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Abstract A cuspidal system for an affine Khovanov–Lauda–Rouquier algebra Rα yields
a theory of standard modules. This allows us to classify the irreducible modules over Rα
up to the so-called imaginary modules. We describe minuscule imaginary modules, laying
the groundwork for future study of imaginary Schur–Weyl duality. We introduce colored
imaginary tensor spaces and reduce a classification of imaginary modules to one color. We
study the characters of cuspidal modules. We show that under the Khovanov–Lauda–Rouquier
categorification, cuspidal modules correspond to dual root vectors.
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1 Introduction

Khovanov–Lauda–Rouquier (KLR) algebras were defined in [13,14,24]. Their representation
theory is of interest for the theory of canonical bases, modular representation theory, cluster
theory, knot theory, etc. Let F be an arbitrary ground field. The KLR algebra Rα = Rα(C, F)
is a graded unital associative F-algebra depending on a Lie type C and an element α of the
non-negative part Q+ of the corresponding root lattice.

A natural approach to representation theory of Rα is provided by a theory of standard
modules. For KLR algebras of finite Lie type such a theory was first described in [17], see
also [4,9,23]. Key features of this theory are as follows. There is a natural induction functor
Indα,β , which associates to an Rα-module M and an Rβ -module N the Rα+β -module

M ◦ N := Indα,βM � N
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692 A. S. Kleshchev

for α, β ∈ Q+. We refer to this operation as the induction product. The functor Indα,β has
an obvious right adjoint Resα,β .

To every positive root β ∈ �+ of the corresponding root system �, one associates a
cuspidal module Lβ . We point out a remarkable property of cuspidal modules which turns
out to be key for building the theory of standard modules: the induction product powers L◦n

β

are irreducible for all n > 0, see [17, Lemma 6.6]. We make a special choice of a total order
on �+, and let β1 > · · · > βN be the positive roots taken in this order. A root partition of
α ∈ Q+ is a tuple π = (m1, . . . ,m N ) of nonnegative integers such that α = ∑N

n=1 mnβn .
The set of root partitions of α is denoted by �(α).

Given π = (m1, . . . ,m N ) ∈ �(α) we define the corresponding standard module �(π)
as the induction product

�(π) = L◦m1
β1

◦ · · · ◦ L◦m N
βN

〈sh(π)〉,
where 〈sh(π)〉 means that grading is shifted by an explicit integer sh(π). Then the head
of �(π) is proved to be irreducible, and, denoting this head by L(π), we get a complete
irredundant system

{L(π) | π ∈ �(α)}
of irreducible Rα-modules. Moreover, the decomposition matrix

([�(π) : L(σ )])π,σ∈�(α)
is unitriangular if we order its rows and columns according to the natural lexicographic order
on root partitions.

We now comment on the order on�+. In [17], the so-called Lyndon order is used, cf. [20].
This is determined by a choice of a total order on the set I of simple roots. Once such a choice
has been made, we have a lexicographic order on the set 〈I 〉α of words of content α. These
words play the role of weights in representation theory of Rα . In particular, each Rα-module
has its highest word, and the highest word of an irreducible module determines the irreducible
module uniquely up to an isomorphism. This leads to the natural notion of dominant words,
namely the ones which occur as highest words in Rα-modules (called good words in [17]).
The dominant words of cuspidal modules are characterized among all dominant words by
the property that they are Lyndon words. It turns out that the dominant Lyndon words are
in one-to-one correspondence with positive roots, and now we can compare positive roots
by comparing the corresponding dominant Lyndon words lexicographically. This gives a
total order on�+ called a Lyndon order. We point out that the cuspidal modules themselves
depend on the choice of a Lyndon order on �+.

It is well-known that each Lyndon order is convex. However, there are in general more
convex orders on�+ than Lyndon orders. Recently McNamara [23] has found a remarkable
generalization of the standard module theory which works for any convex order on �+. In
this generalization the cuspidal modules are defined via their restriction properties, which
seems to be not quite as explicit as the definition via highest words. However, all the other
important features of the theory, including the simplicity of induction powers of cuspidal
modules, as well as the unitriangularity of decomposition matrices, remain the same.

In this paper, we begin to extend the results described above from finite to affine root
systems. To describe the results in more detail we need some notation. Let the Lie type C be
of arbitrary untwisted affine type. In particular, the simple roots are labeled by the elements of
I = {0, 1, . . . , l}. We have an (affine) root system� and the subset�+ ⊂ � of positive roots.
It is known that �+ = �re+ ��im+ , where �re+ are the real roots, and �im+ = {nδ | n ∈ Z>0},
for the null-root δ, are the imaginary roots.
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Cuspidal sustems for affine KLR algebras 693

Following [1], we define a convex preorder on�+ as a preorder� such that the following
three conditions hold for all β, γ ∈ �+:

β � γ or γ � β; (1.1)

if β � γ and β + γ ∈ �+, then β � β + γ � γ ; (1.2)

β � γ and γ � β if and only if β and γ are proportional. (1.3)

Convex preorders are known to exist. From (1.3) we have that β � γ and γ � β happens
for β 	= γ if and only if both β and γ are imaginary. We write β ≺ γ if β � γ but γ 	� β.
The following set is totally ordered with respect to �:

� := �re+ ∪ {δ}. (1.4)

It is easy to see that the set of real roots splits into two disjoint infinite sets

�re� := {β ∈ �re+ | β � δ} and �re≺ := {β ∈ �re+ | β ≺ δ}.
Root partitions are defined similarly to the case of finite root systems, except that now

we need to take care of imaginary roots. We do this as follows. Consider the set P of l-
multipartitions μ = (μ(1), . . . , μ(l)), where each μ(i) is a usual partition. We write |μ| :=
|μ(1)| + · · · + |μ(l)| and say that μ is an l-multipartition of |μ|. Let α ∈ Q+. A root
partition of α is a pair (M, μ), where M is a tuple (mρ)ρ∈� of non-negative integers such
that

∑
ρ∈� mρρ = α, and μ is an l-multipartition of mδ . It is clear that all but finitely many

integers mρ are zero, so we can always choose a finite subset

ρ1 > · · · > ρs > δ > ρ−t > · · · > ρ−1

of� such that mρ = 0 for ρ outside of this subset. Then, denoting mu := mρu , we can write
any root partition of α in the form

(ρ
m1
1 , . . . , ρms

s , μ, ρ
m−t−t , . . . , ρ

m−1
−1 ),

where all mu ∈ Z≥0, μ ∈ P , and

s∑

u=1

muρu + |μ|δ +
t∑

u=1

m−uρ−u = α.

Denote by �(α) the set of all root partitions of α. There is a natural partial order ‘≤’
on �(α), which is a version of McNamara’s bilexicographic order [23], see (3.3). In the
following definition and throughout the paper, we always choose degree shifts of irreducible
modules which make them graded-self-dual, see Sect. 2.4 for details.

A cuspidal system (for a fixed convex preorder) is the following data:

(Cus1) An irreducible Rρ-module Lρ assigned to every ρ ∈ �re+, with the following prop-
erty: if β, γ ∈ Q+ are non-zero elements such that ρ = β + γ and Resβ,γ Lρ 	= 0,
then β is a sum of positive roots less than ρ and γ is a sum of positive roots greater
than ρ.

(Cus2) An irreducible Rnδ-module L(μ) assigned to every l-multipartition μ of n for every
n ∈ Z≥0, with the following property: if β, γ ∈ Q+ \ �im+ are non-zero elements
such that nδ = β + γ and Resβ,γ L(μ) 	= 0, then β is a sum of positive real roots
less than δ and γ is a sum of positive real roots greater than δ. It is required that
L(λ) 	∼= L(μ) unless λ = μ.
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694 A. S. Kleshchev

We call the irreducible modules Lρ from (Cus1) cuspidal modules, and the irreducible
modules L(μ) from (Cus2) (irreducible) imaginary modules.

It will be proved that cuspidal systems exist for all convex preorders, and cuspidal modules
(for a fixed preorder) are determined uniquely up to an isomorphism. However, it is clearly
not the case for imaginary modules: they are defined up to a permutation of multipartitions
μ of n. We give more comments on this after the Main Theorem.

Now, given a root partition

π = (ρ
m1
1 , . . . , ρms

s , μ, ρ
m−t−t , . . . , ρ

m−1
−1 ) ∈ �(α)

as above, we define the corresponding standard module

�(π) := L◦m1
ρ1

◦ · · · ◦ L◦ms
ρs

◦ L(μ) ◦ L◦m−t
ρ−t ◦ · · · ◦ L◦m−1

ρ−1 〈sh(π)〉,
where sh(π) is an explicit integer defined in (3.5).

Main Theorem For any convex preorder there exists a cuspidal system {Lρ | ρ ∈ �re+} ∪
{L(λ) | λ ∈ P}. Moreover:

(i) For every root partition π , the standard module�(π) has irreducible head; denote this
irreducible module L(π).

(ii) {L(π) | π ∈ �(α)} is a complete and irredundant system of irreducible Rα-modules
up to isomorphism and degree shift.

(iii) L(π)� � L(π).
(iv) [�(π) : L(π)]q = 1, and [�(π) : L(σ )]q 	= 0 implies σ ≤ π .
(v) L◦n

ρ is irreducible for every ρ ∈ �re+ and every n ∈ Z>0.

This theorem, proved in Sect. 4, gives a ‘rough classification’ of irreducible Rα-modules.
The main problem is that we did not give a canonical definition of individual irreducible
imaginary modules L(μ). We just know that the amount of such modules for Rnδ is equal to
the number of l-multipartitions of n, and so we have labeled them by such multipartitions in
an arbitrary way. In fact, there is a solution to this problem. It turns out that there is a beautiful
rich theory of imaginary representations of KLR algebras of affine type, which relies on the
so-called imaginary Schur–Weyl duality. This theory in particular allows us to construct an
equivalence between an appropriate category of imaginary representations of KLR algebras
and the category of representations of the classical Schur algebras. We will address these
matters in the forthcoming work [16].

In Sect. 5, we make some first steps in the study of imaginary representations and describe
explicitly the minuscule imaginary representations—the ones which correspond to the
l-multipartitions of 1. We introduce colored imaginary tensor spaces and reduce a classi-
fication of irreducible imaginary modules to one color. Minuscule imaginary representations
are also used in Sects. 6.2 and 6.3 to describe explicitly the cuspidal modules corresponding
to the roots of the form nδ±αi . In Sect. 6 we also explain how the characters of other cuspidal
modules can be computed by induction using the idea of minimal pairs which was suggested
in [23]. In Sect. 4.8, we show that under the Khovanov–Lauda–Rouquier categorification,
cuspidal modules correspond to dual root vectors of a dual PBW basis.

We mention that the methods of this paper can be used to simplify some of the proofs
in [23], in particular, the identification of the characters of the cuspidal modules with dual
PBW elements.

Immediately after the first version of this paper has been posted, the paper [27] has also
been released on the arXiv. That paper suggests a different approach to standard module
theory for affine KLR algebras, which is based on the theory of Mirkovic-Vilonen polytopes.
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Cuspidal sustems for affine KLR algebras 695

2 Preliminaries

Throughout the paper, F is a field of arbitrary characteristic p ≥ 0. Denote the ring of Laurent
polynomials in the indeterminate q by A := Z[q, q−1]. We use quantum integers [n]q :=
(qn − q−n)/(q − q−1) ∈ A for n ∈ Z, and the quantum factorials [n]!q := [1]q [2]q . . . [n]q .
We have a bar-involution on A and on Q(q) ⊃ A with bq = q−1.

2.1 Lie theoretic notation

Throughout the paper C = (ci j )i, j∈I is a Cartan matrix of untwisted affine type, see [10, §4,
Table Aff 1]. We have

I = {0, 1, . . . , l},
where 0 is the affine vertex. Following [10, §1.1], let (h,�,�∨) be a realization of the Cartan
matrix C, so we have simple roots {αi | i ∈ I }, simple coroots {α∨i | i ∈ I }, and a bilinear
form (·, ·) on h∗ such that

ci j = 2(αi , α j )/(αi , αi )

for all i, j ∈ I . We normalize (·, ·) so that (αi , αi ) = 2 if αi is a short simple root.
The fundamental dominant weights {�i | i ∈ I } have the property that 〈�i , α

∨
j 〉 = δi, j ,

where 〈·, ·〉 is the natural pairing between h∗ and h. We have the integral weight lattice
P = ⊕i∈I Z ·�i and the set of dominant weights P+ = ∑

i∈I Z≥0 ·�i . For i ∈ I we define

[n]i := [n]q(αi ,αi )/2 , [n]!i := [1]i [2]i . . . [n]i .
Denote Q+ := ⊕

i∈I Z≥0αi . For α ∈ Q+, we write ht(α) for the sum of its coefficients
when expanded in terms of the αi ’s.

Let g′ = g(C′) be the finite dimensional simple Lie algebra whose Cartan matrix C′
corresponds to the subset of vertices I ′ := I \ {0}. The affine Lie algebra g = g(C) is then
obtained from g′ by a procedure described in [10, Section 7]. We denote by W (resp. W ′) the
corresponding affine Weyl group (resp. finite Weyl group). It is a Coxeter group with standard
generators {ri | i ∈ I } (resp. {ri | i ∈ I ′}), see [10, Proposition 3.13].

