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Abstract We construct a canonical correspondence from a wide class of reproducing kernels
on infinite-dimensional Hermitian vector bundles to linear connections on these bundles. The
linear connection in question is obtained through a pull-back operation involving the tautolog-
ical universal bundle and the classifying morphism of the input kernel. The aforementioned
correspondence turns out to be a canonical functor between categories of kernels and linear
connections. A number of examples of linear connections including the ones associated to
classical kernels, homogeneous reproducing kernels and kernels occurring in the dilation
theory for completely positive maps are given, together with their covariant derivatives.
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1 Introduction

The theory of reproducing kernels and of their applications to the study of Lie group rep-
resentations has undergone an impressive development over the years; see for instance the
excellent monograph [24] and the references therein. The questions addressed in the present
paper belong to the apparently not yet explored differential geometric aspects of this theory.
More specifically we show that, under mild assumptions, the smooth reproducing kernels
on an infinite-dimensional Hermitian vector bundle give rise to linear connections on that
bundle, and this correspondence sets up a functor between suitably defined categories of
reproducing kernels and linear connections, respectively. This functor also turns out to be
canonical in some sense (Theorem 4.3). In the case of the tautological vector bundle over
the Grassmann manifold associated to a complex Hilbert space, the universal connection
corresponds to the so-called universal reproducing kernel that we pointed out in the earlier
paper [4]. We also discuss a number of specific examples including the classical Hardy and
Bergman kernels and others on infinite-dimensional manifolds.

The circle of ideas approached here is motivated by the interest in understanding certain
physical models [28,29] as well as the geometric realizations for certain representations of
groups of invertible elements in C∗-algebras; see for instance [2,3,5] or [27]. Such realiza-
tions, of Borel-Weil type, were constructed by using suitable reproducing kernels on homo-
geneous vector bundles. A rich panel of differential geometric features of operator algebras
turned out on this occasion, partially related to other recent investigations in this area; see for
instance [10–12], and [13]. The ideas were developed in a categorial framework in Beltiţă
and Galé [4], where the geometric features of reproducing kernels have been reinforced in
relation with the geometry of tautological vector bundles taken as universal objects. We were
thus naturally led to investigating the differential geometric features of reproducing kernels.
The geometric significance of such kernels had been also pointed out for instance in Bertram
and Hilgert [6] and more recently, in the very fine paper [14].

Section 2 is devoted to the reductive structures in the framework of Banach-Lie groups. We
briefly discuss here the linear connections induced by the reductive structures and we then
present some examples related to the C∗-algebras and which are important for producing
geometric realizations for representations of certain Banach-Lie groups. The reproducing
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kernels on Banach vector bundles that we deal with in this paper are discussed in Sect. 3. Our
main constructions of linear connections out of reproducing kernels are presented in Sect. 4.
We compute their covariant derivative in terms of the input reproducing kernel (Theorem 4.2),
and we also study their functorial properties (Theorem 4.3). And finally, a panel of significant
examples of reproducing kernels is discussed in Sect. 5. Namely, we look at the usual type of
operator-valued reproducing kernels, including the classical reproducing kernels of Hardy or
Bergmann type, the homogeneous reproducing kernels that we earlier used in the geometric
representation theory of Banach-Lie groups, or the kernels that are implicit in the dilation
theory of completely positive maps on C∗-algebras. In “Appendix” we provide some auxiliary
properties of connections on Banach bundles and we emphasize the operation of pull-back,
which plays a key role throughout this paper.

Let us mention that in the present paper we only show how to define the linear connection
induced by a reproducing kernel and study the very basic properties of the correspondence
between these two types of objects. Topics like the deep significance of such connections for
the complex structures or C∗-Hermitian structures on infinite-dimensional vector bundles,
the analysis of the linear connections associated with reproducing kernels arising in repre-
sentations of semisimple Lie groups in function spaces, or applications to Cowen-Douglas
operators will be treated in forthcoming papers.

2 Reductive structures for Banach-Lie groups

In this section we introduce the abstract notion and example which, as inherent in universal
bundles, will enable us in Sect. 4 to define connections associated with reproducing kernels
on general vector bundles.

2.1 Linear connections induced by reductive structures

We first make the definition of the reductive structures we are interested in. Several versions
of this notion showed up in the literature of differential geometry in infinite dimensions; see
for instance [1,9,20], and the references therein. Nevertheless it seems to us that, maybe due
to the fact that the existing literature was largely motivated by problems involving operator
algebras, one considered mainly reductive structures on homogeneous spaces of groups of
invertible elements in unital associative Banach algebras. See however [25, Def. 4.1] for the
related general notion of a normed symmetric Lie algebra. We next introduce the reductive
structures on the natural level of generality, which does not require Banach algebras or C∗-
algebras but rather Banach-Lie groups.

Definition 2.1 A reductive structure is a triple (G A,G B; E) where G A is a real Banach-
Lie group with Lie algebra gA, G B is a Banach-Lie subgroup of G A with Lie algebra gB ,
and E : gA → gA is a continuous linear map with the following properties: E ◦ E = E ;
Ran E = gB ; and for every g ∈ G B the diagram

gA
AdG A (g)−−−−−→ gA

E

⏐
⏐
�

⏐
⏐
�E

gA
AdG A (g)−−−−−→ gA

is commutative.
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32 D. Beltiţă, J. E. Galé

A morphism of reductive structures from (G A,G B; E) to (G̃ A, G̃ B; Ẽ) is a homomor-
phism of Banach-Lie groups α : G A → G̃ A such that α(G B) ⊆ G̃ B and the diagram

gA
dα−−−−→ g̃A

E

⏐
⏐
�

⏐
⏐
�Ẽ

gA
dα−−−−→ g̃A

is commutative. For instance, a family of automorphisms of any reductive structure
(G A,G B; E) is provided by αg : x �→ gxg−1, G A → G A (g ∈ G B ).

We will see in Theorem 2.2 below that if ρ is a uniformly continuous representation from
G B on a Hilbert space HB , then any reductive structure for G A and G B as above gives rise to
a connection on the homogeneous vector bundle� : D = GA ×G B HB → G A/G B induced
by ρ. Recall that GA ×G B HB is the Cartesian product GA × HB modulo the equivalence
relation defined by

(g, h) ∼ (g′, h′) ⇐⇒ (∃w ∈ G B) g′ = gw, h′ = ρ(w−1)h,

endowed with its canonical structure of Banach manifold; see Kriegl and Michor [16]. In
order to make the statement, we first note that, on account of Remark 6.2, the tangent bundle
τD : T D → D can be described as the mapping

τD : (G A �AdG A
gA)×(G B�AdG B

gB ) (HB ⊕ HB) → G A ×G B HB

given by [((g, X), ( f, h))] �→ [(g, f )].
Theorem 2.2 Let (G A,G B , E) be a reductive structure and ρ : G B → B(HB) be a uni-
formly continuous representation. Then the homogeneous vector bundle
� : D = G A ×G B HB → G A/G B has a linear connection �E : T D → T D given by

[((g, X), ( f, h))] �→ [((g, E(X)), ( f, h))] = [((g, 0), ( f, dρ(E(X)) f + h))].
Proof First we check that the equality in the image of � holds. Take an arbitrary element
(u, Y ) ∈ G B �AdG B

gB . Since

dρ(Y ) = ρ(u−1)dρ(AdG B (u)Y )ρ(u),

it follows from the matrix expression of Tρ(u, Y ) in Remark 6.2 that

Tρ(u, Y )−1 =
(

ρ(u−1) 0
−ρ(u−1)dρ(AdG B (u)Y ) ρ(u−1)

)

,

for every u ∈ G B and Y ∈ gB . Hence, if (g, X) ∈ G A �AdG A
gA we have

(g, E(X)) · (u, Y ) = (g u,AdG B (u
−1)E(X)+ Y )

and

Tρ(u, Y )−1 · ( f, h) = (ρ(u−1) f, −ρ(u−1)dρ(AdG B (u)Y ) f + ρ(u−1)h).

Then the equality of equivalence classes in the definition of �E follows just taking u = 1B

and Y = −E(X).
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Analogously, it is not difficult to check that the mapping�E is well defined. In effect, for
(g, X) and (u, Y ) as above we have

((g u, E(Ad(u−1)X)+ Y ), (Tρ)(u, Y )−1( f, h))

= ((g u,Ad(u−1)E(X)+ Y ), (Tρ)(u, Y )−1( f, h))

= ((g, E(X)) · (u, Y ), (Tρ)(u, Y )−1( f, h))

∼ ((a, E(X)), ( f, h)),

where we have used in the first equality the commutativity of the diagram in Definition 2.1.
The fact that � is smooth follows since (g, X, f, h) �→ (g, E(X), f, h) is a smooth map

on G A × gA × HB × HB , and the corresponding quotient map

(G A × gA)× (HB × HB) → (G A �Ad gA)×(G B�AdgB ) (HB ⊕ HB) = T D

is a submersion (see e.g., [16, Th. 37.12]).
Finally, the connection properties are readily checked. ��

Definition 2.3 The connection �E constructed in Theorem 2.2 will be called the linear
connection induced by the reductive structure (G A,G B; E).

Remark 2.4 In the definition of the connection �E , the expression

�E ([((g, X), ( f, h))]) = [((g, E(X)), ( f, h))]
reflects the fact that the map�E is a linear connection on the vector bundle� : G A×G B HB →
G A/G B induced by the principal connection E on the principal bundle G A → G A/G B .
Complementarily, the presentation

�E ([((g, X), ( f, h))]) = [((g, 0), ( f, dρ(E(X)) f + h))]
emphasizes the fact that the range of the connection �E lies in the vertical subbundle of
T (G A ×G B HB).

We will now show that the reductive structures and pull-backs of connections are com-
patible, in the sense that connections induced by reductive structures are invariant under the
pull-back action. Specifically, let α : G A → G̃ A be a morphism of reductive structures from
(G A,G B , E) to (G̃ A, G̃ B , Ẽ). Let ρ̃B : G̃ B → B(HB) a uniformly continuous representa-
tion and define ρB := ρ̃B ◦ α|G B . Thus we can construct the homogeneous vector bundles
� : D = G A ×G B HB → G A/G B and �̃ : D̃ = G̃ A ×G̃ B

HB → G̃ A/G̃ B carrying the lin-
ear connections�E and �̃Ẽ , respectively, induced by the corresponding reductive structures
(see Definition 2.3).

Set � = (δ, ζ ) where

ζ : gG B �→ α(g)G̃ B , G A/G B → G̃ A/G̃ B

and

δ : [(g, f )] �→ [(α(g), f )], G A ×G B HB → G̃ A ×G̃ B
HB .

It is readily seen that the pair� = (δ, ζ ) is a morphism of the bundle� into �̃. Let�∗(�̃Ẽ )

denote the pull-back of the connection �̃Ẽ through �, in accordance with Definition 6.7.

123



34 D. Beltiţă, J. E. Galé

Proposition 2.5 In the above setting, �∗(�̃Ẽ ) = �E .

Proof The tangent map T δ : T D → T D̃ is given by

T δ : [((g, X), ( f, h))] �→ [((α(g), dα(X)), ( f, h))], T D → T D̃.

Therefore, by Definition 2.2 we get

((T δ) ◦�E )([((g, X), ( f, h))]) = T δ ([((g, E(X)), ( f, h))])
= [((α(g), dα(E(X))), ( f, h))]
= [((α(g), Ẽ(dα(X))), ( f, h))]
= �̃Ẽ ([((α(g), dα(X)), ( f, h))])
= (�̃Ẽ ◦ T δ) ([((g, X), ( f, h))]) ,

for every g ∈ G A, X ∈ gA, f, h ∈ HB , where the third equality follows since α is a
morphism of reductive structures. Thus �∗(�̃Ẽ ) = �E by Definition 6.7. ��

In the following remark we sketch a method for computing the covariant derivative for the
linear connection induced by a reductive structure in the particular case when the construction
of the homogeneous vector bundle involves the restriction of a representation of the larger
group. This computation in the finite-dimensional situation can be found in Burstall and
Rawnsley [8]. In the special case when G A is the group of invertible elements of some
associative Banach algebra, the Maurer-Cartan form introduced below was also constructed
in [20, subsect. 3.1].

Remark 2.6 Let (G A,G B; E) be a reductive structure and denote m = Ker E , so that gA =
gB � m and AdG A (G B)m = m.

