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Abstract We discuss the existence of the angle between two curves in Teichmüller spaces
and show that, in any infinite dimensional Teichmüller space, there exist infinitely many
geodesic triangles each of which has the same three vertices and satisfies the property that
its three sides have the same and arbitrarily given length while its three angles are equal to
any given three possibly different numbers from 0 to π . This implies that the sum of three
angles of a geodesic triangle may be equal to any given number from 0 to 3π in an infinite
dimensional Teichmüller space.
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1 Introduction

The notion of geodesic segment plays an important role in the study of the geometry of a
metric space. Recall that a geodesic segment in a metric space is a continuous curve such that
for any subarc its length is equal to the distance between its two endpoints. It is well known
that there always exists a geodesic segment between two points in any Teichmüller space (see
[4]). However, there are some essential differences of the geodesic geometry between the
finite and infinite dimensional Teichmüller spaces (see [1,2,8–11,18,19]). By Teichmüller’s
theorem, there exists precisely one geodesic segment between two points in finite dimensional
Teichmüller spaces, while there exist infinitely many geodesic segments joining certain pair
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182 Y. Hu, Y. Shen

of points in any infinite dimensional Teichmüller space. The primary purpose of the paper is
to explore the further geodesic property of infinite dimensional Teichmüller spaces.

It is known that the inner product on the tangent space to a Riemann manifold permits
well-defined angle between two geodesic segments. Since the Teichmüller distance is induced
by a Finsler structure (see [4,15,17]), it is not very clear how to define the angle between two
geodesic segments in a Teichmüller space. Recently, following an idea of Professor Li, Yao
[20] gave an approach to define the angle between two geodesic segments in a Teichmüller
space, and showed that such an angle really exists in a finite dimensional Teichmüller space.
Later, Li and Qi [12] gave a somewhat complicated condition under which there exists the
angle between two geodesic segments (of special form) in an infinite dimensional Teichmüller
space.

In this paper, we will continue to discuss the existence of the angle between two geodesic
segments in (infinite dimensional) Teichmüller spaces. We first establish a variation formula
for the Teichmüller distance, from which it is proved that the angle between two smooth
geodesic segments exists in general. We then study the geometry of Teichmüller spaces from
the point of angle. We show that in any infinite dimensional Teichmüller space, there exist
infinitely many geodesic triangles each of which has the same three vertices and satisfies
the property that its three sides have the same and arbitrarily given length while its three
angles are equal to any given three possibly different numbers from 0 to π . This implies that
the sum of three angles of a geodesic triangle may be equal to any given number from 0 to
3π in an infinite dimensional Teichmüller space. During the proof, we also find out that in
any infinite dimensional Teichmüller space there do exist infinitely many pairs of geodesic
segments between each pair of which the angle does not exist. Consequently, in the view of
angle, the geometry of an infinite dimensional Teichmüller space is largely different from
the standard Euclidean or hyperbolic geometry.

2 Preliminaries

In this section, we will recall some basic definitions and notations from Teichmüller theory.
For more details see the books [3–5].

In what follows, R will always denote a hyperbolic Riemann surface covered by the unit
disk in the complex plane. We denote by M(R) the unit ball of the space L∞(R) of all
essentially bounded Beltrami differentials on R. We also denote by SQ(R) the unit sphere
of the space Q(R) of all integrable holomorphic quadratic differentials on R.

For a given μ ∈ M(R), denote by f μ the quasiconformal mapping with domain R
and Beltrami coefficient μ, which is uniquely determined up to a conformal mapping on
Rμ = f μ(R). Two elements μ and ν in M(R) are equivalent, which is denoted by μ ∼ ν,
if f μ and f ν are Teichmüller equivalent, meaning as usual that there exists a conformal
mapping g from Rμ onto Rν such that f ν and g ◦ f μ are homotopic (mod ∂R). Then
T (R) = M(R)/ ∼ is the Teichmüller space of R. Let� = �R : M(R) → T (R) denote the
canonical projection from M(R) to T (R) so that�(μ) is the equivalence [μ].�(0) = [0] is
called the base point of T (R). It is known that T (R) is finite dimensional precisely when R
is of finite type, namely, R is a compact Riemann surface with possibly finitely many points
removed. It is also known that T (R) has a unique complex manifold structure such that� is
a holomorphic split submersion.

