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Abstract Given any compact connected manifold M , we describe C2-open sets of iter-
ated functions systems (IFS’s) admitting fully-supported ergodic measures whose Lyapunov
exponents along M are all zero. Moreover, these measures are approximated by measures
supported on periodic orbits. We also describe C1-open sets of IFS’s admitting ergodic mea-
sures of positive entropy whose Lyapunov exponents along M are all zero. The proofs involve
the construction of non-hyperbolic measures for the induced IFS’s on the flag manifold.

1 Introduction

1.1 The hunt for (non-)hyperbolic measures

Since the Multiplicative Ergodic Theorem of Oseledets [19], the Lyapunov exponents of
invariant probability measures are central in differentiable dynamics. As Oseledets reveals
in the first paragraph of his celebrated paper, he was already interested in the dynamical
implications of non-zero Lyapunov exponents. Many of these implications, at least in the
case of volume-preserving dynamics, were discovered by Pesin during the mid-seventies
(see e.g. [20]). Later, Katok [15] obtained strong consequences in the non-conservative case.
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470 J. Bochi et al.

Roughly speaking, the absence of zero Lyapunov exponents permits to recover many dynam-
ical properties from uniformly hyperbolicity. We refer the reader to the book [5] for much
information about the dynamics of systems without zero Lyapunov exponents, which are
called nonuniformly hyperbolic.

However, nonuniform hyperbolicity is not necessarily ubiquitous. In the conservative
situation, KAM theory gives rise to elliptic behavior which is robust in high regularity. In
lower regularity, zero Lyapunov exponents can also occur generically (see [6]).

Outside the conservative setting, we consider the general problem of determining which
are the possible Lyapunov spectra of the ergodic invariant probabilities of a given dynamical
system.

Topological–geometrical properties of the dynamics impose restrictions on the Lyapunov
exponents; to give an obvious example, if the system is uniformly hyperbolic (say, Anosov)
then no zero Lyapunov exponents can occur.1 The converse of the implication above is false:
there exist smooth systems whose Lyapunov exponents (with respect to all ergodic invariant
measures) are uniformly bounded away from 0, but are not uniformly hyperbolic: see [4,8,
Remark 1.1]. Anyway, these examples seem to be very special, and it is natural to ask in
what generality the lack of uniform hyperbolicity of a system forces the appearance of non-
hyperbolic measures, that is, measures admitting at least one vanishing Lyapunov exponent.
We are especially interested in the case that non-hyperbolic measures occur in a robust way,
and we would like to understand further properties of those measures (e.g. multiplicity of
zero exponents, support, approximation by periodic orbits, entropy, etc.).

An important result in this direction was obtained by Kleptsyn and Nalksy [16], who gave
C1-robust examples of diffeomorphisms having ergodic non-hyperbolic measures. Their
examples exist on any compact manifold of dimension at least 3, and are partially hyper-
bolic with integrable circle fibers. The construction is based on their earlier paper joint with
Gorodetski and Ilyashenko [11], which obtains similar results for iterated function systems
(IFS’s) of the circle.

These ideas have been used in [10] to determine properties of homoclinic classes that imply
the existence of non-trivial non-hyperbolic measures, however under C1-generic assump-
tions. In [7], the construction was tuned to enlarge the supports of these measures: they can
be taken as the whole homoclinic class.

The non-hyperbolic measures in all results above are obtained as limits of sequences of
measures supported on periodic orbits whose central Lyapunov exponent converges to zero.
Therefore the non-hyperbolicity of the system is detected by its periodic orbits. The general
principle that periodic orbits carry a great amount of information about the dynamics has
been successful in many occasions; see e.g. [21] in the uniformly hyperbolic context, [15]
for nonuniformly hyperbolic context, and [1,18] in the C1-generic context. It is thus natural
to reformulate the previous problems focusing on the simplest class of invariant measures,
namely those supported on periodic orbits.

Another common feature of the non-hyperbolic measures from the results above is that they
have only one vanishing Lyapunov exponent. Since there are open sets of diffeomorphisms
with nonhyperbolic subbundles of any given dimension, one wonders if these systems have
ergodic measures with multiple zero exponents. There is a clear difficulty in passing to higher
dimensions: we lose the commutativity of the products of central derivatives, therefore also
the losing the continuity of the exponents. Those properties were crucial in the constructions
above.

Finally, we observe that all these non-hyperbolic measures have zero entropy.

1 A more sophisticated relation of this kind was obtained by Johnson et al. [14].
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Robust vanishing of Lyapunov exponents for IFS’s 471

In this paper, we commence the study of the robust existence of multiple zero exponents.
Following the strategy above, we first attack the simpler case of IFS’s. We extend the result
of [11], replacing the circle fiber by an arbitrary compact manifold M , and finding ergodic
measures whose Lyapunov exponents along M all vanish. More precisely, we prove two
parallel extensions of the [11] result:

(a) We construct C2-open sets of IFS’s having ergodic measures with only zero exponents
along M , full support, and approximable in a strong sense by measures supported on
periodic orbits.

(b) We construct C1-open sets of IFS’s having ergodic measures with only zero exponents
along M , and positive entropy.

However, these two extensions are non-intersecting: The measures from the first result have
zero entropy, while the measures from the second one are not fully supported. The first result
provides a more explicit construction of the measures, while the second one is an indirect
existence theorem.

