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Abstract Given a generic family Q of 2-dimensional quadrics over a smooth 3-dimensional
base Y we consider the relative Fano scheme M of lines of it. The scheme M has a structure
of a generically conic bundle M → X over a double covering X → Y ramified in the
degeneration locus of Q → Y . The double covering X → Y is singular in a finite number of
points (corresponding to the points y ∈ Y such that the quadric Qy degenerates to a union of
two planes), the fibers of M over such points are unions of two planes intersecting in a point.
The main result of the paper is a construction of a semiorthogonal decomposition for the
derived category of coherent sheaves on M . This decomposition has three components, the
first is the derived category of a small resolution X+ of singularities of the double covering
X → Y , the second is a twisted resolution of singularities of X (given by the sheaf of
even parts of Clifford algebras on Y ), and the third is generated by a completely orthogonal
exceptional collection.

1 Introduction

The subject of this note is a description of the structure of the derived category of coherent
sheaves on the relative scheme of lines for a family of 2-dimensional quadrics. We had two
motivations for the investigation of this category. First of all it has an interesting structure
and exhibits some interesting features. For example, it combines the minimal resolution of
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656 A. Kuznetsov

singularities and the twisted resolution of singularities of the double covering of the base
naturally associated with the family.

The second, and the most important motivation, comes from investigation of the derived
categories of so-called nodal Enrique surfaces. These surfaces can be associated with families
of 2-dimensional quadrics parameterized by P

3 (webs of quadrics). The relative scheme of
lines in this case can be identified with the blowup of the Grassmannian Gr(2, 4) in the
corresponding Enriques surface. Consequently, its derived category contains the derived
category of the Enriques surface as a semiorthogonal component. So, another description of
the derived category of the relative scheme of lines, provided by the present paper, gives a
link between the derived categories of nodal Enriques surfaces and of the associated double
coverings of P

3, which in this case are nothing but the Artin–Mumford quartic double solids,
appeared in the famous paper [2] as examples of unirational but nonrational threefolds. See
the companion paper [6] for more details.

The precise formulation of the main result of the paper is the following. Consider a family
of 2-dimensional quadrics q : Q → Y . This means that we are given a projectivization of
a rank 4 vector bundle V on Y and a divisor Q ⊂ PY (V ) of relative degree 2 which is flat
over Y . Such divisor is given by a line subbundle L ⊂ S2V ∨.

Given this we consider the relative Fano scheme of lines of Q over Y . By definition this
is the zero locus on the relative Grassmannian GrY (2, V ) of the global section

s ∈ �(GrY (2, V ), L∨ ⊗ S2U ∨),

where U ⊂ V is the tautological subbundle on the Grassmannian. We denote this relative
Fano scheme by M . The fibers My of the projection ρ : M → Y are the Fano schemes of
lines on quadrics Qy , and so they have the following structure

• My is a disjoint union of two smooth conics, if the quadric Qy is smooth;
• My is a single smooth conic (with a nonreduced scheme structure), if the quadric Qy has

corank 1;
• My is a union of two planes intersecting in a point, if the quadric Qy has corank 2;
• My is a single plane (with a nonreduced structure), if the quadric Qy has corank 3.

The main result of this paper is a description of the derived category of M when dim Y = 3
under the following genericity assumptions: we assume that

• the generic fiber of Q over Y is smooth, and
• the codimension of the locus Dr ⊂ Y of quadrics of corank r equals r(r + 1)/2.

As dim Y = 3, the second assumtion implies that D3 = ∅ and D2 consists of a finite number
N of isolated points y1, . . . , yN . Additionally we assume that

• D1 has an ordinary double point (an ODP or a node for short) in each of yi .

The last assumption is equivalent to smoothness of M if Q is smooth (see Lemma 2.4
below).

To state the answer we need the following ingredients. First, consider the Stein factoriza-
tion for the morphism ρ : M → Y :

M
μ ��

ρ
���

��
��

��
� X

f����
��

��
�

Y
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Scheme of lines on a family of 2-dimensional quadrics 657

where f : X → Y is the double covering ramified in the divisor D1, and μ : M → X is
generically a conic bundle. Note that X is smooth away from N points xi = f −1(yi ) which
are isolated ordinary double points. So being 3-dimensional it has 2N small resolutions of
singularities in the category of Moishezon varieties. To fix one of these resolutions we should
choose for each point yi ∈ D2 one of the planes in the corank 2 quadric Qyi , or equivalently
one of the planes in the fiber Myi of M over Y . Let us pick one of these resolutions and
denote it by σ+ : X+ → X . Let us denote the planes in Myi corresponding to this choice by
�+

i , and the complementary planes by �−
i , so that Myi = �+

i ∪ �−
i .

Second, consider the sheaf of even parts of Clifford algebras B0 on Y associated with the
family of quadrics Q → Y (see Sect. 3 or [10] for details). If Q is smooth then the category
Db(Y, B0) is also smooth and can be thought of as a twisted noncommutative resolution of
the double covering X .

The main result of this paper is the following

Theorem 1.1 Assume that Q → Y is a family of quadrics, Y and Q are smooth,
dim Y = 3, and the degeneration locus D1 has a finite number of ordinary double points
{y1, . . . , yN } = D2. Then the relative Fano scheme M of lines of Q over Y is smooth and
there is a semiorthogonal decomposition

Db(M) = 〈Db(X+), Db(Y, B0), {O�+
i
}N
i=1〉.

Here the third component is a completely orthogonal exceptional collection.

It is natural to ask, whether one can remove some of the assumptions and prove a similar
result. It seems that indeed, there are some ways of a generalization of this decomposition. For
example, if the dimension of Y is higher than 3 (but still Y and Q are smooth, D1 has ordinary
double points (in the transversal slice) along D2, and D3 = ∅), then probably one can con-
struct a semiorthogonal decomposition with the first component being a categorical crepant
resolution of X , the same second component, and the third component equal to the derived
category of the stratum D2. See Sect. 6 for a discussion of further perspectives of the question.

The proof of the Theorem goes as follows. In Sect. 2 we prove smoothness of M and
investigate the local structure of M around the planes �±

i . In particular, we check that the
sheaves O�+

i
form a completely orthogonal exceptional collection in Db(M). In Sect. 3

we recall some facts about the sheaf of even parts of Clifford algebras B0 and construct a
fully faithful embedding Db(Y, B0) → Db(M). In Sect. 4 we show that there is a birational
transformation of M , known as a flip in N planes �+

i , transforming it into a P
1-fibration

μ+ : M+ → X+ over a small resolution X+ → X . This gives an identification of the
orthogonal to the collection {O�+

i
}N
i=1 in Db(M) with Db(M+). In Sect. 5 we construct a

fully faithful embedding Db(X+) → Db(M+) and identify the complement with Db(Y, B0).
In the last Sect. 6 we discuss another way of proving Theorem 1.1 and suggest some further
directions of investigation.