For any Beltrami coefficient μ ∈ M(R), define

k0(μ) = inf{‖ν‖∞ : ν ∼ μ} (2.1)
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and set

K0(μ) = 1 + k0(μ)

1 − k0(μ)
. (2.2)

Then the Teichmüller distance τ = τR between points �(μ1) and �(μ2) is defined as

τ(�(μ1),�(μ2)) = 1

2
log K0(μ), (2.3)

where μ is the Beltrami coefficient of the mapping f μ1 ◦ ( f μ2)−1. It is known that the
Teichmüller distance is compatible with the complex structure on T (R), namely, it is the
Kobayashi metric on T (R). We will need an important fact about the Teichmüller distance:
it is preserved under a so-called allowable map. Recall that a Beltrami coefficient μ in M(R)
induces an allowable map Aμ which maps T (R) biholomorphically onto T (Rμ) and sends
[μ] to the base point in T (Rμ).

We say that μ ∈ M(R) is extremal if ‖μ‖∞ = k0(μ). Then we also say that f μ is
extremal. It is well known (see [6,7,16] or Chapter 6 in [4]) that μ is extremal if and only if
μ satisfies the Hamilton-Krushkal condition, that is, there exists a sequence (φn) in SQ(R)
such that

lim
n→∞ �

∫∫

R

μφndxdy = ‖μ‖∞. (2.4)

Such a sequence (φn) is called a Hamilton sequence for μ. It is called degenerate if φn → 0
locally uniformly in R.

We also need a fundamental inequality of Reich-Strebel (see [16] or Chapter 6 in [4]). We
first introduce some notations. For any μ ∈ M(R), set

I (μ) = IR(μ) = sup
φ∈SQ(R)

∣∣∣∣∣∣�
∫∫

R

μφ

1 − |μ|2 dxdy

∣∣∣∣∣∣ , (2.5)

H(μ) = HR(μ) = sup
φ∈SQ(R)

∣∣∣∣∣∣�
∫∫

R

μφdxdy

∣∣∣∣∣∣ , (2.6)

J (μ) = JR(μ) = sup
φ∈SQ(R)

∫∫

R

|μ|2|φ|
1 − |μ|2 dxdy. (2.7)

Then, it holds that

k0(μ)

1 − k0(μ)
− J (μ) ≤ I (μ) ≤ k0(μ)

1 + k0(μ)
+ J (μ). (2.8)

As stated in Sect. 1, the Teichmüller distance is induced by a Finsler structure (see [4,15,17]).
For μ ∈ M(R) and ν ∈ L∞(R), the Finsler structure F = FR is

F(�(μ),�′(μ)ν)= inf

{∥∥∥∥ ν̃

1−|μ|2
∥∥∥∥∞

: ν̃ ∈ L∞(R) with �′(μ)ν̃ = �′(μ)ν
}
. (2.9)
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From (2.8), it can be deduced that

F(�(μ),�′(μ)ν) = HRμ

((
ν

1 − |μ|2 · ∂z f μ

∂z f μ

)
◦ ( f μ)−1

)

= sup
ψ∈SQ(Rμ)

∣∣∣∣∣∣�
∫∫

Rμ

ψ

[(
ν

1 − |μ|2 · ∂z f μ

∂z f μ

)
◦ ( f μ)−1

]
dudv

∣∣∣∣∣∣ . (2.10)

In particular, F(�(0),�′(0)ν) = H(ν). It is known that the Finsler structure F is continuous
on the tangent bundle of the Teichmüller space T (R).

3 A variation formula

Let μ(t) be a continuous curve from [0, t0] into M(R). We say μ(t) is differentiable at 0
if there exist some μ ∈ L∞(R) such that μ(t) = μ(0) + tμ + o(t) as t → 0+, or more
precisely,

lim
t→0+

∥∥∥∥μ(t)− μ(0)

t
− μ

∥∥∥∥∞
= 0. (3.1)

We call μ the derivative of μ(t) at 0, and denote it by μ′(0).

Theorem 3.1 Let μ(t) and ν(t) be two continuous curves from [0, t0] into M(R) which are
differentiable at 0 and satisfy μ(0) = ν(0). Then it holds that

τ(�(μ(t)),�(ν(t))) = t F(�(μ(0)),�′(μ(0))(μ′(0)− ν′(0)))+ o(t), t → 0+.
(3.2)

The following corollary is an immediate consequence of Theorem 3.1. When R is a
compact Riemann surface, it was proved by Yao [20] by a lengthy computation.

