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Abstract It is well-known that the coset spaces G(k((z)))/G(k[[z]]), for a reductive group
G over a field k, carry the geometric structure of an inductive limit of projective k-schemes.
This k-ind-scheme is known as the affine Grassmannian for G. From the point of view of
number theory it would be interesting to obtain an analogous geometric interpretation of
quotients of the form G(W(k)[1/p])/G(W(k)), where p is a rational prime, W denotes
the ring scheme of p-typical Witt vectors, k is a perfect field of characteristic p and G is
a reductive group scheme over W(k). The present paper is an attempt to describe which
constructions carry over from the function field case to the p-adic case, more precisely to
the situation of the p-adic affine Grassmannian for the special linear group G = SLn . We
start with a description of the R-valued points of the p-adic affine Grassmannian for SLn in
terms of lattices over W(R), where R is a perfect k-algebra. In order to obtain a link with
geometry we further construct projective k-subvarieties of the multigraded Hilbert scheme
which map equivariantly to the p-adic affine Grassmannian. The images of these morphisms
play the role of Schubert varieties in the p-adic setting. Further, for any reduced k-algebra R
these morphisms induce bijective maps between the sets of R-valued points of the respective
open orbits in the multigraded Hilbert scheme and the corresponding Schubert cells of the
p-adic affine Grassmannian for SLn .
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860 M. Kreidl

1 Introduction

Let k denote an arbitrary field, n ≥ 2 an integer, and let SLn denote the special linear group.
The affine Grassmannian for SLn over k is the quotient fpqc-sheaf

Grass : R �→ SLn(R((z)))/SLn(R[[z]])
which maps k-algebras to sets. This sheaf is represented by an ind-projective k-ind-scheme,
as we recall briefly in the following.

Definition 1 ([1,2]) Let R be a k-algebra. A lattice L ⊂ R((z))n is a finitely generated
projective R[[z]]-submodule such that L ⊗R[[z]] R((z)) = R((z))n . A lattice L is called
special, if its determinant is trivial, i.e. ∧n L = R[[z]].

By Lattn we denote the functor which associates to any R-algebra the set of lattices in
R((z))n , and Lattn,0 denotes the subfunctor of special lattices. Further, let N be any positive
integer. Then we denote by Lattn

N and Lattn,0
N the respective subfunctors of lattices L with

the property that zN R[[z]]n ⊂ L ⊂ z−N R[[z]]n . The following theorem by Beauville and
Laszlo establishes the representability of Grass as a k-ind-scheme.

Theorem 2 ([1]) For any k-algebra R, the setGrass(R) is the ascending union∪N∈NLattn,0
N

(R), and the functor Lattn,0
N is represented by a closed subscheme of an ordinary Grass-

mannian (more precisely, the Grassmannian which parametrizes nN-dimensional k-linear
subspaces in k2nN ). Hence the functor Grass is an ascending union of projective k-schemes,
and therefore it is an ind-projective k-ind-scheme.

The affine Grassmannian, also for other algebraic groups than SLn , and its variants such as
partial or full flag varieties, are well studied as natural objects within the geometric Langlands
program and in the theory of local models for certain Shimura varieties, see e.g. [2].

From the point of view of number theory it is perhaps even more interesting
to look at quotients of the form SLn(Qp)/SLn(Zp), or more generally of the form
SLn(W(k)[1/p])/SLn(W(k)), where k is a perfect field of positive characteristic p and
W(k) denotes the ring of p-typical Witt vectors over k. A structure of an ind-scheme on
these quotients would lead to an algebraic model of the Bruhat-Tits building of the group
SLn(W(k)[1/p]). Let us refer to this setting as the p-adic case in what follows, while by the
function field case we mean the situation discussed before.

In [5] the author has addressed the problem of endowing the quotient sets SLn(W(k)
[1/p])/SLn(W(k)) with an algebro-geometric structure, and he has shown that the p-adic
situation is in this respect significantly more complicated than the function field case. One
source of complication in the p-adic case is certainly the simple fact that W(R), with R any
ring, does not carry the structure of an R-module. For this reason it is not obvious how to
construct an analogue of Lattn,0

N inside an inductive limit of classical Grassmannians over
k. Indeed, the p-adic case is far less understood, and it is still not clear whether it is possible
to put a structure of an ind-scheme, or a related algebraic structure, on the quotient sets
SLn(W(k)[1/p])/SLn(W(k)).

The present paper is an attempt to investigate how much of our geometric understanding
of the affine Grassmannian for SLn carries over from the function field case to the p-adic
case. To this end we make the following definitions in analogy to the function field case. Let
k be a perfect field of characteristic p > 0.
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On p-adic lattices and Grassmannians 861

Definition 3 The p-adic affine Grassmannian for SLn is the fpqc-sheaf associated to the
functor

Grassp : R �→ SLn(W(R)[1/p])/SLn(W(R))

from the category of k-algebras to the category of sets.

In Sect. 2 we will obtain a description of the set of R-valued points of the p-adic affine
Grassmannian for SLn in terms of lattices in the case when R is a perfect k-algebra.

Definition 4 Let R be a perfect k-algebra. A lattice L ⊂W(R)[1/p]n (or simply: a W(R)-
lattice of rank n) is a finitely generated, projective W(R)-submodule L ⊂W(R)[1/p]n such
that L ⊗W(R) W(R)[1/p] =W(R)[1/p]n . Further, a lattice L ⊂W(R)n is called special if
∧n L =W(R).

First, we obtain in Sect. 2.1 the following characterization of lattices in W(R)[1/p]n . A
W(R)-submodule L ⊂ W(R)[1/p]n is a lattice if and only if it is a free W(R) − module
Zariski-locally on R and if and only if it is a free W(R)-module fpqc-locally on R. This is
again analogous to a well known characterization of lattices in the function field case, see
[1] or Sect. 2.1 in the present paper.

The connection between the p-adic affine Grassmannian for SLn and the notion of lattice
of rank n in the p-adic setting will then be established by the following theorem, which we
are going to prove in Sect. 2.2.

Theorem 5 If R is a perfect k-algebra, then the set of R-valued points of Grassp is canon-
ically identified with the set of special lattices L ⊂W(R)[1/p]n.

As already indicated above, our main goal will then be to investigate the p-adic affine
Grassmannian for SLn from the viewpoint of algebraic geometry. To this end we review
the notions of ind-schemes (Sect. 3.1) as well as Greenberg realizations (Sect. 3.2) and
localized Greenberg realizations (Sect. 3.3), which were introduced in a similar manner in
[5]. Moreover, building on these notions we introduce in Sect. 3.4 the p-adic analogues
of the (algebraic) loop group, Lp SLn , and the positive (algebraic) loop group, L+p SLn . In
terms of R-valued points, where R is any k-algebra, we have L+p SLn(R) = SLn(W(R)) and
Lp SLn(R) = SLn(W(R)[1/p]). Obviously, these functors come with a natural morphism
L+p SLn → Lp SLn . With these definitions we can state that the p-adic affine Grassmannian
for SLn is the fpqc-sheaf quotient of loop groups Lp SLn/L+p SLn (Definition 37). Further, to
each dominant cocharacter λ of the standard maximal torus T ⊂ SLn we associate a k-valued
point of Grassp and let Cλ be its orbit for the natural left-action of L+p SLn on Grassp . The
orbits Cλ play the role of Schubert cells in Grassp .

In order to link these orbits to k-schemes and consider their closures in an appropriate
setting we recall in Sect. 4.1 the construction of multigraded Hilbert schemes by Haiman
and Sturmfels and introduce in Sect. 4.2 the notion of lattice schemes inside an appropriate
affine space. We think of this construction as the analogue of considering lattices as certain
linear subspaces inside an affine space in the function field case. In our setting we obtain,
in Sect. 4.3, for each dominant cocharacter λ, a projective k-subvariety Dλ of a multigraded
Hilbert scheme, which parametrizes certain lattice schemes and carries a natural L+p SLn-
action. The link to the p-adic affine Grassmannian for SLn is then established by the following
theorem, which is proved in the course of Sects. 4.4 and 4.5.

Theorem 6 For every dominant cocharacter λ of the standard maximal torus T ⊂ SLn

there is an L+p SLn-equivariant morphism of fpqc-sheaves πλ : Dλ → Grassp which has the
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862 M. Kreidl

following properties. Let Cλ ⊂ Dλ be the open orbit, and let Cλ ⊂ Grassp be the Schubert
cell corresponding to λ. Then πλ induces bijections Cλ(R) 
 Cλ(R) for all reduced k-
algebras R. Moreover, the image under πλ of Dλ(k) is precisely the union of the sets of
k-valued points of the Schubert cells Cλ′ , with λ′ ≤ λ for the classical Bruhat-order (whose
definition is recalled in Sect. 4.5).

The morphismsπλ are not injective at the level of k-valued points. This means in particular
that the varieties Dλ fail to be good analogues of Schubert varieties in the function field case.
Rather, the situation appears similar to constructions in [7], and thus the varieties Dλ could
perhaps be viewed as a sort of Demazure resolution in the p-adic setting. We make this
explicit in the simplest non-trivial special case n = 2 and λ = (1,−1).

Finally, in the “Appendix” we collect a couple of general results on fpqc-sheaves and
fpqc-sheafification which are used throughout the paper. Moreover, we discuss briefly the
set-theoretical problems which occur when talking about fpqc-sheafifications, and which are
often ignored. Using results from [12] we check that such complications do not occur in our
construction of the p-adic affine Grassmannian for SLn as an fpqc-sheaf quotient of loop
groups.

2 Lattices over the Witt ring

Here and for the rest of this paper we denote by k a perfect field of positive characteristic
p. The main goal of this section is to describe the R-valued points of the p-adic affine
Grassmannian for SLn in terms of lattices if R is a perfect k-algebra.

2.1 Lattices over W(R) are free W(R)-modules locally on R

Let us first recall the following result by [1] from the function field case.

Theorem 7 For an R[[z]]-submodule L ⊂ R((z))n the following four statements are equiv-
alent:

(1) The submodule L is a lattice.
(2) Zariski-locally on R, L is a free R[[z]]-submodule of rank n (i.e. there exist f1, . . . , fr ∈

R such that ( f1, . . . , fr ) = R and for all i , L ⊗R[[z]] R fi [[z]] is free of rank n and
L ⊗R[[z]] R((z)) = R((z))n).

(3) fpqc-locally on R, L is a free R[[z]]-submodule of rank n (i.e. there exists a faithfully flat
ring homomorphisms R → S such that L ⊗R[[z]] S[[z]] is free of rank n and L ⊗R[[z]]
R((z)) = R((z))n).

(4) There exists a positive integer N such that zN R[[z]]n ⊂ L ⊂ z−N R[[z]]n and
z−N R[[z]]n/L is a projective R-module.

The statement that (1), (2) and (3) in this theorem are equivalent can be rephrased: The
functor Lattn , as defined in the introduction, is the Zariski- resp. the fpqc-sheafification of
the functor which associates to each k-algebra R the set of free lattices in R((z))n . Similarly,
Lattn,0 is the Zariski- resp. fpqc-sheafification of the functor which associates to each R the
set of free special lattices in R((z))n . Our goal in this subsection is to obtain a similar result
in the Witt vector setting in the case where R is a perfect k-algebra.