(1) There exists a natural isomorphism of vector bundles T (G A/G B) � G A ×G B m (see
for instance the proof of [2, Cor. 5.5]), where the latter homogeneous bundle is defined
by using the adjoint action of G B on m. It follows that the function

β : G A ×G B m → gA, β([(g, X)]) = AdG A (g)X

can be thought of as a gA-valued differential 1-form β ∈ �1(G A/G B , gA), to be
called the Maurer-Cartan form of the reductive structure under consideration. This
vector-valued differential form essentially comes from an embedding of the tangent
vector bundle T (G A/G B) into the trivial vector bundle (G A/G B)× gA over G A/G B .
Specifically, we have T (G A/G B) � G A ×G B m ↪→ G A ×G B gA and also the G A-
equivariant trivialization of vector bundles G A ×G B gA � (G A/G B)× gA, [(g, X)] �→
(gG B ,AdG A (g)X).

(2) A similar trivialization can be set up for any homogeneous vector bundle whose con-
struction involves the restriction of a representation of the larger group. More precisely,
if ρ : G A → B(E) is a uniformly continuous representation on some Banach space E,
then we have the (inverse to each other) isomorphisms of vector bundles over G A/G B ,

G A ×G B E � (G A/G B)× E

given by [(g, v)] �→ (gG B , ρ(g)v) and (gG B , v) �→ [(g, ρ(g)−1v)], respectively.
Since there exist one-to-one correspondences between the smooth E-valued functions
or differential forms on G A/G B and the sections or differential forms with values in the
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Linear connections on vector bundles 35

trivial vector bundle (G A/G B) × E → G A/G B , we can use the above isomorphisms
of vector bundles in order to define the covariant derivative of E-valued functions

∇ : C∞(G A/G B ,E) → �1(G A/G B ,E) (2.1)

as the covariant derivative induced by the reductive structure (G A,G B; E) and the
representation ρ.

(3) For every F ∈ C∞(G A/G B ,E) we denote by (dρ ◦ β).F ∈ �1(G A/G B ,E) the differ-
ential form defined for every z ∈ G A/G B and X ∈ Tz(G A/G B) by

((dρ ◦ β).F)(X) = (dρ(βz(X)))(F(z)),

where βz := β|Tz(G A/G B ) : Tz(G A/G B) → gA and dρ : gA → B(E) is the derived
representation. The method of proof of [8, Prop. 1.1], which extends directly to the
present infinite-dimensional case (see also [16, Th. 37.23(9) and Th. 37.30–31]), leads
to the following conclusion. If ρ : G A → B(E) is a representation as above, then the
covariant derivative (2.1) can be computed for every F ∈ C∞(G A/G B ,E)by the formula
∇F = dF − (dρ ◦ β).F , that is,

(∇F)([(g, X)]) = (dF)([(g, X)])− ρ(g)dρ(X)ρ(g)−1 F(gG B)

for all g ∈ G A and X ∈ m, which follows by also using the expression of β given
in item (1) above and the fact that dρ(AdGA (g)X) = ρ(g)dρ(X)ρ(g)−1 for all g ∈
G A, X ∈ gA.

2.2 Some reductive structures related to C∗-algebras

Next we give some key examples of reductive structures and morphisms between them.

Example 2.7 (Lie group representations) Let (G A,G B; E) be a reductive structure and let
ρA : G A → B(HA) be a uniformly continuous unitary representation such that ρA|G B has
a non-trivial invariant closed subspace HB ⊆ HA. Denote ρB(g) := ρA(g)|HB for every
g ∈ G B and define

• G̃ A = U(HA), the unitary operators on HA;
• G̃ B = U(HA) ∩ {p}′, the subgroup of U(HA) formed by the operators commuting with

the orthogonal projection p on HB (that is, the operators that leave HB invariant);
• Ẽ : g̃A = u(HA) → g̃B = u(HA)∩ {p}′, where u(HA) = {X ∈ B(HA) : X∗ = −X} and

for X ∈ B(HA) we take Ẽ(X) := pX p + (1 − p)X (1 − p).

Then the mapping ρA : G A → G̃ A is a morphism of reductive structures from (G A,G B; E)
to (G̃ A, G̃ B; Ẽ).

Example 2.8 (conditional expectations on C∗-algebras) Let A be a unital C∗-algebra with
a unital C∗-subalgebra B for which there exists a conditional expectation E : A → B. This
means that E is a linear projection on A with Ran E = B and norm one. By Tomiyama’s
theorem we have moreover that

E(b1ab2) = b1 E(a)b2 and E(b∗) = E(b)∗ (a ∈ A; b1, b2 ∈ B),

and additionally E(1A) = 1B (= 1A). Let G denote for  ∈ {A, B} the Banach-Lie group
of invertibles in  endowed with its norm topology. Then the Lie algebra of G is g = ,
with the element X of g obtained by derivation of the path et X at t = 0. Since in this C∗
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36 D. Beltiţă, J. E. Galé

case we have that Ad(g)a = gag−1 for every g ∈ GA and a ∈ A, the expectation E satisfies
the conditions of Definition 2.1, so that (GA,GB; E) is a reductive structure.

If for two triples (A, B; E), ( Ã, B̃; Ẽ) as above we also have a bounded ∗-homomorphism
φ : A → Ã satisfyingφ◦E = Ẽ◦φ thenα := φ|GA defines a morphism between the reductive
structures (GA,GB; E) and (G Ã,GB̃; Ẽ).

The reductive structures (UA,UB; E |uA ) and (U Ã,UB̃; Ẽ |u Ã
) defined by the unitary

groups have a similar property, where we recall that the unitary group UA = {u ∈ A |
uu∗ = u∗u = 1} is a Banach-Lie group whose Lie algebra is uA = {x ∈ A | x∗ = −x}, and
similarly for the other unitary groups involved here.

Example 2.9 (completely positive maps) Let A be a unital C∗-algebra and H0 be a complex
Hilbert space. Recall that a unital linear mapping � : A → B(H0) is said to be completely
positive if the linear mapping

�n := � ⊗ idMn(C) : Mn(A) = A ⊗ Mn(C) → Mn(B(H0))

is positive (i.e., it maps positive elements to positive elements) for all n ≥ 1. It is well known
that every conditional expectation is a completely positive map.

By the Stinespring dilation procedure, for a given completely positive map � : A →
B(H0), there are a Hilbert space H, an isometry V : H → H0 and a unital ∗-representation
of C∗-algebras λ : A → B(H), which is induced by the left multiplication in A, such that

�(a) = V ∗λ(a)V (a ∈ A).

Then the representation λ is called a Stinespring dilation or representation associated with
�. Details can be found for instance in Paulsen [30].

Assume that there is a conditional expectation E : A → A, with B := E(A), such that
� ◦ E = �. In Beltiţă and Galé [2], it was noted that if σA : A → B(HA) and σB : B →
B(HB) are the minimal Stinespring representations associated with� and�|B , respectively,
as above then HB ⊆ HA, and the orthogonal projection P : HA → HB is induced by
E : A → B in the Stinespring construction. Thus, for the given representation ρ : G →
B(HB), we get the connection on the homogeneous bundle GA ×GB HB → GA/GB yielded
by E as in Definition 2.3.

Example 2.10 (universal bundles) Let H be a complex Hilbert space. The Grassmann man-
ifold of H is

Gr(H) := {S | S closed linear subspace of H}.
It is well known that it has the structure of a complex Banach manifold (see also Dupré
and Glazebrook [10]). The set T (H) := {(S, x) ∈ Gr(H) × H | x ∈ S} ⊆ Gr(H) × H
is also a complex Banach manifold, and the mapping �H : (S, x) �→ S, T (H) → Gr(H)
is a holomorphic Hermitian vector bundle on which U (H) acts by holomorphic maps (non-
transitively on the base Gr(H) if dim H ≥ 2); see [33, Ex. 3.11 and 6.20]. We call �H
the universal (tautological) vector bundle associated with the Hilbert space H. A canonical
connection can be defined on that bundle, which relies on the preceding examples. To see
this, let us consider the connected components of Gr(H).

For every S ∈ Gr(H) denote by pS : H → S the corresponding orthogonal projection.
Take S0 ∈ Gr(H) and put p := pS0 . The connected component of S0 ∈ Gr(H) is given by

GrS0(H) = {uS0 | u ∈ U (H)} = {S ∈ Gr(H) | dim S = dim S0, dim S⊥ = dim S⊥
0 }

� U (H)/U(p) � U (H)/(U (S0)× U (S⊥
0 ))
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where U(p) := {u ∈ U (H) | uS0 = S0}. (See for instance [33, Prop. 23.1] or [3,
Lemma 4.3].)

By restricting�H toTS0(H) := {(S, x) ∈ T (H) | S ∈ GrS0(H)}we obtain the Hermitian
bundle �H,S0 : TS0(H) → GrS0(H). The map

U (H)×U(p) S0 � [(u, x)] �→ (uS0, ux) ∈ TS0(H)

is a diffeomorphism of vector bundles between U (H)×U(p) S0 → U (H)/U(p), where the
representation of U(p)on S0 is just the tautological action, and the bundle�H,S0 : TS0(H) →
GrS0(H). See [3, Prop. 4.5].

On the other hand, we have a conditional expectation

E p : B(H) → {p}′, X �→ E p(X) := pX p + (1 − p)X (1 − p),

where {p}′ = {X ∈ B(H) | X p = pX}. By restricting E p to the Lie algebra u(H) :=
{X ∈ B(H) | X∗ = −X} of U (H) and applying Theorem 2.2 to the reductive structure
(U (H),U(p); E p |u(H)), we obtain the following canonical connection on the universal
bundle T (H) → Gr(H). Recall that GrS(H), for S running over Gr(H), are the connected
components of Gr(H).

Definition 2.11 In the framework of Example 2.10, the universal (linear) connection on the
tautological bundle �H,S0 : TS0(H) → GrS0(H) is the mapping

�S0 : T (TS0(H)) → T (TS0(H))

given by

[((u, X), (x, y))] �→ [((u, E p(X)), (x, y))] = [((u, 0), (x, E p(X)x + y))],
for u ∈ U (H), X ∈ u(H), and x, y ∈ S0. Then the universal connection �H on the
tautological bundle �H : T (H) → Gr(H) is defined by

�H((u, X)) := �S0((u, X))

for every (u, X) ∈ T (T (H)) with (u, X) ∈ T (TS0(H)), S0 ∈ Gr(H).

Remark 2.12 The expression of the connection�H on the sub-bundle�H,S0 depends obvi-
ously on the realization of �H,S0 as a homogeneous vector bundle, given by the diffeomor-
phism TS0(H) = TS(H) ≡ U (H) ×U (pS ) S, for S running over the component GrS0(H).
However, we can say that �S0 is unique in the sense that it is invariant under the action of
U (H):

Let α ∈ U (H) so that S1 := αS0 ∈ GrS0(H). Then there is the natural diffeomorphism

U (H)×U (pS0 )
S0 → U (H)×U (pS1 )

S1, [(u, x0)] �→ [(αuα−1, αx0)],
which induces the diffeomorphism Tα : T (TS0(H)) ≡ T (TS1(H)), between the correspond-
ing homogeneous tangent bundles, given by

Tα : [((u, X), (x0, y0))] �→ [((uα−1, αXα−1), (αx0, αy0))]
Then it is readily seen that, on the level of connections, �S1 = Tα ◦�S0 ◦ (Tα)−1, which is
to say, �H is U (H)-equivariant.

In the sequel, and particularly in what concerns Theorem 4.3, whenever we deal with
connections on T (T (H)) we will be assuming that an element S0 has been fixed in every
connected component GrS0(H) of Gr(H), and that the connection �S0 is referred to that
element as indicated above.
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Universal connections on finite-dimensional bundles were studied in several papers includ-
ing for instance [22,23,32], and [31].

It turns out that the Grassmannian objects that we are considering here fit also well in the
setting given in the above Example 2.9. In fact, the compression mapping

�S0 : X �→ p ◦ X ◦ ιS0 , B(H) → B(S0),

where ιS0 is the inclusion S0 ↪→ B(H), is a unital completely positive mapping satisfying
�S0 ◦ E p = �S0 and the vector bundle defined by (B(H), {p}′, E p;�S0) as in Example 2.9
coincides with �H,S0 .