Corollary 3.1 For any two Beltrami differentials μ and ν in L∞(R), it holds that

τ(�(tμ),�(tν)) = t H(μ− ν)+ o(t), t → 0+.

To prove Theorem 3.1, we need the following lemma, which is a direct consequence of
the fundamental inequality (2.8).

Lemma 3.1 Suppose Rt is a Riemann surface which may depend on t ∈ [0, t0]. If η(t) ∈
M(Rt ) satisfies η(t) = tδ(t)+ o(t) as t → 0+, where δ(t) ∈ L∞(Rt ) satisfies δ(t) = O(1)
as t → 0+, then it holds that

τRt (�Rt (0),�Rt (η(t))) = t HRt (δ(t))+ o(t), t → 0+. (3.3)

Proof By definition, τRt (�Rt (0),�Rt (η(t))) = (1 + o(1))k0(η(t)) as t → 0+. Now we
replaceμ by η(t) in the inequality (2.8) on the Riemann surface Rt . Clearly, IRt (η(t)) differs
from HRt (η(t)) by a term of order t2, both k0(η(t))/(1−k0(η(t))) and k0(η(t))/(1+k0(η(t)))
differ from k0(η(t)) also by a term of order t2, while JRt (η(t)) is a term of ordered t2. We
conclude that k0(η(t)) = HRt (η(t))+ o(t) as t → 0+ and (3.3) follows.
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Proof of Theorem 3.1 Let η(t) be the Beltrami coefficient of f μ(t) ◦ ( f ν(t))−1, namely,

η(t) =
(
μ(t)− ν(t)

1 − ν(t)μ(t)
· ∂z f ν(t)

∂z f ν(t)

)
◦ ( f ν(t))−1.

By the differentiability of μ(t) and ν(t), we obtain

μ(t)− ν(t)

1 − ν(t)μ(t)
= t (μ′(0)− ν′(0))

1 − |ν(t)|2 + o(t), t → 0+.

Clearly, with Rt = Rν(t), η(t) ∈ M(Rt ) satisfies the assumption of Lemma 3.1 with

δ(t) =
(
(μ′(0)− ν′(0))

1 − |ν(t)|2 · ∂z f ν(t)

∂z f ν(t)

)
◦ ( f ν(t))−1.

By Lemma 3.1,

τRt (�Rt (0),�Rt (η(t))) = t HRt (δ(t))+ o(t), t → 0+.

But by (2.10) and the continuity of the Finsler structure F , as t → 0+ it holds that

HRt (δ(t)) = F(�(ν(t)),�′(ν(t))(μ′(0)− ν′(0)))
→ F(�(μ(0)),�′(μ(0))(μ′(0)− ν′(0))).

Thus,

τRt (�Rt (0),�Rt (η(t))) = t F(�(μ(0)),�′(μ(0))(μ′(0)− ν′(0)))+ o(t), t → 0+.

Finally, τ(�(μ(t)),�(ν(t))) = τRt (�Rt (0),�Rt (η(t))) by the distance-preserving property
of the allowable map Aν(t) : T (R) → T (Rt ) and (3.4) follows.

4 Existence of angle

We first introduce the notion of the angle between two joint curves in a general metric space
(X, d). Let α and β be two continuous curves in X with one common endpoint p. For any
r > 0, we choose x(r) ∈ α and y(r) ∈ β such that the length of the sub-curve of α between
p and x(r) is the same as that of the sub-curve of β between p and y(r) and equal to r . Then
the angle at p between α and β, denoted by 〈α, β〉p , is defined as the number θ ∈ [0, π] by
the equation

2 sin
θ

2
= lim

r→0

d(x(r), y(r))

r
, (4.1)

if the limit exists. Notice that when both α and β are geodesic segments in a Teichmüller
space, the notion of the angle is reduced to the one introduced by Yao [20] and Li and Qi
[12]. A trivial case is when α ≡ β in a neighborhood of p, then the angle at p between α
and β exists and equals 0. Another trivial case is when α ∪ β is geodesic at p, namely, there
exists some closed neighborhood U (p) of p such that (α∪β)∩U (p) is a geodesic segment.
Then, it is clear that the angle at p between α and β exists and equals π . In what follows
we always assume that α �= β in a punctured neighborhood of p, and α ∪ β is not geodesic
at p, and call these two curves are distinct. As will be seen in the next section, the angle
between two distinct geodesic segments in an infinite dimensional Teichmüller space may
still be equal to 0 or π , however.
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The following result, which follows directly from Theorem 3.1, gives a general condition
under which there exists the angle between two geodesic segments in a Teichmüller space.