In what follows we build on our definition of the p-adic affine Grassmannian for SLn

and our notion of p-adic lattices as in Definitions 3 and 4 in the introduction. By Lattn
p(R)
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On p-adic lattices and Grassmannians 863

we denote the set of lattices of rank n over W(R), and Lattn,0
p (R) ⊂ Lattn

p(R) denotes the
subset of special lattices. First we want to see that the assignment R �→ Lattn

p(R) is a functor
on the category of perfect k-algebras. To this end we prove the following lemma.

Lemma 8 Let R→ S be a homomorphism of perfect k-algebras, and let L be a flat W(R)-
module satisfying pN W(R)n ⊂ L ⊂ p−N W(R)n for some positive integer N. Then we
have

TorW (R)
1 (p−N W(R)n/L ,W(S)) = 0.

In particular, this implies that L ⊗W(R) W(S) ⊂ p−N W(S)n ⊂W(S)[1/p]n.

Proof Set FR = p−N W(R)n, FS = p−N W(S)n = FR ⊗W(R) W(S) and consider the exact
complex

0→ TorW (R)
1 (FR/L ,W(S))→ L ⊗W(R) W(S)

→ FS → FS/L ⊗W(R) W(S)→ 0.

On the one hand, multiplication by p2N is the zero-map on FR/L , and hence, by functoriality,

also on TorW (R)
1 (FR/L ,W(S)). On the other hand, (L

p−→ L) ⊗W(S) = L ⊗ (W(S)
p−→

W(S)) is injective, as L is flat over W(R). In other words, p acts faithfully and nilpotently
on TorW (R)

1 (FR/L ,W(S)), which is thus the 0-module. 
�
Next we observe that for any finitely generated W(R)-submodule L ⊂W(R)n the condi-

tion L⊗W(R) W(R)[1/p] =W(R)[1/p]n is equivalent to the existence of a positive integer
N such that pN W(R)n ⊂ L ⊂ p−N W(R)n . From this and Lemma 8 we immediately obtain
the following fact.

Fact 9 The assignment R �→ Lattn
p(R) defines a functor from the category of perfect

k-algebras to the category of sets. Namely, to any homomorphism R→ S assign the map

Lattn
p(R)→ Lattn

p(S); L �→ L ⊗W(R) W(S).

The rule R �→ Lattn,0
p (R) is a subfunctor.

The rest of this subsection is devoted to the study of the Zariski- resp. fpqc-sheaf properties
of Lattn

p resp. Lattn,0
p .

Theorem 10 (1) The functorLattn
p is the Zariski-sheafification of the functor on the category

of perfect k-algebras, which associates to any perfect k-algebra R the set of free lattices
of rank n over W(R).

(2) Moreover, Lattn
p is even an fpqc-sheaf on the category of perfect k-algebras. Together

with (1) this says that Lattn
p is also the fpqc-sheafification of the functor which associates

to any perfect k-algebra R the set of free lattices of rank n over W(R).
(3) The analogous assertions hold if we replace Lattn

p by Lattn,0
p and “free lattices of rank

n” by “free special lattices of rank n”.

Proof It suffices to prove the first two parts of the theorem, as part (3) follows directly from
(1) and (2). We will check (1) as follows. Since by definition L ∈ Lattn

p(R) is projective
and finitely generated as a W(R)-module, it is even finitely presented and (Zariski-)locally
free over W(R). This means that there exist p-typical Witt vectors f1, . . . , fm ∈ W(R)
which generate the unit ideal in W(R) and such that for each 1 ≤ i ≤ m the localization
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864 M. Kreidl

L ⊗W(R) W(R)[1/ fi ] is free over W(R)[1/ fi ]. Denote by gi ∈ R the class mod p of fi ;
without loss of generality we can assume that gi �= 0 for all i . Then the gi generate the unit
ideal in R, and I claim that the W(R[1/gi ])-module L ⊗W(R) W(R[1/gi ]) is free for each i .
Denote by [gi ] the Teichmüller representative of gi , which is invertible in W(R[1/gi ]). Thus,
in W(R[1/gi ])we may consider the product [gi ]−1 fi = α. Since the class of α (mod p) is 1
and R[1/gi ] is perfect, we see that α ∈ 1+ pW(R[1/gi ]) and in particular that α is invertible
in W(R[1/gi ]). Hence the same is true for fi , and thus W(R)[1/ fi ] ⊂ W(R[1/gi ]). This
proves that we may choose

∐m
i=1 Spec R[1/gi ] → Spec R as a Zariski-covering over which

L is a free lattice.
The proof of part (2) requires more work and will be completed before Corollary 14 below.

In what follows, WN (R) = W(R)/pN W(R) denotes the ring of p-typical Witt vectors of
length N ∈ N over a perfect ring R. 
�
Lemma 11 Let R→ S be a homomorphism of perfect rings. Then

WN (S)⊗WN (R) WN (S) =WN (S ⊗R S).

Proof The ring W(S⊗R S) carries a natural structure of a W(R)-algebra, and for this structure
we have a homomorphism of algebras W(S)⊗W(R) W(S)→W(S⊗R S). We will show by
induction on N that this map reduces to an isomorphism modulo pN for every N , the case
N = 1 being trivial. Let us set A :=W(S)⊗W(R) W(S) and B :=W(S⊗R S), and assume
that for N > 1 the induced map A/(pN−1)→ B/(pN−1) is an isomorphism. Then consider
the commutative diagram

0 �� (pN−1 A)/(pN )

��

�� A/(pN )

��

�� A/(pN−1) ��

��

0

0 �� (pN−1 B)/(pN ) �� B/(pN ) �� B/(pN−1) �� 0.

As we assume that S is perfect, multiplication by pm maps W(S) isomorphically onto
pmW(S) for every m ∈ N, and thus multiplication by pN−1 induces isomorphisms

S ⊗R S 
 W (S)⊗W(R) (p
N−1W(S)/(pN )) 
 (pN−1 A)/(pN ). (1)

On the other hand, also S⊗R S is a perfect ring, whence multiplication by p is an isomorphism
from W(S ⊗R S) to pW(S ⊗R S), and

S ⊗R S 
 B/(p) 
 (pN−1 B)/(pN ). (2)

Using the isomorphisms (1) and (2), the above commutative diagram becomes isomorphic
to

0 �� S ⊗R S

id

��

�� A/(pN )

��

�� A/(pN−1) ��

��

0

0 �� S ⊗R S �� B/(pN ) �� B/(pN−1) �� 0.

As we assumed that the right hand vertical arrow is an isomorphism, the 5-lemma implies
that the middle vertical map is an isomorphism, too, which proves the induction step. 
�
Lemma 12 Let R→ S be a homomorphism of perfect rings. Then for every positive integer
N the following two statements hold:
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On p-adic lattices and Grassmannians 865

(1) WN (R)→WN (S) is flat if and only if R→ S is flat,
(2) WN (R)→WN (S) is faithful if and only if R→ S is faithful.

(A homomorphism of rings is said to be faithful if and only if it induces a surjective morphism
at the level spectra).

Proof The first part of the lemma is a special case of the local criterion of flatness ([8],
Thm. 22.3), which includes the statement that if A is a ring, M is an A-module and I a nilpotent
ideal of A for which I⊗A M 
 I M holds, then M is flat over A if and only if M/I M is flat over
A/I A. We apply this statement to our situation with A =WN (R), M =WN (S) and I = (p),
and thus we only have to check that pWN (S) = (p)⊗WN (R)WN (S). But this follows from the
observation that (p) = pWN (R) 
WN−1(R), whence (p)⊗WN (R)WN (S) 
WN−1(S) 

pWN (S).

To prove the second statment, we just note that for every ring R the reduction mod p,
WN (R)→ R, induces a bijection between the associated spectra:

Spec R

−→ Spec WN (R).

Namely, since p is nilpotent in WN (R) it is contained in every prime ideal of WN (R). 
�
Lemma 13 Let (Ai )i∈N be an inverse system of rings, with all the transition homomorphisms
Ai+1 → Ai surjective, and let Â be its limit. Let M be a finitely generated Â-module, write
Mi := M⊗ Â Ai and assume that M = lim←−Mi . If all the Mi are projective Ai -modules, then

M is a projective Â-module as well.

Proof Consider a surjective Â-homomorphism π : Ân � M . We shall show that it splits by
constructing a system of compatible splittings of the induced maps πi : An

i � Mi .
Of course, the mapsπi split, since the Mi are projective by assumption. Our strategy will be

to construct compatible splittings by induction on i . So assume we have a compatible system
of splittings si : Mi → An

i up to a certain index i . Further we set Ii+1 = ker(Ai+1 → Ai ),
Ki+1 = ker(Mi+1 → Mi ) and Li+1 = ker(An

i+1 → An
i ) = I n

i+1, respectively. By tensoring
the short exact sequence 0 → Ii+1 → Ai+1 → Ai → 0 of Ai+1-modules with πi+1 :
(Ai+1)

n → Mi+1 we obtain the following diagram of Ai+1-modules, with exact rows and
all vertical maps surjective:

0 �� Li+1

��

�� An
i+1

��

��

An
i

��

��

0

0 �� Ki+1 �� Mi+1 �� Mi �� 0.

As the tensor product is right exact, the kernel of πi+1 surjects onto the kernel of πi . From
this and the 5-lemma we get that the vertical linear map Li+1 → Ki+1 is onto.

By induction, for the Ai -linear map πi : An
i → Mi we already have a splitting si . By

Ai+1-projectivity of Mi+1 we may lift the composition Mi+1 → Mi → An
i in order to

obtain a map s̃i+1 : Mi+1 → Ai+1, rendering the right square in the following diagram
commutative:

0 �� Li+1

��

�� An
i+1

�� An
i

�� 0

0 �� Ki+1 �� Mi+1 ��

s̃i+1

��

Mi

si

��

�� 0.
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866 M. Kreidl

In general, s̃i+1 will not be a splitting of πi+1, but it can be properly adjusted: A diagram
chase shows that the difference δi := (πi+1 ◦ s̃i+1 − 1Mi+1) is an Ai+1-linear map Mi+1 →
ker(Mi+1 → Mi ) = Ki+1. As Mi+1 is a projective Ai+1-module we can lift δi to Δi :
Mi+1 → Li+1 → An

i+1 (as remarked above Li+1 → Ki+1 is surjective). If we set si+1 :=
s̃i+1 −Δi , we get indeed a splitting of πi+1, producing a commutative square

An
i+1

�� An
i

Mi+1 ��

si+1

��

Mi .

si

��

Inductively applying this construction, we end up with a projective system of splittings, the
limit of which is the desired splitting of π . 
�

We are now ready to prove that the functor R �→ Lattn
p(R) is a sheaf for the fpqc-topology

on the category of perfect rings. To begin with, note that for any perfect ring R and any finitely
generated W(R)-submodule M ⊂W(R)[1/p]n satisfying pN W(R)n ⊂ M ⊂ p−N W(R)n

for some N , we have

lim←−(M ⊗W(R)/pi W(R)) = lim←−M/pi M = lim←−M/p j W(R)n = M. (3)

Here the second equality holds since the respective inverse systems are coinitial, while the
third equality follows from the left exactness of the inverse limit over j of the short exact
sequence

0→ M/p j W(R)n → p−N W(R)n/p j W(R)n → p−N W(R)n/M → 0.