Let�′ and� be the root systems of g′ and g, respectively. Denote by�′+ and�+ the set
of positive roots in �′ and �, respectively, cf. [10, §1.3]. Denote by δ the null-root. Let

δ = a0α0 + a1α1 + · · · + alαl . (2.1)

By [10, Table Aff 1], we always have

a0 = 1. (2.2)

We have

δ − α0 = θ, (2.3)

where θ is the highest root in the finite root system �′. Finally,

�+ = �im+ ��re+,

where

�im+ = {nδ | n ∈ Z>0}
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696 A. S. Kleshchev

and

�re+ = {β + nδ | β ∈ �′+, n ∈ Z≥0} � {−β + nδ | β ∈ �′+, n ∈ Z>0}. (2.4)

2.2 Words

Sequences of elements of I will be called words. The set of all words is denoted 〈I 〉. If
i = i1 . . . id is a word, we denote |i| := αi1 + · · · + αid ∈ Q+. We refer to |i| as the content
of the word i. For any α ∈ Q+ we denote

〈I 〉α := {i ∈ 〈I 〉 | |i| = α}.

If α is of height d , then the symmetric group Sd with simple permutations s1, . . . , sd−1 acts
on 〈I 〉α from the left by place permutations.

Let i = i1 . . . id and j = id+1 . . . id+ f be two elements of 〈I 〉. Define the quantum shuffle
product:

i ◦ j :=
∑

q−e(σ )iσ(1) . . . iσ(d+ f ) ∈ A 〈I 〉,

where the sum is over all σ ∈ Sd+ f such that σ−1(1) < · · · < σ−1(d) and σ−1(d +
1) < · · · < σ−1(d + f ), and e(σ ) := ∑

k≤d<m, σ−1(k)>σ−1(m) ciσ(k),iσ(m) . This defines an
A -algebra structure on the A -module A 〈I 〉, which consists of all finite formal A -linear
combinations of elements i ∈ 〈I 〉.
2.3 KLR algebras

Define the polynomials in the variables u, v

{Qi j (u, v) ∈ F[u, v] | i, j ∈ I }

as follows. For the case where the Cartan matrix C 	= A(1)1 , choose signs εi j for all i, j ∈ I
with ci j < 0 so that εi jε j i = −1. Then set:

Qi j (u, v) :=
⎧
⎨

⎩

0 if i = j;
1 if ci j = 0;
εi j (u−ci j − v−c j i ) if ci j < 0.

(2.5)

For type A(1)1 we define

Qi j (u, v) :=
{

0 if i = j;
(u − v)(v − u) if i 	= j.

(2.6)

Fix α ∈ Q+ of height d . The KLR-algebra Rα is an associative graded unital F-algebra,
given by the generators

{1i | i ∈ 〈I 〉α} ∪ {y1, . . . , yd} ∪ {ψ1, . . . , ψd−1} (2.7)
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Cuspidal sustems for affine KLR algebras 697

and the following relations for all i, j ∈ 〈I 〉α and all admissible r, t :

1i1j = δi,j1i,
∑

i∈〈I 〉α1i = 1; (2.8)

yr 1i = 1i yr ; yr yt = yt yr ; (2.9)

ψr 1i = 1sr iψr ; (2.10)

(ytψr − ψr ysr (t))1i = δir ,ir+1(δt,r+1 − δt,r )1i; (2.11)

ψ2
r 1i = Qir ,ir+1(yr , yr+1)1i (2.12)

ψrψt = ψtψr (|r − t | > 1); (2.13)

(ψr+1ψrψr+1 − ψrψr+1ψr )1i = δir ,ir+2

Qir ,ir+1(yr+2, yr+1)− Qir ,ir+1(yr , yr+1)

yr+2 − yr
1i.

(2.14)

The grading on Rα is defined by setting:

deg(1i) = 0, deg(yr 1i) = (αir , αir ), deg(ψr 1i) = −(αir , αir+1).

It is pointed out in [14] and [24, §3.2.4] that up to isomorphism the graded F-algebra Rα
depends only on the Cartan matrix and α.

Fix in addition a dominant weight � ∈ P+. The corresponding cyclotomic KLR algebra
R�α is the quotient of Rα by the following ideal:

J�α := (y
〈�,α∨i1 〉
1 1i | i = (i1, . . . , id) ∈ 〈I 〉α). (2.15)

For each element w ∈ Sd fix a reduced expression w = sr1 . . . srm and set

ψw := ψr1 . . . ψrm .

In general, ψw depends on the choice of the reduced expression of w.

Theorem 2.1 [13, Theorem 2.5], [24, Theorem 3.7] The elements

{ψw ym1
1 . . . ymd

d 1i | w ∈ Sd , m1, . . . ,md ∈ Z≥0, i ∈ 〈I 〉α}
form an F-basis of Rα .

There exists a homogeneous algebra anti-involution

τ : Rα −→ Rα, 1i �→ 1i, yr �→ yr , ψs �→ ψs (2.16)

for all i ∈ 〈I 〉α, 1 ≤ r ≤ d , and 1 ≤ s < d . If M = ⊕
d∈Z

Md is a finite dimensional
graded Rα-module, then the graded dual M� is the graded Rα-module such that (M�)n :=
HomF (M−n, F), for all n ∈ Z, and the Rα-action is given by (x f )(m) = f (τ (x)m), for all
f ∈ M�,m ∈ M, x ∈ Rα .

2.4 Basic representation theory of Rα

For any (Z-)graded F-algebra H , we denote by H -mod the abelian subcategory of all finite
dimensional graded H -modules, with morphisms being degree-preserving module homo-
morphisms, and [H -mod] denotes the corresponding Grothendieck group. Then [H -mod] is
an A -module via qm[M] := [M〈m〉],where M〈m〉 denotes the module obtained by shifting
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698 A. S. Kleshchev

the grading up by m, i.e. M〈m〉n := Mn−m . We denote by homH (M, N ) the space of mor-
phism in H -mod. For n ∈ Z, let HomH (M, N )n := homH (M〈n〉, N ) denote the space of
all homomorphisms that are homogeneous of degree n. Set

HomH (M, N ) :=
⊕

n∈Z

HomH (M, N )n .

For graded H -modules M and N we write M � N to mean that M and N are isomorphic
as graded modules and M ∼= N to mean that they are isomorphic as H -modules after
we forget the gradings. For a finite dimensional graded vector space V = ⊕n∈ZVn , its
graded dimension is dimq V := ∑

n∈Z
(dim Vn)qn ∈ A . Given M, L ∈ H -mod with L

irreducible, we write [M : L]q for the corresponding graded composition multiplicity, i.e.
[M : L]q := ∑

n∈Z
anqn,where an is the multiplicity of L〈n〉 in a graded composition series

of M .
Going back to the algebras Rα , every irreducible graded Rα-module is finite dimensional

[13, Proposition 2.12], and there are finitely many irreducible modules in Rα-mod up to
isomorphism and grading shift [13, §2.5]. A prime field is a splitting field for Rα [13,
Corollary 3.19], so working with irreducible Rα-modules we do not need to assume that
F is algebraically closed. Finally, for every irreducible module L , there is a unique choice
of the grading shift so that we have L� � L [13, Section 3.2]. When speaking of irreducible
Rα-modules we often assume by fiat that the shift has been chosen in this way.

For i ∈ 〈I 〉α and M ∈ Rα-mod, the i-word space of M is Mi := 1i M. We have

M =
⊕

i∈〈I 〉α
Mi.

We say that i is a word of M if Mi 	= 0. Note from the relations that ψr Mi ⊂ Msr i. Define
the (graded formal) character of M as follows:

chq M :=
∑

i∈〈I 〉α
(dimq Mi)i ∈ A 〈I 〉α.

The character map chq : Rα-mod → A 〈I 〉α factors through to give an injective A -linear
map chq : [Rα-mod] → A 〈I 〉α, see [13, Theorem 3.17].

2.5 Induction, coinduction, and duality

Given α, β ∈ Q+, we set Rα,β := Rα ⊗ Rβ . Let M � N be the outer tensor product of the
Rα-module M and the Rβ -module N . There is an injective homogeneous non-unital algebra
homomorphism Rα,β ↪→ Rα+β, 1i ⊗ 1j �→ 1ij , where ij is the concatenation of i and j. The
image of the identity element of Rα,β under this map is

1α,β :=
∑

i∈〈I 〉α, j∈〈I 〉β
1ij.

Let Indα+βα,β and Resα+βα,β be the induction and restriction functors:

Indα+βα,β := Rα+β1α,β⊗Rα,β ? : Rα,β -mod → Rα+β -mod,

Resα+βα,β := 1α,β Rα+β⊗Rα+β ? : Rα+β -mod → Rα,β -mod .
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Cuspidal sustems for affine KLR algebras 699

We often omit upper indices and write simply Indα,β and Resα,β . These functors have obvious
generalizations to n ≥ 2 factors:

Indγ1,...,γn : Rγ1,...,γn -mod → Rγ1+···+γn -mod,

Resγ1,...,γn : Rγ1+···+γn -mod → Rγ1,...,γn -mod .

The functor Indγ1,...,γn is left adjoint to Resγ1,...,γn . If Ma ∈ Rγa -Mod, for a = 1, . . . , n, we
define

M1 ◦ · · · ◦ Mn := Indγ1,...,γn M1 � · · · � Mn . (2.17)

In view of [13, Lemma 2.20], we have

chq (M1 ◦ · · · ◦ Mn) = chq (M1) ◦ · · · ◦ chq (Mn). (2.18)

The functors of induction and restriction have obvious parabolic analogues. Given a family
(αa

b )1≤a≤n, 1≤b≤m of elements of Q+, set
∑n

a=1 α
a
b =: βb for all 1 ≤ b ≤ m. Then we have

functors

Ind β1 ; ... ;βm

α1
1 ,...,α

n
1 ; ... ;α1

m ,...,α
n
m

and Resβ1 ; ... ;βm

α1
1 ,...,α

n
1 ; ... ;α1

m ,...,α
n
m

The right adjoint to the functor Indγ1,...,γn is given by the coinduction:

Coindγ1,...,γn := HomRγ1,...,γn
(1γ1,...,γn Rγ1+···+γn , ?)

Induction and coinduction are related as follows:

Lemma 2.2 [19, Theorem 2.2] Let γ := (γ1, . . . , γn) ∈ Qn+, and Vm ∈ Rγm -mod for
m = 1, . . . , n. Denote d(γ ) = ∑

1≤m<k≤n(γm, γk). Then

(Coindγn ,...,γ1 Vn � · · · � V1) � Indγ1,...,γn V1 � · · · � Vn〈d(γ )〉.
Lemma 2.3 Let γ := (γ1, . . . , γn) ∈ Qn+, and Vm ∈ Rγm -mod for m = 1, . . . , n. Denote
d(γ ) = ∑

1≤m<k≤n(γm, γk). Then

(V1 ◦ · · · ◦ Vn)
� � (V �

n ◦ · · · ◦ V �
1 )〈d(γ )〉.

Proof Follows from Lemma 2.2 by uniqueness of adjoint functors as in the proof of [15,
Corollary 3.7.4] ��
2.6 Mackey theorem

We state a slight generalization of the Mackey Theorem of Khovanov and Lauda [13, Propo-
sition 2.18]. Given x ∈ Sn and γ = (γ1, . . . , γn) ∈ Qn+, we denote

xγ := (γx−1(1), . . . , γx−1(n)).

Correspondingly, define the integer

s(x, γ ) := −
∑

1≤m<k≤n, x(m)>x(k)

(γm, γk).

Writing Rγ for Rγ1,...,γn , there is an obvious natural algebra isomorphism

ϕx : Rxγ → Rγ
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permuting the components. Composing with this isomorphism, we get a functor

Rγ -mod → Rxγ -mod, M �→ ϕx
M.

Making in addition a degree shift, we get a functor

Rγ -mod → Rxγ -mod, M �→ x M := ϕx
M〈s(x, γ )〉. (2.19)

Theorem 2.4 Let γ = (γ1, . . . , γn) ∈ Qn+ and β = (β1, . . . , βm) ∈ Qm+ with

γ1 + · · · + γn = β1 + · · · + βm =: α.
Then for any M ∈ Rγ -mod we have that Resβ Indγ M has filtration with factors of the form

Ind β1 ; ... ;βm

α1
1 ,...,α

n
1 ; ... ;α1

m ,...,α
n
m

x(α)
(

Res γ1 ; ... ; γn

α1
1 ,...,α

1
m ; ... ;αn

1 ,...,α
n
m

M

)

with α = (αa
b )1≤a≤n, 1≤b≤m running over all tuples of elements of Q+ such that

∑m
b=1 α

a
b =

γa for all 1 ≤ a ≤ n and
∑n

a=1 α
a
b = βb for all 1 ≤ b ≤ m, and x(α) is the permutation of

mn which maps

(α1
1, . . . , α

1
m;α2

1, . . . , α
2
m; . . . ;αn

1 , . . . , α
n
m)

to

(α1
1, . . . , α

n
1 ;α1

2, . . . , α
n
2 ; . . . ;α1

m, . . . , α
n
m).

Proof For m = n = 2 this follows from [13, Proposition 2.18]. The general case can be
proved by the same argument or deduced from the case m = n = 2 by induction. ��
2.7 Crystal operators

The theory of crystal operators has been developed in [13,19] and [11] following ideas of
Grojnowski [8], see also [15]. We review necessary facts for reader’s convenience.

Let α ∈ Q+ and i ∈ I . It is known that Rnαi is a nil-Hecke algebra with unique (up to a
degree shift) irreducible module, which we denote by L(in). Moreover, dimq L(in) = [n]!i .
We have functors

ei : Rα-mod → Rα−αi -mod, M �→ Res
Rα−αi ,αi
Rα−αi

◦ Resα−αi ,αi M,

fi : Rα-mod → Rα+αi -mod, M �→ Indα,αi M � L(i).

If L ∈ Rα-mod is irreducible, we define

f̃i L := head( fi L), ẽi L := soc(ei L).

A fundamental fact is that f̃i L is again irreducible and ẽi L is irreducible or zero. We refer
to ẽi and f̃i as the crystal operators. These are operators on B ∪ {0}, where B is the set of
isomorphism classes of irreducible Rα-modules for all α ∈ Q+. Define wt : B → P, [L] �→
−α if L ∈ Rα-mod.