Theorem 4.1 Let α and β be two geodesic segments in T (R) given by the equations α =
�(μ(t)) and β = �(ν(t)), t ∈ [0, t0] (t0 < 1), respectively. Suppose both μ(t) and ν(t) are
continuous from [0, t0] into M(R), differentiable at 0 with μ(0) = ν(0), and

τ(�(μ(0)),�(μ(t))) = τ(�(ν(0)),�(ν(t))) = 1

2
log

1 + t

1 − t
, t ∈ [0, t0]. (4.2)

Then the angle at �(μ(0)) between α and β exists, and

2 sin
〈α, β〉�(μ(0))

2
= F(�(μ(0)),�′(μ(0))(μ′(0)− ν′(0))). (4.3)

We consider a special case of Theorem 4.1. For μ0, μ in M(R), we consider the curve

αμ0,μ(t) = �

(
δ(μ0, μ)μ0(1 − μ̄0μ)+ t (μ− μ0)

δ(μ0, μ)(1 − μ̄0μ)+ tμ̄0(μ− μ0)

)
, t ∈ [0, δ(μ0, μ)], (4.4)

where

δ(μ0, μ) =
∥∥∥∥ μ− μ0

1 − μ̄0μ

∥∥∥∥∞
. (4.5)

We set αμ = α0,μ for simplicity. When f μ ◦ ( f μ0)−1 is extremal, αμ0,μ is a geodesic
segment, and

τ([μ0], [αμ0,μ(t)]) = 1

2
log

1 + t

1 − t
.

We call it a standard geodesic segment joining [μ0] to [μ]. By the well-known theorem
of Teichmüller, a geodesic segment α beginning at the base point in a finite dimensional
Teichmüller space must be a standard, actually, a Teichmüller geodesic segment, that is,
α = αμ for a so-called Teichmüller differential μ = k|φ|/φ with 0 < k < 1, φ ∈ SQ(R).
While in an infinite dimensional Teichmüller space, a geodesic segment need not be standard.

The following corollary follows immediately from Theorem 4.1. It provides an affirmative
answer to Problem A posed by Li-Qi [12].

Corollary 4.1 Let μ0, μ1 and μ2 be three Beltrami coefficients in M(R) such that f μ1 ◦
( f μ0)−1 and f μ2 ◦( f μ0)−1 are extremal. Then there exists the angle at the point [μ0] between
the two standard geodesic segments αμ0,μ1 and αμ0,μ2 , and

2 sin
〈αμ0,μ1 , αμ0,μ2〉[μ0]

2

= F

(
�(μ0),�

′(μ0)

(
(μ1 − μ0)(1 − |μ0|2)
δ(μ0, μ1)(1 − μ̄0μ1)

− (μ2 − μ0)(1 − |μ0|2)
δ(μ0, μ2)(1 − μ̄0μ2)

))
. (4.6)

In particular, when μ0 = 0,

2 sin
〈αμ1 , αμ2〉[0]

2
= H

(
μ1

‖μ1‖∞
− μ2

‖μ2‖∞

)
. (4.7)

In the next section, we will see that in any infinite dimensional Teichmüller space there do
exist infinitely many pairs of geodesic segments (one of which even may be a Teichmüller
geodesic segment) between each pair of which the angle does not exist.

123



On angles in Teichmüller spaces 187

5 An example

In Sect. 4, we have introduced the notion of the angle between two curves in Teichmüller
spaces and show that such defined angle exists in a much general situation. A natural question
is to determine whether so-defined angle behaves like that under the standard Euclidean or
hyperbolic geometry. Recall that a geodesic triangle � in a general metric space consists of
three distinct geodesic segments, called the sides of�, any two of which have precisely one
common endpoint. In this section, we will prove the following result.