2 Geometry of M

For each quadric Qy in the family Q → Y denote by Ky ⊂ Vy the kernel of the corresponding
quadratic form (thus P(Ky) is the singular locus of the quadric Qy). Note that the differential
of the section s ∈ �(Y, L−1 ⊗ S2V ∨) at y gives a linear map TyY → S2V ∨

y (depending
on a choice of trivializations on the bundles V and L near y). Composing it with the natural
projection S2V ∨

y → S2 K ∨
y we obtain a map
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658 A. Kuznetsov

κy : TyY → S2 K ∨
y

which does not depend on the choices of the trivializations.
In terms of these maps one can check the smoothness of Q and M .

Proposition 2.1 Assume that Y is smooth. Then

1. Q is smooth if and only if for any y ∈ Y and any subspace K ⊂ Ky with dim K ≤ 1, the

composition TyY �� S2 K ∨
y

�� S2 K ∨ is surjective;
2. M is smooth if and only if for any y ∈ Y and any embedding K → Ky with dim K ≤ 2,

the composition TyY �� S2 K ∨
y

�� S2 K ∨ is surjective.

Proof The question is local in Y so we can assume that V is a trivial bundle, V ∼= V ⊗ OY ,
and so PY (V ) = Y × P(V ). Let (y, K ) be an arbitrary point of Q, where K ⊂ V is a
1-dimensional subspace of V . Then the smoothness of Q at the point (y, K ) is equivalent to
the surjectivity of the differential ds : TyY⊕Hom(K , V/K )→S2 K ∨. If K �⊂ Ky then the
second summand maps surjectively. If, on a contrary, K ⊂ Ky then the second summand
maps trivially, while the map of the first summand is the map in the statement of the Lemma.
This proves the first part.

For the second part, let (y, K ) be an arbitrary point of M , where K ⊂ V is a 2-dimensional
subspace of V . Then the smoothness of M at the point (y, K ) is equivalent to the surjectivity of
the differential ds : TyY⊕Hom(K , V/K )→S2 K ∨. If K ∩Ky = 0 then the second summand
maps surjectively. Further, if the space K1 := K ∩ Ky is 1-dimensional, then the cokernel of
the map of the second summand is equal to S2 K ∨

1 and the map of the first summand is the
map in the statement of the Lemma for K1. Finally, if K ⊂ Ky , then the second summand
maps trivially, while the map of the first summand is the map in the statement of the Lemma.
This proves the second part. ��
Remark 2.2 This result generalizes to arbitrary relative isotropic Grassmannians of families
of quadrics of arbitrary dimension. The smoothness of the Grassmannian of k-dimensional
subspaces is equivalent to the surjectivity of the corresponding map for all K with dim K ≤ k.

Corollary 2.3 Assume that Y is smooth and D3 = ∅. Then M is smooth if and only if Q is
smooth and for any y ∈ D2 the map κy : TyY → S2 K ∨

y is surjective.

Another consequence of the smoothness of Q is the smoothness of D1\D2. On the other
hand, the points of D2 are always singular on D1. In fact they are ordinary double points if
M is smooth.

Lemma 2.4 Assume that Q is smooth and dim Y = 3. Then M is smooth if and only if D2

is a finite number of points and any point of D2 is an ordinary double point of D1.

Proof Take any y ∈ D2, so that dim Ky = 2. The map TyY → S2 K ∨
y can be thought of as

a net of quadrics on Ky parameterized by TyY . Its degeneration locus in P(TyY ) is a conic,
either nondegenerate (if the map TyY → S2 K ∨

y is surjective) or singular (since the kernel of
the map lies in the singular locus). But on the other hand, this degeneration locus is the base
of the tangent cone to D1 at yi . So, if yi is an ODP of D1, the conic should be nondegenerate,
hence the map should be surjective. ��
Remark 2.5 Note also that if the map κy for y ∈ D2 is surjective, then it is an isomorphism
(since dim TyY = dim S2 K ∨

y = 3).

For each point yi ∈ D2 we have Qyi = P(W +
i ) ∪ P(W −

i ), both W +
i and W −

i being
3-dimensional subspaces in Vyi , the fiber of V over yi . The planes P(W +

i ) and P(W −
i )
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Scheme of lines on a family of 2-dimensional quadrics 659

intersect along the line P(Kyi ). In these terms the fiber Myi of M over the point yi can be
written as

Myi = Gr(2, W +
i ) ∪ Gr(2, W −

i ) = �+
i ∪ �−

i ,

where both �+
i and �−

i are isomorphic to projective planes, intersecting transversally in the
point Pi = Gr(2, Kyi ).

Choose an arbitrary point y = yi ∈ D2 and one of the planes � = �±
i . The following

Proposition computes its normal bundle in M .

Proposition 2.6 If a point y ∈ D2 is an ODP of D1 then N�/M ∼= O�(−1) ⊕ O�(−1).

Proof Choosing a local trivialization of the bundles V and L we obtain an isomorphism

N�/GrY (2,V )
∼= N�/Gr(2,Vy) ⊕ TyY ⊗ O�

∼= U ∨|� ⊕ TyY ⊗ O�.

On the other hand, NM/GrY (2,V )
∼= S2U ∨. Hence the standard exact sequence

0 → N�/M → N�/GrY (2,V ) → (NM/GrY (2,V ))|� → 0

gives

0 → N�/M → U ∨|� ⊕ TyY ⊗ O� → S2U ∨|� → 0.

Since � = Gr(2, W ), W ⊂ Vy , the cohomology exact sequence looks like

0 → H0(�, N�/M ) → W ∗ ⊕ TyY → S2W ∗ → H1(�, N�/M ) → 0.

Consider the map W ∗ ⊕ TyY → S2W ∗. Its first component is the multiplication by the
equation of the line Ky ⊂ W . Hence the sequence can be rewritten as

0 → H0(�, N�/M ) → TyY
κy−−→ S2 K ∨

y → H1(�, N�/M ) → 0.

The middle map here is just the map κy , hence by Remark 2.5 it is an isomorphism. Thus the
bundle N�/M is acyclic. Moreover, it is easy to see that the bundle N�/M (−1) is acyclic as
well. It follows that N�/M is isomorphic to O�(−1) ⊕ O�(−1). ��

From now on we assume that every point yi ∈ D2 is an ODP of D1.