We now provide a formula for the covariant derivative corresponding to the universal
connection on a tautological bundle, which will be needed in the proof of a more general
result of this type, given in Theorem 4.2 below. Related finite-dimensional formulas are
implicit in [18, Ch. III] and [31], but we should mention that the approach to the following
result is quite different in a couple of respects, beyond the obvious fact that we are working
here in infinite dimensions. More specifically, our starting point is a connection defined as a
splitting of the tangent space of the tautological vector bundle, rather than the corresponding
covariant derivative as in the aforementioned references. Secondly, the following statement
and proof emphasize the role of the orthogonal projections on closed subspaces in order to
compute the covariant derivative. As the orthogonal projections are just the basic pieces of
the universal reproducing kernels (see Example 3.7 below), we thus have an illustration of
the main theme of the present paper, namely that the reproducing kernels give rise to linear
connections of the bundles where these kernels live. That is nontrivial even in the case of
the tautological bundles associated with finite-dimensional Hilbert spaces, and yet we were
unable to find any reference for that relationship in the earlier literature.

Proposition 2.13 Let S0 ∈ Gr(H). If σ ∈ �0(GrS0(H), TS0(H)) is a smooth section, then
there exists a unique smooth function Fσ ∈ C∞(GrS0(H),H) such that σ(·) = ( · , Fσ (·))
and we have

∇σ(X) = (S, pS(dFσ (X))), S ∈ GrS0(H), X ∈ TS(GrS0(H)),

where pS is the orthogonal projection from H onto S.

Proof We use the tautological representations

U(S0)× U(S⊥
0 )

ρ0
↪→ B(S0) and U(S0)× U(S⊥

0 ) ↪→ U(H)
ρ1
↪→ B(H)

for constructing the homogeneous vector bundles

�0 : D0:=U(H)×U(S0)×U(S⊥
0 )

S0 → U(H)/(U(S0)× U(S⊥
0 )) and

�1 : D1:=U(H)×U(S0)×U(S⊥
0 )

H → U(H)/(U(S0)× U(S⊥
0 )).

Then Remark 2.6(2) provides a U(H)-equivariant diffeomorphism

δS0 : U(H)×U(S0)×U(S⊥
0 )

H → (U(H)/(U(S0)× U(S⊥
0 )))× H

which together with the natural diffeomorphism

ζS0 : U(H)/(U(S0)× U(S⊥
0 )) → GrS0(H)

provide an isomorphism between �1 and the trivial bundle GrS0(H) × H → GrS0(H).
Also, �0 is a U(H)-homogeneous subbundle of �1 and the pair (δS0 , ζS0) restricts to an
isomorphism from �0 onto the tautological bundle �H,S0 : TS0(H) → GrS0(H).
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Now for j = 0, 1 let � j : T (D j ) → T (D j ) denote the linear connection induced by the
reductive structure (U (H),U(S0) × U(S⊥

0 ); E pS0
) and ∇ j be the corresponding covariant

derivative. It easily follows by Theorem 2.2 that �1|T (D0) = �0, and then Proposition 6.4
shows that ∇1 agrees with ∇0. By taking into account the aforementioned isomorphisms of
homogeneous vector bundles, it then follows that the covariant derivative ∇ in the tautological
vector bundle �S0,H agrees with the covariant derivative ∇̃ in the larger trivial bundle
GrS0(H) × H → GrS0(H), both these covariant derivatives being the ones induced by the
reductive structure (U (H),U(S0)× U(S⊥

0 ); E pS0
). Consequently it suffices to compute the

action of ∇̃ on the sections of the subbundle �S0,H, and to this end we use Remark 2.6(3).
If we write the operators on H as 2 × 2 block matrices corresponding to the orthogonal

decomposition H = S0 ⊕ S⊥
0 , then

m = u(H) ∩ Ker E pS0
=

{
(

0 R
−R∗ 0

)

| R ∈ B(S0,S⊥
0 )

}

hence for every V ∈ m we have V S0 ⊆ S⊥
0 . Therefore, if we denote by

β : T (GrS0(H)) � T (U(H)/(U(S0)× U(S⊥
0 ))) → u(H)

the Maurer-Cartan form for the reductive structure (U (H),U(S0) × U(S⊥
0 ); E pS0

), as in

Remark 2.6(3), then for every X ∈ TS0(GrS0(H)) we have (dρ1 ◦ β)(X)S0 ⊆ S⊥
0 . On

the other hand for σ(·) = (·, Fσ (·)) ∈ �0(GrS0(H), TS0(H)) as in the statement we have
(∇̃σ)(X) = (S0, (∇̃Fσ )(X)) ∈ {S0} × S0, hence the equality provided by Remark 2.6(3)

dFσ (X) = (∇̃Fσ )(X)+ (dρ1 ◦ β)(X)Fσ (S0)

actually gives the decomposition corresponding to the orthogonal direct sum H = S0 ⊕ S⊥
0 .

Therefore (∇̃Fσ )(X) = pS0(dFσ (X)), and this proves the assertion for S = S0 since we
have seen above that ∇ agrees with ∇̃.

The formula for the covariant derivative ∇ at another point S ∈ GrS0(H) then follows by
using the transitive action of U(H) on GrS0(H) and the U(H)-equivariance property of the
Maurer-Cartan form β, and this completes the proof. ��

The above Examples 2.9 and 2.10 will be revisited in Sect. 5.

3 Reproducing kernels and their classifying morphisms

In this section we begin the developments that will lead up in the next section to the canoni-
cal correspondence between the admissible reproducing kernels and the linear connections.
More specifically, we will establish the basic properties of the classifying morphisms, which
are bundle morphisms into the universal bundles over the Grassmann manifolds of the repro-
ducing kernel Hibert spaces.

3.1 Reproducing kernels on Hermitian bundles

Geometric models for representations of unitary groups of C∗-algebras were obtained in
Beltiţă and Ratiu [5] by using reproducing kernels associated with suitable homogeneous
vector bundles. An approach to these topics in the framework of category theory was carried
out in Beltiţă and Galé [4], which enables us to recover reproducing kernels on Hermitian
vector bundles from the universal reproducing kernels on the tautological vector bundles; see
Example 3.7 and Theorem 3.9 below.
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Definition 3.1 Let Z be a Banach manifold. A Hermitian structure on a smooth Banach
vector bundle � : D → Z is a family {(· | ·)z}z∈Z with the following properties:

(a) For every z ∈ Z , (· | ·)z : Dz × Dz → C is a scalar product (C-linear in the first variable)
that turns the fiber Dz into a complex Hilbert space.

(b) If V is any open subset of Z , and �V : V × E → �−1(V ) is a trivializations (whose
typical fiber is the complex Hilbert space E) of the vector bundle � over V , then the
function (z, x, y) �→ (�V (z, x) | �V (z, y))z, V × E × E → C is smooth.

A Hermitian bundle is a bundle endowed with a Hermitian structure as above.

Definition 3.2 Let � : D → Z be a Hermitian bundle. A reproducing kernel on � is
a continuous section of the bundle Hom(p∗

2�, p∗
1�) → Z × Z such that the mappings

K (s, t) : Dt → Ds (s, t ∈ Z ) are bounded linear operators and such that K is positive
definite in the following sense: For every n ≥ 1 and t j ∈ Z , η j ∈ Dt j ( j = 1, . . . , n),

n
∑

j,l=1

(

K (tl , t j )η j | ηl
)

tl
≥ 0. (3.1)

Here p1, p2 : Z × Z → Z are the natural projection mappings.
For every ξ ∈ D we set Kξ := K (·,�(ξ))ξ : Z → D, which is a section of the bundle

�. For ξ, η ∈ D, the prescriptions

(Kξ | Kη)HK := (K (�(η), �(ξ))ξ | η)�(η), (3.2)

define an inner product (· | ·)HK on span{Kξ : ξ ∈ D} whose completion gives rise to a
Hilbert space denoted by HK , which consists of sections of the bundle� (see [24] or [5, Th.
4.2]). We also define the mappings

K̂ : D → HK , K̂ (ξ) = Kξ ,

ζK : Z → Gr(HK ), ζK (s) = K̂ (Ds),

where the bar over K̂ (Ds) indicates the topological closure.

In the following two lemmas we establish some basic properties of the above mappings.

Lemma 3.3 In the setting of Definition 3.2, if K is a smooth section of the bundle
Hom(p∗

2�, p∗
1�), then the mapping K̂ : D → HK is smooth.

Proof Since both K : Z × Z → Hom(p∗
2�, p∗

1�) and � : D → Z are smooth mappings, it
follows by (3.2) that the function

D × D → C, (ξ, η) �→ (K̂ (ξ) | K̂ (η))HK

is smooth. Then the assertion follows by [26, Th. 7.1]. ��

Lemma 3.4 In the setting of Definition 3.2, the following assertions are equivalent at each
s ∈ Z:

(i) The operator K̂ |Ds : Ds → HK is injective and has closed range.
(ii) The operator K (s, s) ∈ B(Ds) is invertible.
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Proof The property that K̂ |Ds : Ds → HK is injective and has closed range is equivalent to
the fact that there exists c > 0 such that for every ξ ∈ Ds we have ‖K̂ (ξ)‖HK ≥ c‖ξ‖Ds ,
which is further equivalent to (Kξ | Kξ )HK ≥ c2‖ξ‖2

Ds
, that is, (K (s, s)ξ | ξ)Ds ≥ c2‖ξ‖2

Ds
.

The latter condition is equivalent to the fact that K (s, s) is invertible on Ds , since K (s, s) is
always a bounded nonnegative self-adjoint operator on the complex Hilbert space Ds , as a
consequence of (3.1) in Definition 3.2 for n = 1.

Definition 3.5 A reproducing kernel K on the Hermitian bundle � : D → Z is called
admissible if it has the following properties:

(a) The kernel K is smooth as a section of the bundle Hom(p∗
2�, p∗

1�).
(b) For every s ∈ Z the operator K (s, s) ∈ B(Ds) is invertible.
(c) The mapping ζK : Z → Gr(HK ) is smooth.

Example 3.6 Assume� : D → Z is a Hermitian bundle whose fibers are finite dimensional
(for instance, � is a line bundle). If a reproducing kernel K on � satisfies the conditions
(a)–(b) in Definition 3.5, then it also satisfies the condition (c) hence it is an admissible
reproducing kernel.

To prove this, let s0 ∈ Z arbitrary. Since the bundle � is locally trivial and its fibers
are finite-dimensional, it follows by an application of Lemma 3.4 that there exist a positive
integer n ≥ 1 and an open neighborhood Z0 of s0 ∈ Z such that dim ζK (s) = dim Ds = n
for every s ∈ Z0. Then we can use [4, Th. 5.5] to obtain that the mapping ζK : Z → Gr(HK )

is continuous.
Next, for arbitrary s0 ∈ Z , K (s0, s0) ∈ B(Ds0) is an invertible operator. By considering a

local trivialization of� near s0 with the typical fiber Ds0 and using the fact that K : Z × Z →
Hom(p∗

2�, p∗
1�) is continuous, it follows that there exists an open neighborhood Z0 of s0 ∈ Z

such that for arbitrary s, t ∈ Z0 the operator K (s, t) ∈ B(Dt , Ds) is invertible. Let us define
K̃0 : Z0 → B(Ds0 ,HK ), K̃0(s) = K̂ ◦ K (s, s0). Since K : Z × Z → Hom(p∗

2�, p∗
1�) is

smooth by hypothesis, dim Ds0 < ∞, and K̂ : D → HK is smooth by Lemma 3.3, it follows
that the mapping K̃0 : Z0 → B(Ds0 ,HK ) is smooth.

Moreover, for arbitrary s ∈ Z0, the operator K (s, s0) ∈ B(Ds0 , Ds) is invertible, hence
Ran (K̃0(s)) = K̂ (Ds) = ζK (s). Consequently we have a smooth mapping K̃0 : Z0 →
B(Ds0 ,HK )with the property that Ran (K̃0(·)) : Z0 → Gr(HK ) is continuous. It then follows
(see for instance [19, Subsect. 1.8 and 1.5]) that the mapping Ran (K̃0(·)) is smooth, that is,
ζK |Z0 : Z0 → Gr(HK ) is smooth. Since Z0 is a suitably neighborhood of the arbitrary point
s0 ∈ Z , the proof is complete.

We refer to Proposition 5.2 for examples of admissible reproducing kernels on Hermitian
bundles with infinite-dimensional fibers, however we will briefly discuss right now the sim-
plest instance of such a kernel, namely the universal reproducing kernel (cf. [4]). It lives on
the universal bundle of a complex Hilbert space, which is a basic example of a Hermitian
vector bundle.