Theorem 5.1 Let R be a Riemann surface of infinite type so that T (R) is infinite dimensional.
Given any four numbers l and θ1, θ2, θ3 with 0 < l < ∞ and 0 ≤ θ j ≤ π for j = 1, 2, 3, there
exist infinitely many geodesic triangles in T (R) each of which has the same three vertices
and a common side and satisfies the property that its three sides have the same length l while
its three angles are equal to θ1, θ2, θ3 respectively.

Theorem 5.1 implies that the sum of three angles of a geodesic triangle may be equal
to any given number from 0 to 3π in an infinite dimensional Teichmüller space. Thus, the
geometry of an infinite dimensional Teichmüller space is largely different from the standard
Euclidean or hyperbolic geometry in the view of angle. This also provides a negative answer
to Problem B posed by Li-Qi [12] in the infinite dimensional case. During the proof of
Theorem 5.1, we will find out that there do not exist the angles between infinitely many pairs
of geodesic segments (one of which even may be a Teichmüller geodesic segment) in any
infinite dimensional Teichmüller space, as stated at the end of Sect. 4 (see Lemma 5.1 below).

Proof of Theorem 5.1 Let R be a given Riemann surface of infinite type so that T (R) is
infinite dimensional. Choose an extremal Beltrami coefficient μ in M(R) which satisfies
|μ| ≡ k = e2l−1

e2l+1
< 1 and possess a degenerating Hamilton sequence (φn). It is known there

even exist infinitely many Teichmüller differentials each of which possess a degenerating
Hamilton sequence (see [13]).

Since (φn) is degenerating, we can always choose a sequence of compact subsets Dn of
R, and a subsequence of (φn) which we still denote by (φn), such that

Dn−1 ⊂ Dn, R = ∪∞
n=1 Dn, (5.1)

and ∫∫

Dn\Dn−1

|φn |dxdy = 1 + o(1), n → ∞. (5.2)

We need to consider the inverse map ( f μ)−1, and denote by μ∗ its Beltrami coefficient.
Since μ is extremal with a degenerating Hamilton sequence, μ∗ is also extremal, and has a
degenerating Hamilton sequence, which we denote by (φ∗

n ). Set D∗
n = f μ(Dn). Then (D∗

n)

is a sequence of compact subsets of Rμ. We now choose subsequences of (φ∗
n ) and (D∗

n),
which we still denote by (φ∗

n ) and (D∗
n), such that

D∗
n−1 ⊂ D∗

n , Rμ = ∪∞
n=1 D∗

n , (5.3)

and ∫∫

D∗
n\D∗

n−1

|φ∗
n |dxdy = 1 + o(1), n → ∞. (5.4)
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We list two basic properties of these constructions. Set R1 = ∪∞
n=0(D2n+1 \ D2n) (D0 =

∅), R2 = R \ R1, Rμ1 = ∪∞
n=0(D

∗
2n+1 \ D∗

2n) (D
∗
0 = ∅), Rμ2 = Rμ \ Rμ1 . Let χ denote the

characteristic function of a set. Then for any two numbers c1 and c2, we have the following
two statements:

HR((c1χR1 + c2χR2)μ) = ‖(c1χR1 + c2χR2)μ‖∞ = k max(|c1|, |c2|). (P1)

HRμ((c1χRμ1
+ c2χRμ2

)μ∗) = ‖(c1χRμ1
+ c2χRμ2

)μ∗‖∞ = k max(|c1|, |c2|). (P2)

Step 1 Constructing a geodesic segment between �(μ) and �(χR1μ)

For simplicity, set μ1 = χR1μ. (P1) implies that μ1 is extremal, and ‖μ1‖∞ = k. To
construct a geodesic segment between [μ] and [μ1], we adapt some discussion from Li [10]
and the second-named author [18]. Define μt in M(R) joining μ to μ1 as follows:

μt =
(
σ(t)χR1 + k − t

k(1 − kt)
χR2

)
μ, (5.5)

where σ(t) is a continuous function of t in [0, k] satisfying the following condition:

max

{
k − t

k(1 − kt)
,

t

k

}
≤ σ(t) ≤ min

{
k + t

k(1 + kt)
,

2k − (1 + k2)t

k(1 + k2 − 2kt)

}
. (5.6)

Clearly, ‖μt‖∞ = σ(t)k. Using (P1) again, we see that each μt is extremal. We first prove
that �(μt ), t ∈ [0, k], is a geodesic segment between [μ] and [μ1].