Since we already know that Lattn
p is a Zariski-sheaf, it suffices to consider a faithfully flat

homomorphism R→ S of perfect rings, and show that the sequence

Lattn
p(R)→ Lattn

p(S) ⇒ Lattn
p(S ⊗R S) (4)

is an equalizer.

(1) Lattn
p(R)→ Lattn

p(S) is injective: Take L , L ′ ∈ Lattn
p(R) such that L⊗W(R)W(S) =

L ′ ⊗W(R) W(S). By Lemma 12 we know that WN (R)→ WN (S) is faithfully flat for
every N , which tells us that L ⊗W(R) WN (R) = L ′ ⊗W(R) WN (R). Using equation (3)
this proves L = L ′.

(2) The subset Lattn
p(R) ⊂ Lattn

p(S) is the equalizer of Lattn
p(S) ⇒ Lattn

p(S ⊗R S):
Clearly, Lattn

p(R) is contained in the difference kernel. To check the converse, we
consider the two W(S)-module structures j1, j2 : W(S) ⇒ W(S ⊗R S), given by
j1 : w �→ w ⊗ 1 and j2 : w �→ 1 ⊗ w, respectively, and form the tensor products
L1 = L ⊗W (S), j1 W(S ⊗R S) and L2 = L ⊗W (S), j2 W(S ⊗R S). Then L is in the
difference kernel if and only if L1 = L2. For such an L we may conclude, using Lemma
11, that for i large enough one has

(L ⊗Wi (S))⊗Wi (S), j1 (Wi (S)⊗Wi (R) Wi (S))

= (L ⊗Wi (S))⊗Wi (S), j2 (Wi (S)⊗Wi (R) Wi (S)), (5)

and similarly

(L/(pi W(S))n)⊗Wi+N (S), j1 (Wi+N (S)⊗Wi+N (R) Wi+N (S))

= (L/(pi W(S))n)⊗Wi+N (S), j2 (Wi+N (S)⊗Wi+N (R) Wi+N (S)). (6)
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For i > 2N we consider the diagram of Wi+N (S)-modules

(p−N W(S)n)/(pi+N W(S)n) �� p−N Wi (S)
n (p−N W(S)n)/(pi−N W(S)n)

L/(pi+N W(S))n �� ����

�

L ⊗W(S) Wi (S) �� ��

��

L/(pi−N W(S))n
��

�

(pN W(S)n)/(pi+N W(S)n)
��

�

pN Wi (S)
n ��

��

(pN W(S)n)/(pi−N W(S)n).
��

�

Now (5) and (6) together with Lemma 12 say that this diagram descends to a diagram of
Wi+N (R)-modules, i.e. we obtain a diagram of the form

(p−N W(R)n)/(pi+N W(R)n) �� p−N Wi (R)
n (p−N W(R)n)/(pi−N W(R)n)

Pi+N �� ����

�

Mi �� ��

��

Pi−N
��

�

(pN W(R)n)/(pi+N W(R)n)
��

�

pN Wi (R)
n ��

��

(pN W(R)n)/(pi−N W(R)n).
��

�

We thus have two cofinal systems of W(R)-modules, (Mi ) and (Pi ), whose inverse limit is
a W(R)-module M . I claim that this is the desired W(R)-lattice. First observe that for N big
enough we have an exact sequence

0→ pN W(R)n ↪→ M → PN → 0,

as we can see by taking the inverse limit over i > 0 of the sequence

0→ pN W(R)n/pi+N W(R)n ↪→ Pi+N → Pi+N /pN W(R)n = PN → 0.

Since pN W(R)n is finitely generated, and so is PN by faithfully flat descent, M is finitely
generated, too. On the other hand, as the complex

0→ pN L ⊗W(S) Wi (S)→ L ⊗W(S) Wi+N (S)→ L ⊗W(S) WN (S)→ 0

is exact, we obtain by faithfully flat descent a short exact sequence

0→ pN Mi → Mi+N → MN → 0.

Passing to the inverse limit over i we obtain

0→ pN M → M → MN → 0,

and thus M ⊗W(R) WN (R) = MN , which is a projective WN (R)-module by faithfully flat
descent: Indeed for a module over any base ring it is equivalent to say that it is (1) finitely
generated and projective or (2) of finite presentation and flat. By definition these properties are
satisfied by L⊗W(S)WN (S), and they descend to MN by [4], Prop. 2.5.1 and 2.5.2. Hence we
have arrived at a situation where Lemma 13 applies, proving that M = lim←−(M⊗W(R)WN (R))
is a W(R)-lattice. Clearly, (M⊗W(R)W(S))⊗W(S)WN (S) = MN⊗W(S)WN (S) = L⊗W(S)

WN (S). Taking the limit over N we obtain M⊗W(R)W(S) = L , which concludes the proof.

�

From Theorem 10 we obtain the following corollary in close analogy to Theorem 7.
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Corollary 14 Let R be a perfect k-algebra and let L ⊂W(R)[1/p]n be a W(R)-submodule.
Then the following three statements are equivalent:

(1) The submodule L is a lattice.
(2) Zariski-locally on R, L is a free W(R)-submodule of rank n (i.e. there exist f1, . . . , fr ∈

R such that ( f1, . . . , fr ) = R and for all i , L ⊗W(R) W(R fi ) is free of rank n and
L ⊗W(R) W(R)[1/p] =W(R)[1/p]n).

(3) fpqc-locally on R, L is a free W(R)-submodule of rank n (i.e. there exists a faithfully flat
ring homomorphisms R → S such that L ⊗W(R) W(S) is free of rank n and L ⊗W(R)

W(R)[1/p] =W(R)[1/p]n).

Proof This follows immediately from Theorem 10. 
�

It is not clear to me whether there is a good translation of condition (4) of Theorem 7 to
the Witt vector setting. The obvious obstacle is the fact that W(R) does not carry a structure
of an R-module.

2.2 The p-adic affine Grassmannian for SLn in terms of lattices

For any perfect k-algebra R, we obtain from Theorem 10 the following characterization of
the R-valued points of the p-adic affine Grassmannian for SLn in terms of lattices.

Theorem 15 The fpqc-sheaf Lattn,0
p is equal to the restriction of the p-adic affine Grass-

mannian Grassp to the category of perfect k-algebras.

Proof The presheaf R �→ SLn(W(R)[1/p])/SLn(W(R)) coincides with the presheaf
R �→ {free special lattices of rank n over W(R)} on the category of perfect k-algebras. Thus
it suffices to prove the following claim: For each presheaf F on the fpqc-site over k the
processes of sheafification and restriction to the category of perfect k-algebras commute. Let
R be a perfect k-algebra and let {Ui → Spec R} be a covering (on the fpqc-site over k).
Refining the covering we may assume that the Ui are all affine. For each i denote by Ũi the
perfection of Ui . Then the morphisms Ũi → Spec R are still jointly surjective and flat, since
the affine ring of the perfection is the direct limit of an inductive system

R

��


 �� R

��


 �� · · · 
 �� lim−→R

��

R

��
Ui �� Ui �� · · · �� lim−→Ui Ũi ,

where all horizontal maps are the p-th power map, and direct limits preserve flatness. Thus
we have obtained a refinement of {Ui → Spec R}, which is by definition also a covering in
the fpqc-site on the category of perfect k-algebras, and the claim now follows from Lemma
48 in the “Appendix”. 
�

We conclude this section by describing the well-known Cartan decomposition for the
p-adic affine Grassmannian Grassp . Denote by T the standard maximal torus contained in
the standard Borel subgroup B ⊂ SLn of upper triangular matrices, and let X̌(T ) and X̌+(T )
be the sets of cocharacters and dominant cocharacters (respectively). We identify X̌(T ) with
the subset of Zn of vectors whose coordinates sum up to 0, and let X̌+(T ) ⊂ X̌(T ) be the
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subset of vectors whose coordinates moreover form a decreasing sequence. Further, consider
the embedding

X̌(T ) ↪→ SLn(W (k)[1/p]); λ = (λ1, . . . , λn) �→ diag(pλ1 , . . . , pλn ).

Composing with the natural morphism of functors SLn(W (R)[1/p])→ Grassp(R) we
obtain a map

L : X̌+(T )→ Grassp(k); λ �→ Lλ,
which is injective by the elementary divisors theorem.

Definition 16 For each λ ∈ X̌+(T ) the Schubert cell Cλ ⊂ Grassp is the fpqc-sheafification
of the SLn(W (R))-orbit of Lλ ∈ Grassp .

Theorem 17 The p-adic affine Grassmannian for SLn is, at the level of k-valued points, the
disjoint union of its Schubert cells Cλ, for all λ ∈ X̌+(T ):

Grassp(k) =
∐

λ∈X̌+(T )

Cλ(k).

Proof This follows from the elementary divisors theorem. 
�
Remark 18 In this section we have defined the p-adic affine Grassmannian for SLn and
its Schubert cells as fpqc-sheafifications of certain functors. In general the process of fpqc-
sheafification involves set-theoretical complications, with the consequence that in certain
cases one cannot speak of such sheafifications without making a non-canonical choice of a
universe. In the “Appendix” to this paper we present an argument (Corollary 55) in order to
prove that these issues do not occur in our situation, and thus our notion of a p-adic affine
Grassmannian for SLn is well-defined.

3 Greenberg realizations and loop groups

In this section we recall Greenberg’s notion of realization (in the category of schemes) and
introduce a generalization of Greenberg’s definition, which we call localized Greenberg
realization, in the category of ind-schemes. The idea of considering localized Greenberg
realizations is due to [5], though his definition is slightly different from ours. We then apply
our constructions to obtain a definition of loop groups associated with linear algebraic loop
groups over a discrete valuation ring, where we are particularly interested in the case of the
special linear group SLn over the ring of p-typical Witt vectors W(k).

3.1 The language of ind-schemes

In what follows we will make extensive use of the language of ind-schemes. Hence, in this
subsection we fix our conventions on ind-schemes and briefly discuss their basic properties.

Definition 19 Let S be a scheme. An S-space is a sheaf on the fpqc-site over S. An ind-
scheme over S (or simply S-ind-scheme) is the filtered colimit in the category of S-spaces of a
system of quasi-compact S-schemes. Morphisms of ind-schemes are morphisms of functors.

If an S-ind-scheme X has the form X = lim−→i∈I Xi with all the Xi quasi-compact, then we
say that X is represented by the direct system (Xi )i∈I . By abuse of language we will also
simply speak of the S-ind-scheme (Xi )i∈I .
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Let X be an S-ind-scheme. By an S-sub-ind-scheme Y ⊂ X we mean a subfunctor of
X which is itself an S-ind-scheme. An S-sub-ind-scheme Y ⊂ (Xi )i is called ind-closed, if
it is represented by a system of closed subschemes Yi ⊂ Xi and the transition morphisms
Yi → Y j are induced by Xi → X j .

Throughout this paper we will assume that the directed index set I is denumerable. In
particular, there always exists a (filtered) cofinal subset I ′ ⊂ I which can be identified with the
natural numbers. We denote the category of S-schemes by (Sch/S), by (Sp/S)we denote the
category of S-spaces (the morphisms between two S-spaces being natural transformations
of functors), and by (ind-Sch/S) we denote its full subcategory whose objects are S-ind-
schemes. In other words, we have the following fully faithful functors:

(Sch/S) ↪→ (ind-Sch/S) ↪→ (Sp/S)

Remark 20 1. Our definitions of an S-space and an S-ind-scheme coincide with those given
by [1] in the case where S=Spec k for some field k.

