1.b], which is also called the Zariski
decomposition in codimension-one. Here P1 is the movable part and N1 the negative part
which is an effective divisor. Then E1 ≡ P1 +(N1 + E2). Since RHS −(N1 + E2) is movable,
the negative part of LHS which is E1, satisfies E1 ≤ N1 + E2 (cf. [17, ChIII, Proposition
1.14]). Thus (N1 + E2 − E1) and also P1 are pseudo-effective divisors, but their sum is
numerically equivalent to zero. Take general members Hi (1 ≤ i ≤ n − 1) in a linear system
|H | with H a very ample divisor on ˜X . Then

0 = Hn−1.(P1 + N1 + E2 − E1) = Hn−1.P1 + Hn−1.(N1 + E2 − E1).

Hence Hn−1.P1 = 0 = Hn−1.(N1+E2−E1). Thus 0 = (N1+E2−E1)∩(H1∩· · ·∩Hn−1).
Since N1 + E2 − E1 is an effective divisor and the restriction to a subvariety of an ample
divisor is still an ample divisor, we get N1 + E2 − E1 = 0. Thus N1 + E2 = E1. Since Ei
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have no common components, either E2 = 0, or E1 = 0 (and hence N1 = E2 = 0). So
E2 = 0 and hence K

˜X = γ ∗K X + E1 with E1 ≥ 0. Therefore, X has at worst canonical
singularities by definition. This together with K X ≡ 0 imply that K X ∼Q 0 by [9, Theorem
8.2]. �	
Lemma 2.5 Let W be an algebraic Lang hyperbolic projective variety, V a projective variety
with at worst klt singularities, and h : V → W a morphism such that V → h(V ) is
generically finite. Assume that KV is relatively nef over W . Then KV is nef.

Proof Suppose the contrary that KV is not nef and hence there is a KV -negative extremal
rational curve C by the cone theorem [12, Theorem 3.7]. Since W is hyperbolic and hence
contains no rational curve, C must be contracted by V → W . So KV .C < 0 for a curve
C ⊂ V contracted by V → W . This contradicts the relative nefness of KV over W . Hence
KV is nef. This proves the lemma. �	
Lemma 2.6 Let W be an algebraic Lang hyperbolic projective variety, X a projective variety
and g : X → W a morphism such that X → g(X) is generically finite.

Then there is a birational map X ��� Xm over W , i.e., there is a (generically finite)

morphism gm : Xm → W such that the natural composition X ��� Xm
gm→ W coincides

with g : X → W (and hence gm(Xm) = g(X)):

X Xm W
gm

g

.

Further, Xm has at worst canonical singularities; the canonical divisor K Xm is nef; and K Xm

is also relatively ample over W .

Proof Since g(X) is also hyperbolic, replacing W by g(X), we may assume that g is surjective
(and generically finite). Take a projective resolution X ′ → X . Since the relative dimension
of X ′ over W is zero, the canonical divisor K X ′ (and indeed every divisor on X ′) is relative
big over W . The main Theorem 1.2 in [2] says that X ′ has a log canonical model Xm over
W , so Xm has at worst canonical singularities and K Xm is relative ample over W . This Xm is
obtained from a log terminal model of X ′ over W followed by a birational morphism over W
using the relative-base point freeness result for relative nef and big divisors; see [2, Theorem
1.2, Definition 3.6.7, Theorem 3.9.1]. We note that [2] considers log pairs, while ours is the
pure case; so the smoothness of X ′ implies that the log terminal (resp. log canonical) model
of X ′ over W has at worst terminal (resp. canonical) singularities. By Lemma 2.5, K Xm is
nef. This proves the lemma. �	
Remark 2.7 (1) By the proof, every subvariety S of X (with g|S generically finite) or of

hyperbolic W has a minimal model Sm with only canonical singularities.
(2) Assume n(K Xm ) = dim Xm ≥ 1 and Conjecture 1.3 (2) holds. Then the Kodaira

dimension κ(Xm) > 0. By [10, Theorem 7.3], K Xm is “good” (or abundant). So it is
semi-ample by [10, Theorem 1.1], which has a new proof by Fujino.