Example 3.7 If H is a complex Hilbert space, then the universal bundle �H has a natural
Hermitian structure given by (x | y)S := (x | y)H for all S ∈ Gr(H) and x, y ∈ S. This
Hermitian bundle carries a natural reproducing kernel QH defined by

QH(S1,S2) := pS1 |S2 : S2 → S1 for S1,S2 ∈ Gr(H).

Fix an element S0 ∈ Gr(H). Then by restriction we obtain the Hermitian vector bundle
�S0 : TS0(H) → GrS0(H) as a subbundle of �H. Denote by QS0 the restriction of the
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kernel QH to the bundle�S0 . For every S ∈ GrS0(H) there exists u ∈ U (see Example 2.10)
such that uS0 = S and uS⊥

0 = S⊥. Then upS0 = pSu, that is, pS = upS0 u−1. Thus for all
u1, u2 ∈ U and x1, x2 ∈ S0 we have

QS0(u1S0, u2S0)(u2x2) = pu1S0(u2x2) = u1 pS0(u
−1
1 u2x2).

See [4, Def. 4.2 and Rem. 4.3] for some more details.

Let � : D → Z and �̃ : D̃ → Z̃ be Hermitian vector bundles. A quasimorphism of �
into �̃ is a pair � = (δ, ζ ), where δ : D → D̃ and ζ : Z → Z̃ are (not necessarily smooth)
mappings such that:

(i) ζ ◦� = �̃ ◦ δ;
(ii) for every z ∈ Z the mapping δz := δ|Dz : Dz → D̃ζ(z) is a bounded linear operator.

Definition 3.8 [4] Let � : D → Z and �̃ : D̃ → Z̃ be Hermitian vector bundles with a
quasimorphism � = (δ, ζ ) from � to �̃. Assume that K̃ is a reproducing kernel on �̃.
The pull-back of the reproducing kernel K̃ through � is the reproducing kernel �∗ K̃ on �
defined by

(∀s, t ∈ Z) �∗ K̃ (s, t) = δ∗s ◦ K̃ (ζ(s), ζ(t)) ◦ δt . (3.3)

For later use, we now recall from Beltiţă and Galé [4] the universality theorem for repro-
ducing kernels.

Theorem 3.9 Let � : D → Z be a Hermitian vector bundle endowed with a reproducing
kernel K . If we define δK := (ζK ◦�, K̂ ) : D → T (HK ), then we have the vector bundle
quasimorphism �K := (δK , ζK ) from � into the universal bundle �HK and moreover
K = (�K )

∗QHK .

Proof See [4, Ths. 5.1 and 6.2]. ��
We will call the quasimorphism �K constructed in Theorem 3.9 the classifying quasi-

morphism associated with the kernel K . In order to define the notion of linear connection
induced by a reproducing kernel, we need to elucidate when the first component of a classi-
fying quasimorphism is a fiberwise isomorphism. This is done in the next subsection.

3.2 Quantization maps and kernels

Motivated by the significant physical interpretation given in Odzijewicz [28] and [29] (see also
Monastyrski and Pasternak-Winiarski [21] and Beltiţă and Galé [4]) to maps from manifolds
into the projective space of a complex Hilbert space, we use the following terminology.

Definition 3.10 Let Z be a Banach manifold and and H be a complex Hilbert space. Any
smooth mapping ζ : Z → Gr(H) is termed a quantization map from Z to H.

In the framework of Definition 3.10, set

Dζ := {(s, x) ∈ Z × H : x ∈ ζ(s)}.
Then Dζ is a Banach manifold and the projection

�ζ : (s, x) �→ s, Dζ → Z
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defines a vector bundle, with local trivializations

(�ζ )−1(�s) � �s × ζ(s)

for suitably small open subsets�s ⊆ ζ−1(Grζ(s)(H)), where s ∈ Z and the fiber at s ∈ Z is
identified to ζ(s). Put now

ψζ (s, x) := (ζ(s), x), s ∈ Z , x ∈ ζ(s) ⊆ H,

so that (ψζ , ζ ) is a vector bundle morphism from �ζ : Dζ → Z to the universal bundle
T (H) → Gr(H). In fact, by identifying Dζ with {(s, (ζ(s), x)) | s ∈ Z , x ∈ ζ(s)} one has
that �ζ : Dζ → Z is isomorphic to the pull-back of the universal bundle T (H) → Gr(H)
through the mapping ζ .

We provide the bundle �ζ : Dζ → Z with the Hermitian structure induced from H and
with the reproducing kernel given by

Kζ (s, t) := pζ(s)|ζ(t) : ζ(t) → ζ(s) (s, t ∈ Z).

Clearly, Kζ (s, s) = idζ(s) for every s ∈ Z . In fact, Kζ is admissible. Firstly, ζ is smooth by
assumption. Moreover, for every S0 ∈ Gr(H) the restriction Kζ on ζ−1(GrS0(H)) can be
seen as QH,S0 ◦ (ζ, ζ ) and then we can apply to QH,S0 the same argument of part (a) in the
proof of Proposition 5.2 below to deduce that Kζ is smooth.

Thus to every quantization map ζ there corresponds an admissible reproducing kernel Kζ ,
and it is natural to investigate the correspondence in the opposite direction.

In the following result the bundle�ζK : DζK → Z is endowed with the Hermitian structure
and the reproducing kernel KζK introduced above.

Theorem 3.11 Let� : D → Z be a Hermitian vector bundle with an admissible reproducing
kernel K . Then the following assertions hold.

(i) The mapping Ǩ := (�, K̂ ) : D → DζK is a diffeomorphism and we have the com-
mutative diagram

D
Ǩ−−−−→ DζK

�

⏐
⏐
�

⏐
⏐
��ζK

Z
idZ−−−−→ Z

which gives an isomorphism�ζK := (Ǩ , idZ ) of smooth vector bundles from� onto the
pull-back of the tautological bundle �HK through ζK .
(ii) The quasimorphism�K = (δK , ζK ) of Theorem 3.9 is smooth and factorizes accord-
ing to the commutative diagram

δK : D
Ǩ−−−−→ DζK

ψK−−−−→ T (HK )
⏐
⏐
��

⏐
⏐
��ζK

⏐
⏐
��HK

ζK : Z
idZ−−−−→ Z

ζK−−−−→ Gr(HK ),

where ψK := ψζK is as after Definition 3.10.
(iii) The pull-back relation K = �∗

K QHK factorizes as

K = �∗
ζK

KζK = �∗
ζK
(ψK , ζK )

∗QHK = �∗
K QHK .
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Proof (i) It follows by Lemma 3.3 that K̂ is smooth, hence also Ǩ is smooth.
To prove that Ǩ is bijective, first suppose that ξ, η ∈ D and Ǩ (ξ) = Ǩ (η). This means
that �(ξ) = s = �(η) with s ∈ Z , and therefore ξ, η ∈ Ds . Since K̂ is injective on
Ds by Lemma 3.4, we deduce that ξ = η. Now, take an element (s, x) with s ∈ Z and
x ∈ ζK (s) = K̂ (Ds), where the equality of these two subsets holds because K̂ (Ds)

is closed by Lemma 3.4 again. Thus there exists ξ ∈ Ds such that x = K̂ (ξ) and
therefore (s, x) = (�(ξ), K̂ (ξ)). We have proved that Ǩ is both injective and surjective.
In conclusion, Ǩ is a bijection between the bundles D and DζK , and the fact that �ζK is
a vector bundle morphism follows readily.

Moreover, since K̂ : Ds → K̂ (Ds) is continuous for every s ∈ Z , it follows by
Lemma 3.4 that we can use the open mapping theorem to obtain that K̂ is a fiber-
wise topological isomorphism. Since K is an admissible reproducing kernel, it follows
that the mapping ζK : D → Gr(HK ) is smooth, and then the discussion after Defini-
tion 3.10 provides local trivializations for the bundle �ζK : DζK → Z . It then follows
that Ǩ is represented locally (as in [17, Ch. III, §1, VB Mor 2]) by a smooth mapping
with values invertible operators on the typical fiber, and then its pointwise inverse is
also smooth. This shows that the inverse mapping of the bijection Ǩ is also smooth,
hence Ǩ is a diffeomorphism.

(ii) Straightforward consequence of (i), since ψK ◦ (�, K̂ ) = (ζK , K̂ ) = δK .
(iii) The proof is similar to the one of Theorem 3.9, by also using (ψK , ζK ) ◦ �ζK =

(ψK , ζK ) ◦ ((�, K̂ ), idZ ) and (ψK ◦ (�, K̂ ), ζK ) = (δK , ζK ) = �K .
��

4 Connections associated with reproducing kernels

4.1 Linear connections induced by reproducing kernels

Let� : D → Z be a Hermitian vector bundle endowed with an admissible reproducing kernel
K . Let�K = (δK , ζK ) be the classifying quasimorphism for K constructed in Theorem 3.9,
which is smooth by Theorem 3.11 since K is supposed to be admissible. Assume for a
moment that S0 in Gr(HK ) is such that ζK (Z) ⊆ GrS0(HK ) (it holds for instance if Z is
connected), and therefore δK (D) ⊆ TS0(HK ), so�K is a morphism from� to the universal
bundle �S0 at S0 ⊆ HK :

D
δK−−−−→ TS0(HK )

�

⏐
⏐
�

⏐
⏐
��HK ,S0

Z
ζK−−−−→ GrS0(HK )

Let E p be the conditional expectation naturally associated to the orthogonal projection p :=
pS0 : HK → S0. Then let�S0 denote the connection induced by E p on the bundle�HK ,S0

as in Definition 2.11, i.e.,

�S0 : [((u, X), (x, y))] �→ [((u, 0), (x, E p(X)x + y))].
Since we are assuming that K (s, s) is invertible on Ds for all s ∈ Z , we have that the map
δK is a fiberwise linear isomorphism from Ds onto K̂ (Ds) and then the following definition
is consistent, according to Proposition 6.6.
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Definition 4.1 Under the above conditions, we call connection induced by the admissible
reproducing kernel K the pull-back connection �K on � given by

�K := (�K )
∗(�S0).

Note that condition ζK (Z) ⊆ GrS0(HK ), as prior to the definition, may always be assumed
without loss of generality since, otherwise, one can consider partitioning D into the (open)
submanifolds ζ−1

K (GrS0(HK )), define the connection on each of them, and then define the
global connection on D piecewise.

We compute now the covariant derivative for the connection induced by a reproducing
kernel in the framework of Definition 4.1.

Theorem 4.2 In the setting of Definition 4.1, let ∇K : �0(Z , D) → �1(Z , D) be the covari-
ant derivative for the connection induced by K .

If σ ∈ �0(Z , D) has the property that there exists σ̃ ∈ �0(GrS0(HK ), TS0(HK )) such
that δK ◦ σ = σ̃ ◦ ζK , then for s ∈ Z and X ∈ Ts Z we have

(∇σ)(X) = K (s, s)−1( (

(pζK (s)(d(K̂ ◦ σ)(X))))
︸ ︷︷ ︸

∈HK ⊆�0(Z ,D)

(s)
)

.

An equivalent way of expressing the conclusion of Theorem 4.2 is that for s ∈ Z , t0 >
0, γ ∈ C∞((−t0, t0), Z) with γ (0) = s and σ ∈ �0(Z , D) we have the formula

(∇σ)(γ̇ (0)) = K (s, s)−1(pζK (s)

( d

dt

∣
∣
∣
t=0

K̂ (σ (γ (t)))
)

(s)
)

which only requires the derivative at t = 0 of the function K̂ ◦ σ ◦ γ : (−t0, t0) → HK and
then to take the orthogonal projection of the derivative on the subspace ζK (s) of HK .

Proof of Theorem 4.2 Recall that for every ξ ∈ D we have

K̂ (ξ) = Kξ = K (·,�(ξ))ξ and δK (ξ) = (ζK (�(ξ)), K̂ (ξ)).