Theorem 2.5 [19] The set B with the operators ẽi , f̃i and the function wt is the crystal graph
of the negative part Uq(n−) of the quantized enveloping algebra of g.
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For any M ∈ Rα-mod, we define

εi (M) := max{k ≥ 0 | ek
i (M) 	= 0}.

Then εi (M) is also the length of the longest ‘i-tail’ of words of M , i.e. the maximum of
k ≥ 0 such that jd−k+1 = · · · = jd = i for some word j = ( j1, . . . , jd) of M . Define also

ε∗i (M) := max{k ≥ 0 | j1 = · · · = jk = i for a word j = ( j1, . . . , jd)ofM}
to be the length of the longest ‘i-head’ of words of M .

Proposition 2.6 [13,19] Let L be an irreducible Rα-module, i ∈ I , and ε = εi (L).

(i) ẽi f̃i L ∼= L and if ẽi L 	= 0 then f̃i ẽi L ∼= L;
(ii) ε = max{k ≥ 0 | ẽk

i (L) 	= 0};
(iii) Resα−εαi ,εαi L ∼= ẽεi L � L(iε).

Recall from (2.15) the cyclotomic ideal J�α . We have an obvious functor of inflation
infl� : R�α -mod → Rα-mod and its left adjoint

pr� : Rα-mod → R�α -mod, M �→ M/J�α M.

Lemma 2.7 [19, Proposition 2.4] Let L be an irreducible Rα-module. Then pr�L 	= 0 if
and only if ε∗i (L) ≤ 〈�,α∨i 〉 for all i ∈ I .

2.8 Extremal words and multiplicity one results

Let i ∈ I . Consider the map θ∗i : 〈I 〉 → 〈I 〉 such that for j = ( j1, . . . , jd) ∈ 〈I 〉, we have

θ∗i (j) =
{
( j1, . . . , jd−1) if jd = i;
0 otherwise.

(2.20)

We extend θ∗i by linearity to a map θ∗i : A 〈I 〉 → A 〈I 〉.
Let x be an element of A 〈I 〉. Define

εi (x) := max{k ≥ 0 | (θ∗i )k(x) 	= 0}.
A word ia1

1 . . . iab
b ∈ 〈I 〉, with a1, . . . , ab ∈ Z≥0, is called extremal for x if

ab = εib (x), ab−1 = εib−1((θ
∗
ib
)ab (x)) , . . . , a1 = εi1

(
(θ∗i2

)a2 . . . (θ∗ib
)ab (x)

)
.

A word ia1
1 . . . iab

b ∈ 〈I 〉α is called extremal for M ∈ Rα-mod if it is an extremal word for
chq M ∈ A 〈I 〉, in other words, if

ab = εib (M), ab−1 = εib−1(ẽ
ab
ib

M) , . . . , a1 = εi1(ẽ
a2
i2
. . . ẽab

ib
M).

The following useful result, which is a version of [5, Corollary 2.17], describes the multi-
plicities of extremal word spaces in irreducible modules. We denote by 1F the trivial module
F over the trivial algebra R0 � F .

Lemma 2.8 Let L be an irreducible Rα-module, and i = ia1
1 . . . iab

b ∈ 〈I 〉α be an extremal
word for L. Then dimq L i = [a1]!i1

. . . [ab]!ib
, and

L ∼= f̃ ab
ib

f̃ ab−1
ib−1

. . . f̃ a1
i1

1F .

Moreover, i is not an extremal word for any irreducible module L ′ 	∼= L.
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Proof Follows easily from Proposition 2.6, cf. [5, Theorem 2.16]. ��

Corollary 2.9 Let M ∈ Rα-mod, and i = ia1
1 . . . iab

b ∈ 〈I 〉α be an extremal word for
M. Then we can write dimq Mi = m[a1]!i1

. . . [ab]!ib
for some m ∈ A . Moreover, if L ∼=

f̃ ab
ib

f̃ ab−1
ib−1

. . . f̃ a1
i1

1F and L� � L, then we have [M : L]q = m.

Proof Apply Lemma 2.8, cf. [5, Corollary 2.17]. ��

Now we establish some useful ‘multiplicity-one results’. The first one shows that in every
irreducible module there is a word space with a one dimensional graded component:

Lemma 2.10 Let L be an irreducible Rα-module, and i = ia1
1 . . . iab

b ∈ 〈I 〉α be an extremal

word for L. Set N := ∑b
m=1 am(am − 1)(αim , αim )/4. Then dim 1iL N = dim 1iL−N = 1.

Proof This follows immediately from the equality dimq 1i L = [a1]!i1
. . . [ab]!ib

, which comes
from Lemma 2.8. ��

The following result shows that any induction product of irreducible modules always has
a multiplicity one composition factor.

Proposition 2.11 Suppose that n ∈ Z>0 and for r = 1, . . . , n, we have α(r) ∈ Q+, an

irreducible Rα(r) -module L(r), and i(r) := i
a(r)1
1 . . . i

a(r)k
k ∈ 〈I 〉α(r) is an extremal word for

L(r). Denote am := ∑n
r=1 a(r)m for all 1 ≤ m ≤ k. Then j := ia1

1 . . . iak
k is an extremal word

for L(1) ◦ · · · ◦ L(n), and the graded multiplicity of the �-self-dual irreducible module

N ∼= f̃ ak
ik

f̃ ak−1
ik−1

. . . f̃ a1
i1

1F

in L(1) ◦ · · · ◦ L(n) is qm, where

m := −∑
1≤t<u≤n

(∑
1≤r<s≤k a(u)r a(t)s (αir , αis )+ 1

2

∑k
r=1 a(t)r a(u)r (αir , αir )

)
.

In particular, the ungraded multiplicity of N in L(1) ◦ · · · ◦ L(n) is one.

Proof By Lemma 2.8, the multiplicity of i(r) in chq L(r) is [a(r)1 ]!i1
. . . [a(r)k ]!ik

. By (2.18), we
have

chq (L
(1) ◦ · · · ◦ L(n)) = chq (L

(1)) ◦ · · · ◦ chq (L
(n)).

It is easy to see that the word j is an extremal word for L(1) ◦ · · · ◦ L(n), and that j
can be obtained only from the shuffle product i(1) ◦ · · · ◦ i(n). An elementary computa-
tion shows that j appears in i(1) ◦ · · · ◦ i(n) with multiplicity qm[a1]!i1

. . . [ak]!ik
. Now apply

Corollary 2.9. ��

Corollary 2.12 Let L be an irreducible Rα-module and n ∈ Z>0. Then there is an irreducible
Rnα-module N which appears in L◦n with graded multiplicity q−(α,α)n(n−1)/4. In particular,
the ungraded multiplicity of N is one.

Proof Apply Proposition 2.11 with L(1) = · · · = L(n) = L . ��
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2.9 Khovanov–Lauda–Rouquier categorification

We recall the Khovanov–Lauda–Rouquier categorification of the quantized enveloping alge-
bra f obtained in [13,14,24]. We follow the presentation of [6,17]. Let fA ⊂ f be the A -form
of the Lusztig’s quantum group f corresponding to the Cartan matrix C. This A -algebra is
generated by the divided powers θ(n)i = θn

i /[n]!i of the standard generators. The algebra
fA has a Q+-grading fA = ⊕α∈Q+(fA )α determined by the condition that each θi is in
degree αi .

There is a bilinear form (·, ·) on f defined in [21, §1.2.5, §33.1.2]. Let f∗A =
{

y ∈ f
∣
∣ (x, y) ∈ A for all x ∈ fA

}
. Let (θ∗i )(n) be the map dual to the map fA → fA , x �→

xθ(n)i . Finally, there is a coproduct r on f such that f is a twisted unital and counital bialgebra.
Moreover, for all x, y, z ∈ f we have

(xy, z) = (x ⊗ y, r(z)). (2.21)

The field Q(q) possesses a unique automorphism called the bar involution such that q =
q−1. With respect to this involution, let b : f → f be the anti-linear algebra automorphism
such that b(θi ) = θi for all i ∈ I . Also let b∗ : f → f be the adjoint anti-linear map to b
with respect to Lusztig’s form, so (x,b∗(y)) = (b(x), y) for all x, y ∈ f . The maps b and
b∗ preserve fA and f∗A , respectively.

Let [R-mod] = ⊕
α∈Q+[Rα-mod] denote the Grothendieck ring, which is an A -algebra

via induction product and qn[V ] = [V 〈n〉]. Similarly the functors of restriction define a
coproduct r on [R-mod]. This product and coproduct make [R-mod] into a twisted unital
and counital bialgebra [13, Proposition 3.2].

In [13,14] an explicit A -bialgebra isomorphisms γ ∗ : [R-mod] ∼→ f∗A is constructed; in
fact [13] establishes a dual isomorphism, see [17, Theorem 4.4] for details on this. Moreover,
γ ∗([V �]) = b∗(γ ∗([V ])), and we have a commutative triangle

A 〈I 〉

[R-mod] f∗A�γ ∗�
��chq

�
��� ι

, (2.22)

where the map ι is defined as follows:

ι(x) =
∑

i=(i1,...,id )∈〈I 〉
(x, θi1 . . . θid )i (x ∈ f∗A ).

Lemma 2.13 Let v∗ be a dual canonical basis element of f , and i = ia1
1 . . . iak

k be an
extremal word of ι(v∗) in the sence of Sect. 2.8. Then i appears in ι(v∗) with coefficient
[a1]!i1

. . . [ak]!ik
.

Proof Apply induction on a1 + · · · + ak . The induction base is a1 + · · · + ak = 0, in which
case v∗ = 1 ∈ f∗A and ι(1) is the empty word. Recall the map θ∗i : A 〈I 〉 → A 〈I 〉 from
(2.20). For all x ∈ f∗A we have ι((θ∗i )(n)(x)) = (θ∗i )(n)(ι(x)), where in the right hand side
(θ∗i )(n) = (θ∗i )n/[n]!i . By [12, Proposition 5.3.1], (θ∗ik

)(aik )(v∗) is again a dual canonical basis

element, and by induction, the word ia1
1 . . . iak−1

k−1 appears in ι((θ∗ik
)(aik )(v∗)) with coefficient

[a1]!i1
. . . [ak−1]!ik−1

. The result follows. ��
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3 Cuspidal systems and standard modules

3.1 Convex preorders on �+

Recall the notion of a convex preorder on �+ from (1.1)–(1.3). Convex preorders exist, see
e.g. [1, Example 2.11(ii)].

Lemma 3.1 For any positive root β, the convex cones spanned by �+(β) := {γ ∈ �+ |
γ � β} and �+\�+(β) intersect only at the origin.

Proof The set {γ ∈ �+ | γ � β} is a terminal section for the preorder � in the sense of [1,
Section 2.4]. By [1, Lemma 2.9], this set is biconvex, which is equivalent to the statement
about the cones by [1, Remark 2.3]. ��

Lemma 3.1 immediately implies the following properties:

(Con1) Let ρ ∈ �re+, m ∈ Z>0, and mρ = ∑b
a=1 γa for some positive roots γa . Assume that

either γa � ρ for all a = 1, . . . , b or γa � ρ for all a = 1, . . . , b. Then b = m and
γa = ρ for all a = 1, . . . , b.

(Con2) Let β, κ be two positive roots, not both imaginary. If β + κ = ∑b
a=1 γa for some

positive roots γa � β, then β � κ .
(Con3) Let ρ ∈ �im+ , and ρ = ∑b

a=1 γa for some positive roots γa . If either γa � ρ for all
a = 1, . . . , b or γa � ρ for all a = 1, . . . , b, then all γa are imaginary.

Indeed, for (Con1), we may assume that all γa ≺ ρ, and apply the lemma with β = ρ. For
(Con2), taking into account (Con1), we may assume that all γa ≺ β, and apply the lemma.
For (Con3), we may assume that all γa are real and apply the lemma with β = ρ.

The Main Theorem from the introduction will be proved for an arbitrary convex preorder,
but later results which rely on the theory of imaginary representations, beginning from Sect. 5,
require an additional assumption. Recall from (2.4) that

�re+ = {β + nδ | β ∈ �′+, n ∈ Z≥0} � {−β + nδ | β ∈ �′+, n ∈ Z>0}.
A convex preorder � will be called balanced if

�re� = {β + nδ | β ∈ �′+, n ∈ Z≥0}. (3.1)

Then of course we also have�re≺ = {−β + nδ | β ∈ �′+, n ∈ Z>0}. A convex preorder � is
balanced if and only if αi � δ � α0 for all i ∈ I ′. Balanced convex preorders exist, see for
example [3].

3.2 Root partitions

Recall that I ′ = {1, . . . , l}. We will consider the set P of l-multipartitions λ = (λ(i))i∈I ′ ,
where each λ(i) = (λ

(i)
1 , λ

(i)
2 , . . . ) is a usual partition. For all i ∈ I ′, we denote |λ(i)| :=

λ
(i)
1 + λ(i)2 + . . . , and set |λ| := ∑

i∈I ′ |λ(i)|. For m ∈ Z≥0, denote

Pm := {λ ∈ P | |λ| = m}.
We work with a fixed convex preorder� on�+. Recall the totally ordered set� from (1.4).

Denote byT the set of all finitary (i.e. with almost all terms zero) tuples M = (mρ)ρ∈� ∈ Z
�≥0

of non-negative integers. The left lexicographic order on T is denoted ≤l and the right
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lexicographic order on T is denoted ≤r . We will use the following bilexicographic partial
order on T:

M ≤ N if and only if M ≤l N and M ≥r N .