2. The existence of colimits in the category of S-spaces of direct systems of S-schemes is
proved in Proposition 52 of the “Appendix”.

We collect a few easy facts about ind-schemes.

Lemma 21 If T is a quasi-compact S-scheme and X is an ind-scheme over S which is
represented by a direct system of S-schemes (Xi ), then HomS(T, X) = lim−→HomS(T, Xi ).

Proof Let ϕ ∈ HomS(T, X). As we prove in the “Appendix” (Proposition 52), the ind-
scheme X is the Zariski-sheafification of the presheaf-direct limit lim−→Xi . Thus we can find a
Zariski-covering {U j ; j ∈ J } of T (J an arbitrary index set) such that ϕ is determined by a
family of morphisms of schemes ϕ j : U j → Xi j . Since T is quasi-compact, we may assume
that J is finite. Further, for each pair ( j, j ′) ∈ J 2 there is an index i j, j ′ such that the two
morphisms U j ∩ U j ′ → Xi j, j ′ , induced by ϕ j and ϕ j ′ , respectively, coincide. Now, if we
take m to be the maximum of all the i j and the i j, j ′ , the morphisms U j → Xi j → Xm for
j ∈ J glue to a morphism T → Xm which induces ϕ. 
�

Let X and Y be S-ind-schemes which are represented by direct systems (Xi ) and (Yi )

(respectively) of S-schemes. Any morphism of direct systems (Xi )→ (Yi ) (i.e. a system of
compatible maps fi : Xi → Y ji ) induces a morphism f : X → Y . In this case we say that f
is represented by the system ( fi ). Using Lemma 21 the following converse is easy to deduce.

Lemma 22 Let X and Y be S-ind-schemes which are represented by direct systems (Xi )

and (Y j ) (respectively) of S-schemes. Then every morphism X → Y is represented by a
compatible system of maps fi : Xi → Y ji .

Note that this lemma holds precisely because quasi-compactness of all the Xi is built in
the definitions. Moreover, as remarked above, we can always assume that all our index sets
are equal to the set of natural numbers, and that compatible systems of maps are of the form
fi : Xi → Yi (i.e. preserve the index).

Lemma 23 (Products) Let X, Y, Z be S-ind-schemes which are represented by direct systems
(Xi ), (Yi ), (Zi ) (respectively) over S, and let X → Z and Y → Z be morphisms represented
by compatible systems of maps Xi → Zi and Yi → Zi . Then the fiber product (in the category
of S-spaces) X ×Z Y is an S-ind-scheme and is represented by the direct system (Xi ×Zi Yi ).
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We will make one further technical assumption to simplify our presentation. Throughout
this paper, all test-schemes which occur will be assumed to be quasi-compact. In other
words, all functors are considered to be functors on categories of quasi-compact schemes.
This simplification is justified by the fact that an S-space is determined by its values on
quasi-compact (or even affine) S-schemes.

3.2 Greenberg realizations

Our reference for this is [3], and we stay close to the notation used there. Let S be a scheme
and R→ S a ring scheme over S. Then R represents a sheaf of rings on the Zariski-site over
S, and thus defines a covariant functor

GR : (Sch/S) → (Ringed spaces/Spec R(S))

(X,OX ) �→ GR(X) = (X,OGR(X)),

where OGR(X)(U ) := R(U ), the set of S-morphisms from U to R. The ring scheme R is
called a local ring scheme, if the functor GR has values in the category of locally ringed
spaces.

Example 24 Let R = WN be the scheme of p-typical Witt vectors of length N over S =
Spec k, with 0 ≤ N ≤ ∞. We claim that WN is a local ring scheme. Namely, for any
S-scheme X the stalk of GWN (X) at x ∈ X is given by OGWN (X),x

= lim−→WN (U ), and
f = ( f0, f1, . . .) ∈ OGWN (X),x

is invertible if and only if f0 ∈ OX,x is invertible. The “only
if”-part is trivial, and the “if”-part can be seen as follows. Whenever f0 is invertible in OX,x ,
then there exists an open neighbourhood U of x such that f0 is invertible in OX (U ). But then
f is invertible in WN (U ) and a fortiori in OGWN (X),x

.

The situation of this example, R being the scheme of p-typical Witt vectors of finite or
infinite length over a perfect field k, will be the most interesting for us, as we are aiming
towards the construction of p-adic loop groups. Another familiar example of a local ring
scheme is the scheme of power series in one variable over k, i.e. the scheme AN

k with the
property that for each commutative k-algebra A we have an identity of rings AN

k (A) = A[[z]]
with z a fixed independent variable.

In the following let R be a local ring scheme over S.

Definition 25 ([3]) Let X be a scheme over the ring R(S). A Greenberg realization of X
over S is an S-scheme FR X which represents the functor

Y �→ Hom(GR(Y ), X),

where Hom is taken in the category of locally ringed spaces over R(S).

In the sequel, to simplify notation, we will occasionally drop the index refering to the ring
scheme R.

The following proposition and its corollary are purely formal consequences of the univer-
sality of representing objects. However, since they are especially interesting for our applica-
tions in the construction of loop groups, we state them explicitly:

Proposition 26 Realizations commute with fiber products. More precisely, if X, X ′, T are
R(S)-schemes having Greenberg realizations F X, F X ′, FT over S, then F X ×FT F X ′ is
a Greenberg realization over S of X ×T X ′.
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Corollary 27 Let X be a group scheme over R(S) which has a Greenberg realization F X
over S. Then F X is a group scheme over S.

Let us now explicitly describe Greenberg realizations in situations which are of interest
to us (as always, we keep in mind the situation where S = Spec k, and the local ring scheme
R is the scheme of p-typical Witt vectors of finite or infinite length). Detailed proofs are
presented in [3].

Proposition 28 ([3]) Assume that there is an isomorphism of S-schemes

ϕ = (ϕ1, . . . , ϕN ) : R 
−→ AN
S ,

where 0 ≤ N ≤ ∞, and let us denote by 	 the functor which associates to any scheme its
ring of global sections. Then the Greenberg realization of Ad

R(S) is the S-scheme F(Ad
R(S)) =

(AN
S )

d together with the universal arrow λ : G F(Ad
R(S))→ (Ad

R(S)) which is given in terms
of global sections by the ring homomorphism

λ# : R(S)[T1, . . . , Td ] → 	(S)[t1,1, . . . , t1,N , . . . , td,1, . . . , td,N ]
Ti �→ (ti,1, . . . , ti,N ).

If f : Ad
R(S) → Ae

R(S) is a morphism of R(S)-schemes and P1, . . . , Pe are the polynomials
in R(S)[T1, . . . , Td ] defining f , then the morphism F f between the respective Greenberg
realizations is given in terms of global sections by

	(S)[t ′1,1, . . . , t ′1,N , . . . , t ′e,1, . . . , t ′e,N ] → 	(S)[t1,1, . . . , t1,N , . . . , td,1, . . . , td,N ]
t ′i, j �→ ϕ j (λ

#(Pi )).

Here, the ti, j are the coordinates on F(Ad
R(S)), while the t ′i, j are the coordinates on F(Ae

R(S)).
In other words, to calculate the image of t ′i, j , we have to substitute Tl �→ (tl, j ) j in the
polynomial Pi and then take the j-th component of the result under the isomorphism ϕ.

Proof This is proved for finite N in ([3], Prop. 3). The proof given there also works for
N = ∞ without modifications. 
�
Proposition 29 ([3]) Let R be a local ring scheme over S which is isomorphic to an
N-dimensional affine space over S (recall that we allow N = ∞). Let moreover X be
an affine scheme of finite type over R(S) having a Greenberg realization by an affine scheme
F X over S. Then every closed subscheme of X has a Greenberg realization over S by a
closed subscheme of F X.

Proof This is proved in [3]. The crucial point is the observation that we may, by universality
of Greenberg realizations, assume that X itself is an affine space over R(S). In this case we
obtain a Greenberg realization of a closed subscheme Y ⊂ X as follows. Let X = Ad

R(S) and
choose a set of defining equations fm(X1, . . . , Xd) = 0 for Y ⊂ X . Each Xi can be viewed as
a vector of coordinates Xi = (xi,0, . . . , xi,N ), according to the isomorphism R(S) 
 AN

S (S).
Plugging these into the equations fm = 0 yields coordinate-wise equations in the variables
xi, j , which are the defining equations of a closed subscheme of F X . This subscheme is the
Greenberg realization FY ⊂ F X of Y ⊂ X . 
�

Let us consider for instance the case R = WN . Let X be the affine space Ad
WN (S)

=
Spec WN (S)[T1, . . . , Td ]. Then a closed subscheme X ⊂ Ad

WN (S)
is given by a set of equa-

tions (with I an index set)

{ fm(T1, . . . , Td) = 0 | m ∈ I }.
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The equations of the Greenberg realization F X ⊂ Spec S[ti, j ] are then obtained by plugging
the Witt vectors

(ti,0, ti,1, . . .) ∈WN (S[ti,0, ti,1, . . .])
into the equations fm = 0. Thus the components of the Witt vectors

fm(ti,0, ti,1, . . .) ∈WN (S[ti,0, ti,1])
for varying m generate the ideal that defines the Greenberg realization F X of X .

3.3 Localized Greenberg realizations

Let R be a local ring scheme over a quasi-compact scheme S. In this subsection we will gener-
alize Greenberg’s notion of realization to the situation where X is a scheme over R(S)[1/a],
for a ∈ R(S). Localized Greenberg realizations will be objects in the category of S-ind-
schemes. Again, we remind the reader that the situation of interest to us will be the case
where S = Spec k is the spectrum of a perfect field of positive characteristic p, R = W is
the scheme of p-typical Witt vectors over S, and a = p is a uniformizer.

Observe that the ring R(S)[1/a] is the colimit of the inductive system of rings

R(S)
·a−→ R(S)

·a−→ R(S)
·a−→ · · · .

Assume again that R is isomorphic as an S-scheme to AN
S . By Proposition 28 the affine

line over R(S) can be realized by the affine space F(A1
R(S)) = AN

S , and by functoriality of
Greenberg realization we obtain the inductive system

AN
S

F(·a)−−−→ AN
S

F(·a)−−−→ AN
S

F(·a)−−−→ · · · .
If we denote the corresponding S-ind-scheme by FaA1

R(S), then for any S-scheme Y we
obtain natural bijections

Hom(ind-Sch/S)(Y, FaA1
R(S)) 
 lim−→(A

N
S (Y ))

= lim−→Hom(Loc. ringed spaces/R(S))(G(Y ),A
1
R(S)) = lim−→R(Y ) = R(Y )[1/a].

In other words, the functor Y �→ R(Y )[1/a] is represented by the S-ind-scheme FaA1
R(S).

This motivates the following definition.

Definition 30 Let X be an R(S)[1/a]-scheme. A localized Greenberg realization of X over
S is an S-ind-scheme which represents the functor Y �→ X (R(Y )[1/a]) on the category of
(quasi-compact) S-schemes. We denote the localized Greenberg realization of X by Fa X .

Since the category of ind-schemes has fiber products, and by the universal property of
Greenberg realizations, we obtain:

1. Let X → T and X ′ → T be morphisms of R(S)[1/a]-schemes which admit localized
Greenberg realizations Fa X , Fa X ′ and Fa T over S. Then the fiber product Fa X×Fa T Fa X ′
is a localized Greenberg realization over S of X ×T X ′.