Corollary 2.7 We have (ωM )|�±
i

∼= O�±
i
(−1).

Proof By adjunction formula O�(−3) ∼= ω�
∼= ωM|� ⊗ det N�/M ∼= ωM|� ⊗ O�(−2),

hence the claim. ��
The most important corollary is the following

Corollary 2.8 The structure sheaf O� ∈ Db(M) is exceptional.

Proof We have an isomorphism Extt (O�, O�) ∼= �tN�/M ∼= �t (O�(−1) ⊕ O�(−1)).
Note that for t = 1, and t = 2 this sheaf on � = P

2 is acyclic. Hence Ext•(O�, O�) ∼=
H•(�, Hom(O�, O�)) ∼= H•(�, O�) implies exceptionality of O� . ��

Another simple observation is that �±
i with different i are completely orthogonal.

Lemma 2.9 If i �= j then Ext•(O�i
± , O� j

±) = 0.
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660 A. Kuznetsov

Proof The planes �±
i and �±

j are contained in fibers of M over different points yi , y j ∈ Y ,
hence there is no local Ext’s between their structure sheaves. Hence global Ext’s also vanish.

��
Thus choosing one plane for each yi we obtain a completely orthogonal exceptional

collection.

Corollary 2.10 The collection {O�+
i
}N
i=1 is a completely orthogonal exceptional collection

in Db(M).

3 The Clifford algebra

For the precise definition and basic results about the sheaves of even parts of Clifford algebras,
see [10]. Here we remind some of their properties. Recall that the Clifford multiplication is
the composition

�pV ⊗ �qV −→
min(p,q)⊕

i=0

�p−i V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
i

⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
i

⊗�q−i V

s⊗i−−→
min(p,q)⊕

i=0

�p−i V ⊗ L−i ⊗ �q−i V −→
min(p,q)⊕

i=0

�p+q−2iV ⊗ L−i ,

where the first map is the partial polarization; the second map is the iterated application of the
map s : V ⊗ V → L−1, first to the two copies of V in the middle, then to the next two, and
so on; and the third map is the wedge product. The Clifford multiplication provides the sheaf

B0 = OY ⊕ �2V ⊗ L ⊕ �4V ⊗ L2

with a structure of a sheaf of OY -algebras, called the even part of the Clifford algebra, and
the sheaf

B1 = V ⊕ �3V ⊗ L
(the odd part of the Clifford algebra) with a structure of a B0-bimodule. It is convenient to
extend this pair of sheaves to a sequence defined by

B2k = B0 ⊗ L−k, B2k+1 = B1 ⊗ L−k .

This sequence can be thought of as a sequence of powers of a line bundle. In particular,
by [10] the functors − ⊗B0 Bl and HomB0(Bl ,−) are exact and we have

Bk⊗B0Bl ∼= Bk+l , RHomB0(Bk, Bl) ∼= Bl−k . (1)

Remark 3.1 It follows that for any coherent sheaves F and F ′ on Y there is an isomorphism
between the space of maps of B0-modules F ⊗ Bk → F ′ ⊗ Bl and the space of maps of
O-modules F → F ′ ⊗ Bl−k . In fact the corresponding map of B0-modules is given by the
composition F ⊗ Bk → F ′ ⊗ Bl−k ⊗ Bk → F ′ ⊗ Bl , where the second map is the Clifford
multiplication. We will use frequently this observation to define and compare such maps.

Let α denote the embedding M → GrY (2, V ). Let

g := c1(U
∨) ∈ Pic(GrY (2, V )/Y )
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Scheme of lines on a family of 2-dimensional quadrics 661

be the positive generator of the relative Picard group. Since the scheme M is the zero locus
of the section s ∈ �(GrY (2, V ), L∨ ⊗ S2U ∨) we have the Koszul resolution for its structure
sheaf

0 → L3(−3g) → L2 ⊗ S2U (−g) → L ⊗ S2U → OGrY (2,V ) → α∗OM → 0. (2)

Now we will show that M also comes with a sequence of naturally defined B0-modules. To
unburden the notation we denote the pullbacks of the sheaves Bk to GrY (2, V ) by the same
letters. For each k ∈ Z consider the morphism U ⊗ Bk−1 → Bk of sheaves of B0-modules
on GrY (2, V ) induced by the embedding U ⊂ V ⊂ B1 (see Remark 3.1).

Proposition 3.2 There are isomorphisms Coker(U ⊗Bk−1 → Bk) ∼= α∗Sk , where

S2k+1 = (V /U ) ⊗ L−k, (3)

and there is an exact sequence

0 → L−k → S2k → det V ⊗ L1−k(g) → 0. (4)

Moreover, the sheaves Sk have a structure of right B0-modules such that

Sk⊗B0Bl ∼= Sk+l , RHomB0(Bl , Sk) ∼= Sk−l . (5)

Finally, for each k there is an exact sequence of right B0-modules on GrY (2, V )

0 → O(−2g) ⊗ Bk−4 → U (−g) ⊗ Bk−3 → U ⊗ Bk−1 → Bk → α∗Sk → 0. (6)

Proof First let us check that the cokernels are supported on M scheme-theoretically. For
this we note that the composition of the maps S2U ⊗ Bk−2 → U ⊗ Bk−1 → Bk (both of
which are induced by the Clifford multiplication) coincides with the map S2U ⊗ Bk−2 ∼=
S2U ⊗Bk ⊗L → Bk induced by the section s defining the family Q. Indeed, by Remark 3.1
it is enough to compare the corresponding maps S2U → B2. The first map is the composition

S2U −→ U ⊗ U −→ V ⊗ V −→ �2V ⊕ L−1

of the natural embeddings and of the Clifford multiplication. The first component of the
composition is zero since the wedge product vanishes on symmetric tensors, and the second
component coincides with the second map.

Thus, the cokernel of the map U ⊗ Bk−1 → Bk is a quotient of α∗α∗Bk , hence it can be
written as α∗Sk , where Sk is a sheaf of B0-modules on M . Note also that the formulas (5)
follow from the definition of Sk combined with Eqs. (1) and exactness of functors −⊗B0Bl

and HomB0(Bl ,−). So, it remains to verify (3), (4) and (6).
For this let us construct the first two maps in (6) using Remark 3.1. The first map is induced

by the embedding

O(−2g) = �2U ⊗ �2U → �2U ⊗ U ⊗ V ⊂ �2U ⊗ U ⊗ B1,

and the second is induced by the composition

U (−g) = �2U ⊗ U ⊂ U ⊗ U ⊗ U
(∧23,−s23)−−−−−−−→ U ⊗ �2V ⊕ U ⊗ L−1 ⊂ U ⊗ B2

(where the map ∧23 is the wedge product of the second and the third factors, and the map s23 is
the map s again applied to the second and the third factors of the tensor product U ⊗U ⊗U ).