Recall from the introduction that a root partition is a pair (M, μ) with M ∈ T, μ ∈ Pmδ ,
and that, for α ∈ Q+, a root partition π ∈ �(α) can be written in the form

π = (ρ
m1
1 , . . . , ρms

s , μ, ρ
m−t−t , . . . , ρ

m−1
−1 ), (3.2)

where ρ1 > · · · > ρs > δ > ρ−t > · · · > ρ−1, all mu ∈ Z≥0, μ ∈ P and
∑s

u=1 muρu +
|μ|δ + ∑t

u=1 m−uρ−u = α. For a root partition π = (M, μ) and ρ ∈ �, we define
Mρ := mρρ, and consider a tuple |M | = (Mρ)ρ∈� ∈ Q�+ . If π is written in the form
(3.2), we also write (ignoring trivial terms)

|M | = (m1ρ1, . . . ,msρs,mδδ,m−tρ−t , . . . ,m−1ρ−1).

Then we have a parabolic subalgebra

R|M| = Rm1ρ1,...,msρs ,mδδ,m−tρ−t ,...,m−1ρ−1 ⊆ Rα.

We will use the following partial order on �(α):

(M, μ) ≤ (N , ν) if and only if M ≤ N and if M = N then μ = ν. (3.3)

The positive subalgebra n+ ⊂ g has a basis consisting of root vectors

{Eρ, Enδ,i | ρ ∈ �re+, n ∈ Z>0, i ∈ I ′}.
For i ∈ I ′, assign to a partition μ(i) = (μ

(i)
1 , μ

(i)
2 , . . . ) a PBW monomial Eμ(i) :=

E
μ
(i)
1 δ,i

E
μ
(i)
2 δ,i

. . . . Now, to a root partition π as in (3.2), we assign a PBW monomial

Eπ := Em1
ρ1
. . . Ems

ρs
Eμ(1) Eμ(2) . . . Eμ(l) Em−t

ρ−t . . . Em−1
ρ−1 .

Then {Eπ | π ∈ �(α)} is a basis of the weight space U (n+)α . In particular, |�(α)| =
dim U (n+)α is the Kostant partition function of α. In view of the isomorphism γ ∗ from
(2.22), we conclude:

Lemma 3.2 The number of irreducible Rα-modules (up to isomorphism) is |�(α)|.
Given a root partition π = (M, μ) and ρ ∈ �, denote by π ′ρ = (M, μ)′ρ the root

partition obtained fromπ by ‘annihilating’ its ρth component; to be more precise, (M, μ)′ρ =
(M ′, μ′), where

m′
β =

{
0 if β = ρ

mβ if β 	= ρ
and μ′ =

{∅ if ρ = δ

μ otherwise.
(3.4)

3.3 Standard modules

We continue to work with a fixed convex preorder� on�+. Recall from the introduction the
definition of the corresponding cuspidal system. It consists of certain cuspidal modules Lρ
for ρ ∈ �re+ and irreducible imaginary modules L(μ) for μ ∈ P satisfying the properties
(Cus1) and (Cus2). For every α ∈ Q+ and a root partition π = (M, μ) ∈ �(α), written in
the form (3.2), we define an integer

sh(π) = sh(M, μ) :=
∑

ρ∈�re+

(ρ, ρ)mρ(mρ − 1)/4. (3.5)
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Next, we define the R|M|-module

Lπ = L M,μ := L◦m1
ρ1

� · · · � L◦ms
ρs

� L(μ) � L◦m−t
ρ−t � · · · � L◦m−1

ρ−1 〈sh(π)〉, (3.6)

and we define the standard module

�(π) = �(M, μ) := L◦m1
ρ1

◦ · · · ◦ L◦ms
ρs

◦ L(μ) ◦ L◦m−t
ρ−t ◦ · · · ◦ L◦m−1

ρ−1 〈sh(π)〉. (3.7)

Note that �(M, μ) = Ind|M|L M,μ ∈ Rα-mod.

Lemma 3.3 Let ρ ∈ �re+, Lρ be the corresponding cuspidal module, and n ∈ Z>0. Then

(L◦n
ρ )

� � L◦n
ρ 〈(ρ, ρ)n(n − 1)/2〉.

In particular, the module L◦n
ρ 〈(ρ, ρ)n(n − 1)/4〉 is �-self-dual.

Proof Recall that our standard choice of shifts of irreducible modules is so that L�
ρ � Lρ .

Now the result follows from Lemma 2.3. ��
Lemma 3.4 We have L�

π � Lπ

Proof Follows from Lemma 3.3. ��
3.4 Restrictions of standard modules

The proof of the following proposition is similar to [23, Lemma 3.3].

Proposition 3.5 Let (M, μ), (N , ν) ∈ �(α). Then:

(i) Res|N |�(N , ν) � L N ,ν .
(ii) Res|M|�(N , ν) 	= 0 implies M ≤ N.

Proof We may write the root partitions (M, μ) and (N , ν) in the form (3.2):

(M, μ) = (ρ
m1
1 , . . . , ρms

s , μ, ρ
m−t−t , . . . , ρ

m−1
−1 ),

(N , ν) = (ρ
n1
1 , . . . , ρ

ns
s , ν, ρ

n−t−t , . . . , ρ
n−1
−1 )

with mu, nu ≥ 0.
Let Res|M|�(N , ν) 	= 0. It suffices to prove that M ≥l N or M ≤r N implies that M = N

and Res|M|�(N , ν) ∼= L N ,ν . We may assume that M ≥l N , the case M ≤r N being similar.
We apply induction on ht(α) and consider three cases.

Case 1: mρ > 0 for some ρ > δ. Pick the maximal such ρ, and let (M ′, μ′) = (M, μ)′ρ
and (N ′, ν′) = (N , ν)′ρ , see (3.4). By the Mackey Theorem 2.4, Res|M|�(N , ν) has filtration
with factors of the form

Ind
mρρ;|M ′|
κ1,...,κc;γ V,

where mρρ = κ1 + · · · + κc, with κ1, . . . , κc ∈ Q+\{0}, and γ is a refinement of |M ′|.
Moreover, the module V is obtained by twisting and degree shifting as in (2.19) of a module
obtained by restriction of

L�n1
ρ1

� · · · � L�ns
ρs

� L(ν) � L�n−t
ρ−t � · · · � L�n−1

ρ−1

to a parabolic which has κ1, . . . , κc in the beginnings of the corresponding blocks. In par-
ticular, if V 	= 0, then for each b = 1, . . . , c we have that Resκb,ρk−κb Lρk 	= 0 for some
k = k(b) with nk 	= 0 or Resκb,nδδ−κb L(ν) 	= 0.
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If Resκb,ρk−κb Lρk 	= 0, then by (Cus1), κb is a sum of roots� ρk . Moreover, since M ≥l N
and nk 	= 0, we have that ρk � ρ. Thus κb is a sum of roots � ρa . On the other hand, if
Resκb,nδδ−κb L(ν) 	= 0, then by (Cus2), either κb is an imaginary root or it is a sum of real
roots less than nδδ. In either case we conclude again that κb is a sum of roots � ρ. Using
(Con1), we can now conclude that c = mρ , and κb = ρ = ρk(b) for all b = 1, . . . , c. Hence
nρ ≥ mρ . Since M ≥l N , we conclude that nρ = mρ , and

Res|M|�(N , ν) ∼= L
◦mρ
ρ � Res

α−mρρ

|M ′| �(N ′, ν′).

Now, since ht(α − mρρ) < ht(α), we can apply the inductive hypothesis.
Case 2: mρ = 0 for all ρ > δ, but mδ 	= 0. Since N ≤l M , we also have that nρ = 0

for all ρ > δ. Let (M ′, μ′) = (M, μ)′δ , (N ′, ν′) = (N , ν)′δ . By the Mackey Theorem 2.4,
Res|M|�(N , ν) has filtration with factors of the form

Indmδδ;|M ′|
κ1,...,κc;γ V,

where mδδ = κ1 + · · · + κc, with κ1, . . . , κc ∈ Q+\{0}, and γ is a refinement of |M ′|.
Moreover, the module V is obtained by twisting and degree shifting of a module obtained

by parabolic restriction of the module L(ν)� L�n−t
ρ−t � · · ·� L�n−1

ρ−1 to a parabolic which has
κ1, . . . , κc in the beginnings of the corresponding blocks. In particular, if V 	= 0, then either

(1) Resκ1,nδδ−κ1 L(ν) 	= 0 and for b = 2, . . . , c, there is k = k(b) < 0 such that
Resκb,ρk−κb Lρk 	= 0, or

(2) for b = 1, . . . , c there is k = k(b) < 0 such that Resκb,ρk−κb Lρk 	= 0.

By (Cus1) and (Con3), only (1) is possible, and in that case, using also (Cus2), we must
have c = 1 and κ1 = mδδ. Since M ≥l N , we conclude that nδ = mδ , and

Res|M|�(N , ν) ∼= L(ν) � Resα−mδδ
|M ′| �(N ′, ν).

Now, since ht(α − mδδ) < ht(α), we can apply the inductive hypothesis.
Case 3: mρ = 0 for all ρ ≥ δ. This case is similar to Case 1. ��

4 Rough classification of irreducible modules

We continue to work with a fixed convex preorder � on �+. In this section we prove the
Main Theorem from the introduction.

4.1 Statement and the structure of the proof

We will prove the following result, which contains slightly more information than the Main
Theorem:

Theorem 4.1 For a given convex preorder, there exists a corresponding cuspidal system
{Lρ | ρ ∈ �re+} ∪ {L(λ) | λ ∈ P}. Moreover:

(i) For every root partition (M, μ), the standard module�(M, μ) has an irreducible head;
denote this irreducible module L(M, μ).

(ii) {L(M, μ) | (M, μ) ∈ �(α)} is a complete and irredundant system of irreducible Rα-
modules up to isomorphism.

(iii) L(M, μ)� � L(M, μ).
(iv) [�(M, μ) : L(M, μ)]q = 1, and [�(M, μ) : L(N , ν)]q 	= 0 implies (N , ν) ≤ (M, μ).
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(v) Res|M|L(M, μ) � L M,μ and Res|N |L(M, μ) 	= 0 implies N ≤ M.
(vi) L◦n

ρ is irreducible for all ρ ∈ �re+ and all n ∈ Z>0.

The rest of Sect. 4 is devoted to the proof of Theorem 4.1, which goes by induction on
ht(α). To be more precise, we prove the following statements for all α ∈ Q+ by induction
on ht(α):

(1) For each ρ ∈ �re+ with ht(ρ) ≤ ht(α) there exists a unique up to isomorphism irreducible
Rρ-module Lρ which satisfies the property (Cus1). Moreover, Lρ then also satisfies the
property (vi) of Theorem 4.1 if ht(nρ) ≤ ht(α).

(2) For each n ∈ Z≥0 with ht(nδ) ≤ ht(α) there exist irreducible Rnδ-modules {L(μ) | μ ∈
Pn} which satisfy the property (Cus2).

(3) The standard modules �(M, μ) for all (M, μ) ∈ �(α), defined as in (3.7) using the
modules from (1) and (2), satisfy the properties (i)–(v) of Theorem 4.1.

The induction starts with ht(α) = 0, and for ht(α) = 1 the theorem is also clear since
Rαi is a polynomial algebra, which has only the trivial representation Lαi . The inductive
assumption will stay valid throughout Sect. 4.

4.2 Irreducible heads

In the following proposition, we exclude the cases where the standard module is either of
the form L◦n

ρ for a real root ρ, or is imaginary of the form L(λ). The excluded cases will be
dealt with in this Sects. 4.3, 4.4 and 4.5.

Proposition 4.2 Let (M, μ) ∈ �(α), and suppose that there are elements ρ 	= β of � such
that mρ 	= 0 and mβ 	= 0.

(i) �(M, μ) has an irreducible head; denote this irreducible module L(M, μ).
(ii) If (M, μ) 	= (N , ν), then L(M, μ) 	∼= L(N , ν).

(iii) L(M, μ)� � L(M, μ).
(iv) [�(M, μ) : L(M, μ)]q = 1, and [�(M, μ) : L(N , ν)]q 	= 0 implies (N , ν) ≤ (M, μ).
(v) Res|M|L(M, μ) � L M,μ and Res|N |L(M, μ) 	= 0 implies N ≤ M.

Proof (i) and (v) If L is an irreducible quotient of�(M, μ) = Ind|M|L M,μ, then by adjoint-
ness of Ind|M| and Res|M| and the irreducibility of the R|M|-module L M,μ, which holds by
the inductive assumption, we conclude that L M,μ is a submodule of Res|M|L . On the other
hand, by Proposition 3.5(i) the multiplicity of L M,μ in Res|M|�(M, μ) is one, so (i) follows.
Note that we have also proved the first statement in (v), while the second statement in (v)
follows from Proposition 3.5(ii) and the exactness of the functor Res|M|.

(iv) By (v), Res|N |L(N , ν) ∼= L N ,ν 	= 0. Therefore, if L(N , ν) is a composition factor
of �(M, μ), then Res|N |�(M, μ) 	= 0 by exactness of Res|N |. By Proposition 3.5, we then
have N ≤ M and the first equality in (iv). If N < M , then (N , ν) < (M, μ). If N = M , and
ν 	= μ, then we get a contribution of L N ,ν into Res|M|�(M, μ), which contradicts (v).

(ii) If L(M, μ) ∼= L(N , ν), then we deduce from (iv) that (M, μ) ≤ (N , ν) and (N , ν) ≤
(M, μ), whence (M, μ) = (N , ν).

(iii) follows from (v) and Lemma 3.4. ��
4.3 Imaginary modules

In this subsection we assume that α = nδ for some n ∈ Z≥0. Then Proposition 4.2, yields
|�(α)|−|Pn | (pairwise non-isomorphic) irreducible modules, namely the modules L(M, μ)
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corresponding to the root partitions (M, μ) such that mρ 	= 0 for some ρ ∈ �re+. Let us
label the remaining |Pn | irreducible Rnδ-modules by the elements of Pn in some way, cf.
Lemma 3.2. So we get irreducible Rnδ-modules {L(μ) | μ ∈ Pn}, and then {L(M, μ) |
(M, μ) ∈ �(α)} is a complete and irredundant system of irreducible Rα-modules up to
isomorphism. Our next goal is Lemma 4.3 which proves that the modules {L(μ) | μ ∈ Pn}
are imaginary in the sense of (Cus2).