2. If a group scheme X over R(S)[1/a] has a localized Greenberg realization Fa X over S,
then Fa X is a group object in the category of ind-schemes over S.

Let us gather a few observations which we will use to prove the existence of localized
Greenberg realizations in certain cases. First note that the existence of a localized Greenberg
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realization of the affine line A1
R(S) is already proved by our remarks before Definition 30.

Now let X be any affine scheme of finite type over R(S)[1/a] and fix a closed immersion
X ⊂ Ad

R(S)[1/a]. Let moreover

ϕ : Ad
R(S)[1/a] → Ad

R(S)[1/a]
be the automorphism given by Ti �→ aTi for i = 1, . . . , d . This yields a diagram of the form

· · · �� Ad
R(S)[1/a]

ϕ �� Ad
R(S)[1/a]

ϕ �� · · ·

· · · �� ϕn(X)

��

�� ϕn+1(X)

��

�� · · · ,

where all the horizontal maps are isomorphisms of R(S)[1/a]-schemes. We define Xn to be
the schematic closure of ϕn(X) ↪→ Ad

R(S)[1/a] ↪→ Ad
R(S), which determines an R(S)-ind-

scheme (Xn)n .
In the sequel we write for any R(S)-scheme Y :

Y [1/a] := Y ×Spec R(S) Spec R(S)[1/a].
With this notation we have Xn[1/a] 
 ϕn(X) 
ϕ−n X for all n ∈ N.

Lemma 31 The R(S)-ind-scheme (Xn)n represents the functor

L : Y �→ HomR(S)[1/a](Y [1/a], X)

on the category of (quasi-compact) R(S)-schemes.

Proof A morphism of functors ψn : Xn → L is given by the functorial map

Xn(Y ) = HomR(S)(Y, Xn)→ HomR(S)[1/a](Y [1/a], Xn[1/a])

ϕ−n HomR(S)[1/a](Y [1/a], X).

Obviously the morphisms ψn, n ∈ N, are compatible, so we obtain a morphism of functors
ψ : (Xn)n → L . Since every Y [1/a]-valued point P of X is given by a d-tuple p in
	(Y [1/a])d = (	(Y ) ⊗R(S) R(S)[1/a])d , where 	 denotes the functor of global sections,
there exists some n ∈ N such that an · p ∈ 	(Y )d . Thus ϕn(P) extends to a Y -valued
point of Xn , which shows that ψ(Y ) is surjective for each scheme Y over R(S). To check
injectivity, take P, Q ∈ Xn(Y ) such that P and Q have the same image in L(Y ). This means
in particular that the corresponding morphisms P ′, Q′ : Y [1/a] → Xn[1/a] = ϕn(X) are
equal, and consequently the respective R(S)-morphisms P ′′, Q′′ : Y [1/a] → Y → Xn are
equal. But both P and Q are given by d-tuples p,q of sections in 	(Y ), and for these the
equality P ′′ = Q′′ says that there exists an m ∈ N such that amp = amq. This means that
the compositions

Y
P,Q−−→ Xn

ϕm

−→ Xn+m

coincide, whence a fortiori P and Q coincide as elements of (Xn)n(Y ). 
�
It is now straight forward to construct localized Greenberg realizations for affine

R(S)[1/a]-schemes of finite type.
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Proposition 32 Let X be an affine scheme of finite type over R(S)[1/a], and assume that
R is isomorphic as an S-scheme to some affine space over S. Then there exists an S-ind-
scheme which represents the functor Y �→ X (R(Y )[1/a]) on the category of (quasi-compact)
S-schemes.

Proof Fix a closed immersion X ⊂ Ad
R(S)[1/a] and let (Xn)n be as above. Now apply Green-

berg realization to the R(S)-schemes Xn and their transition maps. I claim that the resulting
S-ind-scheme (F Xn)n has the desired form. Indeed, we have

Hom(Y, (F Xn)n) = lim−→Hom(Y, F Xn)

= lim−→HomR(S)(R(Y ), Xn) = Hom(R(Y )[1/a], X),

where the second equality is by the definition of Greenberg realization, and the third one
follows from Lemma 31. 
�
Example 33 Let us illustrate this in our standard situation of p-typical Witt vectors of infinite
length over a (perfect) field k. Let X = Ad

W(k)[1/p]. Then the k-ind-scheme which is the
localized Greenberg realization of X is given (up to isomorphism) by the inductive system

Spec k[xi, j ; i = 1, . . . , d; j ∈ N] ·p−→ Spec k[xi, j ; i = 1, . . . , d; j ∈ N] ·p−→ . . . ,

where the transition maps ·p are defined by xi, j �→ x p
i, j−1 (for j = 1, . . . ,∞) and xi,0 �→ 0.

3.4 Construction of generalized and p-adic loop groups

In this subsection we consider the following situation. Let D be a local ring scheme over a
field k such that D = D(k) is a discrete valuation ring with uniformizer u ∈ D. Moreover
we assume that D is isomorphic to AN

k as a scheme over k. Typical special cases are:

1. The ring scheme of power series in one variable over k, and
2. the ring scheme of p-typical Witt vectors over a perfect field k of positive characteristic

p.

By K we denote the field of fractions of D.

Definition 34 Let X be a scheme over Spec K . The functor from the category of k-algebras
to the category of sets,

L X : R �→ X (D(R)[1/u])
will be called the (generalized) loop space associated to X . Moreover, if X is a scheme over
Spec D, then we call

L+ X : R �→ X (D(R))

the (generalized) positive loop space of X . By abuse of notation we also write L X = L(X K )

for a D-scheme X .

Obviously, there is a canonical morphism of functors L+ X → L X . If in addition X = G
is a group scheme over D, then we call L G and L+ G the (generalized) loop group and the
(generalized) positive loop group, respectively, associated to G.

Note that if D is the k-scheme of power series in one variable over k, we recover the usual
notions of (formal) loop space, loop group etc., as described in [1,9] and others. The following
proposition is an immediate consequence of our discussion on Greenberg realizations.
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Proposition 35 If X is an affine scheme of finite type over D, then the functor L+ X is
representable by an affine scheme over k, namely the Greenberg realization over k of X. If
X is affine and of finite type over K , then L X is representable by the localized Greenberg
realization over k of X.

In fact, in all situations that we are going to consider, the affine scheme X comes together
with an embedding into some affine space, X ⊂ Ad

D . With respect to this embedding, the
construction of the localized Greenberg realization L X , as described in the preceeding sub-
section, produces an explicit direct system (F Xi )i∈N of k-schemes which represents L X .

Explicitly, the scheme in the i-th step of this direct system parametrizes the K -points of
X whose coordinates, with respect to the embedding X ⊂ Ad

D , have poles of order at most i
(i.e., belong to u−i D).

Specializing the constructions of this subsection to the case where k is a perfect field of
positive characteristic p, D = W(k) and K = W(k)[1/p], we obtain the following objects
in analogy to the function field case (cf. [1]).

Definition 36 The p-adic loop group associated with SLn over W(k) is the k-ind scheme
L SLn representing the functor R �→ SLn(W(R)[1/p]) on the category of k-algebras. Fur-
ther, the positive p-adic loop group is the k-scheme L+ SLn which represents the functor
R �→ SLn(W (R)).

To indicate that we are working in the p-adic setting, in what follows we will write Lp SLn

(resp. L+p SLn) for the (positive) p-adic loop groop. With this notation we may rephrase the
definition of Grassp , Definition 3.

Definition 37 The p-adic affine Grassmannian for SLn is the fpqc-sheaf quotient Lp SLn/

L+p SLn .

In the next section we will also encounter the p-adic loop group associated with GLn ,
Lp GLn , as well as the p-adic loop space Lp Matn associated with the W(k)-scheme Matn

of n × n-matrices over W(k).

4 Hilbert schemes and lattice schemes

4.1 The multigraded Hilbert scheme of Haiman and Sturmfels

We first recall a result by [6] on the representability of the multigraded Hilbert functor.
Let R be any ring, and let An

R = Spec R[x1, . . . , xn] be the n-dimensional affine space over
R, and identify u ∈ Nn with the monomial xu1

1 · · · xun
n . Then a multigrading of R[x1, . . . , xn]

by a semigroup A is given by a semigroup homomorphism deg : Nn → A. This induces a
decomposition

R[x1, . . . , xn] = ⊕a∈A R[x1, . . . , xn]a,
where R[x1, . . . , xn]a is the R-span of the monomials of degree a.

A homogeneous ideal I ⊂ R[x1, . . . , xn] is called an admissible ideal, if for each a ∈ A
the graded piece (R[x1, . . . , xn]/I )a is a locally free module of constant finite rank on Spec R.
Thus every admissible ideal I ⊂ R[x1, . . . , xn] has a well-defined Hilbert function, given by

hI : A→ N, a �→ rk(R[x1, . . . , xn]/I )a .
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A closed R-subscheme V ⊂ Spec R[x1, . . . , xn]which is defined by an admissible ideal will
also be called admissible, and by the Hilbert function of V we mean the Hilbert function of
its defining ideal.

Let h : A → N be any function vanishing outside deg(Nn) ⊂ A, and define the Hilbert
functor Hh

R from the category of R-algebras to sets by

Hh
R(S) = {admissible ideals I ⊂ S[x1, . . . , xn] |

rk(S[x1, . . . , xn]/I )a = h(a) for all a ∈ A}.
Theorem 38 (Haiman, Sturmfels) There exists a quasiprojective scheme H h

R over R which
represents the functor Hh

R. If the grading of R[x1, . . . , xn] is positive, i. e. 1 is the only
monomial with degree 0, then this scheme is even projective over R.

The scheme H h
R is called the multigraded Hilbert scheme for the Hilbert function h. If no

Hilbert function h is specified, we will use the term “multigraded Hilbert scheme” to refer
to the disjoint union of the H h

R for all Hilbert functions h. We denote this disjoint union by
HR , or simply by H if the ring R is clear from the context.

4.2 Lattice schemes in general

For any ring scheme X over R we have the obvious notion of an X-module scheme over R.
In particular, we have the free X-module scheme of rank n, denoted Xn . An X-submodule
scheme of an X-module scheme M is a closed R-subscheme of M which is stable under the
morphisms defining the module operations on M . This means that a closed X-subscheme
V ⊂ M is an X-submodule scheme if the following diagrams exist,

M × M
add. �� M

V × V ����

�

V,
��

� X× M
mult. �� M

X× V ����

�

V,
��

�

and analogous diagrams exist for the zero-section and additive inverses.
In what follows, we always assume that X is a ring scheme which is isomorphic as an

R-scheme to AN
R (0 ≤ N < ∞). Let us furthermore fix a grading over R of the structure

sheaf of X 
 AN
R so that the ring operations on X are defined by graded homomorphisms

on the structure sheaf. Then also the structure sheaf of Xn is graded. We call a submodule
scheme in Xn a lattice-scheme if its defining ideal is admissible.

Proposition 39 The set of lattice schemes in Xn with a given Hilbert function h is para-
metrized by a closed subscheme Z of the multigraded Hilbert scheme of Xn over R. The
R-scheme Z is quasi-projective, and it is projective over R if the grading of X is positive.