Now let us check that the constructed sequence

0 → O(−2g) ⊗ Bk−4 → U (−g) ⊗ Bk−3 → U ⊗ Bk−1 → Bk → 0.
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662 A. Kuznetsov

is a complex. Indeed, to check that the composition of the second and the third arrow is zero we
use Remark 3.1. It says that it is enough to compute the corresponding map �2U ⊗U → B3.
The map is the composition

�2U ⊗U → U ⊗U ⊗U
(∧23,−s23)−−−−−−−→ U ⊗�2V ⊕ U ⊗L−1

( ∧ 0
s12 1

)

−−−−−→ �3V ⊕ V ⊗L−1.

It takes a vector (u1 ∧ u2) ⊗ u3 to u1 ⊗ u2 ⊗ u3 − u2 ⊗ u1 ⊗ u3, then to
(

u1 ⊗ (u2 ∧ u3) − u2 ⊗ (u1 ∧ u3),−s(u2, u3)u1 + s(u1, u3)u2)
)
,

and then to

(2u1 ∧ u2 ∧ u3, s(u1, u2)u3 − s(u1, u3)u2 − s(u2, u1)u3 + s(u2, u3)u1

−s(u2, u3)u1 + s(u1, u3)u2).

The first component is zero since the rank of U is 2, and in the second component all
summands cancel out. This proves that the composition of the second and the third arrows
in (6) is zero. A similar computation shows that the composition of the first two arrows is
zero as well.

Note that each term of the complex is naturally filtered. Consider the spectral sequence
of the filtered complex in case k = 0. The first term looks like

O(−2g) ⊗ �4V ⊗ L4

O(−2g) ⊗ �2V ⊗ L3 �� U (−g) ⊗ �3V ⊗ L3

O(−2g) ⊗ L2 �� U (−g) ⊗ V ⊗ L2 �� U ⊗ �3V ⊗ L2 �� �4V ⊗ L2

U ⊗ V ⊗ L �� �2V ⊗ L
O

The rows are natural complexes with maps corresponding to the wedge multiplication. Their
cohomology are easy to compute, so it is not difficult to see that the second term looks like

det V ⊗ L4(−2g)

��������

L3(−3g)

����������� det V ⊗ L3 ⊗ S2U
��������

L2 ⊗ S2U (−g)

������������� det V ⊗ L2 ⊗ S2U (g)

��������

L ⊗ S2U

����������������� det V ⊗ L ⊗ O(g)

O

The arrows here are induced by s. So, it is easy to see that the bottom chain is the Koszul
complex of s, while the top chain is the same complex twisted by det V ⊗ L(g). Hence the
spectral sequence degenerates in the third term and shows that the cohomology of the above
complex is supported in degree zero and is an extension of α∗α∗(det V ⊗ L(g)) by α∗α∗O.
Since we already know that it is supported on M , we conclude that it can be written as α∗S0,
where S0 is an extension of det V ⊗ L(g) by O on M . This gives (4) and (6) for S0.

Analogously, consider the complex for k = 1. The first term of the spectral sequence
looks like
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Scheme of lines on a family of 2-dimensional quadrics 663

O(−2g) ⊗ �3V ⊗ L3 �� U (−g) ⊗ �4V ⊗ L3

O(−2g) ⊗ V ⊗ L2 �� U (−g) ⊗ �2V ⊗ L2 �� U ⊗ �4V ⊗ L2

U (−g) ⊗ L �� U ⊗ �2V ⊗ L �� �3V ⊗ L
U �� V

The maps are induced by the wedge multiplication, so one can check that the second term
looks like

V /U ⊗ L3(−3g)
���������

V /U ⊗ L2 ⊗ S2U (−g)

���������

V /U ⊗ L ⊗ S2U

���������

V /U

The maps are induced by s, so it is the Koszul complex of s tensored with V /U , hence
S1 ∼= V /U . This gives (3) and (6) for S1. For other Sk we deduce (3), (4) and (6) by a
suitable twist. ��

Applying the functor ρ∗ to the resolutions (6) twisted by O(−g) and using the projection
formula and the Borel–Bott–Weil Theorem to compute the pushforwards of O(−kg) and
U (−kg) for 0 ≤ k ≤ 3, we deduce the following

Corollary 3.3 We have ρ∗(Sk) ∼= Bk, ρ∗(Sk(−g)) = 0.

This gives an easy proof of the fact that

Lemma 3.4 The extension in (4) is nontrivial.

Proof Assume that S0 ∼= OM ⊕ det V ⊗ L(g). Then

ρ∗(S0(−g)) ∼= ρ∗((OM ⊕ det V ⊗ L(g))(−g)) ∼= ρ∗(OM (−g) ⊕ det V ⊗ L).

By the projection formula we have ρ∗(det V ⊗ L) = det V ⊗ L, so we deduce that
ρ∗S0(−g) �= 0, which contradicts to Corollary 3.3. ��

Now we can also compute the pushforwards of the duals of Sk .

Corollary 3.5 We have ρ∗(S∨
k ) = 0.

Proof Indeed, since Sk is of rank 2 and det Sk = det V ⊗ L1−k(g) [this follows from
(3) and (4)], we have S∨

k
∼= Sk(−g) ⊗ det V ∨ ⊗ Lk−1, hence its pushforward is a twist of

ρ∗(Sk(−g)) which is zero. ��
Another consequence is the following

Corollary 3.6 We have ρ∗(S∨
l ⊗ Sk) ∼= Bk−l .

Proof First of all consider the case l = 0. Then dualizing (4) we obtain an exact triple

0 → det V ∨ ⊗ L−1(−g) → S∨
0 → OM → 0.
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Tensoring it by Sk , pushing forward and using Corollary 3.3, we obtain the claim. Now for
arbitrary l the formula follows by tensoring with B−l and using (5). ��

Now we can describe the embedding Db(Y, B0) → Db(M).

Theorem 3.7 The functor 
 : Db(Y, B0) → Db(M), F �→ S0 ⊗B0 ρ∗F is fully faithful.
Moreover,


(Bk) ∼= Sk .