(3) Suppose that Y is a normal projective variety birational to the X in Lemma 2.6 and
KY is Q-Cartier. Then KY is pseudo-effective. Indeed, let σ : Y ′ → Y be a resolution.
Since g : X → W is generically finite and W is hyperbolic, X and hence Y and Y ′
are non-uniruled. By [3, Theorem 2.6], KY ′ is pseudo-effective. Hence KY = σ∗KY ′ is
pseudo-effective.
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3 Proof of Theorems

In this section, we prove results in Introduction, and Theorems 3.1 and 3.2 which imply
Theorem 1.5 and Proposition 1.7, respectively. We also prove Corollaries 3.7 and 3.8, all in
dimension ≤3, where we do not assume Conjecture 1.1 or 1.3.

When dim X ≤ 3, Case (3) below does not occur.

Theorem 3.1 Let W be an algebraic Lang hyperbolic projective variety, X a projective
variety of dimension n and g : X → W a morphism such that X → g(X) is generically
finite. Assume either n ≤ 3 or Conjecture 1.3 (2) (resp. either n ≤ 3 or Conjecture 1.3 (2)
without the extra Hyp(A)) holds for all varieties birational to X.

Then there is a birational map X ��� Xm over W , i.e., there is a morphism gm : Xm → W

such that the composition X ��� Xm
gm→ W coincides with g : X → W (and hence

gm(Xm) = g(X)):

X Xm W
gm

g

.

Further, Xm is a minimal variety with at worst canonical singularities; K Xm is relatively
ample over W ; and one of the following is true.

(1) K Xm is ample. Hence both Xm and X are of general type.
(2) Xm is an absolutely minimal Calabi–Yau variety of dimension n ≥ 3, and gm : Xm →

gm(Xm) = g(X) ⊆ W is a finite morphism.
(3) There is an almost holomorphic map τ : Xm ��� Y (resp. a holomorphic map τ :

Xm → Y ) such that its general fibre F is an absolutely minimal Calabi–Yau variety
with 3 ≤ dim F < dim Xm, and (gm)|F : F → gm(F) ⊂ gm(Xm) = g(X) ⊆ W is a
finite morphism. The Kodaira dimension κ(X) ≤ dim Y ≤ n − 3.

In Theorem 3.2 below, Conjecture 1.1 or 1.3 is not assumed. a(W ) denotes (the Zariski-
closure of) the image Im(albW : W ��� Alb(W )) of the albanese map. Since Alb(W ) is
generated by a(W ), and dim Alb(W ) = q( ˜W ) = 1

2 b1( ˜W ) for any projective resolution ˜W
of W , the condition (iii) in Theorem 3.2 is satisfied if n = 4 and q( ˜W ) > 0.

For related work, the authors of [7] also considered albanese map for smooth W and used
classical results of Ueno, [8, Theorem 1], etc., while we use [5,9,10].

Theorem 3.2 Let X be an algebraic Lang hyperbolic projective variety of dimension n.
Assume one of the following conditions holds.

(i) X has maximal albanese dimension, i.e., dim a(X) = dim X.
(ii) The Kodaira dimension κ(X) ≥ n − 3.

(iii) dim a(X) ≥ n − 3 and κ(a(X)) ≥ n − 4.

Then one of the following is true.

(1) There is a birational surjective morphism gm : Xm → X such that Xm has at worst
canonical singularities, K Xm is ample and hence both Xm and X are of general type.