Let s ∈ Z and X ∈ Ts Z arbitrary.
Since δK ◦ σ = σ̃ ◦ ζK , it follows by Proposition 6.4 that δK ◦ ∇σ = ∇̃σ̃ ◦ T (ζK ), where

∇̃ denotes the covariant derivative for the universal connection on the tautological vector
bundle �H,S0 : TS0(HK ) → GrS0(HK ). In particular

(ζK (s), K̂ ((∇σ)(X))) = δK ((∇σ)(X)) = ∇̃σ̃ (T (ζK )X). (4.1)

On the other hand, since σ̃ ∈ �0(GrS0(HK ), TS0(HK )), there exists a uniquely determined
function F̃σ ∈ C∞(GrS0(HK ),HK ) with σ̃ (·) = (·, F̃σ (·)). Then by Proposition 2.13 we
obtain

∇̃σ̃ (T (ζK )X) = (ζK (s), pζK (s)(dF̃σ (T (ζK )X))). (4.2)

By using δK ◦ σ = σ̃ ◦ ζK again, we obtain F̃σ ◦ ζK = K̂ ◦ σ : Z → HK , hence by
differentiation we obtain

dF̃σ ◦ T (ζK ) = d(K̂ ◦ σ). (4.3)

It now follows by (4.1)–(4.3) that

K̂ ((∇σ)(X)) = pζK (s)(d(K̂ ◦ σ)(X)) ∈ HK .
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46 D. Beltiţă, J. E. Galé

Both sides of the above equality are sections in the bundle � : D → Z , and moreover
(∇σ)X ∈ Ds . By evaluating the left-hand side at the point s ∈ Z we obtain the value
K (s, s)

(

(∇σ)X) ∈ Ds . Hence by evaluating both sides of the above equality at s and then
applying the operator K (s, s)−1 to both sides of the equality obtained after the evaluation
we obtain (∇σ)(X) = K (s, s)−1

(

(pζK (s)(d(K̂ ◦ σ)(X)))(s)), as we wanted to show. ��
4.2 Categorial aspects

We will now discuss the functorial features of the above correspondence between reproducing
kernels and linear connections, and it will follow that this correspondence is unique in a
quite natural way. The precise statement actually concerns the relationship between various
categories:

• Hilb is the category whose objects are the complex Hilbert spaces and the morphisms are
the linear isometries.

• Herm is the category whose objects are the Hermitian vector bundles and the morphisms
are the bundle morphisms which are fiberwise unitary operators;

• Kernh is the category whose objects are the admissible reproducing kernels on Hermitian
bundles. The morphisms of this category are defined by

HomKernh(K1, K2) = {� ∈ HomHerm(�1,�2) | �∗(K2) = K1}

whenever K j is an admissible reproducing kernel on the Hermitian vector bundle � j for
j = 1, 2. The morphisms � = (δ, ζ ) in HomKernh(K1, K2) satisfy that δ is a fiberwise
diffeomorphism. This follows from the identity K1(t, t) = δ∗ ◦ K2(ζ(t), ζ(t))◦δ, t ∈ Z1,
where �1 : D1 → Z1, since K1, K2 are admissible.

• LinConnect is the category whose objects are the linear connections on Hermitian vector
bundles and the morphisms are defined by

HomLinConnect(�1,�2) = {� ∈ HomHerm(�1,�2) | �∗(�2) = �1}

whenever� j is a linear connection on the Hermitian vector bundle� j for j = 1, 2. Note
that a morphism � in HomLinConnect(�1,�2) must be fiberwise diffeomorphic for the
condition �∗(�2) = �1 to make sense.

• Q : Hilb → Kernh is the functor that constructs the universal reproducing kernel on the
tautological bundle for a given Hilbert space.

• � : Hilb → LinConnect is the functor that constructs the universal connection on the
tautological bundle for a given Hilbert space.

• F are the forgetful functors that associate to every kernel or connection the bundle where
these objects are living.

• And finally, A : Kernh → LinConnect is the functor defined by means of Definition 4.1
on the level of objects of these categories and which acts identically on the level of
morphisms.

Here is the categorial characterization of the functor A from the category of the admissible
reproducing kernels to the one of linear connections on Hermitian vector bundles.
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Theorem 4.3 There exists a unique functor from Kernh into LinConnect such that the
diagram

LinConnect
F

������������

Hilb

�

������������

Q

������������ Herm

Kernh

���
�
�
�
�
�
� F

������������

is commutative, and that functor is A : Kernh → LinConnect.

Proof We first check that the diagram in the statement is commutative if the role of the dotted
arrow is played by the functor A. In fact, we have F ◦ A = F since the functor A takes an
admissible reproducing kernel on some Hermitian vector bundle to a linear connection on
the same Hermitian vector bundle. Moreover, it follows directly by Definition 4.1 (see also
[2, Prop. 4.1], [3, Prop. 4.5 and Ex.]) that A ◦ Q = �.

To prove the uniqueness assertion, let us assume that B : Kernh → LinConnect is a
functor such that F ◦ B = F and B ◦ Q = �. The latter equality shows that for every Hilbert
space H we have B(QH) = �H, hence B(QH) = A(QH). Thus the functors B and A agree
on the universal reproducing kernels.

Now let K be an arbitrary admissible reproducing kernel on a Hermitian vector bundle�.
The classifying morphism �K ∈ HomHerm(�, T (HK )) has the property �∗

K (QHK ) = K ,
hence we have�K ∈ HomKernh(K , QHK ). By using the functor B : Kernh → LinConnect,
it follows B(�K ) ∈ HomLinConnect(B(K ),B(QHK )). On the other hand, by using the equal-
ity F ◦ B = F on morphisms in the category Kernh, we get B(�K ) = �K ; moreover,
we established above that B(QH) = �H for every Hilbert space H, hence in particular
B(QHK ) = �HK . We thus obtain �K ∈ HomLinConnect(B(K ),�HK ). By the definition of
the morphisms in the category LinConnect, this means that B(K ) = �∗

K (�HK ), hence we
have B(K ) = A(K ). Thus the functors B and A agree on the level of objects in the category
Kernh.

Furthermore, it follows by the condition F ◦ B = F that the functor B acts identically on
the morphisms of the category Kernh, just as the functor A does. Thus eventually B = A.

5 Examples

We will discuss here the linear connections associated with three types of examples, namely
the usual operator-valued reproducing kernels (Sect. 5.1), then the reproducing kernels on
homogeneous vector bundles that occur in the geometric representation theory of Banach-
Lie groups (Sect. 5.2), and finally the reproducing kernels related to the dilation theory of
completely positive mappings (Sect. 5.3).

5.1 Reproducing kernels on trivial bundles

We illustrate here the theory established in the preceding sections by giving some results
involving classical reproducing kernels on trivial vector bundles.
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48 D. Beltiţă, J. E. Galé

(a) General case.

Let X be a set and V be a complex Hilbert space. Assume that κ : X × X → B(V) is the
reproducing kernel of a Hilbert space denoted by Hκ . This means in particular that, for every
xi ∈ X , vi ∈ V, i = 1, . . . , n,

n
∑

i, j=1

(κ(xi , x j )v j | vi )V ≥ 0,

and that Hκ is the Hilbert space of V-valued functions on X generated by the space span{κx ⊗
v : x ∈ X , v ∈ V}, where

κx ⊗ v := κ(·, x)v : X → V,

with respect to the inner product given by

(κx ⊗ v | κy ⊗ w)Hκ := (κ(y, x)v | w)V ,
see [24, Theorem I.1.4, (2) and (a)].

In the sequel we assume that X is a Banach manifold, with κ smooth, such that κ(x, x)
is invertible in B(V) for all x , which corresponds to a reproducing kernel on the trivial
Hermitian bundle X ×V → X . In this special case we now compute the covariant derivative
for the connection induced by the reproducing kernel K when moreover dim V = 1, hence
we may assume V = C. In the following statement we use subscripts to denote the values of
differential 1-forms on X .

Proposition 5.1 For every smooth sectionσ(·) = (·, Fσ (·))of the trivial bundle X×C → X ,
where Fσ ∈ C∞(X ,C), we have

(∀x ∈ X ) (∇σ)x = (x, (dFσ )x + Fσ (x)
∂2κ(x, x)

κ(x, x)
∈ {x} × B(TxX ,C).

Hence the covariant derivative ∇ can be identified with the first order linear differential
operator ∇ : �0(X ,C) → �1(X ,C) defined by

(∀F ∈ C∞(X ,C)) ∇F = dF + ακ · F (5.1)

where the differential 1-form ακ ∈ �1(X ,C) is defined by (ακ)x = ∂2κ(x, x)

κ(x, x)
for all x ∈ X .

Proof For arbitrary x ∈ X we have ζK (x) = C · κx , where κx = κ(·, x) ∈ Hκ and
(κx | κx )Hκ = κ(x, x). Therefore

(∀x ∈ X ) pζK (x) = (· | κx )

κ(x, x)
κx .

Moreover

(∀x ∈ X )(∀v ∈ C) K̂ (x, v) = vκx = vκ(·, x).

Now consider a smooth path γ ∈ C∞((−t0, t0),X ) with γ (0) = x ∈ X and a smooth
section σ(·) = (·, Fσ (·)), where Fσ ∈ C∞(X ,C). For arbitrary t ∈ (−t0, t0) we have
K̂ (σ (γ (t))) = K̂ (γ (t), Fσ (γ (t))) = Fσ (γ (t))κ(·, γ (t)) = Fσ (γ (t))κγ (t) and

pζK (x)(K̂ (σ (γ (t)))) = (K̂ (σ (γ (t))) | κx )

κ(x, x)
κx = (Fσ (γ (t))κγ (t) | κx )

κ(x, x)
κx

= Fσ (γ (t))
κ(x, γ (t))

κ(x, x)
κx
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hence

d

dt

∣
∣
∣
t=0

pζK (x)(K̂ (σ (γ (t)))) =
(

dFσ (γ̇ (0))+ Fσ (x)
(∂2κ(x, x))(γ̇ (0))

κ(x, x)

)

κx .

Therefore, by using Theorem 4.2 it follows that for any smooth section σ(·) = (·, Fσ (·)),
where Fσ ∈ C∞(Z ,C), we have

(∀x ∈ X ) (∇σ)x = (x, (dFσ )x + Fσ (x)
∂2κ(x, x)

κ(x, x)
∈ {x} × B(TxX ,C)

as we wanted to show. ��
We next recall a few classical reproducing kernels on one-dimensional trivial vector bun-

dles arising in function theory, so that their linear connections can be computed using the
above formula (5.1).

(b) Classical (scalar-valued) reproducing kernels: Bergman and Hardy spaces on the disk
and the half-plane; Fock space.

(b.1) For ν > 1, the corresponding Bergman space is the Hilbert space

B2
ν(D) =

{

f ∈ O(D)
∣
∣
∣

ν − 1

π

∫

D

| f (z)|2(1 − |z|2)ν−2 dz < ∞
}

,

where dz is the Lebesgue measure on D. Clearly, the polynomial functions belong to
B2
ν(D). In the “limiting case” ν = 1 one obtains the Hardy space

H2(D) =
{

f ∈ O(D)
∣
∣
∣ sup

0<r<1

1

2π

2π∫

0

| f (reiθ )|2 dθ < ∞
}

.

Let us denote for a while both the Bergman and Hardy spaces on the unit disk by
the same symbol Hν(D), ν ≥ 1 (the Hardy space corresponds to ν = 1). These are
reproducing kernel Hilbert spaces with kernels

K (ν)
D
(s, t) = 1

(1 − ts)ν
(s, t ∈ D; ν ≥ 1);

see [14,24], for instance.

In a similar way, for the upper halfplane U := {z ∈ C : Im z > 0}, define the Bergman
space

B2
ν(U) =

{

F ∈ O(U)
∣
∣
∣

(ν − 1)

π

∫

D

|F(z)|2(Im z)ν−2 dz < ∞
}

.

It turns out that B2
ν(U) is unitarily equivalent to B2

ν(D) through the Cayley transform ϕ(z) :=
z − i

z + i
, (z ∈ U). The reproducing kernel of B2

ν(U) is given by

K (ν)
U
(z, w) := 1

4

(2i)ν

(z − w)ν
, (z, w ∈ U);

see [14, p. 16]. The Hardy space on U,

H2(U) =
{

F ∈ O(U)
∣
∣
∣ sup

y>0

1

2π

∞∫

−∞
|F(x + iy)|2dx < ∞

}

,
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50 D. Beltiţă, J. E. Galé

is also a reproducing kernel Hilbert space with kernel

K (1)
U
(z, w) := i

2(z − w)
, (z, w ∈ U);

see [14, p. 19].
Unlike the Bergman case, the image of H2(U) via the unitary isomorphism induced by the

Cayley transform ϕ is not all of H2(D), but just a closed proper subspace of it, see [15, Ch.
8]. Despite this, we use the symbol Hν(U) to refer both the Bergman and the Hardy spaces
on U. As in the unit disk case, the Hardy space corresponds to ν = 1.