In fact, if we set ft = f μt , then the complex dilatation μ̃t of ft ◦ f −1
0 is

μ̃t =
(
μt − μ

1 − μ̄μt
· ∂z f0

∂z f0

)
◦ f −1

0 =
(

1 − σ(t)

1 − k2σ(t)
χRμ1

+ t

k
χRμ2

)
μ∗. (5.7)

A direct but tedious computation from (5.6) yields ‖μ̃t‖∞ = t. On the other hand, by (P2)

we conclude that μ̃t is extremal. So we get

τ([μ], [μt ]) = 1

2
log

1 + t

1 − t
. (5.8)

Now the Beltrami coefficient ν̃t of ft ◦ f −1
1 is

ν̃t =
(
μt − μ1

1 − μ̄1μt
· ∂z f1

∂z f1

)
◦ f −1

1 . (5.9)

By the definition of μt and the inequality (5.6) we get

‖ν̃t‖∞ = k − t

1 − kt
. (5.10)

On the other hand, by (5.8) and (5.10),

τ([μ1], [μt ]) ≥ τ([μ], [μ1])−τ([μ], [μt ]) = 1

2
log

(
1 + k

1 − k
· 1 − t

1 + t

)
= 1

2
log

1 + ‖ν̃t‖∞
1 − ‖ν̃t‖∞

.

Therefore, ν̃t is extremal, and

τ([μ1], [μt ]) = 1

2
log

1 + ‖ν̃t‖∞
1 − ‖ν̃t‖∞

. (5.11)
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On angles in Teichmüller spaces 189

Consequently,

τ([μ], [μt ])+ τ([μ1], [μt ]) = τ([μ], [μ1]), t ∈ [0, k].
This implies that �(μt ), t ∈ [0, k], is a geodesic segment between [μ] and [μ1].

Now we consider the standard geodesic segments αμ = �(t/kμ), αμ1 = �(t/kμ1) and
the above-constructed geodesic segment βσ = �(μt ), t ∈ [0, k]. Then they have the same
length 1

2 log 1+k
1−k = l. Clearly, αμ ∩ βσ = {[μ]}, αμ1 ∩ βσ = {[μ1]}. Before we discuss the

existence of the angles at [μ] and [μ1], we point out when αμ ∪ βσ is (not) geodesic at [μ],
and αμ1 ∪βσ is (not) geodesic at [μ1]. Since both αμ and βσ are geodesic segments, αμ∪βσ
is not geodesic at [μ] if and only if, as t → 0+,

τ([0], [μ])+ τ([μ], [μt ]) > τ([0], [μt ]),
which implies by (5.8) that

σ(t) <
k + t

k(1 + kt)
, t → 0+. (5.12)

Similarly, αμ1 ∪ βσ is not geodesic at [μ1] if and only if

σ(t) <
2k − (1 + k2)t

k(1 + k2 − 2kt)
, t → k−. (5.13)

Under these two conditions, αμ, αμ1 and βσ are distinct geodesic segments. In the following,
we assume that σ satisfies (5.6), (5.12) and (5.13). Corollary (4.1) and (P1) imply that

〈αμ, αμ1〉[0] = 2 arcsin
H(μ− μ1)

2k
= 2 arcsin

H(χR2μ)

2k
= π

3
.

We end this step by pointing out that σ(t) ≡ 1 meets all the conditions (5.6), (5.12)
and (5.13). In this case βσ is the standard geodesic segment αμ,μ1 . This will be essential
in our final step to construct the desired geodesic triangle. We also point out that there are
infinitely many continuous functions σ satisfying the conditions (5.6), (5.12) and (5.13), and
two different such functions determine two different geodesic segments between [μ] and
[μ1].
Step 2 On the existence of the angle at [μ] between αμ and βσ

Lemma 5.1 There exists the angle at [μ] between αμ and βσ if and only if σ is differentiable
at 0. Furthermore, we can choose σ so that the angle at [μ] between αμ and βσ attains any
given number from 0 to π .

Proof We first assume σ is differentiable at 0. (5.6) implies that |σ ′(0)| ≤ (1 − k2)/k. Then
μt is differentiable with μ0 = μ, and

μ′(0) = lim
t→0+

μt − μ0

t
=

(
σ ′(0)χR1 + k2 − 1

k
χR2

)
μ. (5.14)

Interchanging the endpoints, αμ = �(νt ), with

νt = k − t

k(1 − kt)
μ, t ∈ [0, k].