(2) κ(X) ∈ {n − 3, n − 4}, and X is covered by subvarieties whose normalizations are
absolutely minimal Calabi–Yau varieties of dimension three.
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We prove Theorem 1.4. Let f ′′ : X ′′ → X be a dlt blowup with E f ′′ the reduced f ′′-
exceptional divisor (cf. [4, Theorem 10.4]). Namely, X ′′ is Q-factorial, (X ′′, E f ′′) is dlt (and
hence X ′′ is klt) and

( f ′′)∗K X = K X ′′ + E ′′ (1)

where E ′′ is f ′′-exceptional and satisfies E ′′ ≥ E f ′′ .
Since f ′′ is birational, K X ′′ is relative big over X . By [2, Theorem 1.2, Definition 3.6.7],

there is a birational map σ : X ′′ ��� X ′ over X , such that σ−1 does not contract any divisor,
X ′, like X ′′, has only Q-factorial klt singularities and K X ′ is relatively nef over X via a
birational morphism f ′ : X ′ → X . Pushing forward the equality (1) above by σ∗, we get

( f ′)∗K X = K X ′ + E ′ (2)

where E ′ := σ∗E ′′ ≥ σ∗E f ′′ = E f ′ and E f ′ is the reduced f ′-exceptional divisor. Since
K X ′ is relatively f ′-nef over X , our K X ′ is nef by Lemma 2.5:

Claim 3.3 K X ′ is nef.

We continue the proof of Theorem 1.4. Let τ : X ′ ��� Y be a nef reduction of the nef
divisor K X ′ , and n(K X ′) := dim Y the nef dimension of K X ′ ; let F be a general (compact)
fibre of τ ; then K F = (K X ′)|F is numerically trivial (cf. Theorem 1.2).

Lemma 3.4 Assume the hypotheses of Theorem 1.4. For the X ′ and τ : X ′ ��� Y defined
above, it is impossible that dim Y = 0.

Proof Consider the case dim Y = 0. Then K X ′ ≡ 0 (numerically zero). Since X is hyper-
bolic, X and hence X ′ are non-uniruled. By Lemma 2.4, X ′ has at worst canonical singulari-
ties, and K X ′ ∼Q 0; the same hold for X , noting that K X = f ′∗K X ′ ∼Q 0 (cf. [11, Corollary
1.5]).

We claim that X is a Calabi–Yau variety. We only need to show that the irregularity
q(X) = 0. Suppose the contrary that q(X) > 0. Then, by Lemma 2.3, X is covered by
images of abelian varieties of dimension equal to q(X). This contradicts the hyperbolicity of
X . Therefore, q(X) = 0. Hence X is a Calabi–Yau variety. This contradicts the hyperbolicity
of X , Remark 1.8 and the assumed Conjecture 1.1. This proves Lemma 3.4. �	
Lemma 3.5 Assume the hypotheses of Theorem 1.4. For the X ′ and τ : X ′ ��� Y defined
preceding Lemma 3.4, it is impossible that 1 ≤ dim Y < dim X ′.

Proof Consider the case 1 ≤ dim Y < dim X ′. A general fibre F of τ : X ′ ��� Y satisfies
1 ≤ dim F = dim X − dim Y < dim X . Also K F ≡ 0. Since X and hence the general fibre
F of τ : X ′ ��� Y are not covered by rational curves by the hyperbolicity of X, F is not
uniruled. By Lemma 2.4, F has at worst canonical singularities and K F ∼Q 0.

Factor the birational map X ′ ⊃ F → f ′(F) ⊂ X as F → Fn → f ′(F), where F → Fn

is a birational morphism and Fn → f ′(F) is the normalization. By [11, Corollary 1.5], Fn

has only canonical singularities and K Fn ∼Q 0.
If q(Fn) > 0, by Lemma 2.3, Fn and hence f ′(F) and X are covered by images of abelian

varieties of dimension equal to q(Fn), contradicting the hyperbolicity of X . Thus q(Fn) = 0,
so Fn is a Calabi–Yau variety. By the assumed Conjecture 1.1 and Remark 1.8, there is a
non-constant holomorphic map V → Fn from an abelian variety V , which, combined with
the (birational and) finite map Fn → f ′(F), produces a non-constant holomorphic map
V → X , contradicting the hyperbolicity of X . This proves Lemma 3.5. �	
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By the two lemmas above, we are left with the case dim Y = dim X ′. Namely, the nef
dimension n(K X ′) = dim X ′. By the assumed abundance Conjecture 1.3 (1), K X ′ is semi-
ample. Hence �|sK X ′ |, for some s > 0, is a morphism onto a normal variety Xc, with
connected fibres, and there is an ample Q-divisor Hc on Xc such that K X ′ ∼Q �∗|sK X ′ | Hc.
Clearly, this map which is now holomorphic, is (up to birational equivalence) a nef reduction
of K X ′ and also denoted as τ : X ′ → Xc. In other words, Y = Xc, K X ′ is big (and nef),
and τ is birational. Pushing forward the equality K X ′ ∼Q τ ∗ Hc by τ∗, we get K Xc ∼Q Hc