Proof First, note that

Hom(
(F), G) = Hom(S0⊗B0ρ
∗F, G)∼= HomB0(ρ

∗F, S∨
0 ⊗OM G)

∼= HomB0(F, ρ∗(S∨
0 ⊗OM G)).

Thus the right adjoint functor 
! : Db(M) → Db(Y, B0) is given by


!(G) = ρ∗(S∨
0 ⊗OM G)

(the structure of B0-module is induced by that of S∨
0 ). So, to check the full faithfulness of 
 it

suffices to compute 
! ◦
. For this we note that by the projection formula abd Corollary 3.6
we have


!(
(F)) = ρ∗(S∨
0 ⊗OM S0 ⊗B0 ρ∗F) ∼= ρ∗(S∨

0 ⊗OM S0) ⊗B0 F ∼= B0 ⊗B0 F ∼= F .

Thus 
!◦
 ∼= id, so 
 is fully faithful. Finally, 
(Bk) = S0 ⊗B0 Bk ∼= Sk by (5). ��
We conclude the section with the following simple calculation.

Lemma 3.8 For each i and each k we have (Sk)|�±
i

∼= O�±
i

⊕ O�±
i
(1).

Proof Restrict (3) and (4) to � = �±
i . Since O(g) restricts to � as O�(1) we obtain

the claim for even k. For odd k we have to describe the restriction of Vy/U to �. Since
� = Gr(2, W ) ⊂ Gr(2, Vy), we have on � an exact sequence of vector bundles

0 → W/U → Vy/U → Vy/W ⊗ O� → 0.

The first term is O�(1) and the third is O� . Hence (Vy/U )|� ∼= O� ⊕ O�(1). ��

4 The flip

A flip is a very important operation in the birational geometry. The definition and examples
of flips can be found, e.g. in [5], or in [8]. In our situation we will meet the simplest example
of a flip.

From now on we choose one of the planes P(W ±
i ) ⊂ Qyi for each point yi , say P(W +

i ),
and the corresponding plane �+

i = Gr(2, W +
i ) ⊂ M . Recall that by Proposition 2.6 the

normal bundles of �+
i in M are O(−1) ⊕ O(−1). Let us apply the composition of flips in

all these planes and denote by M+ the resulting Moishezon variety. More precisely, consider
the blowup ξ : M̃ → M of M in the union of all �+

i . Then each of the exceptional divisors
Ei = ξ−1(�+

i ) is isomorphic to �+
i × P

1 and its normal bundle is O(−1,−1). Hence in the
category of Moishezon varieties it can be blown down onto a line Li ∼= P

1 ⊂ M+. Thus we
have a diagram
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⊔
Ei

�����
��

��
��

����
��

��
��

�

		⊔
�+

i

		

M̃
ξ

��										
ξ+

��
















⊔

Li

		
M M+

By a result of Bondal and Orlov we have the following

Proposition 4.1 ([4]) The functor ξ∗(ξ+)∗ : Db(M+) → Db(M) is fully faithful. Moreover,
there is a semiorthogonal decomposition

Db(M) = 〈ξ∗(ξ+)∗(Db(M+)), {O�+
i
}N
i=1〉.

Further we will need a detailed description of the fibers of M+ over X . Let xi = f −1(yi )

be the nodal points of X and Xsm = X \{xi }N
i=1 be the smooth locus of X .

Since the plane �−
i intersects �+

i transversally at point Pi and does not intersect other
planes �+

j , the proper preimage of �−
i with respect to the map ξ is the blowup �̃−

i of

�−
i at Pi , i.e. a Hirzebruch surface F1. Moreover, �̃−

i intersects the exceptional divisor
Ei = �+

i × P
1 of the blowup ξ along the line Pi × P

1, which is the exceptional line of the
Hirzebruch surface. It follows that the contraction ξ+ maps �̃−

i into M+ isomorphically, and
its exceptional line maps onto Li := ξ+(Ei ).

Lemma 4.2 There is a regular morphism M+ → X such that the diagram

⊔
(�+

i × P
1 ∪

Pi ×P1
�̃−

i )
� �

		



�������������������������

���������������������������

M̃
ξ

��
ξ+

���������������

⊔
(�+

i ∪
Pi

�−
i ) � � ��

���������������������������
M

μ

��������������� M+

�����������������

⊔
(Li ∪

Li
�̃−

i )� ���

����������������������������

X

⊔
xi

� �

��

commutes. Moreover, over the smooth locus Xsm the maps M → X and M+ → X coincide.
Finally, the fiber M+

xi
of M+ over xi is the blowup �̃−

i of �−
i in the point Pi and the line

Li = ξ+(Ei ) is the (−1)-curve on �̃−
i .

Proof The first claim is evident—since the map ξ+ : M̃ → M+ is a contraction of divisors
Ei , and the map μ ◦ ξ : M̃ → X contracts each of these divisors to a point, we conclude that
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μ ◦ ξ factors through ξ+. Moreover, since ξ and ξ+ are identities over Xsm , it follows that
the morphisms M → X and M+ → X coincide over Xsm . Finally, note that the fiber of M̃
over xi is the union of Ei and the proper preimage of �−

i . Since the map ξ+ contracts �+
i

onto the line Li which is contained in the image of the embedding �̃−
i ⊂ M+, we conclude

that M+
xi

= �̃−
i . The fact that Li is the exceptional line of the Hirzebruch surface �̃−

i
∼= F1

was already explained above. ��

As we already have seen, �̃−
i is isomorphic to a Hirzebruch surface F1. In particular, it

has a canonical contraction �̃−
i → P

1 which induces an isomorphism of the exceptional line
Li ⊂ �̃−

i onto P
1. Denote (the pullback to �̃−

i of) the generator of the Picard group of �i

by h and the class of the exceptional line Li ⊂ �̃−
i by l. Then the class of the fiber of the

projection �̃−
i → P

1 is h − l.

Lemma 4.3 We have ωM+|�̃−
i

∼= O�̃−
i
(−h − l).

Proof Note that ωM̃ = ξ∗ωM (
∑

Ei )= ξ∗+ωM+(2
∑

Ei ). Hence ξ∗+ωM+ = ξ∗ωM (−∑
Ei ).

Using Corollary 2.7 we obtain

ξ∗+ωM+|�̃−
i

∼= ξ∗ωM|�̃−
i

⊗ O(−Ei )|�̃−
i

∼= O�̃−
i
(−h) ⊗ O�̃−

i
(−l) ∼= O�̃−

i
(−h − l).

But ξ+ is an isomorphism on �̃−
i , hence the claim. ��

It turns out that M+ has a very simple structure—it is a P
1-fibration over a small resolution

of X .