Then νt is differentiable with ν0 = μ, and

ν′(0) = lim
t→0+

νt − μ

t
= k2 − 1

k
μ. (5.15)
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It is easy to see that

τ([μ], [νt ]) = 1

2
log

1 + t

1 − t
. (5.16)

By (5.8), (5.14)–(5.16), we find out that μt and νt satisfy the assumption in Theorem 4.1.
Consequently, there exists the angle at [μ] between αμ and βσ , and

2 sin
〈αμ, βσ 〉[μ]

2
= F(�(μ),�′(μ)(μ′(0)− ν′(0))).

Noting that

μ′(0)− ν′(0) =
(

1 − k2

k
+ σ ′(0)

)
χR1μ,

we obtain

F(�(μ),�′(μ)(μ′(0)− ν′(0))) =
(

1 − k2

k
+ σ ′(0)

)
F(�(μ),�′(μ)(χR1μ))

=
(

1

k
+ σ ′(0)

1 − k2

)
HRμ

((
χR1μ · ∂z f0

∂z f0

)
◦ f −1

0

)

=
(

1

k
+ σ ′(0)

1 − k2

)
HRμ(χRμ1

μ∗) = 1 + kσ ′(0)
1 − k2 .

Consequently,

2 sin
〈αμ, βσ 〉[μ]

2
= 1 + kσ ′(0)

1 − k2 . (5.17)

Since |σ ′(0)| ≤ (1 − k2)/k, we see that 〈αμ, βσ 〉[μ] ∈ [0, π].
To show that 〈αμ, βσ 〉[μ] may attain any number from 0 to π , it is sufficient to show that

for any number δ with |δ| ≤ (1 − k2)/k, there exists a continuous function σδ(t) in [0, k]
which satisfies the inequalities (5.6), (5.12) and is differentiable at zero with σ ′

δ(0) = δ.
Actually, by (5.12), we only need to find σδ(t) when t → 0+. When δ = (1 − k2)/k, we
choose

σδ(t) = 1 + 1 − k2

k
t − (1 − k2)t2, t → 0+,

when −(1 − k2)/k ≤ δ < (1 − k2)/k, we choose

σδ(t) = 1 + δt, t → 0+.

Conversely, suppose that there exists the angle at [μ] between αμ and βσ . By (5.8) and
(5.16) we conclude that

lim
t→0+

τ([μt ], [νt ])
t

= 2 sin
〈αμ, βσ 〉[μ]

2
.

Let μ∗
t denote the Beltrami coefficient of f μt ◦ ( f νt )−1. It is routine to show that μ∗

t is
extremal, and

k0(μ
∗
t ) =

∥∥∥∥∥
kσ(t)− k−t

1−kt

1 − k−t
1−kt kσ(t)

∥∥∥∥∥∞
. (5.18)
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Then,

τ([μt ], [νt ]) = 1

2
log

1 + k0(μ
∗
t )

1 − k0(μ
∗
t )

= k0(μ
∗
t )+ o(t) = (σ (t)− 1)k

1 − k2 + t + o(t), t → 0+.

Consequently, σ is differentiable at 0, and

σ ′(0) = 1 − k2

k

(
2 sin

〈αμ, βσ 〉[μ]
2

− 1

)
.

Finally, we need to find a continuous function σ which satisfies (5.6), (5.12) but is not
differentiable at 0 so that the angle at [μ] between αμ and βσ does not exist. In fact, the
following function works:

σ(t) = 1 + 1 − k2

2k
t sin2 1

t
, t → 0+.

Step 3 On the existence of the angle at [μ1] between αμ1 and βσ

Lemma 5.2 There exists the angle at [μ1] betweenαμ1 andβσ if and only ifσ is differentiable
at k. Furthermore, we can choose σ so that the angle at [μ1] between αμ1 and βσ attains
any given number from 0 to π .