We need some terminology. Let (M, μ) be a root partition. We say that ρ ∈ � appears
in the support of M if mρ > 0. Let κ be the largest root appearing in the support of M , and
β ∈ �+ satisfies β � κ . Note that if β is real then Lβ ◦�(M, μ) is, up to a degree shift, a
standard module again. If β = nδ is imaginary, ν ∈ Pn , and κ is real, then L(ν) ◦�(M, μ)
is again a standard module.

Lemma 4.3 Let λ ∈ Pn. Suppose that β, γ ∈ Q+\�im+ are non-zero elements such that
nδ = β + γ and Resβ,γ L(λ) 	= 0. Then β is a sum of real roots less than δ and γ is a sum
of real roots greater than δ.

Proof We prove that β is a sum of real roots less than δ, the proof that γ is a sum of real
roots greater than δ being similar. Let L(M, μ) � L(N , ν) be an irreducible submodule of
Resβ,γ L(λ) 	= 0, so that (M, μ) ∈ �(β) and (N , ν) ∈ �(γ ). Note that ht(β), ht(γ ) <
ht(α), so the modules L(M, μ), L(N , ν) are defined by induction.

Let χ be the largest root appearing in the support of M . If χ ≤ δ, then, since β is not an
imaginary root, we conclude that β is a sum of real roots less than δ. So we may assume that
χ � δ. Moreover, Resχ,β−χ L(M, μ) 	= 0, and hence Resχ,γ+β−χ L(λ) 	= 0. So we may
assume from the beginning that β ∈ �re� and L(M, μ) � Lβ . Moreover, we may assume
that β is the largest possible real root for which Resβ,γ L(λ) 	= 0.

Now, let κ be the largest root appearing in the support of N . If κ is a real root, we have the
cuspidal module Lκ . If κ is imaginary, then let us denote by Lκ the module L(ν). Then we
have a non-zero map Lβ � Lκ � V → Resβ,κ,γ−κ L(λ), for some non-zero Rγ−κ -module
V . By adjunction, this yields a non-zero map

f : (Indβ,κ Lβ � Lκ ) � V → Resβ+κ,γ−κ L(λ)

If κ = γ note that β 	= γ , since it has been assumed that β, γ 	∈ �im+ . Now we conclude
thatβ ≺ γ , for otherwise L(λ) is a quotient of the standard module Lβ◦Lγ , which contradicts
the definition of the irreducible imaginary module L(λ). Now, since nδ = β + κ , we have
by (Con3) that β ≺ δ ≺ γ , as desired.

Next, let κ 	= γ , and pick a composition factor L(M ′, μ′) of Indβ,κ Lβ � Lκ , which is not
in the kernel of f . By the assumption on the maximality of β, every root κ ′ in the support
of M ′ satisfies κ ′ � β. Thus β + κ is a sum of roots � β. Now (Con2) implies that κ � β,
and so by adjointness, L(λ) is a quotient of the standard module Lβ ◦ �(N , ν), which is a
contradiction. ��

We now establish a useful property of imaginary modules:

Lemma 4.4 Let μ ∈ Pr and ν ∈ Ps with r + s = n. Then all composition factors of
L(μ) ◦ L(ν) are of the form L(κ) for κ ∈ Pn.

Proof Let L(K , κ) be a composition factor of L(μ) ◦ L(ν). We need to prove that kρ = 0
for all ρ ∈ �re+, i.e. L(K , κ) = L(κ). If this is not the case, there is ρ > δ with kρ > 0. Pick
the largest such ρ, and set (K ′, κ ′) := (K , κ)′ρ , see (3.4). By Proposition 4.2(v), we have
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that Res|K |L(K , κ) 	= 0, so Res|K |(L(μ) ◦ L(ν)) 	= 0. We apply the Mackey Theorem to
conclude that the last module has a filtration with factors of the form

Ind
kρρ;|K ′|
λ1,λ2;γ V,

where kρρ = λ1 + λ2, γ is a refinement of |K ′|, and

Resλ1,rδ−λ1 L(μ) 	= 0 	= Resλ2,sδ−λ2 L(ν).

By the inductive assumption, we know that L(μ) and L(ν) satisfy (Cus2), i.e. λ1 and λ2 are
either imaginary roots or a sum of roots less than δ. In either case, λ1 and λ2 are sums of
roots less than ρ, and then so is kρρ. This contradicts (Con1). ��
4.4 Cuspidal modules

Throughout this subsection we assume that α = ρ ∈ �re+. Let (M, μ) ∈ �(α) be a root
partition ofα. There is a trivial root partition (α). Proposition 4.2 yields |�(α)|−1 irreducible
Rα-modules, namely the ones which correspond to the non-trivial root partitions (M, μ).
We define the cuspidal module Lα to be the missing irreducible Rα-module, cf. Lemma 3.2.
Then, of course, we have that {L(M, μ) | (M, μ) ∈ �(α)} is a complete and irredundant
system of irreducible Rα-modules up to isomorphism. We now prove that Lα satisfies the
property (Cus1) and is uniquely determined by it. To be more precise:

Lemma 4.5 If β, γ ∈ Q+ are non-zero elements such that α = β + γ and Resβ,γ Lα 	= 0,
then β is a sum of roots less than α and γ is a sum of roots greater than α. Moreover, this
property characterizes Lα among the irreducible Rα-modules uniquely up to isomorphism
and degree shift.

Proof We prove that β is a sum of roots less than α, the proof that γ is a sum of roots greater
than α being similar. Let L(M, μ) � L(N , ν) be an irreducible submodule of Resβ,γ Lα , so
that (M, μ) ∈ �(β) and (N , ν) ∈ �(γ ). Let χ be the largest root appearing in the support
of M . Then Resχ,β−χ L(M, μ) 	= 0, and hence Resχ,γ+β−χ Lα 	= 0. If we can prove that χ
is a sum of roots less than α, then by (Con1), (Con3), χ is a root less than α, whence, by the
maximality of χ , we have that β is a sum of roots less than α. So we may assume from the
beginning that β is a root and L(M, μ) = Lβ (if β is imaginary, Lβ is interpreted as L(μ)).
Moreover, we may assume that β is the largest possible root for which Resβ,γ Lα 	= 0.

Now, let κ be the largest root appearing in the support of N . If κ is a real root, we have
the cuspidal module Lκ . If κ is imaginary, then we interpret Lκ as L(ν). Then we have a
non-zero map

Lβ � Lκ � V → Resβ,κ,γ−κ Lα,

for some 0 	= V ∈ Rγ−κ -mod. By adjunction, this yields a non-zero map

f : (Indβ,κ Lβ � Lκ ) � V → Resβ+κ,γ−κ Lα.

If κ = γ , then we must have β ≺ γ , for otherwise Lα is a quotient of the standard module
Lβ ◦ Lγ , which contradicts the definition of the cuspidal module Lα . Now, since α = β+ κ ,
we have by (Con1) that β ≺ α ≺ γ , in particular β ≺ α as desired.

Next, let κ 	= γ , and pick a composition factor L(M ′, μ′) of Indβ,κ Lβ � Lκ , which is not
in the kernel of f . By the assumption on the maximality of β, every root κ ′ in the support of
M ′ satisfies κ ′ � β. Thus β+κ is a sum of roots� β. If β and κ are not both imaginary, then
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(Con2) implies that κ � β, and so by adjointness, Lα is a quotient of the standard module
Lβ ◦�(N , ν), which is a contradiction.

If β and κ are both imaginary, then�(N , ν) = L(ν)◦�(N ′,∅) for N ′ such that a maximal
root appearing in the support of N ′ is of the form ψ < δ. In this case, we have by adjunction
that Lα is a quotient of L(μ) ◦ L(ν) ◦ L(N ′,∅). It now follows from Lemma 4.4 that Lα is
a quotient of the standard module of the form L(λ) ◦ L(N ′,∅) for some composition factor
L(λ) of L(μ) ◦ L(ν), so we get a contradiction again, since Lα is cuspidal.

The second statement of the lemma is clear since, in view of Proposition 4.2(v) and (Con1),
the irreducible modules L(M, μ), corresponding to non-trivial root partitions (M, μ) ∈
�(α), do not satisfy the property (Cus1). ��
4.5 Powers of cuspidal modules

Assume finally that α = nρ for some ρ ∈ �re+ and n ∈ Z>1.

Lemma 4.6 The induced module L◦n
ρ is irreducible.

Proof In view of Proposition 4.2, we have the irreducible modules L(M, μ) for all root
partitions (M, μ) ∈ �(α), except for (N , ν) = (ρn) for which �(N , ν) = L◦n

ρ . By (Con1),
we have that N ≤ M for all (M, μ) ∈ �(α), and if M = N , then (M, μ) = (N , ν). By
Proposition 4.2(v), we conclude that L◦n

ρ has only one composition factor L appearing with
certain multiplicity c(q) ∈ A , and such that L 	∼= L(M, μ) for all (M, μ) ∈ �(α)\{(N , ν)}.
Finally, by Corollary 2.12, we conclude that L◦n

ρ
∼= L . ��

The proof of Theorem 4.1 is now complete.

4.6 Another version of the Main Theorem

We now formulate and prove a slightly stronger version of the Main Theorem. For each n,
fix an arbitrary partial order � on the set of multipartitions Pn . Let α ∈ Q+. Define a partial
order ≤′ on �(α) as follows: (M, μ) ≤′ (N , ν) if and only if the following two conditions
hold: (1) M ≤ N , (2) if mρ = nρ for all ρ ≥ δ or for all ρ ≤ δ, then μ � ν.

Now we modify the data (Cus2) of a cuspidal system as follows:

(Cus2′) An Rnδ-module �(μ) is assigned to every μ ∈ Pn for all n ∈ Z≥0 with the
following properties:

(a) each �(μ) has an irreducible head; denote this head by L(μ);
(b) L(μ)� � L(μ);
(c) [�(μ) : L(μ)]q = 1 and [�(μ) : L(ν)]q 	= 0 implies ν � μ;
(d) L(λ) 	∼= L(μ) unless λ = μ;
(e) ifβ, γ ∈ Q+\�im+ are non-zero elements such that nδ = β+γ and Resβ,γ L(μ) 	= 0,

then β is a sum of positive real roots less than δ and γ is a sum of positive real roots
greater than δ

A weak cuspidal system (for a fixed convex preorder) is the data of (Cus1) and (Cus2′).
Given a weak cuspidal system, for every α ∈ Q+ and π = (M, μ) ∈ �(α) in the form

(3.2), we define

�′(π) = �′(M, μ) := L◦m1
ρ1

◦ · · · ◦ L◦ms
ρs

◦�(μ) ◦ L◦m−t
ρ−t ◦ · · · ◦ L◦m−1

ρ−1 〈sh(π)〉.
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The following is a version of the Main Theorem for weak cuspidal systems:

Theorem 4.7 For a weak cuspidal system {Lρ | ρ ∈ �re+} ∪ {�(λ) | λ ∈ P}, we have:

(i) For every root partition π , the standard module�′(π) has an irreducible head; denote
this irreducible module L(π).

(ii) {L(π) | π ∈ �(α)} is a complete and irredundant system of irreducible Rα-modules
up to isomorphism.

(iii) L(π)� � L(π).
(iv) [�′(π) : L(π)]q = 1, and [�′(π) : L(σ )]q 	= 0 implies σ ≤′ π .

Proof Since {Lρ | ρ ∈ �re+}∪{L(λ) | λ ∈ P} is a weak cuspidal system, it is also a cuspidal
system. So we only need to prove (i) and (iv). To see (i), we observe using Proposition 3.5
and dimensions that

Res|M|�′(M, μ) � L◦m1
ρ1

� · · · � L◦ms
ρs

� �(μ) � L◦m−t
ρ−t � · · · � L◦m−1

ρ−1 〈sh(π)〉.
Now (i) follows by the adjointness of Ind and Res. Finally, (iv) is proved using a variation of
Proposition 3.5. ��
4.7 Reduction modulo p

In this section we work with two fields: F of characteristic p > 0 and K of characteristic 0. We
use the corresponding indices to distinguish between the two situations. Given an irreducible
Rα(K )-module L K for a root partition π ∈ �(α) we can pick a (graded) Rα(Z)-invariant
lattice LZ as follows: pick a homogeneous ‘word vector’ v ∈ L K and set LZ := Rα(Z)v.
The lattice LZ can be used to reduce modulo p:

L̄ := LZ ⊗Z F.

In general, the Rα(F)-module L̄ depends on the choice of the lattice LZ. However, we have
chq L̄ = chq L K , so by linear independence of characters of irreducible Rα(F)-modules,
composition multiplicities of irreducible Rα(F)-modules in L̄ are well-defined. In particular,
we have well-defined decomposition numbers

dπ,σ := [L̄(π) : L F (σ )]q (π, σ ∈ �(α)),
which depend only on the characteristic p of F , since prime fields are splitting fields for
irreducible modules over KLR algebras.

Lemma 4.8 Let L K be an irreducible Rα(K )-module and let i = ia1
1 . . . iab

b be an
extremal word for L K . Let N be the irreducible �-selfdual Rα(F)-module defined by
N := f̃ ak

ik
. . . f̃ a1

i1
1F . Then [L̄ : N ]q = 1.