and hence K X ′ ∼Q τ ∗K Xc (so that τ is a crepant birational morphism) with K Xc an ample
Q-divisor. Since X ′ is klt and τ is crepant, X is also klt. By [6, Corollary 1.5], every fibre of
τ : X ′ → Xc is rationally chain connected and hence is contracted to a point by the birational
morphism f ′ : X ′ → X due to the hyperbolicity of X and the absence of rational curves on
X . Thus f ′ factors through τ , i.e., there is a birational morphism fc : Xc → X such that
f ′ = fc ◦ τ (cf. [8, Proof of Lemma 14]). In summary, we have the following commutative
diagram:

X X Xc

X X X

σ φ|sKX |

f f fc

Pushing forward the equality (2) above by τ∗, we get

f ∗
c K X = K Xc + Ec.

Here Ec := τ∗E ′ ≥ τ∗E f ′ = E fc and E fc is the reduced fc-exceptional divisor. So the
image fc(Ec) is contained in Nklt(X), the non-klt locus of X , which is a Zariski-closed
subset of X consisting of exactly the non-klt points of X .

This proves Theorem 1.4; see Remark 1.8 (1) for the final part.
If we do not assume Conjecture 1.1 in Theorem 1.4, the argument above actually shows:

Remark 3.6 Let X be a Q-Gorenstein normal projective variety of dimension n which is
algebraic Lang hyperbolic. Assume either n ≤ 3 or Conjecture 1.3 (1) holds for all varieties
of dimension ≤ n. Then either K X is ample at smooth points and klt points of X as detailed
in Theorem 1.4; or X is a Calabi–Yau variety of dimension n ≥ 3; or X is covered by
subvarieties {F ′

t } whose normalizations are Calabi–Yau varieties of the same dimension k
with 3 ≤ k < n.

Since Conjecture 1.1 is true for surfaces, and the abundance Conjecture 1.3 is known in
dimension ≤ 3, we can and will soon prove the following consequences of Theorem 1.4.

Corollary 3.7 Let X be a Q-Gorenstein normal projective surface which is algebraic Lang
hyperbolic. Then X is of general type and the canonical divisor K X is ample.

We can not remove the second alternative below even when X is smooth, because, for
instance, we do not know, at the moment, the non-hyperbolicity of a general smooth Calabi–
Yau n-fold and a Hyperkähler n-fold when n > 2.

Corollary 3.8 Let X be a Q-Gorenstein normal projective threefold which is algebraic Lang
hyperbolic. Then either the canonical divisor K X is ample at the smooth points and klt points
of X; or X is a Calabi–Yau variety.
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3.9. Proof of Corollaries 3.7 and 3.8

We use the fact that Conjecture 1.1 holds in dimension ≤2, and both Conjectures 1.3 (1) and
(2) (even without the extra Hyp(A)) hold in dimension ≤3 (cf. Proposition 2.2).

Corollary 3.7 is a consequence of Theorem 1.4 and the observation: if fc : Xc → X is
a birational morphism between Q-Gorenstein normal projective surfaces and K Xc is ample,
then K X = ( fc)∗K Xc is also ample, by using Nakai–Moishezon ampleness criterion and the
projection formula.

For Corollary 3.8, we follow the argument for the proof of Theorem 1.4. Thus we have to
consider Cases (I) dim Y = 0, (II) 0 < dim Y < dim X and (III) dim Y = dim X . In Case (I),
X has been proven to be a Calabi–Yau variety of dimension three; for this purpose, Conjecture
1.1 was not used. In Case (II), a contradiction has been deduced utilizing Conjecture 1.1 in
dimension ≤2. In Case (III), using the proven abundance conjecture in dimension 3, we get
the first possibility in the conclusion part of Corollary 3.8. This proves Corollary 3.8.