Proof Let H → Spec R be the multigraded Hilbert scheme of Xn and let U → H be the
universal family. We have to show that there exists a closed subscheme Z ⊂ H such that
for any morphism Y → H , V = Y ×H U ⊂ Y ×Spec R Xn is a submodule scheme if and
only if Y → H factors through Z ⊂ H . It suffices to check this locally on H , i.e. for an
affine open subscheme H ′ = Spec S ⊂ H . Then also U ′ := H ′ ×H U is affine, and U ′ is
defined by an ideal I ⊂ S[xi, j | i = 1, . . . , n; j = 0, 1, . . . , N − 1] such that the quotient
S[xi, j ]/I is S-locally free. Now for any morphism Y ′ = Spec S′ → H ′ the condition that
V ′ = Y ′ ×H ′ U ′ ⊂ U ′ be stable under addition on Xn translates into the condition that

123



878 M. Kreidl

its defining ideal I maps to 0 under the cohomorphism of addition. Analogous vanishing
conditions hold for scalar multiplication, units and additive inverses. ! Since S[xi, j ]/I is
locally free over S, these vanishing conditions can be expressed by equations with coefficients
in S, which then define a closed subscheme Z ′ ⊂ H ′ = Spec S. By construction, V ′ is stable
under the module operations if and only if Y ′ → H ′ factors throuth Z ′. By gluing all the
Z ′ ⊂ H we obtain the closed subscheme Z ⊂ H with the desired universal property. 
�
Proposition 40 (Group actions on H ) Let G/Spec R be an algebraic group acting alge-
braically on Xn, and assume that this action respects the grading on the structure sheaf of
Xn. Then G acts equivariantly on the Hilbert scheme H of Xn and its associated universal
family. If furthermore the action of G on Xn is by automorphisms of X-module schemes,
then the action of G on the universal family over H restricts to an equivariant action on the
universal family over Z.

Proof This is a formal consequence of the universal properties of H and Z and the fact that
the action of G on Xn is algebraic, i.e. functorial. 
�
4.3 Lattice schemes in the Witt vector setting

In what follows, k denotes a perfect field of positive characteristic p, and R denotes a k-
algebra. Let us specialize the above discussion to the case where

X =W2N = Spec k[α−N , . . . , αN−1]
is the scheme of Witt-vectors over S = Spec k of length 2N <∞.

Consider further the Greenberg realization over k of the n-dimensional affine space
An

W2N (k)
, which is an affine space over k and carries, by functoriality of Greenberg real-

ization, an obvious structure of W2N -module scheme:

Wn
2N 
 A

2N×n
k = Spec k[xi, j | i = 1, . . . , n; j = −N , . . . , N − 1].

From Witt vector arithmetics ([10], chap. II, §6) it follows that the morphisms defining the
module operations on Wn

2N are defined by graded homomorphisms of the respective affine
rings if we set deg(1) = 0, degα j = p j and deg xi, j = p j . This way deg, for each of the
respective coordinate rings, is a semigroup homomorphism with values in p−N N. Note that
the standard grading with deg xi, j = 1 for all i, j is not respected by the module-operations
on Wn

2N and is thus not suited for our constructions.
Let us now discuss lattice schemes inside Wn

2N . For each dominant cocharacterλ ∈ X̌+(T )
and N such that N ≥ λ1 ≥ · · · ≥ λn ≥ −N , consider the subscheme V (N )

λ ⊂Wn
2N defined

by the ideal

I (N )λ = (x1,−N , . . . , x1,λ1−1, . . . , xn,−N , . . . , xn,λn−1). (7)

The subscheme V (N )
λ is a lattice scheme, and we denote by C (N )

λ its orbit in H under the

action of the linear k-group L+p SLn , and by D(N )
λ its orbit-closure. Theorem 38 asserts in

particular that D(N )
λ is a projective k-variety, which contains C (N )

λ as an open subvariety.

Clearly, V (N )
λ as well as D(N )

λ ⊂ H depend on our particular choice of N . However, this

choice does not really matter: If we choose N ′ > N , then V (N ′)
λ and D(N ′)

λ lie in a Hilbert
scheme for a different affine space, but the functorial map

D(N )
λ → D(N ′)

λ ; V �→ V × A
N ′−N
k (8)
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defines a natural L+p SLn-equivariant isomorphism D(N )
λ 
 D(N ′)

λ which takes V (N )
λ to V (N ′)

λ .
In what follows, we will thus drop the upper index (N ) and write Cλ ⊂ Dλ. Further, let
U (N )
λ ⊂ Wn

2N ×Spec k Dλ be the universal family over Dλ and let U(N)λ be the preimage of

U (N )
λ under the natural projection

Wn ×Spec k Dλ →Wn
2N ×Spec k Dλ.

Then the morphism U(N)λ → Dλ is by construction equivariant for the action of L+p SLn . Let

us also note, that as an abstract k-scheme U(N)λ is independent of N , but its embedding into
Wn ×Spec k Dλ is not. From these constructions we derive the following proposition.

Proposition 41 For each dominant cocharacter λ ∈ X̌+(T ) there exists a projective k-
variety Dλ together with a Dλ-sub-ind-scheme

Uλ ⊂ Lp W(k)n ×Spec k Dλ

which is invariant for the action of L+p SLn, and such that the map

Dλ(k)→ Grassp(k); V �→ (Uλ ×Dλ V )(k) (9)

is well-defined and Lp SLn(k) equivariant. Under this map, the image of Vλ ∈ Dλ is equal
to the lattice Lλ ⊂W(k)[1/p]n.

Proof For each positive integer N which satisfies

N ≥ λ1 ≥ · · · ≥ λn ≥ −N (10)

we define U(N)λ as in the paragraph before the statement of the proposition. For those finitely

many N , for which (10) does not hold, we set U(N)λ equal to the empty scheme ∅. Further,
we consider an inductive system representing the localized Greenberg realization over k of
An

W(k)[1/p] =W(k)[1/p]n :

Wn ·p−→Wn ·p−→ · · · , (11)

where ·p denotes the morphism of k-schemes which arises from multiplication by p via
Greenberg realization. Now base change from Spec k to Dλ applied to (11) yields an inductive
systems of Dλ-schemes

U(1)λ� �

�

· · · U(N)λ � �

�

U(N+1)
λ � �

�

· · ·

W n × Dλ
·p �� · · · ·p �� W n × Dλ

·p �� W n × Dλ
·p �� · · · ,

and each of the vertical morphisms in this system is equivariant for the action of Lp SLn by
construction. In fact, the horizontal morphisms restrict to an inductive system

Uλ : U(1)λ
·p−→ · · · ·p−→ U(N)λ

·p−→ U(N+1)
λ

·p−→ · · · , (12)

which can be seen as follows. Obviously, over the point Vλ the horizontal morphisms (mul-
tiplication by p) on Wn restrict to morphisms between the fibers in the respective U(N)λ , by

definition of the ideals I (N )λ . By Lp SLn equivariance, we can extend this observation to the
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open orbit Cλ, and since Cλ ⊂ Dλ is dense and U(N )λ ⊂ Wn × Dλ is closed for all N , this
holds on all of Dλ. Thus we obtain an Lp SLn-equivariant morphism of k-ind-schemes

Uλ ↪→ Lp W(k)[1/p]n ×Spec k Dλ.

Next we consider the fiber Fλ of the sub-ind-scheme Uλ ⊂ Lp W(k)[1/p]n × Dλ over Vλ.
Assume that N satisfies the inequalities (10). Then, since k is perfect, each k-valued point of
Fλ is given by a morphism

Spec k → Fλ := U(N)λ ×Dλ {Vλ} = Spec(	(Wn)/(I (N )λ )) ⊂Wn,

where 	(Wn) = Spec k[xi, j | i = 1, . . . , n; j ∈ −N + N] is the ring of global sec-

tions of Wn and (I (N )λ ) denotes the ideal generated by the ideal defined in (8). The
set of such morphisms, viewed as morphisms to Lp W(k)[1/p]n , is precisely the subset
diag(pλ1 , . . . , pλn ) ·W(k)n = Lλ ⊂ W(k)[1/p]n , as claimed. Finally we discuss the fiber
F = Uλ ×Dλ V over a general k-valued point V ∈ Dλ(k), with N as above. Again, since k
is perfect, each k-valued point of F is given by a morphism

Spec k → F := U(N)λ ×Dλ {V } ⊂Wn,

and the set of such morphisms induces a lattice in W(k)[1/p]n . The only thing we have
to check is that this lattice is special. However, the product of the elementary divisors of
the lattice F(k) ⊂ W(k)[1/p]n is determined by the codimension of F ⊂ Wn , which
is, by flatness of U(N )λ → Dλ, the same as the codimension of Fλ ⊂ Wn . Hence, the
set of morphisms F(k) induces a special lattice, i.e. a k-valued point of the Grassmannian
F(k) ∈ Grassp(k). 
�
4.4 Construction of a morphism Dλ → Grassp

In this subsection we extend the result of Proposition 41 and obtain a morphism of fpqc-
sheaves to the affine Grassmannian for SLn ,

Dλ → Grassp,

which induces the map Dλ(k)→ Grassp(k) constructed there.

Fix λ ∈ X̌+(T ) ⊂ Zn . To simplify notation we let Uλ := U(N )λ → Dλ be as defined in the
previous subsection, for some positive integer satisfying the inequalities in (10). Our main
result in Theorem 43 will not depend on the particular choice of N .

We let det : L+p Matn = Wn×n → W be the Greenberg realization of the determinant
map for n × n-matrices over W(k) and consider the composition

Δ : U n
λ ⊂Wn×n ×Spec k Dλ → L+p Matn

det−→W.

We observe that this morphism of k-schemes actually factors through the subscheme

{0} × · · · × {0} × AN

Dλ ⊂W,

with nN leading 0’s. We set Yλ = {0} × · · · × {0} × Gm × AN

k , again with nN leading 0’s,
where Gm ⊂ A1

k denotes the multiplicative group, and define a k-scheme Xλ ⊂ U n
λ as the

fiber product
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Xλ ��
� �

�

Yλ� �

�
U n
λ Δ

�� W.

(13)

Lemma 42 The scheme Xλ is an open subscheme of U n
λ and thus flat over Dλ. Moreover

Xλ maps surjectively to the base Dλ. In other words, Xλ → Dλ is a faithfully flat morphism
of k-schemes.

Proof To prove flatness we just note that open immersions are flat, and U n
λ is flat over

Dλ by construction. To prove surjectivity consider any geometric point V ∈ Cλ and let
κ be its (algebraically closed) residue field. Then the κ-valued points of its fiber F ⊂ Uλ
form a special lattice in W(κ)[1/p]n by 41, and we can find elements v1, . . . , vn in F(κ)
such that det(v1, . . . , vn) = 1. Since κ is perfect, there exists a morphism of schemes
β : Spec κ → U n

λ ×Dλ V which induces the tuple (v1, . . . , vn) ∈ Un
λ (κ). As we have

det(v1, . . . , vn) = 1, we conclude from the following representations of the determinant
morphism between the k-ind-schemes Lp Matn and Lp W(k)[1/p],

U n
λ ×Dλ V� �

�
W n×n

·p ��

det
��

· · · ·p �� W n×n
·p ��

det
��

W n×n
·p ��

det
��

· · ·

W
·pn

�� · · · ·pn
�� W

·pn
�� W

·pn
�� · · · ,

that the composition det ◦β factors through Yλ ⊂ W. This shows that β actually induces a
κ-valued point of Xλ and thus concludes the prove of surjectivity of Xλ → Dλ. 
�

By definition of Xλ the morphism of Dλ-ind-schemes obtained by composition

Xλ → U n
λ → Un

λ → Lp Matn

factors through Lp GLn . Composing Xλ → Lp GLn with the morphism of k-ind-schemes
which replaces the first column of each invertible matrix A with its scalar multiple with
det(A)−1, we obtain an L+p SLn-equivariant morphism of k-ind-schemes Xλ → Lp SLn ,
and hence

ϕλ : Xλ → Grassp.