Proposition 4.4 The map M+ → X factors as a composition M+ μ+ �� X+ σ+ �� X ,
where the map μ+ : M+ → X+ is a P

1-fibration and σ+ : X+ → X is a small reso-
lution of singularities. The restriction of the map μ+ to the fiber M+

xi
= �̃−

i coincides with

the projection �̃−
i → P

1. The curve Ci = μ+(�̃−
i ) ∼= P

1 is the exceptional locus of X+
over xi ∈ X.

Proof We apply to M+ the relative Minimal Model Program over X , see [12]. Since the
relative MMP commutes with the base change, let us first look at M+\⊔

�̃−
i which is the

preimage of Xsm . The map M+\ ⊔
�̃−

i → Xsm is a P
1-fibration, so its relative Picard group

is Z, and the relative canonical class is ample, hence the first (and the last) step of the MMP
for M+\⊔

�̃−
i is the P

1-fibration M+\ ⊔
�̃−

i → Xsm .
Now consider what happens over analytic neighborhoods of singular points. Let x = xi

be one of singular points. Consider an analytic neighborhood U of x in X and its preimage
M+

U ⊂ M+. Then the relative (over U ) effective cone of M+
U is generated by curves in

the special fiber M+
x = �̃−, that is by the (−1)-curve L and by the fiber of the projection

�̃− → P
1. By Lemma 4.3 the canonical class KM+/X restricts to �̃− as −h − l, hence L is

K -positive, while the fiber is K -negative. Hence the first step in MMP is the contraction of
the ray generated by the fiber of the projection �̃− → P

1. By MMP this contraction should
be either

1. a flip, or
2. a divisorial contraction, or
3. a conic bundle.
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By a result of Kawamata [7] the case of a flip is impossible, since the center of a flip in
dimension 4 is always a P

2, while in our case the only compact surface in M+
U is M+

x = �̃−
which is a Hirzebruch surface F1. Similarly, a divisorial contraction is impossible, since then
one of the steps of MMP on M+

U \�̃−
i would also be a divisorial contraction, while as we

have shown above the only nontrivial step of this MMP is a P
1-fibration.

Thus the first step of MMP for M+
U is a conic bundle M+

U → X+
U . Once again, over U \{x}

this conic bundle should coincide with the P
1-fibration M+\⊔

�̃−
i → Xsm , hence gluing all

these conic bundles for all singular points xi , we obtain a global conic bundle structure on M+,
that is a global map μ+ : M+ → X+ for some Moishezon variety X+. Now we apply [13]
and conclude that X+ is necessarily smooth, hence X+ is a resolution of singularities of X .
Further, the restriction of the map μ+ to �̃−

i is a conic bundle which contracts all the fibers
of the projection �̃−

i → P
1, hence the fiber of X+ over xi is the image Ci of �̃−

i . Since
X+ is smooth and the fiber of X+ over xi is Ci ∼= P

1, the map σ+ : X+ → X is a small
resolution of singularities. So, it remains to check that μ+ : M+ → X+ is a P

1-fibration.
Since we already know that μ+ is a conic bundle, we should check that its degeneration

locus is empty. But the degeneration locus of a conic bundle is a divisor, while M+ → X+ is
nondegenerate over the complement Xsm = X+\(�Ci ) of a finite number of curves, hence
the degeneration locus is empty. ��

Denoting f+ = f ◦ σ+, ρ+ = f+ ◦ μ+, we obtain a commutative diagram

M̃
ξ

����
��

��
�� ξ+

���
��

��
��

�

M

μ

		

flip ���������

ρ

���
��

��
��

� M+

μ+

		

ρ+

����
��

��
��

Y

X

f

����������
X+

σ+
��

f+

����������

(7)

Since the map μ+ : Db(M+) → Db(X+) is a P
1-fibration, the pullback functor

μ∗+ : Db(X+) → Db(M+) is fully faithful. Composing with the functor given by the
flip we obtain

Corollary 4.5 The functor ξ∗ξ∗+μ∗+ : Db(X+) → Db(M) is fully faithful.

Thus we have constructed all the required components in Db(M). It remains to check that
they generate the whole category. This is done in the next section.

5 Derived category of M+

As it was shown in the previous section, M+ is a P
1-bundle over X+, that is a Severi–

Brauer variety, see [1,11]. It is well known that Severi-Brauer varieties over a scheme S
are in bijection with Morita-equivalence classes of Azumaya algebras over S (recall that an
Azumaya algebra on S is a sheaf of OS-algebras which étale locally is isomorphic to the
endomorphism algebra of a vector bundle). One of the ways to construct an Azumaya algebra

123



668 A. Kuznetsov

from a P
1-bundle T → S is to find a vector bundle E on T which restricts to any fiber of

T → S as O(1)⊕n for some n. Then the sheaf of algebras AT = End(E) restricts trivially
to any fiber of T → S, hence it is the pullback of a sheaf of algebras A on S. This is the
corresponding Azumaya algebra.

To construct such a vector bundle for the P
1-bundle M+ → X+ we modify the vector

bundle Sk defined in Proposition 3.2. Recall that the exceptional divisors of the blowups
ξ : M̃ → M and ξ+ : M̃ → M+ are Ei ∼= �+

i × Li ∼= P
2 × P

1.

Lemma 5.1 There are vector bundles Rk of rank 2 on M+ such that there is a short exact
sequence

0 → ξ∗Sk → ξ∗+Rk → N⊕
i=1

OEi (0,−1) → 0. (8)

Proof By Lemma 3.8 we have an isomorphism (ξ∗S∨
k )|Ei

∼= OEi ⊕ OEi (−1, 0). Consider
the composition ξ∗S∨

k → (ξ∗S∨
k )|Ei → OEi (−1, 0), where the second map is the unique

projection. This map is clearly surjective. Denote the kernel of the sum of these maps over i
by F , so that we have an exact triple

0 → F → ξ∗S∨
k → ⊕OEi (−1, 0) → 0.

Let us check that F is a pullback of a vector bundle from M+. Since ξ+ : M̃ → M+ is a
smooth blowup, it suffices to check that F|Ei is a pullback of a vector bundle from Li . Let
us restrict the above exact sequence to Ei . Since NEi /M̃

∼= OEi (−1,−1) we obtain an exact
sequence

0 → OEi (0, 1) → F|Ei → OEi ⊕ OEi (−1, 0) → OEi (−1, 0) → 0.

The last map is the projection to the second summand, hence we have an exact triple

0 → OEi (0, 1) → F|Ei → OEi → 0.