Proof Reduction modulo p preserves formal characters, so the result follows from Corol-
lary 2.9. ��
Proposition 4.9 Let (M, μ), (N , ν) ∈ �(α). Then d(M,μ),(N ,ν) 	= 0 implies N ≤ M. In
particular, reduction modulo p of any cuspidal module is an irreducible cuspidal module
again: L̄ρ � Lρ,F .

Proof By Theorem 4.1(v), which holds over any field, we conclude that any composition
factor of L̄ρ is isomorphic to Lρ,F up to a degree shift. Now use Lemma 4.8. ��
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4.8 Cuspidal modules and dual PBW bases

Recall the Q+-graded A -algebras f∗A and fA and Q(q)-algebras f∗ and f . Suppose that we
are given elements

{E∗
ρ ∈ (f∗A )ρ | ρ ∈ �re+} ∪ {E∗

λ ∈ (fA )|λ|δ | λ ∈ P}. (4.1)

If π = (M, μ) is a root partition written in the form (3.2), define the corresponding dual
PBW monomial

E∗
π = E∗

M,μ := (E∗
ρ1
)m1 . . . (E∗

ρs
)ms E∗

μ(E
∗
ρ−t
)m−t . . . (E∗

ρ−1
)m−1 ∈ f∗A .

We say that (4.1) is a dual PBW family if the following properties are satisfied:

(i) (‘convexity’) if β � γ are positive roots then E∗
γ E∗

β − q−(β,γ )E∗
βE∗

γ is an A -linear
combination of elements E∗

π with π < (β, γ ) ∈ �(β+γ ); here if β = nδ is imaginary,
then E∗

β is interpreted as E∗
μ and (β, γ ) is interpreted as (μ, γ ) ∈ �(β + γ ) for an

arbitrary μ ∈ Pn , and similarly for γ (both β and γ cannot be imaginary since then
β 	� γ );

(ii) (‘basis’) {E∗
π | π ∈ �(α)} is an A -basis of (f∗A )α for all α ∈ Q+;

(iii) (‘orthogonality’)

(E∗
M,μ, E∗

N ,ν) = δM,N (E
∗
μ, E∗

μ)
∏

ρ∈�re+

((E∗
ρ)

mρ , (E∗
ρ)

mρ );

(iv) (‘bar-triangularity’) b∗(E∗
π ) = E∗

π+ an A -linear combination of dual PBW monomials
E∗
σ for σ < π .

The following result shows in particular that the elements E∗
ρ of the dual PBW family are

determined uniquely up to signs (for a fixed preorder �):

Lemma 4.10 Assume that (4.1) is a dual PBW family. Then:

(i) The elements of (4.1) are b∗-invariant.
(ii) Suppose that we are given another family {′E∗

ρ ∈ (f∗A )ρ | ρ ∈ �re+} ∪ {′E∗
λ ∈ (fA )|λ|δ |

λ ∈ P} of b∗-invariant elements which satisfies the basis and orthogonality properties.
Then E∗

ρ = ± ′E∗
ρ for all ρ ∈ �re+, and for any μ ∈ Pn, we have that E∗

μ is an A -linear

combination of elements ′E∗
ν with ν ∈ Pn.

Proof (i) The convexity of � implies that for ρ ∈ �re+ the root partition (ρ) ∈ �(ρ) is a
minimal element of �(ρ) and for μ ∈ Pn the root partition (μ) ∈ �(nδ) is a minimal
element of �(nδ). So the bar-triangularity property (iv) implies that the elements of a dual
PBW family are b∗-invariant.

Part (ii) has two statements, one for E∗
ρ with ρ ∈ �re+ and another for E∗

μ with μ ∈ Pn .
Let α := ρ in the first statement and α := nδ in the second. We prove (ii) by induction on
ht(α), the induction base being clear. For the first statement, by the basis property of dual
PBW families, we can write

′E∗
ρ = cE∗

ρ +
∑

π∈�(ρ)\{(ρ)}
cπ E∗

π (c, cπ ∈ A ). (4.2)

Fix for a moment a root partition π = (M, μ) ∈ �(ρ)\{(ρ)}. By the orthogonality
property of dual PBW families and non-degeneracy of the form (·, ·), there is a Q(q)-linear
combination Xπ of elements E∗

M,ν with ν ∈ P|μ| such that (E∗
σ , Xπ ) = δσ,π for all σ ∈
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�(ρ). So pairing the right hand side of (4.2) with Xπ yields cπ . On the other hand, by the
inductive assumption, E∗

M,ν for each ν is a linear combination of elements of the form ′E∗
M,λ.

So using the orthogonality property for the primed family in (ii), we must have (′E∗
ρ, Xπ ) = 0

for all π ∈ �(ρ) \ {(ρ)}. So cπ = 0. Thus ′E∗
ρ = cE∗

ρ . Furthermore, the elements ′E∗
ρ and

E∗
ρ belong to the algebra f∗A and are parts of its A -bases, whence ′E∗

ρ = ±qn E∗
ρ . Since both

′E∗
ρ and E∗

ρ are b∗-invariant, we conclude that n = 0.
Now, we prove the second statement in (ii). We can write E∗

μ as

′E∗
μ =

∑

λ∈Pn

cλ E∗
λ +

∑

(N ,ν)∈�(nδ) with |ν|<n

cN ,ν E∗
N ,ν (cλ, cN ,ν ∈ A ).

Now one shows that all cN ,ν = 0 by an argument using orthogonality and the inductive
assumption as in the previous two paragraphs. ��

We now show that under the Khovanov–Lauda–Rouquier categorification (see Sect. 2.9),
cuspidal systems yield dual PBW families.

Proposition 4.11 The following set of elements in f∗A
{E∗

ρ := γ ∗([Lρ]) | ρ ∈ �re+} ∪ {E∗
μ := γ ∗([L(μ)]) | λ ∈ P} (4.3)

is a dual PBW family.

Proof Under the categorification map γ ∗, the graded duality � corresponds tob∗, so γ ∗([L])
is b∗-invariant for any �-self-dual Rα-module L . Moreover, under γ ∗, the induction product
corresponds to the product in f∗A , so the convexity condition (i) follows from Theorem 4.1(iv)
and Lemma 2.3. Now, note that E∗

π = γ ∗([�(π)]), so the conditions (ii) and (iv) follow from
Theorem 4.1(iv) again. It remains to establish the orthogonality property (iii). Let (M, μ)
be written in the form (3.2). Under γ ∗, the coproduct r corresponds to the map on the
Grothendieck group induces by Res. So using (2.21), we get

(E∗
M,μ, E∗

N ,ν) =
(
(E∗

ρ1
)m1 ⊗ · · · ⊗ E∗

μ ⊗ · · · ⊗ (E∗
ρ−1
)m−1 , γ ∗([Res|M|�(N , ν)])

)
.

By Proposition 3.5, Res|M|�(N , ν) = 0 unless M = N , and for M = N we have

Res|M|�(N , ν) = L◦m1
ρ1

� · · · � L(ν) � · · · � L◦m−1
ρ−1 .

Since the form (·, ·) is symmetric, the orthogonality follows from the preceding remarks. ��
Remark 4.12 Let � be an arbitrary convex order,

{Lρ | ρ ∈ �re+} ∪ {L(μ) | λ ∈ P}
be the corresponding cuspidal system, and set again E∗

ρ := γ ∗([Lρ]) for all ρ and E∗
μ :=

γ ∗([L(μ)]) for all μ.

(i) We claim that each E∗
ρ is a dual canonical basis element. Indeed, for symmetric Cartan

matrices, this is true by the main result of [28] and Proposition 4.9. We now sketch an
argument, which works in general. This will not be used elsewhere in the paper. Let
ρ ∈ �re+. To prove that E∗

ρ is a dual canonical basis element, it suffices to prove the
following
Claim. There exists a dual canonical basis element v∗ such that E∗

ρ = ±v∗.
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Indeed, then in view of the commutativity of the triangle (2.22), to show that E∗
ρ = v∗,

it suffices to know that for an arbitrary element w∗ of the dual canonical basis, there
at least one word i ∈ 〈I 〉 such that the coefficient of i in ι(w∗) evaluated at q = 1 is
positive. But this follows from Lemma 2.13.
We now sketch the proof of the Claim. Fix ρ and write ρ = ∑

i∈I ciαi . Set

�(ρ)′ =
{

β =
∑

i∈I

biαi ∈ �re+ | bi ≤ ci for all i ∈ I

}

.

Let �(ρ)′� = {β ∈ �(ρ)′ | β � δ} and �(ρ)′≺ = {β ∈ �(ρ)′ | β ≺ δ}. Next, let
�(ρ)� (resp.�(ρ)≺) be the set of all positive roots which can be written as Z≥0-linear
combinations of roots in �(ρ)′� (resp. �(ρ)′≺). Finally, put �(ρ) = �(ρ)� ��(ρ)≺.
Note that the sets �(ρ)� and �(ρ)≺ are finite and compatible in the sense of [7,
Definition on p. 213]. By [7, Proposition 3.2 and Remark (1) on p. 214], there exist
reduced words ri1 . . . rim and r j1 . . . r jn such that

�(ρ)� = {αi1 � ri1αi2 � · · · � ri1 . . . rim−1αim }
and

�(ρ)≺ = {α j1 � r j1α j2 � · · · � r j1 . . . r jn−1α jn }.
We now use ‘partial PBW basis’ from [22, Proposition 8.2] and [21, Section 40.2] (up to
dualizing). To be more precise, Lusztig uses a braid group action to define bar-invariant
dual PBW-elements {′E∗

β | β ∈ �(ρ)} which lie in the dual canonical basis by [22,
Proposition 8.2], and satisfy the defining properties (ii) and (iii) of a dual PBW family
for the weight space ρ and all smaller weight spaces of f∗A . Now the argument as in the
proof of Lemma 4.10(ii) shows that ′E∗

ρ = ±E∗
ρ , i.e. up to a sign E∗

ρ is a dual canonical
basis element.

(ii) For certain special convex preorders, which we refer to as Beck preorders, (dual) PBW
families have been constructed in [2,3]. Fix a Beck preorder and denote by {′E∗

ρ ∈
(f∗A )ρ | ρ ∈ �re+} ∪ {′E∗

λ ∈ (fA )|λ|δ | λ ∈ P} the corresponding dual PBW family
from [2,3]. By Lemma 4.10(ii), ′E∗

ρ = ±E∗
ρ for all ρ ∈ �re+. In fact, ′E∗

ρ = E∗
ρ for all

ρ ∈ �re+ by an argument in (ii) since the real dual root elements ′E∗
ρ of Beck-Chari-

Pressley basis are known to belong to the dual canonical basis.
(iii) By the main result of [28], each E∗

μ is a dual canonical basis element provided C is
symmetric and char F = 0. This is certainly false if char F 	= 0. On the other hand,
we conjecture that for not necessarily symmetric C we still have that each E∗

μ is a dual
canonical basis element provided char F = 0. An argument similar to the one sketched
in part (i) would apply, provided the Claim in (i) holds with E∗

μ in place of E∗
ρ . But we

do not know how to prove such a claim for non-symmetric C.

5 Minuscule representations and imaginary tensor spaces

In this section we study the ‘smallest’ imaginary representations, namely the imaginary
representations of Rδ . Then we consider induction powers of these minuscule representations,
which turn out to play a role of tensor spaces. Denote

e := ht(δ).
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716 A. S. Kleshchev

Throughout the section we assume that our convex preorder � is balanced, as defined in
(3.1), so that αi � nδ � α0 for all i ∈ I ′ and n ∈ Z>0. So for any irreducible imaginary
representation L of Rnδ , we conclude using (Cus2) that Resαi ,nδ−αi L = 0 for all i ∈ I ′, i.e.
all words i = (i1, . . . , id) of L have the property that i1 = 0.

5.1 Minuscule representations

Note that |P1| = l, so there are exactly l irreducible imaginary representations of Rδ . We call
these representations minuscule. The following lemma shows that a description of minuscule
imaginary modules is equivalent to a description of the irreducible R�0

δ -modules.

Lemma 5.1 Let L be an irreducible Rδ-module. The following are equivalent:

(i) L is minuscule imaginary;
(ii) L factors through to the cyclotomic quotient R�0

δ ;
(iii) we have i1 = 0 for any word i = (i1, . . . , ie) of L.

Proof By (2.2), there is exactly one 0 among the entries i1, . . . , ie of an arbitrary word
i ∈ 〈I 〉δ . Now (ii) and (iii) are equivalent by Lemma 2.7. The implication (i) �⇒ (iii)
follows from the remarks in the beginning of Sect. 5. Finally, let L(M, μ)be an irreducible Rδ-
module, which is not imaginary, i.e. there is ρ ∈ �re+ with mρ 	= 0. Then, since

∑
β∈� Mβ =

δ, we conclude that there is ρ > δ with mρ 	= 0. Let ρ be the largest such. Then ρ ∈ �′+,
in particular, j1 	= 0 for all words j = ( j1, . . . ) of Lρ . In view of Theorem 4.1(v), we have
L M,μ ⊆ Res|M|L(M, μ). In particular, there is a word i = (i1, . . . ) of L(M, μ)with i1 	= 0.

��

We always consider R�0
α -modules as Rα-modules via infl�0 .

Lemma 5.2 Let β ∈ �′+. The cuspidal module Lδ−β factors through R�0
δ−β and it is the only

irreducible R�0
δ−β -module.

Proof Let π ∈ �(δ − β). In view of Lemma 2.7, it suffices to prove that if π 	= (δ − β)
then i1 	= 0 for some word i = (i1, . . . ) of L(π). But if π = (M, μ) is non-trivial, then
there is ρ > δ with mρ 	= 0. Take the largest such ρ. Then ρ ∈ �′+, so j1 	= 0 for all words
j = ( j1, . . . ) of Lρ . By Theorem 4.1(v), we have L M,μ ⊆ Res|M|L(M, μ). In particular,
there is a word i = (i1, . . . ) of L(M, μ) with i1 	= 0. ��

Corollary 5.3 The minuscule imaginary modules are exactly

{Lδ,i := f̃i Lδ−αi | i ∈ I ′}.
Moreover, e j Lδ,i = 0 for all j ∈ I\{i}. Thus, for each i ∈ I ′, the minuscule imaginary

module Lδ,i can be characterized uniquely up to isomorphism as the irreducible R�0
δ -module

such that ie = i for all words i = (i1, . . . , ie) of Lδ,i .