Theorem 43 The Xλ-valued point ϕλ ∈ Grassp(X) descends to a Dλ-valued point πλ :
Dλ → Grassp. This morphism is equivariant for the (left-)action of L+p SLn and sends

Vλ ∈ Dλ(k) to the lattice Lλ = diag(pλ1 , . . . , pλn )W(k)n ∈ Grassp(k). Moreover, the
restriction of this morphism to Cλ induces a bijection

Cλ(R) 
 Cλ(R)
for every reduced k-algebra R.

Proof Since Grassp is an fpqc-sheaf by definition and Xλ → Dλ is faithfully flat by Lemma
42, we have an exact sequence

Grassp(Dλ) ↪→ Grassp(Xλ) ⇒ Grassp(Xλ ×Dλ Xλ).
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We have to check that the compositions of ϕλ with the two projections

Xλ ×Dλ Xλ ⇒ Xλ

conincide. First observe that Xλ → Dλ is an affine morphism, and that the descent problem
is Zariski-local on Dλ. We may thus replace Dλ by an affine open subset Spec R ⊂ Dλ, and
Xλ by Spec S = Spec R ×Dλ X , and check whether the images of the induced morphism
ϕλ,S ∈ Grassp(S) under Grassp(S) ⇒ Grassp(S ⊗R S) coincide. In other words, we have
to check that, if


1,
2 ∈ Lp SLn(S ⊗R S)

are the two natural compositions Spec(S ⊗R S) ⇒ Spec S

−→ Lp SLn , then after a possible

faithfully flat base change we have
−1
1 ·
2 ∈ L+p SLn(S⊗R S). Let k ⊂ κ be an algebraically

closed field extension. By construction, a κ-valued point of Spec(S⊗R S) corresponds to a pair
of bases of one and the same lattice (given by the corresponding κ-valued point of Spec R ⊂
Dλ). Thus the morphism Lp SLn(S⊗R S)→ Lp SLn(κ) sends
−1

1 ·
2 to L+p SLn(κ). This

means, that we may decompose
−1
1 ·
2 = �+Ω , where� ∈ L+p GLn(S⊗R S) (possibly

after a faithfully flat base change) and Ω ∈ Lp Matn(S ⊗R S) has in its entries only Witt
vectors with nilpotent coefficients. Since p-typical Witt vectors with finitely many nilpotent
coefficients are killed by multiplication by sufficiently large p-powers and p is invertible in
W(S ⊗R S)[1/p] we may conclude that � +Ω is in fact in the image of L+p SLn(S ⊗R S)
in Lp SLn(S ⊗R S) p p. This concludes the proof of the first part of the theorem.

It is immediate from the definition of ϕλ that the induced morphism πλ : Dλ → Grassp

sends the lattice scheme Vλ to the lattice Lλ. In order to see that πλ induces a bijection
Cλ(R) 
 Cλ(R) for each reduced k-algebra R, we consider the follwing commutative diagram
of fpqc-sheaves,

L+p SLn
� � (id,Vλ) � L+p SLn × Cλ ��

(id,πλ)

��

Cλ

πλ

��
L+p SLn

� � (id,Lλ) � L+p SLn × Cλ �� Cλ,

where the right hand horizontal maps are the morphisms defining the respective left actions on
Cλ and Cλ. Both horizontal compositions are surjective morphisms of fpqc-sheaves. In order
to check that πλ(R) : Cλ(R)→ Cλ(R) is bijective, it suffices to show that the stabilizers, i.e.
the respective preimages of Vλ,R and Lλ ⊗W(k) W(R), in L+p SLn(R), are equal. Since R is
reduced, we may check this fiberwise, i.e. assume that R = κ is an algebraically closed field.
Thus consider A ∈ L+p SLn(κ) = SLn(W(κ)). By Proposition 41 the lattice Lλ ⊗W(κ) is
identical to the set of κ-valued points of the fiber Fλ in Uλ over Vλ, and each κ-valued point
of this fiber is defined by a morphism of κ-valued points of the fiber Fλ ∈ U(N )λ over Vλ.
Thus A stabilizes Fλ(κ) if and only if it stabilizes Fλ(κ). But since Fλ is a reduced κ-scheme
which is defined by the same equations as Vλ in (7), A stabilizes Vλ if and only if it stabilizes
the lattice Lλ ⊗W(κ), which concludes the proof. 
�
4.5 Properties of the morphism Dλ → Grassp

The restriction of πλ to Cλ → Cλ is not an isomorphism of fpqc-sheaves on the full category
of k-algebras, as Eike Lau pointed out. This follows from
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Proposition 44 (Communicated by Eike Lau) The functor Grassp has trivial tangent spaces,
and in particular none of the morphisms πλ : Cλ → Cλ is an isomorphism except if λ = 0.

Proof Let R = k[ε]/(ε2). We have to prove that Grassp(R) = Grassp(k). First, from the
canonical ring homomorphisms k → R→ k we obtain a factorization of the identity map

Grassp(k)→ Grassp(R)→ Grassp(k).

Thus we have to check that the right hand map is injective. To this end, consider any two
points L ,M ∈ Grassp(R) which map to the same image L̄ = M̄ ∈ Grassp(k). Now chose
a suitable faithfully flat ring extension R → S such that the points L S,MS ∈ Grassp(S),
induced by L and M , lie in the image of Lp SLn(S). The situation is summarized in the
following diagram:

L ,M�

��

Grassp(R) ��
� �

�

Grassp(k)� �

�
L S,MS Grassp(S) �� Grassp(S/εS)

L̂, M̂
�

��

Lp SLn(S) ��

��

Lp SLn(S/εS).

��

In fact, the map in the lower row in this diagram is the identity map. Namely, Lp SLn is
a k-ind-scheme whose connecting homomorphisms annihilate nilpotents, thus in particular
any two elements of Lp SLn(S), viewed as matrices over W(S)[1/p], whose entries differ
by multiples of ε ∈ S, are in fact equal. Hence our assumptions on L and M imply that L̂
and M̂ coincide up to some element A ∈ L+p SLn(S/εS) (possibly after substituting R→ S
by a further faithfully flat extension R → S → S′). Since Lp SLn(S)=Lp SLn(S/εS) the
matrix A trivially lifts to Â ∈ Lp SLn(S) such that M̂ = L̂ · Â. This proves that L S =MS ,
and thus L=M , which concludes the prove of injectivity of Grassp(R)→Grassp(k). 
�

We remind the reader that the Bruhat-order ≤ on X̌+(T ) ⊂ Zn is defined so that μ ≤ λ
if and only if the inequality μ1 + · · · + μi ≤ λ1 + · · · + λi holds for every 1 ≤ i ≤ n. For
μ ≤ λ and μ �= λ we write μ < λ.

Lemma 45 Let μ, λ ∈ X̌+(T ) and let hμ and hλ be the respective Hilbert functions of the
associated lattice schemes Vμ and Vλ. If μ < λ, then hμ �= hλ and for all n ∈ N we have
hμ(n) ≤ hλ(n) (in this case we write hμ < hλ for short).

Proof Any cocharacter μ < λ is obtained as a sum of λ and cocharacters of the form
(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0). Without loss of generality we may assume that μ =
λ + (−1, 1, 0, . . . , 0). This means, in the set of generators (7) for the defining ideal of Vλ,
we have to replace the generator x1,λ1−1 by the generator x2,λ2 in order to obtain a set of
generators for the defining ideal of Vμ. As we assumed that μ is dominant, λ2 < λ1 − 1

and thus deg x pm

2,λ2
= deg x1,λ1−1 with m = λ1 − λ2 − 1 ≥ 1. This means that, if we

replace in (7) the generator x1,λ1−1 by x pm

2,λ2
, the result is a generating set of an ideal having

the same Hilbert function hλ as Vλ. On the other hand, if we replace x1,λ1−1 by x2,λ2 as

discussed above, we observe that x2,λ2 has a strictly lower degree than x pm

2,λ2
, and we obtain

a generating set of an ideal with a Hilbert function which is different from hλ and less or
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equal to hλ in each degree. As argued above, this ideal is the ideal of Vμ, and the lemma is
proved. 
�

The following two results deal with the set of k-valued points of Dλ.

Theorem 46 At the level of k-valued points the morphism πλ is given by

πλ(k) : Dλ(k) → Grassp(k)

V �→ (Uλ ×Dλ V )(k).

In other words, at the level of k-valued points πλ coincides with the map constructed in
Proposition 41. The image of this map is equal to the disjoint union

∐
λ′≤λ Cλ′(k), where ≤

denotes the Bruhat order on X̌+(T ).

Proof To prove the first claim, we just note that a k-valued point of the fiber of Xλ → Dλ
over V ∈ Dλ is nothing but a basis for the lattice L associated to V by Proposition 41.
By construction, πλ maps V to the right-L+p SLn(k)-coset of this basis, which is the same
lattice L .

To prove the second claim, we fix λ′ > λ and check that Lλ′ does not lie in the image of
πλ. By Lemma 45 we know that hλ′ > hλ. But since Vλ′ is reduced, it has already the smallest
possible Hilbert function among those lattice schemes which possibly map to Lλ′ . As Dλ
contains only lattice schemes with the same Hilbert function as Vλ, we conclude that Vλ′
does not lie in Dλ(k). In order to prove that indeed each Cλ′(k)with λ′ < λ is in the image of
πλ(k), we use an argument similar to the one given by Beauville and Laszlo ([1], Prop. 2.6).
For integers e > d consider the following equation of matrices over W(k((t)))[1/p],

(
0 t
−t−1 t−1 p

) (
pe 0
0 pd

) (
t−1 0

t−1 pe−d−1 t

)

=
(

pe−1 t2 pd

0 pd+1

)

. (14)

If we assume e+ d = 0, it follows that the right hand matrix gives rise to a lattice scheme
V ∈ D(e,d)(k((t))), which corresponds to a k((t))-point of C(e,d). Since D(e,d) is projective,
this k((t))-valued point extends to a lattice scheme V̄ over k[[z]], whose fiber over t = 0
maps to L(d+1,e−1). Surjectivity in the case of a general n follows from the observation that
each dominant cocharacter λ′ < λ is obtained as a sum of λ and cocharacters of the form
(0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) (cf. the proof of Lemma 45). Repeated application of
the argument above then shows that Lλ′ , and thus also Cλ′ , is in the image of Dλ for every
λ′ < λ. 
�

It would be desirable that the morphisms πλ : Dλ → Grassp were injective, at least at
the level of k-valued points, in order to reasonably identify the varieties Dλ with “Schubert
varieties” in the p-adic setting. Unfortunately, this is not the case, for the reason that the
lattice schemes parametrized by Dλ may indeed carry infinitesimal structure. For example,
let n = 2, λ = (1,−1) ∈ Z2 and N = 2. Then V (2)

λ ⊂ A
2×2
k = Spec k[x−1, x0, y−1, y0]

is defined by the ideal 〈x−1, x0〉. Further, Dλ − Cλ contains a whole A1
k , whose k-points

Pa, a ∈ k, are given by ideals of the form 〈y−1+ ax−1, x p
−1〉. This affine line, parametrizing

non-reduced lattice schemes, maps to the standard lattice Lλ = W(k)2 ∈ Grassp(k). The
general situation is summarized by the following Theorem, which is analogous to Kreidl
(2010, Cor. 6.8).