We should note that in the above expressions of the kernels we omitted the number 1/π
that occurs in the expressions given in Hilgert [14], since we preferred to keep it in the integral
conditions defining the Bergman and Hardy spaces.

(b.2) Let E be a complex vector space and let β : E × E → C be a positive semidefinite
hermitian form on E . Then KF,β(z, w) := eβ(z,w), for z, w ∈ E , is a reproducing
kernel which generates a Hilbert space HKF ,β denoted by F(E, β) := HKF ,β , and
which is called Fock space associated with E and β. See [24, p. 38].
When E = C

n is finite-dimensional, the Fock space can be realized as

F(E, β) =
{

F ∈ O(E)
∣
∣
∣

1

πn

∫

E
|F(z)|2 e−β(z,z)dz < ∞

}

.

See for instance [14, pp. 25, 26].

On account of the above examples, the former point (a) applies to:

(1) The set X := D, the Hilbert spaces V := C and Hκ := Hν(D), with the trivial bundle
D × C → D and kernel κ := K (ν)

D
.

(2) X := U, V := C and Hκ := Hν(U) , with trivial bundle U × C → U and kernel
κ := K (ν)

U
.

(3) X := E, V := C and Hκ := F(E, β) , with trivial bundle E × C → E and kernel κ :=
KF,β . (The prototypical example of Fock space occurs when E = C

n and β(z, w) =
∑n

j=1 z jw j , z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ C
n, n ∈ N; see [24, p. 10].)

It is straightforward to compute the first-order differential operator (5.1) in this case, in
any of the above examples:

(1) For K (ν)
D
(s, t) = (1 − ts)−ν generating Hν(D), ν ≥ 1, we have

(∇σ)s(z) = dFσ (z)− ν s Fσ (s)

(1 − |s|2) z

for σ ≡ Fσ ∈ C
∞(D,C), s ∈ D, z ∈ C.

(2) For K (ν)
U
(z, w) = 1

4 (2i)ν(z − w)−ν generating Hν(U), ν ≥ 1, we have

(∇σ)z(λ) = dFσ (λ)− νFσ (z)

Im z
λ

for σ ≡ Fσ ∈ C
∞(U,C), z ∈ D, λ ∈ C.

(3) For KF,β(z, w) = exp(
∑n

j=1 z jw j ), z, w ∈ C
n , generating the Fock space on C

n , one
gets

(∇σ)z(λ) = dFσ (λ)+ Fσ (z)
n

∑

j=1

z jλ j

for σ ≡ Fσ ∈ C
∞(Cn,C), z = (z j )

n
j=1, λ = (λ j )

n
j=1 ∈ C

n .
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5.2 Reproducing kernels on homogeneous vector bundles

Let G A be a Banach-Lie group with a Banach-Lie subgroup G B . Let ρA : G A → B(HA)

and ρB : G B → B(HB) be uniformly continuous unitary representations with HB ⊆
HA, ρB(g) = ρA(g)|HB for g ∈ G B and HA = spanρA(G A)HB .

Let us consider the homogeneous vector bundle �ρ : G A ×G B HB → G A/G B , induced
by the representation ρB . We endow �ρ with the Hermitian structure given by

([(u, f )], [(u, h)])s := ( f | h)H, u ∈ G A, s := uG B , f, h ∈ HB .

Let P : HA → HB be the orthogonal projection. We define the reproducing kernel Kρ on
the vector bundle �ρ : D = G A ×G B HB → G A/G B by

Kρ(uG B , vG B)[(v, f )] = [(u, P(ρA(u
−1)ρA(v) f ))], (5.2)

for uG B , vG B ∈ D and f ∈ HB (see Beltiţă and Galé [2]). There exists a unitary operator
W : HKρ → HA such that W (Kη) = πA(v)g whenever η = [(v, g)] ∈ D; see the end of the
proof of [2, Proposition 4.1].

Proposition 5.2 In the above setting, Kρ is an admissible reproducing kernel.

Proof We set K := Kρ and will check that the conditions of Definition 3.5 are satisfied.

(a) The mapping

G A × G A → B(HB), (u, v) �→ PρA(u
−1)ρA(v)|HB

is smooth, hence the reproducing kernel Kρ is smooth.
(b) For all s ∈ G A/G B we have K (s, s) = idDs , hence K (s, s) is invertible.
(c) We have to prove that the mapping

ζK : G A/G B → Gr(HK ), s �→ K̂ (Ds)

is smooth. The unitary operator W : HK → HA induces a diffeomorphism

W̃ : Gr(HK ) → Gr(HA), S �→ W (S),

hence it will be enough to show that the mapping W̃ ◦ ζK : G A/G B → Gr(HA) is
smooth. To this end, note that for every s = uG B ∈ G A/G B we have

W̃ ◦ ζK (uG B) = W ({K[(u, f )] | [(u, f )] ∈ Ds}) = {ρA(u) f | f ∈ HB} = ρA(u)HB

hence there exists a commutative diagram

G A
ρA−−−−→ GL(HA)

u �→uG B

⏐
⏐
�

⏐
⏐
�V �→V (HB )

G A/G B
W̃◦ζK−−−−→ Gr(HA)

whose vertical arrows are submersions. It then follows by [33, Cor. 8.4] that the mapping
W̃ ◦ ζK is smooth, and we are done.

��
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Using W as in the above proof we may suppose that HKρ = HA. Then for the classifying
morphism of the admissible reproducing kernel Kρ we have �Kρ ≡ �ρ := (δρ, ζρ), where

δρ : G A ×G B HB → THB (HA), [(u, f )] �→ (ρA(u)HB , ρA(u) f ),

ζρ : G A/G B → GrHB (HA), uG B �→ ρA(u)HB .

Since Kρ is admissible, both these mappings are smooth by Theorem 3.11.
In the following we will describe the linear connection associated with the admissible

reproducing kernel Kρ . In particular, we will show how an application of the pull-back
operation to the universal vector bundle induces a linear connection on a homogeneous
vector bundle that may not be endowed with a reductive structure. It is straighforward to
check that the map introduced in the following definition is indeed a linear connection on the
homogeneous bundle �ρ : G A ×G B HB → G A/G B .

Definition 5.3 The natural connection on the homogeneous Hermitian bundle �ρ is the
smooth mapping�ρ : T (G A×G B HB) → T (G A×G B HB), given for every g ∈ G A, X ∈ gA

and f, h ∈ HB by

�ρ : [((g, X), ( f, h))] �→ [((g, 0), ( f, P(dρ(X) f )+ h))].
The above definition can also be derived from the classifying morphism�ρ of�ρ , as the

following result shows.

Proposition 5.4 For δρ and ζρ as above, the connection on the homogeneous vector bundle
G A ×GB HB → G A/G B obtained as the pull-back (�ρ)∗(�EP ) of the universal connection
�EP through the morphism �ρ = (δρ, ζρ) coincides with the connection �ρ above,

�ρ = (�ρ)
∗(�EP ).

Proof Recall from Theorem 2.2 that �EP is given by

[((u, Y ), ( f, h))] �→ [((u, 0), (EP (Y ) f + h))]
for u ∈ U (HA), Y ∈ B(HA) and f, h ∈ HB . On the other hand, the tangent map T δρ is
given by

T δρ : [((g, X), ( f, h))] �→ [((ρ(g), dρ(X)), ( f, h))],
for g ∈ G A, X ∈ gA, f, h ∈ HB . Thus the composition � = (T δρ)−1 ◦�EP ◦ T δρ is

� : [((g, X), ( f, h))] �→ [((g, 0), ( f, EP (dρ(X)) f + h))].
Finally, since EP (dρ(X)) f = P(dρ(X) f ), we obtain that � = �ρ as claimed. ��
Corollary 5.5 For δKρ and ζKρ as above, the connection �Kρ associated with Kρ on the
homogeneous vector bundle � : G A ×GB HB → G A/G B in the sense of Definition 4.1
coincides with the natural connection �ρ on � given by Definition 5.3.

Proof This is an immediate consequence of Proposition 5.4, since both connections �Kρ

and �ρ are given by the fiberwise composition � = (T δK )
−1 ◦�EP ◦ T δK . ��

We now turn to computing the covariant derivative associated with the preceding connec-
tion �ρ . In the case of a reductive structure one can use Remark 2.6. For the general case
note that if gA and gB are the Lie algebras of G A and G B , respectively, then the adjoint action
of G B on gA gives rise to a linear action on the quotient gA/gB and we can then form the
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homogeneous vector bundle G A ×G B (gA/gB), which is isomorphic to the tangent bundle
T (G A/G B).

For any closed linear subspace m of gA such that gA = gB �m we have a linear topological
isomorphism m � gA/gB , which gives rise to a natural linear action of G B on m, hence to
a homogeneous vector bundle GA ×G B m which can be identified with T (G A/G B). Note
that such a subspace m always exists since G B is a Banach-Lie subgroup of G A, see [33,
Prop. 8.13]. In the special case G B = {1} we get the identification T (G A) = G A � gA (see
Remark 6.2), so for every smooth function σ̃ : G A → HB we have dσ̃ : G A � gA → HB .

Proposition 5.6 Let φ : G A → HB be smooth such that φ(uw) = ρA(w)
−1φ(u) for all u ∈

G A and w ∈ G B and define the corresponding smooth section σ : G A/G B → G A ×G B HB

by σ(uG B) := [(u, φ(u))] for all u ∈ G A. If there exists a smooth section σ̃ : GrHB (HA) →
THB (HA) such that σ̃ (ρA(u)HB) := (ρA(u)HB , ρA(u)φ(u)) for all u ∈ G A, then for every
tangent vector [(u, X)] ∈ G A ×G B m = T (G A/G B) we have

(∇σ)([(u, X)]) = [(u, dφ(u, X)+ P(dρA(X)φ(u)))].
Proof Denote Z = G A/G B , and let s = uG B ∈ Z and X ∈ Ts Z arbitrary. Let h ∈ HB such
that (∇σ)X := (∇σ)([(u, X)]) = [(u, h)]. Since δρ ◦ σ = σ̃ ◦ ζρ it follows by Propositions
5.4 and 6.4 that δρ ◦ ∇σ = ∇̃σ̃ ◦ T (ζρ), where ∇̃ denotes the covariant derivative for the
universal connection on the tautological vector bundle�HA,HB : THB (HA) → GrHB (HA).
In particular

(ρA(u)HB , ρA(u)h) = δρ((∇σ)X) = ∇̃σ̃ (T (ζρ)X). (5.3)

Let F̃σ ∈ C∞(GrHB (HA),HA) such that F̃σ (ρA(u)HB) = ρA(u)φ(u) for all u ∈ G A, so
that σ̃ (·) = (·, F̃σ (·)). Then by Proposition 2.13 we obtain

∇̃σ̃ (T (ζρ)X) = (ρA(u)HB , pρA(u)HB (dF̃σ (T (ζρ)X))). (5.4)

Let R denote the second component of δρ (as in Beltiţă and Galé [4]). By using the equality
δρ ◦ σ = σ̃ ◦ ζρ again, we get F̃σ ◦ ζρ = R ◦ σ : Z → HA, hence by differentiation we
obtain

dF̃σ ◦ T (ζρ) = d(R ◦ σ). (5.5)

It now follows by (5.3)–(5.5) that, for all u ∈ G A and X ∈ m,

ρA(u)h = pρA(u)HB (d(R ◦ σ)(X)) ∈ HA. (5.6)

Now pick any [(u, X)] ∈ G A ×G B m = T (G A/G B) and set u(t) := u expG A
(t X), for all

t ∈ R. Then

d(R ◦ σ)(X) = d

dt

∣
∣
∣
t=0

R(σ (u(t)) = ρA(u)(dρA(X)φ(u)+ dφ(u, X)),

and therefore, by using (5.6), we obtain

h = ρA(u)
−1 pρA(u)HBρA(u)(dρA(X)φ(u)+ dφ(u, X))

= pHB (dρA(X)φ(u)+ dφ(u, X))

= dφ(u, X)+ pHB (dρA(X)φ(u))

since φ : G A → HB . We also used the fact that pρA(u)HB = ρA(u)pHBρA(u)−1 for all
u ∈ G A, since ρA is a unitary representation. Then, because of the way h ∈ HB was chosen,
we have (∇σ)([(u, X)]) = [(u, dφ(u, X)+ pHB (dρA(X)φ(u))], as asserted. ��
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Remark 5.7 Since the tautological bundle�H,S0 : TS0(H) → GrS0(H) is diffeomorphic to
its homogeneous version U(H) ×U(pS0 )

S0 → U(H)/U(pS0), the two expressions of the
covariant derivative, associated with the natural connection on�H,S0 , given in Propositions
2.13 and 5.6 must coincide.