Since Ext1Db(Ei )
(OEi , OEi (0, 1)) ∼= H1(Ei , OEi (0, 1)) = 0, we see that there is a decom-

position F|Ei
∼= OEi ⊕ OEi (0, 1). So, the bundle F|Ei is a pullback of OLi ⊕ OLi (1), hence

the bundle F is a pullback of a vector bundle on M+ which restricts to Li as OLi ⊕ OLi (1).
Now we define Rk as the dual of this vector bundle. So, by definition we have the following
exact sequence

0 → ξ∗+R∨
k → ξ∗S∨

k → ⊕OEi (−1, 0) → 0. (9)

Dualizing this sequence and taking into account that

RHom(OEi (−1, 0), OM̃ ) ∼= OEi (1, 0)⊗NEi/M̃
[−1] ∼= OEi (0,−1)[−1]

we obtain (8). ��
Remark 5.2 Note that we also proved an isomorphism Rk|Ei

∼= OEi ⊕ OEi (0,−1).

The bundles Rk enjoy a lot of interesting properties.

Lemma 5.3 We have (ρ+)∗R∨
k = 0.

Proof Indeed, using commutativity of (7) we deduce

(ρ+)∗R∨
k = (ρ+)∗(ξ+)∗ξ∗+R∨

k = ρ∗ξ∗ξ∗+R∨
k .
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Applying the functor ρ∗ξ∗ to (9) we obtain a triangle

ρ∗ξ∗ξ∗+R∨
k → ρ∗ξ∗ξ∗S∨

k → ⊕ρ∗ξ∗OEi (−1, 0).

The second term equals to ρ∗S∨
k which is zero by Corollary 3.5. Since ρ ◦ ξ contracts Ei

to the point yi , the third term is ⊕H•(Ei , OEi (−1, 0)) ⊗ Oyi , so it is also zero. Hence
(ρ+)∗R∨

k = 0. ��
Proposition 5.4 The bundle Rk restricts to any fiber of μ+ : M+ → X+ as O(1) ⊕ O(1).
Moreover

Rk |�̃−
i

∼= O�̃−
i
(h) ⊕ O�̃−

i
(l). (10)

Proof We are going to prove instead that R∨
k restricts to all fibers as O(−1) ⊕ O(−1). For

fibers of μ+ : M+ \⊔
�̃−

i → X+ \⊔
Ci this follows from Lemma 5.3. So it remains to

investigate the restriction of R∨
k to �̃−

i . For this we restrict (9) to �̃−
i and taking into account

that by Lemma 3.8 we have S∨
k |�̃−

i

∼= O�̃−
i

⊕ O�̃−
i
(−h), we obtain

0 → (R∨
k )|�̃−

i
→ O�̃−

i
⊕ O�̃−

i
(−h) → OLi → 0.

It follows that either (10) holds, or (R∨
k )|�̃−

i

∼= O�̃−
i
(−h − l) ⊕ O�̃−

i
. In the former case we

are done since both O�̃−
i
(h) and O�̃−

i
(l) restrict as O(1) to any fiber of �̃−

i over Ci . Let us

check that the case (R∨
k )|�̃−

i

∼= O�̃−
i
(−h − l) ⊕ O�̃−

i
is impossible.

For this we note that by Lemma 5.3

0 = Ext•(Oyi , (ρ+)∗R∨
k ) = Ext•(ρ∗+Oyi , R∨

k ).

On the other hand, the cohomology sheaves Hl = Hl(ρ∗+Oyi ) are supported on �̃−
i . More-

over, Hl = 0 for l > 0 (since ρ∗+ is right exact) and H0 ∼= O�̃−
i

. Consider the spectral
sequence

Extq(Hp, R∨
k ) ⇒ Extq−p(ρ∗+Oyi , R∨

k ) = 0.

Note that by Serre duality on M+ we have

Extq(Hi , R∨
k ) ∼= Ext4−q(R∨

k , Hi⊗ωM+)∨ ∼= H4−q(M+, Hi ⊗ Rk ⊗ ωM+)∨.

The right-hand side vanishes for q �∈ {2, 3, 4} since the sheaf Hi is supported on �̃−
i

and dim �̃−
i = 2. Hence the line q = 3 does not change in the spectral sequence. But

if (R∨
k )|�̃−

i

∼= O�̃−
i
(−h − l) ⊕ O�̃−

i
then

Ext3(H0, R∨
k ) ∼= H1(M+, O�̃−

i
⊗ Rk ⊗ ωM+)∨

∼= H1(�̃−
i , (O�̃−

i
(h + l) ⊕ O�̃−

i
) ⊗ O�̃−

i
(−h − l))

∼= H1(�̃−
i , O�̃−

i
⊕ O�̃−

i
(−h − l)) ∼= k

gives a nontrivial element in Ext3(ρ∗+Oyi , R∨
k ), which is impossible. ��

As we mentioned at the beginning of the section, the bundle R0 allows to construct the
Azumaya algebra on X+ corresponding to the P

1-bundle M+ → X+.

Proposition 5.5 ([11]) The Brauer class of the P
1-fibration M+ → X+ is given by an

Azumaya algebra B+ on X+ such that μ∗+B+ ∼= End(R0).
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The Azumaya algebra B+ in its turn provides a description of the derived category of M+
due to the following result of Bernardara.

Proposition 5.6 ([3]) There is a semiorthogonal decomposition

Db(M+) = 〈Db(X+), Db(X+, B+)〉
with the embedding functors of the components given by F �→ μ∗+F and F �→ μ∗+F ⊗B+ R0

respectively.

Combining this with Proposition 4.1 we see, that to prove Theorem 1.1 it remains to check
that the functor ξ∗ξ∗+ identifies Db(X+, B+) with the subcategory 
(Db(Y, B0)) ⊂ Db(M).
For this we find a relation between the algebras B+ on X+ and B0 on Y .

Lemma 5.7 We have ( f+)∗B+ ∼= B0, an isomorphism of sheaves of algebras.

Proof First of all

( f+)∗B+ ∼= ( f+)∗(μ+)∗(ξ+)∗ξ∗+μ∗+B+ ∼= f∗μ∗ξ∗ξ∗+ End(R0) ∼= ρ∗ξ∗ξ∗+ End(R0).