Theorem 47 A lattice scheme L ∈ Dλ(k) lies in the open orbit Cλ(k) if and only if it is
reduced.
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Proof Obviously, any L ∈ Cλ(k) is reduced, since Vλ is reduced. On the other hand, if
λ′ < λ ∈ X̌+(T ), then by Lemma 45 we have hλ′ < hλ for the Hilbert functions of Vλ
and Vλ′ , respectively. Thus Vλ′ does not lie in the closure of Cλ. But since any element in
π−1
λ (Lλ′) is a lattice scheme with Hilbert function equal to that of Vλ and with a set of k-

valued points equal to that of Vλ′ , we conclude that all the lattice schemes in π−1
λ (Lλ′) carry

nontrivial infinitesimal structure. 
�
Unfortunately, these infinitesimal structures cannot be avoided within our current frame-

work. As soon as we try to represent lattices by points in a Hilbert scheme, we are forced to
use a non-standard grading as described in Sect. 4.3, in order that Witt vector arithmetics is
represented by graded morphisms of affine schemes so that L+p SLn can act on the Hilbert
scheme.

A similar situation can be constructed in the function field case, where the analogue of
Dλ turns out to be, up to Frobenius twists, a Demazure resolution of the respective Schubert
variety in the affine Grassmannian (see [7]). This suggests to think of Dλ also in the present
Witt vector setting as some sort of Demazure resolution of a Schubert variety in Grassp , but
we do not know how to formulate this in a precise way.
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5 Appendix: fpqc-sheaves

In this “Appendix” we collect some general results on fpqc-sheaves which are used throughout
the preceding sections. In particular, we discuss in detail the existence of sheafifications over
the fpqc-site in situations relevant for the present paper.

Let C be the category of schemes. By a presheaf on C we mean simply a functor on the
category of schemes to the category (Set) of sets.

Lemma 48 Let D ⊂ C be an inclusion of sites, such that fiber products in D are mapped to
fiber products in C. Assume that for every covering U = {Ui → X} in C of an object X ∈ D
there exists a refinement V = {Vi → X} of U with Vi ∈ D such that V is also a covering of
X in D. Then restriction of presheaves from C to D commutes with sheafification. In other
words, if a presheaf F : C → (sets) has a sheafifcation Fa, then Fa |D is a (the) sheafification
of F |D .

Proof We check that the canonical morphism F |D → (Fa)|D is a sheafification on D. Let
X ∈ D and let ξ, η ∈ F(X) be such that their images in Fa(X) coincide. By definition
of sheafification there exists a covering (in C) of X on which ξ and η coincide. But by
assumption this covering can be refined in order to obtain a covering of X in D. Of course, ξ
and η still coincide on this refinement. On the other hand, every element ξ ∈ Fa(X) can be
represented locally (on a covering in C) by sections of F . Refining this covering, we see that
ξ can be represented on a covering in D by sections of F . Thus F |D → (Fa)|D is indeed a
sheafification and induces an isomorphism (F |D)a → (Fa)|D . 
�
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Theorem 49 ([11]) Let F be a presheaf on C. Assume that F is a sheaf for the Zariski
topology. Then F is an fpqc-sheaf on C if and only if for every faithfully flat homomorphism
of affine schemes Y → X the sequence

F(X)→ F(Y ) ⇒ F(Y ×X Y ) (15)

is an equalizer.

Proposition 50 Let F be a presheaf on C. Assume that F satisfies the following two condi-
tions:

(1) for every faithfully flat morphism of affine schemes Y → X the sequence

F(X)→ F(Y ) ⇒ F(Y ×X Y )

is an equalizer, and
(2) for every finite collection of affine schemes Y1, . . . , Yn we have

F(Y1

∐
· · ·

∐
Yn) = F(Y1)× · · · × F(Yn).

Then the Zariski-sheafification Fa of F is an fpqc-sheaf. In particular, Fa is an fpqc-
sheafification of F. Moreover, the natural transformation F → Fa restricts to an isomor-
phism on the category of affine schemes.

Proof In view of Theorem 49 we only have to prove that the condition in (1) of the present
proposition remains valid after Zariski-sheafification. Thus it will suffice to prove the last
assertion, namely that the natural map F(X)→ Fa(X) is indeed an isomorphism for every
affine X . To this end, for an arbitrary scheme X and any Zariski-covering U of X let K (U)
be the equalizer of F(U) ⇒ F(U ×X U). If we set F ′(X) = lim−→U K (U), where the colimit

is taken over all Zariski-coverings of X , then F ′ will be a separated presheaf. Applying this
procedure twice, i.e. forming F ′′, will yield a sheaf, and indeed F ′′ is equal to the Zariski-
sheafification Fa of F . Now observe the following: if X is affine, there is a cofinal subsystem
of all Zariski coverings of X given by those coverings which consist of only finitely man! y
affines. Thus, using assumption (2),

F ′(X) = lim−→Y→X ker(F(Y ) ⇒ F(Y ×X Y )),

where now the limit is taken over a certain family of faithfully flat morphisms Y → X of
affine schemes. But by assumption (1) for every such Y → X we have F(X) = ker(F(Y ) ⇒
F(Y ×X Y )), whence F ′(X) = F(X). This implies Fa(X) = F(X), as desired. 
�
Corollary 51 Let F be as in Proposition 50. Then the restriction of F to the site of affine
schemes (with arbitrary covering families consisting of affine schemes) is a sheaf for the
fpqc-topology.

The preceding discussion shows that the category of fpqc-sheaves on the category of
k-schemes is equivalent to the category of functors on affine k-schemes which satisfy the
conditions (1) and (2) of Proposition 50. Mutually inverse equivalences are given by restriction
and respectively by passing to the associated Zariski-sheaf. In [1], the authors indeed define
a k-space to be a functor on the category of affine k-schemes which satisfies condition (1).
On the other hand, they do not require condition (2), which, however, does not seem to be
automatic.

The following proposition shows that indeed every directed system of k-schemes gives
rise to a k-ind-scheme (i.e. the colimit in the category of k-spaces exists).
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Proposition 52 A functor which is defined as an inductive limit of schemes admits an fpqc-
sheafification. More precisely, its Zariski-sheafification is already an fpqc-sheaf(ification).
Further, the restriction of this sheafification to the category of affine schemes coincides with
the original presheaf defined by the inductive system of schemes.

Proof We have to check that such a functor satisfies the assumptions (1) and (2) of Proposition
50.

To this end, let (Xi ) be a direct system of schemes and let lim−→Xi be its colimit in the
category of presheaves. Let T1, . . . , Tn be affine schemes. Then we have

(lim−→Xi )(T1

∐
· · ·

∐
Tn) = lim−→(Xi (T1

∐
· · ·

∐
Tn))

= lim−→(Xi (T1)× · · · × Xi (Tn)) = (lim−→Xi )(T1)× · · · × (lim−→Xi )(Tn),

which is condition (2). It remains to check exactness of the sequence

(lim−→Xi )(R)→ (lim−→Xi )(S) ⇒ (lim−→Xi )(S ⊗R S),

where R → S is a faithfully flat homomorphism of rings. Thus let P ∈ (lim−→Xi )(S) be such
that both images of P in (lim−→Xi )(S ⊗R S) coincide. Assume that P is represented by an

element P ′ ∈ Xi (S). By definition of the inductive limit, there exists some i ≤ j ∈ I such
that that the induced objects in X j (S ⊗R S) coincide. Now we can use the exactness of the
sequence

X j (R)→ X j (S) ⇒ X j (S ⊗R S)

to obtain an R-valued point of X j , and hence an R-valued point of lim−→Xi which induces
P . Injectivity of the map (lim−→Xi )(R) → (lim−→Xi )(S) is proved likewise, which shows that
condition (1) holds as well. 
�

Proposition 52 says that if we restrict the functor direct-limit lim−→Xi to the category of
affine schemes (or more generally: quasi-compact schemes), then it is already a sheaf for the
fpqc-topology. This is Beauville and Laszlo’s point of view.

Once again let k denote a field of positive characteristic p. Contrary to what Vistoli claims
([11], Thm. 2.64) arbitrary functors on the category of k-schemes do not in general admit
an fpqc-sheafification. An example of such a functor is described by [12]. As Waterhouse
explains, the general problem with constructing an fpqc-sheafification of an arbitrary functor
is that one is forced to consider direct limits over “all” fpqc-coverings of a given scheme.
However, the entirety of “all” fpqc-coverings will not be a set, but a proper class. One
way out of this problem would be to restrict to a fixed universe, which has the drawback that
sheafifications depend on the particular choice of the universe. On the other hand, Waterhouse
proves that for basically bounded functors it suffices to look at direct limits over certain sets
of fpqc-coverings, which resolves the above described set-theoretical problems.

Let m be a cardinal number not less than the cardinality of k, fix a set S of cardinality
m, and let (k-Alg(m)) be the category of k-algebras whose underlying set is contained in S.
Let (k-Alg) denote the category of k-algebras, and let j : (k-Alg(m)) ↪→ (k-Alg) be the
inclusion. For any set-valued functor on the category of k-algebras, let j∗ denote the restriction
to (k-Alg(m)). Right-adjoint to j∗ is the Kan extension j∗ along (k-Alg(m)) ↪→ (k-Alg).

Definition 53 A functor F on the category of k-algebras is m-based if it has the form j∗G
for some functor G on (k-Alg(m)). A functor is basically bounded if there exists a cardinal
m such that it is m-based.
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Theorem 54 ([12], Cor. 5.2) If a functor F on the category of k-algebras is m-based, then
it has an fpqc-sheafification. More precisely, if j∗F → G is a sheafification for the fpqc-
topology on (k-Alg(m)), then F = j∗ j∗F → j∗G is an fpqc-sheafification on (k-Alg).

We use the following two observations made by Waterhouse: (a) A functor which is
represented by an affine scheme whose underlying ring has cardinality ≤ m is m-based, and
(b) the Kan extension j∗ preserves colimits, and in particular, the colimit over a system of
basically bounded functors is again basically bounded.

Corollary 55 Let H and G be functors on the category of k-algebras with values in groups,
which are represented by k-ind schemes. Let H → G be a functorial group homomorphism.
Then the presheaf-quotient G/H is basically bounded, and hence has a well-defined fpqc-
sheafification.

Proof By (a) the ind-schemes H and G are colimits of basically bounded functors. Thus
they are themselves basically bounded by (b) above. Further, since G/H is the colimit of a
direct system of the form

G × H ⇒ G,

this presheaf-quotient is basically bounded, again by (b). By Waterhouse’s theorem, it thus
has a well-defined fpqc-sheafification on the category of k-algebras. 
�
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