In fact, using the notations of those propositions and identifying uS0 = uU(pS0) we
have that Fσ (uS0) ≡ uφ(uS0), where we are considering φ : U(H)/U(pS0) → S0 rather
than its U(pS0)-equivariant version from U(H) into S0. Then, for X = uY ≡ [(u, Y )] ∈
TuS0(GrS0(H)) with Y ∈ Ker E pS0

, by differentiating in Fσ (uS0) = uφ(uS0) we obtain

dFσ (X) = u(Y φ̃(u)+ dφ(u, Y )), hence

PuS0(dFσ (X)) = PuS0(u(Yφ(u)+ dφ(u, Y )))

= u PS0(Yφ(u)+ dφ(u, Y ))

≡ [(u, PS0(Yφ(u))+ dφ(u, Y ))]
as it was claimed.

5.3 Differential geometric aspects of completely positive mappings

In this final part of the paper we will discuss some geometric interpretations of the com-
pletely positive mappings. More specifically, we will take a fresh look at the Stinespring
dilations of completely positive maps from the perspective of the reproducing kernels and
the corresponding covariant derivatives, as set forth in the preceding sections. To this end, let
� : A → B(H0) be a completely positive map with the Stinespring dilation λ : A → B(H)
given by the equation

�(a) = V ∗λ(a)V (a ∈ A), (5.7)

and satisfying the minimality condition H = span(λ(A)H0), where V : H0 → H is an
isometry.

First of all, it is clear that setting K�(s, t) := �(s−1t) and K λ(s, t) := λ(s−1t), for
all s, t ∈ UA, we get K� and K λ two reproducing kernels for the trivial vector bundles
UA × H0 → UA and UA × H → UA, respectively. Moreover, the mapping defined as
�V = (idUA × V, idUA ) is a morphism between the two preceding vector bundles, for which
the equality �(a) = V ∗λ(a)V (a ∈ A) is equivalent to the fact that K� is the pullback
kernel of K λ through �V . That is,

�∗
V K λ = K�.

As regards classifying morphisms, first recall that V ∗V = idH, V V ∗ = PV (H0). Put S0 :=
V (H0). Then the natural kernel, associated with λ, for the bundle UA × S0 → UA, is

K λ
0 (s, t) := PS0λ(s

−1t)ιS0 (s, t ∈ UA).

Incidentally, note that the equality (5.7) can be written alternatively as

�(a) = V ∗ PS0λ(a)ιS0 V (a ∈ A), (5.8)

since

�(a) = V ∗λ(a)V = (V ∗V )V ∗λ(a)V (V ∗V ) = V ∗ PS0λ(a)ιS0 V

for a ∈ A. Let ξ = (s, h) be in the fiber {s} × S0. Then for all t ∈ UA,

(K λ
0 )ξ (t) = K λ

0 (t, s)(s, h) ≡ (PS0λ(t
−1s)ιS0)(s, h) = PS0λ(t

−1)λ(s)h
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whence it follows that (K λ
0 )ξ can be identified with λ(s)h as the function acting on t as above.

Thus the classifying morphism �λ for the kernel K λ
0 is

(s, h) ∈ UA × S0
δλ−−−−→ (λ(s)S0, λ(s)h) ∈ TS0(H)

pS0

⏐
⏐
�

⏐
⏐
��H,S0

s ∈ UA
ζλ−−−−→ λ(s)S0 ∈ GrS0(H) .

As a matter of fact, on account that the transpose mapping of (δλ)s ≡ λ(s) is equal to
λ(s−1) for each s ∈ UA, one obtains that�∗

λQH,S0 = K λ
0 , as it had to be from the universal

theorem for kernels.
Thus the classifying morphism �� for K� is

UA × H0
idUA ×V−−−−−→ UA × S0

δλ−−−−→ TS0(H)

PUA

⏐
⏐
�

⏐
⏐
�PUA

⏐
⏐
��H,S0

UA
idUA−−−−→ UA

ζλ−−−−→ GrS0(H) ,

and the universal theorem tells us that, for s, t ∈ UA,

�(s−1t) = K�(s, t) = �∗
�QH,S0(s, t) = (�λ�V )

∗QH,S0(s, t)

= �∗
V�

∗
λQH,S0(s, t)

= �∗
V K λ

0 (s, t) = V ∗ PS0λ(s
−1t)ιS0 V .

On the other hand A = span UA, hence the latter equality is equivalent to (5.8). In other
words, the Stinespring dilation theorem, summarized in the formula (5.7), can be regarded
as an instance of the universality theorem for reproducing kernels of vector bundles, in the
sense of Beltiţă and Galé [4].

We have shown that a completely positive map � can be viewed as a reproducing kernel,
under the form (s, t) �→ �(s−1t). Let us compute the connection and covariant derivative
associated with the above interpretation.

For f ∈ H0, a ∈ uA and S0 = V (H0),

E pS0
(dλ(a))V f = E pS0

(λ(a))V f = pS0(λ(a)V f ) = V V ∗λ(a)V f = V�(a) f.

Then, using the classifying quasimorphism�� and the corresponding pull-back operation
for connections, we have that the natural connection on the bundle UA × H0 → UA for the
kernel � is obtained as the composition

((s, a), ( f, h)) �→ ((λ(s), dλ(a)), (V f, V h))

�→ ((λ(s), 0), (V f, V h + E pS0
(dλ(a)V f ))

= ((λ(s), 0), (V f, V h + V�(a) f )) �→ ((s, 0), ( f, h +�(a) f )).

for every s ∈ UA, a ∈ uA, f, h ∈ H0. In other words, the completely positive map � can
be regarded as a connection �� on the trivial bundle in the form of the correspondence
�� : ( f, h) �→ h +�(a) f .

To compute the covariant derivative ∇� of the connection �� , note that there exists a
surjective isometry ιλ : H → HK λ

0 defined by ιλ(h) = PS0λ( · )−1h. Then, using an argument
similar to that one of Propositions 5.5 and 5.6, we find that the covariant derivative associated
to the kernel K λ

0 is given by
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∇λσ0(u, a) = dσ0(u, a)+ PS0(λ(a)σ0(u))

for all u ∈ UA, a ∈ uA and every section σ0 : UA → S0 of the bundle UA × S0 → UA.
Take now any section σ : UA → H0 of the bundle UA × H0 → UA and put σ0 :=

Vσ : UA → S0. Since dσ0 = V dσ and PS0 = V V ∗, by using Corollary 6.8 we obtain for
u ∈ UA and a ∈ uA, that

∇�σ((u, a)) = dσ(u, a)+�(a)σ (u).

The completely positive map � can thus be interpreted in terms of covariant derivatives.

Acknowledgments We wish to thank Professor Joachim Hilgert for kindly sending over one of his papers
upon our request, and Professor Radu Pantilie for pointing out useful references and facts on linear connections.
We are also indebted to the Referee for carefully reading the manuscript and for a number of remarks which
improved our presentation.

6 Appendix: On linear connections and their pull-backs

For the reader’s convenience, we record here some general facts on connections on Banach
fiber bundles that are needed in the present paper. We use [16] and [17] as the main references,
but we will also provide proofs for some results where we were unable to find convenient
references in the literature.

6.1 Connections on fiber bundles

Definition 6.1 Let ϕ : M → Z a fiber bundle and consider both vector bundle structures of
the tangent space T M :

• τM : T M → M , the tangent bundle of the total space M .
• Tϕ : T M → T Z , the tangent map of ϕ.

A connection on the bundle ϕ : M → Z is a smooth map� : T M → T M with the following
properties:

(i) � ◦� = �;
(ii) the pair (�, idM ) is an endomorphism of the bundle τM : T M → M ;

(iii) for every x ∈ M , if we denote�x := �|Tx M : Tx M → Tx M , then we have Ran (�x ) =
Ker (Txϕ), so that we get an exact sequence

0 → Hx M ↪→ Tx M
�x−→ Tx M

Txϕ−→ Tϕ(x)Z → 0.

Here Hx M := Ker (�x ) is a closed linear subspace of Tx M called the space of horizontal
vectors at x ∈ M . Similarly, the space of vertical vectors at x ∈ M is Vx M := Ker (Txϕ).
Then we have the direct sum decomposition Tx M = Hx M ⊕ Vx M , for every x ∈ M (cf.
[16, subsect. 37.2]).

We consider in this paper two special types of connections.

(1) If ϕ : M → Z is a principal bundle with structure group G acting to the right on M by

(x, g) �→ μg(x) = μ(x, g), M × G → M

then a connection � on ϕ : M → Z is called principal whenever it is G-equivariant,
that is,

T (μg) ◦� = � ◦ T (μg)
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for all g ∈ G (cf. [16, subsect. 37.19]).
(2) If ϕ : M → Z is a vector bundle then a connection � on ϕ : M → Z is called linear if

the pair (�, idT Z ) is an endomorphism of the vector bundle Tϕ : T M → T Z (i.e., if�
is linear on the fibers of the bundle Tϕ); see [16, subsect. 37.27].

We are interested in particular in vector bundles constructed out of principal ones. Recall
how they appear: Let π : P → Z be a principal Banach bundle with the structure Banach-
Lie group G and the action μ : P × G → P . Assume that ρ : G → B(E) is a smooth
representation of G by linear operators on a Banach space E, and denote by

[(p, e)] �→ π(p), � : D = P ×G E → Z

the associated vector bundle (see [7, subsect. 6.5] and [16, subsect. 37.12]). Here P ×G E
denotes the quotient of P × E with respect to the equivalence relation defined by

(∀g ∈ G) (p, e) ∼ (μ(p, g), ρ(g−1)e) =: μ̄(g)(p, e)

whenever (p, e) ∈ P × E, and we denote by [(p, e)] the equivalence class of any pair (p, e).
In this way, � : P ×G E → Z is a vector G-bundle.

Remark 6.2 Every connection on a principal bundle π induces a linear connection on any
vector bundle associated to π . A good reference for that induction procedure in infinite
dimensions is Kriegl and Michor [16]. We will recall here the corresponding construction
since we need it in order to describe specific induced connections (see for instance the
comment prior to Theorem 2.2 above).

For a Banach-Lie group G with the Lie algebra g = T1G let λg : G → G, λg(h) = gh
for all g, h ∈ G. Then the mapping (g, X) �→ T1(λg)X is a diffeomorphism G × g → T G,
and thus the tangent manifold T G is endowed with structure of a semidirect product of
groups T G ≡ G �AdG g defined by the adjoint action of G on g; see [16, Cor. 38.10]. The
multiplication in the group T G is given by

(g1, X1)(g2, X2) = (g1g2,AdG(g
−1
2 )X1 + X2), (g1, g2 ∈ G; X1, X2 ∈ g).

Let π : P → Z be a principal bundle with the structure group G acting to the right by
μ : P × G → P . If ρ : G → B(E) is a smooth representation as above, then we can form
the associated vector bundle � : D = P ×G E → Z .

For describing a connection induced on�, one needs a specific description of the tangent
space of the total space P ×G E, and to this end one uses the fact that the tangent functor
commutes with the construction of associated bundles. In fact, the tangent bundle Tπ : T P →
T Z is a principal bundle with the structure group T G = G�AdG g and right action Tμ : T P×
T G → T P ([16, Th. 37.18(1)]). The representation ρ gives a linear action G × E → E,
and by computing the tangent map of that action it follows that the tangent map of the above
representation can be viewed as the smooth representation Tρ : G �AdG g → B(E ⊕ E),
which is easily computed as

(g, X) �→
(

ρ(g) 0
0 ρ(g)

) (

1 0
dρ(X) 1

)

=
(

ρ(g) 0
ρ(g)dρ(X) ρ(g)

)

,

where the resulting matrix is to be understood as acting on vectors of E ⊕ E written in
column form. Using the representation Tρ, the tangent bundle of the vector bundle� : D =
P ×G E → Z can be described as the vector bundle

τD : T D = T P ×G�AdG g (E ⊕ E) → P ×G E = D,
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which is associated to the principal bundle Tπ : T P → T Z and is defined by

τD : [(vp, ( f, h))] �→ [(p, f )] (vp ∈ TpP; f, h ∈ E)

([16, Th. 37.18(4)]).
If now� : T P → T P is a principal connection on the principal bundle π : P → Z , then

the mapping�× idT E : T P × T E → T P × T E is T G-equivariant and factorizes through a
map �̄ : T (P ×G E) → T (P ×G E) = T P ×T G T E. That is, there exists the commutative
diagram

T P × T E
�×idT E−−−−−→ T P × T E

⏐
⏐
�

⏐
⏐
�

T P ×T G T E
�̄−−−−→ T P ×T G T E

and �̄ is the connection induced by � on T (P ×G E); see [16, subsect. 37.24].