On the other hand, tensoring (8) with ξ∗S∨
0 and (9) with ξ∗+R0 and using Lemma 3.8 and

Remark 5.2 we obtain exact sequences

0 → ξ∗End(S0) → ξ∗S∨
0 ⊗ ξ∗+R0 → ⊕(OEi (0,−1) ⊕ OEi (−1,−1)) → 0,

0 → ξ∗+End(R0) → ξ∗S∨
0 ⊗ ξ∗+R0 → ⊕(OEi (−1, 0) ⊕ OEi (−1,−1)) → 0.

Pushing these sequences along ρ ◦ ξ and noting that Ei is contracted to a point we conclude
that

ρ∗ξ∗ξ∗+End(R0) ∼= ρ∗ξ∗(ξ∗S∨
0 ⊗ ξ∗+R0) ∼= ρ∗ξ∗ξ∗End(S0).

On the other hand ρ∗ξ∗ξ∗End(S0) ∼= ρ∗End(S0) ∼= B0 (see Corollary 3.6 for the last
isomorphism). ��

Now we are ready to prove our main result.

Proof of Theorem 1.1 As we already mentioned, by Proposition 4.1 and Proposition 5.6 we
only have to identify the image of Db(X+, B+) under the functor ξ∗ξ∗+ with the subcategory

(Db(Y, B0)).

The isomorphism ( f+)∗B+ ∼= B0 of Lemma 5.7 gives by adjunction a morphism
f ∗+B0 → B+ which equips B+ with a structure of a B0-module. Now we define the func-
tor Db(Y, B0) → Db(X+, B+) by F �→ f ∗+F ⊗B0 B+. The right adjoint functor then is
( f+)∗ : Db(X+, B+) → Db(Y, B0). Their composition takes F to

( f+)∗( f ∗+F ⊗B0 B+) ∼= F ⊗B0 ( f+)∗B+ = F ⊗B0 B0 = F.

This implies that this functor is fully faithful, and the orthogonal to its image consists of all
objects G such that ( f+)∗G = 0. Since f+ is the contraction of (−1,−1) curves Ci , any
object G in Db(X+) such that ( f+)∗G = 0 is a complex with cohomology supported on the
union of curves Ci and being the direct sums of sheaves OCi (−1). Since B+ is an Azumaya
algebra, the forgetful functor Db(X+, B+) → Db(X+) commutes with sheaf cohomology,
hence each of these direct sums of OCi (−1) should be a B+-module. So, it remains to check
that there is no such B+-modules.

For this we note that (10) implies End(R0)|�̃−
i

∼= O�̃−
i

⊕O�̃−
i
(h−l)⊕O�̃−

i
(l−h)⊕O�̃−

i
.

Therefore we have B+
|Ci

∼= OCi ⊕OCi (1)⊕OCi (−1)⊕OCi
∼= End(OCi ⊕OCi (−1)), hence
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the category of B+-modules supported on Ci is equivalent to the category of sheaves on
Ci , the equivalence taking a sheaf F to F ⊗ (OCi ⊕ OCi (−1)) ∼= F ⊕ F(−1). It is clear
that if F ⊕ F(−1) is a direct sum of O(−1) then F = 0. Thus we have checked that
Db(Y, B0) ∼= Db(X+, B+).

Finally, we compute the composition of the equivalence Db(Y, B0) ∼= Db(X+, B+), and
embeddings Db(X+, B+) → Db(M+) → Db(M). It acts on F ∈ Db(Y, B0) as

F �→ ξ∗ξ∗+(μ∗+( f ∗+F ⊗B0 B+) ⊗B+ R0) ∼= ξ∗ξ∗+(ρ∗+F ⊗B0 R0) ∼= ξ∗(ξ∗+ρ∗+F ⊗B0 ξ∗+R0).

Note that ξ∗+ρ∗+F ∼= ξ∗ρ∗F , so tensoring (8) by it we obtain

ξ∗ρ∗F ⊗B0 ξ∗S0 → ξ∗ρ∗F ⊗B0 ξ∗+R0 → ⊕(ξ∗ρ∗F ⊗B0 OEi (0,−1)).

Since ξ∗OEi (0,−1) = 0, applying ξ∗ we see that

ξ∗(ξ∗ρ∗F ⊗B0 ξ∗S0) ∼= ρ∗F ⊗B0 S0,

which gives the required isomorphism of functors and finishes the proof of Theorem 1.1.
��

6 Concluding remarks and further questions

Remark 6.1 There is another way of proving Theorem 1.1, avoiding use of Moishezon vari-
eties. For this one has to perform another birational modification of M . First, consider the
blowup M ′ → M in the N points Pi = �+

i ∩ �−
i . Let E ′

i
∼= P

3 be the exceptional divisors
of this blowup. Then the proper preimages of the planes �+

i and �−
i are Hirzebruch surfaces

�̃−
i , �̃+

i ⊂ M ′ which do not intersect. Moreover, the (−1)-curves L±
i on �̃±

i are skew-lines
in E ′

i . One can check that the normal bundle to �̃±
i in M ′ restricts as O(−1) ⊕ O(−1) to

any fiber of �̃±
i over P

1. Hence one can make a (relative over P
1) flop in all 2N surfaces

�̃±
i simultaneously. We will obtain an algebraic variety M ′′ over X . The special fibers M ′′

xi

will coincide with blowups E ′′
i of E ′

i in the lines L±
i (and each of the surfaces �̃±

i will be
replaced by P

1 × P
1, coinciding with the exceptional divisor of E ′′

i over L±
i ). Then by the

same arguments as in Proposition 4.4 one can show that the map M ′′ → X factors as a
P

1-fibration M ′′ → X ′, where X ′ is the blowup of X in all points xi . Then a careful analysis
of the relation of the categories Db(M ′′) and Db(M) allows to prove Theorem 1.1.

An interesting question for the further investigation is to describe the category Db(M)

without restrictions on the dimension of Y . A natural approach would be to consider first the
universal family of quadrics and then to apply a base change argument (see [9]) to obtain
a decomposition in general case. Unfortunately, the approach of this paper does not work
in this general setup because of the following effect — assume for simplicity that D3 = ∅,
but dim D2 > 0. Since the fibers of M over D2 are the unions of two planes, we have an
unramified double covering D̃2 → D2. This covering in general is connected. Therefore,
we cannot pick up one of the planes �+ in all the fibers over D2 and make a flip in them.
However, the approach suggested in Remark 6.1 may work, and I guess that in case D3 = ∅
should work without big changes. As for the case of nonempty D3, a deeper analysis of the
behavior of M over D3 (and possibly more birational transformations) is required.

Another question which may prove interesting is investigation of the derived category of
the relative scheme of lines (or other isotropic Grassmannians) of a family of quadrics of
dimension bigger than 2.
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