3.10. Proof of Theorems 1.5 and 3.1

If we let g : X → W in Theorem 3.1 be the identity map idX : X → X , we get Theorem
1.5; we also use the observation that a birational finite morphism from a normal variety like
Xm or F in Theorem 3.1 is just the normalization map. Thus we have only to (and are going
to) prove Theorem 3.1.

We may assume Conjecture 1.3 (2) (the case without the extra Hyp(A) is similar and
indeed easier); for varieties of dimension ≤ 3, this assumption is automatically satisfied by
Proposition 2.2.

Theorem 3.1 is clearly true when dim X = 1. So we may assume that n = dim X ≥ 2.
We apply Lemma 2.6 and let the birational map X ��� Xm over W and gm : Xm → W be
as there, where Xm has only canonical singularities and K Xm is relatively ample over W and
is also nef. Since g : X → W is generically finite, so is gm : Xm → W .

Let τ : Xm ��� Y be a nef reduction of the nef divisor K Xm . For our τ : Xm ��� Y and
gm : Xm → W here (with W algebraic Lang hyperbolic) we closely follow the argument of
Theorem 1.4 for τ : X ′ ��� Y and f ′ : X ′ → X there (with X algebraic Lang hyperbolic),
but we do not assume Conjecture 1.1 here.

Suppose that dim Y = 0, i.e., n(K Xm ) = 0, or K Xm ≡ 0. Now Lemma 3.4 is applicable
under the current weaker assumption. Precisely, due to the lack of the assumption of Con-
jecture 1.1 here, instead of the contradiction there, we have that Xm is a Calabi–Yau variety.
The relative ampleness of K Xm over W implies that gm : Xm → gm(Xm) = g(X) ⊆ W is a
finite morphism. This and the hyperbolicity of W imply that Xm is hyperbolic. Further, Xm

is absolutely minimal (cf. Remark 1.8). By Proposition 2.2, dim Xm ≥ 3. So Case 3.1 (2)
occurs.

Suppose that 1 ≤ n(K Xm ) < n. Denote by F a general fibre of τ : Xm ��� Y . For
this case, Lemma 3.5 is applicable even under the current weaker assumption. So F is
a Calabi–Yau variety. The map (gm)|F : F → gm(F) ⊂ gm(Xm) = g(X) ⊆ W is a
finite morphism, otherwise, a curve C in F is gm-exceptional and hence K Xm .C > 0, by
the relative ampleness of K Xm over W , contradicting the numerical triviality of (K Xm )|F
entailing K Xm .C = 0. This and the hyperbolicity of W imply that F is hyperbolic. Further,
F is absolutely minimal (cf. Remark 1.8). By Proposition 2.2, dim F ≥ 3. So Case 3.1
(3) occurs. Indeed, for the final part, the well known Iitaka addition for Kodaira dimension
implies that κ(X) ≤ κ(F) + dim Y = dim Y = n − dim F ≤ n − 3.

Suppose that n(K Xm ) = n. Then K Xm is semi-ample by Conjecture 1.3 (2) (cf. Remark
2.7). Hence K Xm is nef and big, and there is a birational morphism γ : Xm → Z onto a
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normal variety Z such that K Xm ∼Q γ ∗ H for an ample Q-divisor H on Z . Hence both
Xm and X are of general type. Since γ is birational, the projection formula implies that
K Z = γ∗K Xm ∼Q H . Hence K Z is ample and K Xm ∼Q γ ∗K Z . Thus Z , like Xm , has
only canonical singularities. If γ is not an isomorphism, then it has a positive-dimensional
fibre. By [6, Corollary 1.5], every fibre of γ is rationally chain connected. So we may
assume that γ contracts a rational curve C on Xm to a point on Z . Since W is hyperbolic,
gm : Xm → X ⊆ W contracts the rational curve C on Xm to a point on W . This and
C.K Xm = C.γ ∗K Z = γ∗C.K Z = 0 contradict the relative ampleness of K Xm over W . So
γ : Xm → Z is an isomorphism. Hence K Xm is ample. Thus Case 3.1 (1) occurs. This proves
Theorem 3.1.