We now briefly recall the covariant derivatives (as in Vilms [34]) and we then provide a
proposition needed in the specific computations carried out in the present paper.

Let � : D → Z be a vector bundle with a linear connection � : T D → T D. Let
V D = Ker (T�) (⊆ T D) be the vertical part of the tangent bundle τD : T D → D. A useful
description of V D can be obtained by considering the fibered product D ×

Z
D := {(x1, x2) ∈

D × D | �(x1) = �(x2)} along with the natural maps r j : D ×
Z

D → D, r j (x1, x2) = x j

for j = 1, 2. Define for every (x1, x2) ∈ D ×
Z

D the path cx1,x2 : R → D, cx1,x2(t) =
x1 + t x2. Then it is easily seen that we have a well-defined diffeomorphism ε : D ×

Z
D →

V D, ε(x1, x2) = ċx1,x2(0) ∈ Tx1 D, which is in fact an isomorphism between the vec-
tor bundles r1 : D ×

Z
D → D and τD|V D : V D → D. We then get a natural mapping

r := r2 ◦ ε−1 : V D → D and the pair (r,�) is a homomorphism of vector bundles from
τD|V D : V D → D to � : D → Z .

Next let �1(Z , D) the space of locally defined smooth differential 1-forms on Z with
values in the bundle � : D → Z , hence the set of smooth mappings η : τ−1

Z (Zη) → D,
where τZ : T Z → Z is the tangent bundle and Zη is a suitable open subset of Z , such that
for every z ∈ Zη we have a bounded linear operator ηz := η|Tz Z : Tz Z → Dz = �−1(z).
(So the pair (η, idZ ) is a homomorphism of vector bundles from the tangent bundle τD|Zη
to the bundle �.) For the sake of simplicity we actually omit the subscript η in Zη, as if
the forms were always defined throughout Z ; in fact, the algebraic operations are performed
on the intersections of the domains, and so on. Similarly, we let �0(Z , D) be the space of
locally defined smooth sections of the vector bundle �.

Definition 6.3 The covariant derivative for the linear connection � is the linear mapping
∇ : �0(Z , D) → �1(Z , D), defined for every σ ∈ �0(Z , D) by the composition

∇σ : T Z
Tσ−→ T D

�−→ V D
r−→ D

that is, ∇σ = (r ◦�) ◦ Tσ . (The composition r ◦� is the so-called connection map.)

Proposition 6.4 Let� : D → Z and �̃ : D̃ → Z̃ be vector bundles endowed with the linear
connections � and �̃, with the corresponding covariant derivatives ∇ and ∇̃, respectively.
Assume that � = (δ, ζ ) is a homomorphism of vector bundles from � into �̃ such that
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T δ ◦ � = �̃ ◦ T δ. If σ ∈ �0(Z , D) and σ̃ ∈ �0(Z̃ , D̃) are such that δ ◦ σ = σ̃ ◦ ζ , then
δ ◦ ∇σ = ∇̃σ̃ ◦ T ζ .

Proof First let r : V D → D and r̃ : V D̃ → D̃ be the natural mappings and note that

δ ◦ r = r̃ ◦ T δ. (6.1)

In order to see why this equality holds true we need the mapping δ×
Z
δ : D ×

Z
D → D̃ ×̃

Z
D̃

given by (δ×
Z
δ)(x1, x2) = (δ(x1), δ(x2)), which is well defined since �̃ ◦ δ = ζ ◦�. Since

δ is fiberwise linear, it follows that with the notation of Definition 6.3 we have δ ◦ cx1,x2 =
cδ(x1),δ(x2) : R → D̃ for all (x1, x2) ∈ D ×

Z
D. By taking the velocity vectors at 0 ∈ R for

these paths we get T δ ◦ ε = ε̃ ◦ (δ×
Z
δ) : D ×

Z
D → T D̃. Therefore ε̃−1 ◦ T δ = (δ×

Z
δ)◦ ε−1

and then, by using the obvious equality r̃2 ◦ (δ×
Z
δ) = δ ◦ r2 : D ×

Z
D → D̃, we get

r̃ ◦ T δ = r̃2 ◦ ε̃−1 ◦ T δ = r̃2 ◦ (δ×
Z
δ) ◦ ε−1 = δ ◦ r2 ◦ ε−1 = δ ◦ r

hence (6.1) holds true.
We now come back to the proof of the assertion. By using (6.1) and the equality T δ ◦� =

�̃ ◦ T δ we get

δ ◦ (r ◦�) = r̃ ◦ T δ ◦� = (̃r ◦ �̃) ◦ T δ. (6.2)

On the other hand we have δ ◦ σ = σ̃ ◦ ζ , and therefore T δ ◦ Tσ = T σ̃ ◦ T ζ . We then get

∇̃σ̃ ◦ T ζ = (̃r ◦ �̃) ◦ T σ̃ ◦ T ζ = (̃r ◦ �̃) ◦ T δ ◦ Tσ = δ ◦ (r ◦�) ◦ Tσ = δ ◦ ∇σ
where the next-to-last equality follows by (6.1), and this completes the proof. ��
6.2 Pull-backs of connections

Pull-backs of connections on various types of finite-dimensional bundles have been studied in
several papers; see for instance [18,22,23,31,32]. We now establish a result (Proposition 6.6)
that belongs to that circle of ideas and is appropriate for the applications we want to make
in infinite dimensions. Unlike the descriptions of the pull-backs of connections that we were
able to find in the literature, the method provided here is more direct in the sense that it
requires neither the connection map, nor any connection forms, nor the covariant derivative,
but rather the connection itself. The intertwining property of the covariant derivatives follows
at once (Corollary 6.8).

We will need the following simple lemma.

Lemma 6.5 Let T : E → Ẽ be a continuous (conjugate-)linear operator between two
Banach spaces E and Ẽ . Let us assume that there are two closed linear subspaces F ⊂ E
and F̃ ⊂ Ẽ such that:

(i) the operator T induces a (conjugate-)linear isomorphism T |F : F → F̃;
(ii) Ran P̃ = F̃ , for some projection P̃ : Ẽ → Ẽ .

Then there exists a unique projection P ∈ End (E) such that Ran P = F and P̃ ◦ T = T ◦ P.

Proof Existence: Define

P := (T |F )−1 ◦ P̃ ◦ T ∈ End (E) (6.3)
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60 D. Beltiţă, J. E. Galé

It is clear that Ran P = F and moreover P|F = idF , hence P ◦ P = P . Then the commu-
tativity of the diagram is satisfied by the construction of P .

Uniqueness: Assume that P1 ∈ End (E) is another operator satisfying the properties of the
statement. Then for arbitrary x ∈ E we have T (P1x) = P̃T x = T (Px). Since P1x, Px ∈ F
and T |F : F → F̃ is an isomorphism, it then follows that P1x = Px . Thus P1 = P and we
are done. ��
Proposition 6.6 Let ϕ : M → Z and ϕ̃ : M̃ → Z̃ be fiber bundles modeled on Banach
spaces, and let � = (δ, ζ ) be a bundle homomorphism, that is, the diagram

M
δ−−−−→ M̃

ϕ

⏐
⏐
�

⏐
⏐
�ϕ̃

Z
ζ−−−−→ Z̃

is commutative and both δ and ζ are smooth. In addition, assume that for every s ∈ Z the
mapping δ induces a diffeomorphism of the fiber Ms := ϕ−1({s}) onto the fiber M̃ζ(s) :=
ϕ̃−1(ζ(s)).

Then for every connection �̃ on the bundle ϕ̃ : M̃ → Z̃ there exists a unique connection
� on the bundle ϕ : M → Z such that the diagram

T M
T δ−−−−→ T M̃

�

⏐
⏐
�

⏐
⏐
��̃

T M
T δ−−−−→ T M̃

is commutative.
Moreover, if both ϕ : M → Z and ϕ̃ : M̃ → Z̃ are principal (vector) bundles, the pair

� = (δ, ζ ) is a homomorphism of principal bundles (or of vector bundles, and in this case
δ can be linear) bundles, and �̃ is a principal (linear or conjugate-linear) connection, then
so is �.

Proof We have for every x ∈ M the continuous operator Txδ : Tx M → Tδ(x)M̃ (which is
either linear or conjugate-linear), and also the relations Tx (Mϕ(x)) = Vx ↪→ Tx M and

Tδ(x)(M̃ζ(ϕ(x))) = Tδ(x)(M̃ϕ̃(δ(x))) = Vδ(x)M̃ ↪→ Tδ(x)M̃ .

Since δ|M�(x) : M�(x) → M̃ζ(�(x)) is a diffeomorphism by hypothesis, it thus follows that the
operator Txδ induces a (conjugate-)linear isomorphism Vx M → Vδ(x)M̃ . Now Lemma 6.5
shows that there exists a unique idempotent operator�x : Tx M → Tx M such that Ran�x =
Vx M and (Txδ) ◦�x = �̃δ(x) ◦ (Txδ). In fact it is defined by

�x := (Txδ|Vx M )
−1 ◦ �̃δ(x) ◦ Txδ (x ∈ M).

If we put together the operators �x with x ∈ M , we get the map � : T M → T M we were
looking for. What still remains to be done is to check that � is smooth. Since this is a local
property, we may assume that both bundles � and �̃ are trivial. Let S and S̃ be their typical
fibers, respectively. Then M = Z × S and M̃ = Z̃ × S̃, hence T M = T M × T S and
T M̃ = T Z̃ × T S̃. The fact that �̃ is a connection means that for every (̃z, k̃) ∈ Z̃ × S̃ we
have an idempotent operator �̃(̃z,̃k) on T̃z Z̃ × T̃k S̃ with Ran �̃(̃z,̃k) = {0} × T̃k S̃.

Moreover, we have the smooth map δ : Z ×S → Z̃× S̃ for which there exists a smooth map
d : Z × S → S̃ such that δ(z, k) = (ζ(z), d(z, k)) for all z ∈ Z and k ∈ S. The hypothesis
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that δ is a fiberwise diffeomorphism is equivalent to the fact that for every z ∈ Z we have
the diffeomorphism d(z, · ) : S → S̃. It follows by (6.3) that, for arbitrary (z, k) ∈ Z × S,

�(z,k) = Tk(d(z, · ))−1 ◦ �̃δ(z,k) ◦ T(z,k)δ ∈ End (Tz Z × Tk S)

which clearly shows that� : T Z × T S → T Z × T S is smooth. (Note that the smoothness of
the mapping (z, k) �→ Tk(d(z, · ))−1 is ensured by the fact that we are working with Banach
manifolds.)

The remainder of the proof is straightforward. ��
Definition 6.7 In the setting of Proposition 6.6 we say that the connection� is the pull-back
of the connection �̃ and we denote � = �∗(�̃).

Corollary 6.8 Let � : D → Z and �̃ : D̃ → Z̃ be vector bundles. Assume that � = (δ, ζ )

is a homomorphism of vector bundles from � into �̃ such that for every s ∈ Z the mapping
δ induces an isomorphism of the fiber Ds := �−1({s}) onto the fiber D̃ζ(s) := �̃−1(ζ(s)).
Consider any linear connection �̃ on the vector bundle � and its pull-back � = �∗(�̃) on
the vector bundle �̃, with the corresponding covariant derivatives ∇ and ∇̃, respectively. If
we have σ ∈ �0(Z , D) and σ̃ ∈ �0(Z̃ , D̃) such that δ ◦σ = σ̃ ◦ ζ , then δ ◦∇σ = ∇̃σ̃ ◦ T ζ .

Proof Use Propositions 6.6 and 6.4. ��

References

1. Andruchow, E., Corach, G., Stojanoff, D.: A geometric characterization of nuclearity and injectivity.
J. Funct. Anal. 133(2), 474–494 (1995)
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