Proof If L and L ′ are two minuscule imaginary modules, with ei L 	= 0 and ei L ′ 	= 0, then
by Lemmas 5.1 and 5.2, we have that ẽi L ∼= ẽi L ′, whence L ∼= L ′ by Proposition 2.6(i).
It follows by a counting argument that for each minuscule imaginary module L there exists
exactly one i with ei L 	= 0, and then, by Lemma 5.2, we must have ẽi L ∼= Lδ−αi and
L ∼= f̃i Lδ−αi . ��
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For each i ∈ I ′, we refer to the minuscule module Lδ,i described in Corollary 5.3 as the
minuscule module of color i . Let

μ(i) := (∅, . . . ,∅, (1),∅, . . . ,∅) ∈ P1 (i ∈ I ′) (5.1)

be the l-multipartition of 1 with the partition (1) in the i th component. We associate to it the
minuscule module Lδ,i :

L(μ(i)) := Lδ,i (i ∈ I ′). (5.2)

Lemma 5.4 Let i ∈ I ′. Then εi (Lδ,i ) = 1.

Proof Otherwise e2
i (Lδ,i ) 	= 0, whence �0 − δ + 2αi is a weight of V (�0), which is a

contradiction. ��
Remark 5.5 The minuscule modules are defined over Z. To be more precise, for each i ∈ I ′,
there exists an Rδ(Z)-module Lδ,i,Z which is free finite rank over Z and such that Lδ,i,Z⊗ F
is the minuscule imaginary module Lδ,i,F over Rδ(F) for any ground field F . To construct
Lδ,i,Z, recall that a prime field is a splitting field for Rα . Now, start with the minuscule
module Lδ,i,Q over Q, pick any word vector v and consider the lattice Lδ,i,Q := Rδ(Z)v.
Then Lδ,i,Z⊗Z Q ∼= Lδ,i,Q. To see that Lδ,i,Z⊗Z F is the minuscule module Lδ,i,F over any
filed F , it suffices to prove that Lδ,i,Z⊗Z F is irreducible. If L(M, μ) is a composition factor
of Lδ,i,Z⊗Z F with mρ 	= 0 for some ρ ∈ �re+, then we get a contradiction with the definition
of an imaginary module. So, taking into account the character information, all composition
factors of Lδ,i,Z⊗Z F are of the form Lδ,i,F . Now, in fact we must have Lδ,i,Z⊗Z F � Lδ,i,F
using the multiplicity one result from Lemma 4.8.

5.2 Imaginary tensor spaces

The imaginary tensor space of color i is the Rnδ-module

Mn,i := L◦n
δ,i .

In this definition we allow n to be zero, in which case M0,i is interpreted as the trivial module
over the trivial algebra R0.

Lemma 5.6 M�
n � Mn .

Proof This comes from Lemma 2.3 using (δ, δ) = 0. ��
A composition factor of Mn,i is called an irreducible imaginary module of color i . We

remark that by Lemma 4.4 such composition factor is an irreducible imaginary module in
the sense of (Cus2). Another application of Lemma 4.4 now gives:

Lemma 5.7 All composition factors of Mn1,1 ◦ · · · ◦ Mnl ,l are imaginary.

We next observe that if an irreducible Rnδ-module L (with n > 0) is imaginary of color
i ∈ I ′, then L cannot be imaginary of color j ∈ I ′, i.e. the color is well defined. Indeed, if
L is imaginary of color i , then by (2.18) we have that εi (L) > 0 while ε j (L) = 0 for any
j 	= i .

Lemma 5.8 Let i ∈ I ′ and n1, . . . , na ∈ Z>0. Set n := n1 + · · ·+ na. Then all composition
factors of Resn1δ,...,naδMn,i are of the form L1 � · · ·� La where L1, . . . , La are imaginary
of color i .
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718 A. S. Kleshchev

Proof By the Mackey Theorem, Resn1δ,...,naδMn,i has filtration with factors of the form

Ind n1δ ; ... ; naδ
ν11,...,νn1 ; ... ; ν1a ,...,νna

V,

where
∑n

m=1 νmb = nbδ for all b = 1, . . . , a,
∑a

b=1 νmb = δ for all m = 1, . . . , n, and V is
obtained by an appropriate twisting of the module

(Resν11,...,ν1a Lδ,i ) � · · · � (Resνn1,...,νna Lδ,i ).

If νm1 	= 0 and νm1 	= δ for some m, then by Lemma 4.3, we have that νm1 is a sum of
real roots less than δ, which leads to a contradiction with

∑n
m=1 νm1 = n1δ. So we deduce

that νm1 = δ for n1 different values of m, and νm1 = 0 for all other values of m. Then
L1 � L2 � · · · � La is a composition factor of

Mn1,i � Resn2δ,...,naδMn−n1,i ,

and the lemma follows by induction. ��
Corollary 5.9 Let i ∈ I ′ and n1, . . . , na ∈ Z≥0. Set n := n1+· · ·+na. If L is an imaginary
irreducible Rnδ-module of color i , then all composition factors of Resn1δ,...,naδL are of the
form L1 � · · · � La where L1, . . . , La are imaginary of color i .

Proof Follows from Lemma 5.8, since by definition L is a composition factor of Mn,i . ��
5.3 Reduction to one color

The goal of this section is to prove:

Theorem 5.10 Suppose that for each n ∈ Z≥0 and i ∈ I ′, we have an irredundant family
{Li (λ) | λ  n} of irreducible imaginary Rnδ-modules of color i . For a multipartition
λ = (λ(1), . . . , λ(l)) ∈ Pn, define

L(λ) := L1(λ
(1)) ◦ · · · ◦ Ll(λ

(l)).

Then {L(λ) | λ ∈ Pn} is a complete and irredundant system of imaginary irreducible Rnδ-
modules. In particular, the given modules {Li (λ) | λ  n} give all the irreducible imaginary
modules of color i up to isomorphism.

We prove the theorem by induction on n. The induction base is clear. Throughout this
section we work under the induction hypothesis.

Lemma 5.11 Let λ,μ ∈ Pn with λ(i)  ni for i = 1, . . . , l. If the irreducible Rn1δ,...,nlδ-

module L1(λ
(1)) � · · · � Ll(λ

(l)) appears as a composition factor in

Resn1δ,...,nlδ L(μ), (5.3)

then λ = μ, and the multiplicity of this composition factor is one.

Proof Let μ(i)  mi for i = 1, . . . , l. By the Mackey Theorem, the module in (5.3) has
filtration with factors of the form

Ind n1δ ; ... ; nlδ
ν11,...,νl1 ; ... ; ν1l ,...,νll

V, (5.4)

where
∑l

i=1 νi j = n jδ for all j ∈ I ′,
∑l

j=1 νi j = miδ for all i ∈ I ′, and V is obtained by
an appropriate twisting of the module

(Resν11,...,ν1l L1(μ
(1))) � · · · � (Resνl1,...,νll Ll(μ

(l))). (5.5)

Assume that the module in (5.4) is non-zero.
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Since each Li (μ
(i)) is imaginary and Resνi1,...,νil Li (μ

(i)) 	= 0, it follows by Lemma 4.3
that either νi1 = ni1δ for some ni,1 ∈ Z≥0, or νi1 a sum of real roots less than miδ. Since
∑l

i=1 νi1 = n1δ, we conclude that the second option is impossible. Next, we claim that also
each νi2 = ni2δ for some ni2 ∈ Z≥0. Indeed, since Resνi1,...,νil Li (μ

(i)) 	= 0, we have that
Resνi1+νi2,mi δ−νi1−νi2 Li (μ

(i)) 	= 0. By Lemma 4.3, either νi1 + νi2 is an imaginary root, or
it is a sum of real roots less than miδ. Since we already know that the νi,1 are imaginary
roots (or zero), the equality

∑l
i=1 νi2 = n2δ implies that νi2 = ni2δ for some ni2 ∈ Z≥0.

Continuing this way, we establish that all νi j are of the form ni jδ.
Now, by Corollary 5.9, all composition factors of Resνi1,...,νil Li (μ

(i)) are of the form
Li (μ

(i1)) � · · · � Li (μ
(il)). Then the module in (5.3) has filtration with factors of the form

(
L1(μ

(11)) ◦ · · · ◦ Ll(μ
(l1))

)
� · · · � (

L1(μ
(1l)) ◦ · · · ◦ Ll(μ

(ll))
)
.

By the inductive hypothesis, each L1(μ
(1 j)) ◦ · · · ◦ Ll(μ

(l j)) is irreducible, and

L1(μ
(1 j)) ◦ · · · ◦ Ll(μ

(l j)) ∼= L j (λ
( j))

if and only if μ( j j) = λ( j) and μ(i j) = ∅ for all i 	= j . Thus ν j j = n jδ, νi j = 0 for all i 	= j .
We conclude that m j = n j and μ( j) = λ( j) for all j . ��
Corollary 5.12 The module L(λ) has simple head; denote it by Lλ. The multiplicity of Lλ

in L(λ) is one.

Proof If an irreducible module L is in the head of L(λ), then by the adjunction of Ind and
Res, we have that L1(λ

(1)) � · · · � Ll(λ
(l)) ⊆ Resn1δ,...,nlδL . Now the result follows from

Lemma 5.11 with λ = μ. ��

Corollary 5.13 If λ 	= μ, then Lλ 	∼= Lμ.

Proof Assume that Lλ ∼= Lμ. Then Lμ is a quotient of L(λ). By the adjunction of Ind and Res,
we have that L1(λ

(1))�· · ·�Ll(λ
(l)) ⊆ Resn1δ,...,nlδLμ. In particular, L1(λ

(1))�· · ·�Ll(λ
(l))

is a composition factor of Resn1δ,...,nlδL(μ). Now, by Lemma 5.11, we have λ = μ. ��
Now we can finish the proof of Theorem 5.10. By counting using Theorem 4.1, Lemma 5.7,

and Corollary 5.13, we see that {Lλ | λ ∈ Pn} is a complete and irredundant set of irreducible
imaginary Rnδ-modules. It remains to prove that L(μ) is irreducible, i.e. L(μ) = Lμ, for
each μ. If L(μ) is not irreducible, let Lλ 	∼= Lμ be an irreducible submodule in the socle of
L(μ), see Corollary 5.12. Then there is a nonzero homomorphism L(λ) → L(μ), whence

by the adjunction of Ind and Res, we have that L1(λ
(1))� · · ·� Ll(λ

(l)) ⊆ Resn1δ,...,nlδL(μ).
Now, by Lemma 5.11, we have λ = μ. Theorem 5.10 is proved.

5.4 Homogeneous modules

In the remainder of Sect. 5 we describe the minuscule imaginary modules more explicitly
for symmetric (affine) Cartan matrices. This is done using the theory of homogeneous repre-
sentations developed in [18], which we review next. Throughout this subsection we assume
that the Cartan matrix C is symmetric. As usual, we work with an arbitrary fixed α ∈ Q+ of
height d . A graded Rα-module is called homogeneous if it is concentrated in one degree.

Let i ∈ 〈I 〉α . We call sr ∈ Sd an admissible transposition for i if cir ,ir+1 = 0. The word
graph Gα is the graph with the set of vertices 〈I 〉α , and with i, j ∈ 〈I 〉α connected by an
edge if and only if j = sr i for some admissible transposition sr for i.
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Recall from Sect. 2.1 the Weyl group W = 〈ri | i ∈ I 〉. Let C be a connected component
of Gα , and i = (i1, . . . , id) ∈ C . We set

wC := rid . . . ri1 ∈ W.

Clearly the element wC depends only on C and not on i ∈ C . An element w ∈ W is called
fully commutative if any reduced expression for w can be obtained from any other by using
only the Coxeter relations that involve commuting generators, see e.g. [25]. For an integral
weight � ∈ P , an element w ∈ W is called �-minuscule if there is a reduced expression
w = ril . . . ri1 such that

〈rik−1 . . . ri1�,α
∨
ik
〉 = 1 (1 ≤ k ≤ l),

cf. [26, Section 2]. By [26, Proposition 2.1], if w is�-minuscule for some� ∈ P , then w is
fully commutative.

A connected component C of Gα is called homogeneous (resp. strongly homogeneous)
if for some (equivalently every) i = (i1, . . . , id) ∈ C , we have that rid . . . ri1 is a reduced
expression for a fully commutative (resp. minuscule) elementwC ∈ W , cf. [18, Sections 3.2,
Definition 3.5, Proposition 3.7]. In that case, there is an obvious one-to-one correspondence
between the elements i ∈ C and the reduced expressions of wC .

Lemma 5.14 [18, Lemma 3.3] A connected component C of Gα is homogeneous if and only
if for every i = (i1, . . . , id) ∈ C the following conditions hold:

ir 	= ir + 1 for all r = 1, 2 . . . , d − 1;
if ir = ir+2 for some 1 ≤ r ≤ d − 2, then cir ,ir+1 	= −1.

(5.6)

The main theorem on homogeneous representations is:

Theorem 5.15 [18, Theorems 3.6, 3.10, (3.3)]

(i) Let C be a homogeneous connected component of Gα . Let L(C) be the vector space
concentrated in degree 0 with basis {vi | i ∈ C} labeled by the elements of C. The
formulas

1jvi = δi,jvi (j ∈ 〈I 〉α, i ∈ C),

yrvi = 0 (1 ≤ r ≤ d, i ∈ C),

ψrvi =
{
vsr i if sr i ∈ C,
0 otherwise;

(1 ≤ r < d, i ∈ C)

define an action of Rα on L(C), under which L(C) is a homogeneous irreducible Rα-
module.