3.11. Proof of Corollary 1.6

For the assertion (1), we apply Theorem 3.1 to the inclusion map g : X ↪→ W for a projective
subvariety X of W . By Theorem 3.1, either Case 3.1 (1) occurs and hence X is of general
type, or Case 3.1 (2) or (3) occurs. We use the the notation there: birational morphism
gm : Xm → X , etc. If Case 3.1 (2) (resp. (3)) occurs, by the assumed Conjecture 1.1 and
Remark 1.8, there is a non-constant holomorphic map from an abelian variety V to Xm

(resp. to F), thus, combined with the (birational and) finite morphism

gm : Xm → gm(Xm) = g(X) = X ⊆ W

(resp. (gm)|F : F → gm(F) ⊂ gm(Xm) = g(X) = X ⊆ W ), this map gives a non-
constant holomorphic map from V to W , contradicting the hyperbolicity of W . This proves
the assertion (1).

For the assertion (2), the case dim W = 1 is clear. We may assume that dim W ≥ 2. We
apply Theorem 3.1 and let g : X → W be the identity map idX : X → X , with W = X .
Hence there is a birational morphism gm : Xm → X such that 3.1 (1), (2) or (3) occurs. We
use the following known fact (cf. [9, Lemma 8.1], or Lemma 2.3):

Fact 3.12 If a projective variety V has only canonical (or more generally rational) sin-
gularities, then the albanese map albV : V → Alb(V ) is a well defined morphism and
dim Alb(V ) = q(V ) = h1(V, OV ).

In Case 3.1 (1), X is of general type.
In Case 3.1 (2), the irregularity q(Xm) = 0, and hence Alb(X) = Alb(Xm) is a point.

Thus X itself is the fibre of albX . Hence dim X ≤2, by the assumption. Thus dim X = 2, by
the extra assumption that X = W has dimension at least two. By Proposition 2.2, either X has
infinitely many rational or elliptic curves, or it is birational to an abelian surface (and hence
q(Xm) = 2), or it is of general type. Since X = W is hyperbolic and q(Xm) = 0, X = W is
of general type.

In Case 3.1 (3), by the above fact, albXm : Xm → Alb(Xm) = Alb(X) is a well defined
morphism. Since the general fibre F of the nef reduction map τ : Xm ��� Y which is almost
holomorphic, is a Calabi–Yau variety, we have q(F) = 0, so Alb(F) is a point. By the
universality of the albanese map, the composition F ↪→ Xm → Alb(Xm) factors through
F → Alb(F). So albXm : Xm → Alb(Xm) maps F to a point. Hence gm(F) ⊂ X is

contained in a general fibre G of albX : X
g−1

m��� Xm → Alb(Xm) = Alb(X). Indeed, albX

factors as

X
g−1

m��� Xm
τ��� Y

η
��� Alb(Xm) = Alb(X)
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for some rational map η, by applying [8, Lemma 14] to the domain of the almost holomorphic
map τ . Now dim G ≥ dim gm(F) = dim F ≥3, with the last inequality shown in Theorem
3.1. This contradicts the assumption. This proves Corollary 1.6.

3.13. Proof of Proposition 1.7 and Theorem 3.2

We prove Theorem 3.2. We first assume that X has maximal albanese dimension. Since
abundance conjecture holds for varieties with maximal albanese dimension (cf. Proposition
2.2), we can apply Theorem 1.5 to our X . So Case 1.5 (1), (2) or (3) occurs. We use the notation
gm : Xm → X there, where K Xm is relatively ample over X , and is also nef. By [5, Theorem
3.6], K Xm is semi-ample. So there exist a holomorphic map τ := �|sK Xm | : Xm → Y onto
a normal variety Y , for some s > 0, and an ample divisor H on Y such that K Xm ∼Q τ ∗ H .
We can take this τ as a nef reduction of K Xm in Theorem 1.5. Let F be a general fibre of τ .