Proof By the same reasoning as in Step 2, we can prove that the angle at [μ1] between αμ1

and βσ exists if and only if σ is differentiable at k. In this case, |σ ′(k)| ≤ 1/k, and

2 sin
〈αμ1 , βσ 〉[μ1]

2
= 1 − kσ ′(k). (5.19)

We omit the details here. Consequently, 〈αμ1 , βσ 〉[μ1] ∈ [0, π], and it attains any number
from 0 to π . As above, it is sufficient to show that for any number η with |η| ≤ 1/k, there
exists a continuous function ση(t) in [0, k] which satisfies the inequalities (5.8), (5.13) and
is differentiable at k with σ ′

η(k) = η. This time, by (5.13), we only need to find σδ(t) when
t → k−.When η = −1/k, we choose

ση(t) = 1 − t − k

k
− 2(t − k)2

1 − k2 , t → k−,

when −1/k < η ≤ 1/k, we choose

ση(t) = 1 + η(t − k), t → k−.

��
Step 4 Constructing the triangle

We have proved that αμ ∪ αμ1 ∪ βσ is a geodesic triangle such that its two angles at [μ]
and [μ1] can be equal to any two given numbers from 0 to π for an appropriate function σ ,
but the third angle at [0] is fixed and equal to π/3. We now show that αμ1 can be modified
in a neighborhood of [0] so that the new angle at [0] can be equal to any given number from
0 to π .

Recall that the existence and the value of the angle between two geodesic segments are
preserved under an allowable map. By (5.7) we see that μ̃1 = χRμ2

μ∗. Replacing μ, μ1 and

R1 by μ∗, μ̃1 and Rμ2 respectively in the three steps above, we obtain a geodesic segment
γσ̃ in T (Rμ) joining [μ∗] to [μ̃1] such that the angle at [μ∗] between γσ̃ and αμ∗ exists and
equals any given number from 0 to π , and γσ̃ coincides with the standard geodesic segment

123



192 Y. Hu, Y. Shen

αμ∗,μ̃1 in a neighborhood of [μ̃1] (as remarked at the end of Step 1). By the allowable map
Aμ : T (R) → T (Rμ), γσ̃ becomes a geodesic segment γ̃σ̃ in T (R) joining [0] to [μ1] such
that the angle at [0] between γ̃σ̃ and αμ exists and equals any given number from 0 to π , and
γ̃σ̃ coincides with the standard geodesic segment αμ1 in a neighborhood of [μ1]. Now let�0

denote the geodesic triangle αμ ∪ βσ ∪ γ̃σ̃ with vertices [0], [μ] and [μ1]. Then the angles
at these three vertices exist and equal any three given numbers from 0 to π . This finishes our
construction and completes the proof of Theorem 5.1.

Remark 1 In a finite dimensional Teichmüller space, the angle between two distinct geodesic
segments exists and is always positive and less than π . It is not known whether the sum of
three angles of a geodesic triangle in a finite dimensional Teichmüller space is less than π .
This seems to be a difficult problem.

Remark 2 Masur [14] proved that any Teichmüller space of finite dimension (≥ 2) does not
have negative curvature. In general, a metric space (X, d) is said to have negative curvature
if for any geodesic triangle � in X with vertices A, B and C , d(B,C) > 2d(B̃, C̃), where
B̃ is the midpoint of the side AB between A and B, and C̃ is the midpoint of the side AC
between A and C . In fact, by Masur’s discussion, for any Teichmüller space T (R) of finite
dimension (≥ 2) and any number ε > 1, there exists a geodesic triangle � in T (R) with
vertices A, B and C such that d(B,C) ≤ εd(B̃, C̃). It is of interest to determine whether
one can take ε = 1 here. Our proof of Theorem 5.1 shows that this is the case when T (R)
is infinite dimensional. Thus, an infinite dimensional Teichmüller space is far from having
negative curvature.

In fact, we may consider the triangle � = αμ ∪ αμ1 ∪ βσ . Here we assume that

σ(t0) = 2 + √
1 − k2

1 + k2 + √
1 − k2

(5.20)

with

t0 = k

1 + √
1 − k2

. (5.21)

By (5.8), (5.16) and (5.20), we obtain

τ([μ], [μt0 ]) = τ([μ], [νt0 ]) = 1

4
log

1 + k

1 − k
= l

2
.

Thus, [μt0 ] and [νt0 ] are the midpoints of βσ and αμ, respectively. Now it follows from (5.18),
(5.20) and (5.21) that

τ([μt0 ], [νt0 ]) = 1

2
log

1 + k0(μ
∗
t0)

1 − k0(μ
∗
t0)

= 1

2
log

1 + k

1 − k
= l = τ([μ1], [0]).
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