(ii) L(C) 	∼= L(C ′) if C 	= C ′, and every homogeneous irreducible Rα-module, up to a
degree shift, is isomorphic to one of the modules L(C).

(iii) If β, γ ∈ Q+ with α = β + γ , then Resβ,γ L(C) is either zero or irreducible.

5.5 Minuscule representations for symmetric Cartan matrices

Throughout this subsection we assume that the Cartan matrix C is symmetric.

Lemma 5.16 Let i ∈ I ′. Then we can write�0−δ+αi = w(i)�0 for a unique�0-minuscule
element w(i) ∈ W .
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Proof Let θ be the highest root in the finite root system �′. Pick a (unique) minimal length
element u of the finite Weyl group W ′ with uθ = αi . Now, take w(i) = ur0. Note that

w(i)(�0) = ur0(�0) = u(�0 − α0) = u(�0 − α0 − θ + θ) = u(�0 − δ + θ)
= �0 − δ + u(θ) = �0 − δ + αi .

Since the α-string through β has length 0 or 1 for any distinct roots α, β ∈ �′, we deduce
that u is θ -minuscule, and the lemma follows. ��

By the theory described in Sect. 5.4, the minuscule element w(i) constructed in
Lemma 5.16 is of the formwC(i) for some strongly homogeneous component C(i) of Gδ−αi .

Lemma 5.17 Let i ∈ I ′, d := e − 1 = ht(δ − αi ) and j = ( j1, . . . , jd) ∈ C(i). Then:

(i) j1 = 0;
(ii) jd is connected to i in the Dynkin diagram, i.e. c jd ,i < 0;

(iii) if jb = i for some b, then there are at least three indices b1, b2, b3 such that b < b1 <

b2 < b3 ≤ d such that ci,b1 = ci,b2 = ci,b3 = −1.

Proof (i) is clear from the construction of w(i) which always has r0 as the last simple
reflection in its reduced decomposition.

(ii) Letw(i) = r jd . . . r j1 be a reduced decomposition. By definition of a minuscule element,
we conclude that 〈�0 − δ + αi , α

∨
jd
〉 < 0, so 〈αi , α

∨
jd
〉 < 0.

(iii) If jb = i , then, using the definition of a minuscule element and the equality w(i)�0 =
r jd . . . r j1�0 = �0 − δ + αi , we see that

〈r jb+1 . . . r jd (�0 − δ + αi ), α
∨
i 〉 = 〈r jbr jb−1 . . . r j1�0, α

∨
jb 〉 = −1.

This implies (iii), since 〈�0 − δ + αi , α
∨
i 〉 = 2. ��

Corollary 5.18 Let i ∈ I ′. Then the cuspidal module Lδ−αi is the homogeneous module
L(C(i)).

Proof By Lemmas 5.17(i) and 2.7, the module L(C(i)) factors through H�0
δ−αi

. So L(C(i)) ∼=
Lδ−αi by Lemma 5.2. ��
Proposition 5.19 Let i ∈ I ′. The set of concatenations

Ci := {ji | j ∈ C(i)}
is a homogeneous component of Gδ , and the corresponding homogeneous Rδ-module L(Ci )

is isomorphic to the minuscule imaginary module Lδ,i .

Proof By Lemmas 5.14 and 5.17(ii),(iii), we have that Ci is a homogeneous connected
component of Gδ . By Lemmas 5.17(i) and 2.7, the corresponding homogeneous representa-
tion L(Ci ) factors through to R�0

δ , and so it must be one of the minuscule representations
Lδ,1, . . . , Lδ,l , see Corollary 5.3. Finally, by the second statement in Corollary 5.3, we must
have L(Ci ) ∼= Lδ,i . ��

Example 5.20 LetC = A(1)l and i ∈ I ′. Then Lδ,i is the homogeneous irreducible Rδ-module
with character

chq Lδ,i = 0
(
(12 . . . i − 1) ◦ (l, l − 1, . . . , i + 1)

)
i.
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For example, Lδ,1 and Lδ,l are 1-dimensional with characters

chq Lδ,1 = (0, l, l − 1, . . . , 1), chq Lδ,l = (01 . . . l),

while for l ≥ 3, the module Lδ,l−1 is (l − 2)-dimensional with character

chq Lδ,l−1 =
l−3∑

r=0

(0, 1, . . . , r, l, r + 1, . . . , l − 1).

6 More on cuspidal modules

In this section we first work again with an arbitrary convex preorder�, and then in Sects. 6.2
and 6.3 we assume that the preorder is balanced.

6.1 Minimal pairs

Let ρ ∈ �re+. A pair of positive roots (β, γ ) is called a minimal pair for ρ if

(i) β + γ = ρ and β � γ ;
(ii) for any other pair (β ′, γ ′) satisfying (i) we have β ′ � β or γ ′ ≺ γ .

In view of convexity, (β, γ ) is a minimal pair for ρ if and only if (β, γ ) is a minimal element
of �(ρ)\{(ρ)}. A minimal pair (β, γ ) is called real if both β and γ are real roots.

Lemma 6.1 Let ρ ∈ �re+ and (β, γ ) be a minimal pair for ρ. If L is a composition factor of
the standard module �(β, γ ) = L(β) ◦ L(γ ), then L ∼= L(β, γ ) or L ∼= Lρ .

Proof Use the minimality of (β, γ ) in �(ρ)\{(ρ)} and Theorem 4.1(iv). ��
Let (β, γ ) be a real minimal pair for ρ ∈ �re+. Denote

pβ,γ := max {n ∈ Z≥0 | β − nγ ∈ �+}.
Motivated by [6, Theorem 4.2] we conjecture:

Conjecture 6.2 Let ρ ∈ �re+, and (β, γ ) be a real minimal pair for ρ. Then In the
Grothendieck group we have:

[Lγ ◦ Lδ] − q−(β,γ )[Lβ ◦ Lγ ] = q−pβ,γ (1− q2(pβ,γ−(β,γ )))[Lρ].
Remark 6.3 Although this goes beyond the scope of this paper, we remark that Conjecture
6.2 can be proved following the steps in the proof of [6, Theorem 4.2]. That proof uses dual
root elements (in finite types) constructed using Lusztig’s braid group action. Even though
‘globally’ all of our dual root elements E∗

ρ cannot in general be constructed like that, we have
already observed in Remark 4.12(i) that this can be done locally, i.e. for all roots in�(ρ) for
a fixed ρ. Note that by definition β, γ ∈ �(ρ).

Using Conjecture 6.2 one can compute the character of the cuspidal module Lρ by induc-
tion on ht(ρ), provided ρ possesses a real minimal pair, cf. Lemma 6.6 below. Moreover, by
Lemma 6.1, we can write in the Grothendieck group

[Lβ ◦ Lγ ] = [L(β, γ )] + m(q)[Lρ].
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Now, by Lemma 2.3, we also have

[Lγ ◦ Lβ ] = q−(β,γ )[L(β, γ )] + q−(β,γ )m(q−1)[Lρ].
So Conjecture 6.2 implies

q−(β,γ )(m(q−1)− m(q)) = q−pβ,γ (1− q2(pβ,γ−(β,γ ))),

whence

m(q)− m(q−1) = q pβ,γ−(β,γ ) − q(β,γ )−pβ,γ .

Now, assume that the Cartan matric C is symmetric and char F = 0. Then by the main result
of [28], we have that m(q) ∈ qZ[q], and so the last equality implies

m(q) = q pβ,γ−(β,γ ), (6.1)

i.e. there is a short exact sequence

0 −→ Lρ〈pβ,γ − (β, γ )〉 −→ Lβ ◦ Lγ −→ L(β, γ ) −→ 0. (6.2)

(Note that for symmetric C we always have pβ,γ = 0 and pβ,γ − (β, γ ) = 1.)
We conjecture that this also holds in all affine types for all fields (a similar result for all

finite types is established in [6, Theorem 4.7]):

Conjecture 6.4 Let ρ ∈ �re+, and (β, γ ) be a real minimal pair for ρ. Then there is a short
exact sequence of the form (6.2).

Example 6.5 Let n ∈ Z>0 and i ∈ I ′. Assume that the preorder is balanced.

(i) If ρ = nδ + αi , then (αi + (n − 1)δ, δ) is a minimal pair for ρ.
(ii) If n > 1 and ρ = nδ − αi , then (δ, (n − 1)δ − αi ) is a minimal pair for ρ.

Lemma 6.6 Assume that the preorder is balanced. Let ρ be a non-simple positive root. Then
there exists a real minimal pair for ρ, unless ρ is of the form nδ ± αi .

Proof If ρ ∈ �re� is not of the form nδ + αi , then we can always write ρ as a sum of two
roots in �re� , and so there exists a real minimal pair for ρ.

If ρ ∈ �re≺ is not of the form nδ − αi and n ≥ 2, then we can write ρ as a sum of two
roots in �re≺ , and so again there exists a real minimal pair for ρ. Finally, in the special case
where ρ is a non-simple root of the form δ − α for α ∈ �′+, by an argument of [23, Lemma
2.1] we can write ρ as a sum of two real roots, which implies the result. ��

In view of the lemma, the cuspidal modules corresponding to the roots of the form nδ±αi

play a special role. In Sects. 6.2 and 6.3 we will investigate them in detail.

6.2 Cuspidal modules Lnδ+αi

We continue to assume (until the end of the paper) that the convex preorder � is balanced.
Fix i ∈ I ′. In this section we consider the cuspidal modules corresponding to the real roots
of the form nδ + αi for i ∈ I ′. Fix also an extremal word

i = ia1
1 . . . iak

k (6.3)

of the minuscule imaginary module Lδ,i , see Sect. 2.8. Recall from Corollary 5.3 and
Lemma 5.4 that ik = i and ak = 1. We will use the concatenations in ∈ 〈I 〉nδ , ini ∈ 〈I 〉nδ+αi

and also the special word

i{n} := ina1
1 . . . inak−1

k−1 in+1 ∈ 〈I 〉nδ+αi
.
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Proposition 6.7 Let i ∈ I ′, n ∈ Z>0, α = nδ + αi , and β = (n − 1)δ + αi . Then:

(i) The standard module �(β, δ(i)) = Lβ ◦ Lδ,i has composition series of length two with
head L(β, δ(i)) and socle Lα〈(αi , αi )/2〉.

(ii) We have

chq Lα = 1

qi − q−1
i

(
(chq Lβ) ◦ (chq Lδ,i )− (chq Lδ,i ) ◦ (chq Lβ)

)
.

(iii) We have

chq Lα = 1

qi − q−1
i

n∑

m=0

(−1)m(chq Lδ,i )
◦m ◦ i ◦ (chq Lδ,i )

◦(n−m).

(iv) The word i{n} is an extremal word of Lα .

Proof We apply induction on n. Consider the induced modules W1 := Lβ ◦ Lδ,i and W2 :=
Lδ,i ◦ Lβ . When evaluated at q = 1, the formal characters of these two modules are the
same. It follows from the linear independence of ungraded formal characters of irreducible
Rα-modules that W1 and W2 have the same composition factors, but possibly with different
degree shifts. We also know that the graded multiplicity of L(β, δ(i)) in W1 = �(β, δ(i)) is
1. By Lemma 2.3, we have that W �

1 � W2, so the graded multiplicity of L(β, δ(i)) in W2 is
also 1. In view of Lemma 6.1 and Example 6.5(i), in the Grothendieck group [Rα-mod] we
now have

[Wi ] = [L(β, δ(i))] + ci [Lρ] (i = 1, 2)

for some graded multiplicities ci ∈ A such that bc1 = c2.
To compute c1 and c2, we look at the multiplicity of the word i{n} in W1. By induction,

i{n−1} is extremal in Lβ . Let N be a �-selfdual irreducible Rα-module such that

N ∼= f̃ n+1
i f̃ nak−1 . . . f̃ na1

i1
1F .

By Proposition 2.11, i{n} is an extremal word for W1. An elementary computation using
Proposition 2.11 also shows that N appears in W1 with graded multiplicity qi . So we must
have N � Lα , and c1 = qi . We have proved (i) and (iv). Part (ii) easily follows from (i), and
(ii) implies (iii) by induction on n. ��
6.3 Cuspidal modules Lnδ−αi

Fix i ∈ I ′. In this section we consider the cuspidal modules corresponding to the real roots
of the form nδ − αi for i ∈ I ′. Recall that we have ik = i and ak = 1 for the extremal word
i of Lδ,i picked in (6.3). So in view of Corollary 5.3 and Lemma 5.4, the word

j = ia1
1 . . . iak−1

k−1

is an extremal word of Lδ−αi . We will use the notation

i[n] := in
1 . . . i

n
e−1in−1

e ∈ 〈I 〉nδ−αi
.

Proposition 6.8 Let i ∈ I ′, n ∈ Z>1, and α = nδ − αi , β = (n − 1)δ − αi . Then:

(i) The standard module�(δ(i), β) = Lδ,i ◦ Lβ has composition series of length two with
head L(δ(i), β) and socle Lα〈(αi , αi )/2〉.
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(ii) We have

chq Lα = 1

qi − q−1
i

(
(chq Lδ,i ) ◦ (chq Lβ)− (chq Lβ) ◦ (chq Lδ,i )

)
.

(iii) We have

chq Lα = 1

qi − q−1
i

n∑

m=0

(−1)n−m(chq Lδ,i )
◦m ◦ (chq Lδ−αi ) ◦ (chq Lδ,i )

◦(n−m).

(iv) The word i[n] is an extremal word of Lα .

Proof The proof is similar to that of Proposition 6.7. ��
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