If Case 1.5 (1) occurs, we are in Case 3.2 (1).
Consider Case 1.5 (3). Then (gm)|F : F → gm(F) is the normalization map, and F ⊆ Xm

is a Calabi–Yau variety of dimension ≥ 3. Since X and hence Xm have maximal albanese
dimension, i.e., dim a(Xm) = dim Xm , we may assume that the restriction (albXm )|F to a
general fibre F of τ , is a generically finite morphism onto the image Fa ⊆ Alb(X). It is known
that Fa , being a subvariety of an abelian variety, satisfies κ(Fa) ≥ 0 with equality holding
only when Fa is the translation of a subtorus. Now 0 = κ(F) ≥ κ(Fa) ≥ 0. Thus κ(Fa) = 0
and hence Fa is an abelian variety. Therefore, 0 = q(F) ≥q(Fa) = dim Fa = dim F ≥ 3.
This is a contradiction.

If Case 1.5 (2) occurs, we get a similar contradiction by the arguments above, with F = Xm .
Next we assume that κ(X) ≥ n − 3. Let IX : X ��� Y be the Iitaka fibration with F a

very general fibre. So κ(F) = 0 and dim F = dim X − κ(X) ≤3 by the assumption. Since
F is a subvariety of the hyperbolic variety X , it is also hyperbolic.

If dim F = 0, then X is of general type. Since abundance conjecture holds for varieties
of general type (cf. Proposition 2.2), we can apply Theorem 1.5 to our X , and only Case 1.5
(1) there occurs. This fits Case 3.2 (1).

Consider the case dim F ∈ {1, 2, 3}. Applying Theorem 1.5 to the hyperbolic F and
noting that κ(F) = 0 and 1 ≤ dim F ≤ 3, only Case 1.5 (2) there occurs for F : the
normalization of F is an absolutely minimal Calabi–Yau variety of dimension three, so
κ(X) = n − dim F = n − 3; also these F cover X . This fits Case 3.2 (2).

Finally, we assume that dim a(X) ≥ n − 3 and κ(a(X)) ≥ n − 4. By the results obtained
so far, we may add the extra assumptions: n > dim a(X) and κ(X) ≤ n − 4. Let G be an
irreducible component of a general fibre of the albanese map albX : X ��� a(X) ⊆ Alb(X).
Then 1 ≤ g := dim G = dim X − dim a(X) ≤3. The hyperbolicity of X implies that X and
hence G are not uniruled. So G has a good minimal model in the sense of Kawamata [10], by
the abundance theorem in dimension ≤ 3 (cf. [12, §3.13] or Proposition 2.2). In particular,
κ(G) ≥ 0. By Iitaka’s Cn,n−g proved in [9, Corollary 1.2], κ(X) ≥ κ(G)+κ(a(X)) ≥ 0+0.
By the assumptions,

n − 4 ≥ κ(X) ≥ κ(G) + κ(a(X)) ≥ κ(G) + n − 4 ≥ n − 4.

Thus the inequalities above all become equalities. In particular, κ(G) = 0 and κ(X) = n −4.
Since κ(X) ≥ 0, we have n ≥ 4. As in the previous paragraph, applying Theorem 1.5 to G,
the normalization of G is an absolutely minimal Calabi–Yau variety of dimension three; also
these G cover X . This fits Case 3.2 (2).

This proves Theorem 3.2.
Now we prove Proposition 1.7. Set n := dim X . Each of the three conditions in Proposition

1.7 implies one of the first two conditions in Theorem 3.2. Hence we can apply Theorem
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3.2. We may assume that Case 3.2 (2) occurs. Thus X is covered by subvarieties Ft whose
normalizations Fn

t are absolutely minimal Calabi–Yau varieties of dimension three. The
algebraic Lang hyperbolicity of X implies the same for Ft and also Fn

t . This contradicts the
assumed Conjecture 1.1 in dimension three (cf. Remark 1.8).

This proves Proposition 1.7.
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