1.2 Precise statements of the main results

An iterated function system, or IFS, is simply a finite collection G = (g0, . . . , g�−1) of (usu-
ally continuous) self-maps of a (usually compact) space M . Then we consider the semigroup
generated by these transformations. An IFS can be embedded in a single dynamical system,
the 1-step skew-product ϕG : �Z×M → �Z×M over the full shift σ on �Z = {0, . . . , �−1}Z,
which is defined by ϕG(ω, p) = (σ (ω), gω0(p)).

From now on, the ambient M will be a compact connected manifold without boundary
of dimension d . We will consider IFS’s G of diffeomorphisms of M . Then, for any ergodic
ϕG -invariant measure μ, Oseledets theorem associates its fibered Lyapunov exponents, which
are the values that can occur as limits

lim
n→+∞

1

n
log ‖D(gωn−1 ◦ · · · ◦ gω0)(x) · v‖, (where v ∈ Tx M � {0})

for a positive measure subset of points ((ωn), x) ∈ �Z × M .
Our first result is as follows:

Theorem 1 Let M be a compact connected manifold without boundary. Then there exist an
integer � ≥ 2 and an open set U in (Diff2(M))� such that for any G = (g0, . . . , g�−1) ∈ U
the 1-step skew-product ϕG has an ergodic invariant measure μ whose support is the whole
�Z × M and whose fibered Lyapunov exponents all vanish. Moreover, the measure μ is the
weak-star limit of a sequence of ϕG-invariant measures μn, each of these supported on a
periodic orbit.

As we will see, our strategy consists on proving a stronger version of Theorem 1, con-
cerning IFS’s on flag manifolds – see Theorem 3.

Another main result is the following:

Theorem 2 Let M be a compact connected manifold without boundary. Then there exist an
integer � ≥ 2 and an open set V in (Diff1(M))� such that for any G ∈ V there exists a
compact ϕG-invariant set �G ⊂ �Z × M with the following properties:

(a) All Lyapunov exponents (tangent to M) of all invariant probabilities with support con-
tained in � are zero.

(b) The restriction of ϕG to �G has positive topological entropy.

123
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In particular, ϕG has an ergodic invariant measure with positive metric entropy and only
zero fibered Lyapunov exponents.

The last assertion follows immediately from the Variational Principle.
Compared to Theorem 1, Theorem 2 improves the robustness class from C2 to C1. The

non-hyperbolic measures produced by Theorem 2 have the additional property of positive
entropy, but clearly do not have full support. Moreover, we do not know if those measures
can be approximated by measures supported on periodic orbits.

Theorem 2 has a simpler proof than Theorem 1. The definition of the C2-open set U from
Theorem 1 involves basically two conditions, “maneuverability” and “minimality”, while the
C1-open set V from Theorem 2 only requires maneuverability. In particular, the sets U and
V have nonempty intersection.

1.3 Questions

In view of our results extending [11], it is natural to expect a corresponding generalization
of [16], that is, the existence of open examples of partially hyperbolic diffeomorphisms with
multidimensional center so that there are measures all whose central exponents vanish.

We list other questions, mainly about IFS’s:

Question 1 Are there C1- or C2-robust examples with non-hyperbolic measures of full
support and positive entropy?

Question 2 It is possible to improve Theorem 1 so that the set of measures that satisfies the
conclusions is dense (or generic) in the weak-star topology?

Consider IFS’s of volume-preserving or symplectic diffeomorphisms. (See [17] for results
and problems about such systems.) The proof of Theorem 2 can be easily adapted for the
volume-preserving case.

Question 3 Does the analogue of Theorem 1 hold true in conservative contexts? A more
interesting and difficult question is whether the measure μ in the theorem can be taken of the
form μ = μ0 × m, where μ0 is a shift-invariant measure and m is the volume on the fibers
M?

2 Outlines of the proofs

We first outline the proof of Theorem 1, explaining the main ingredients and difficulties of it,
and discussing the novelties in comparison with [11]. We also state a stronger result which
implies Theorem 1.

Later, we will explain how the tools developed to prove Theorem 1 can be applied to yield
the easier Theorem 2.

2.1 Ergodic measures as limit of periodic measures

The starting point is Lemma 2.1 below, which gives sufficient conditions for a sequence
of invariant probability measures supported on periodic orbits to converge to an ergodic
measure, and also permits to determine the support of the limit measure. Let us state this
lemma precisely.
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Robust vanishing of Lyapunov exponents for IFS’s 473

Let h : N → N be a homeomorphism of a compact metric space N , and let O′ and O
be periodic orbits of h. Let ε > 0 and 0 < κ < 1. We say that O′ε-shadows O during a
proportion 1 − κ of the time if

1

p′ #

{
x ′ ∈ O′; there is x ∈ O with max

0≤i<p
d(hi (x ′), hi (x)) < ε

}
≥ 1 − κ,

where p and p′ are the periods of O and O′, respectively. (Notice the asymmetry of the
relation.)

Lemma 2.1 (Limit of periodic measures) Fix a homeomorphism h : N → N of a compact
metric space N. Suppose (On) is a sequence of periodic orbits of h whose periods pn tend
to infinity. Suppose further that the orbit On+1 εn-shadows On during a proportion 1 − κn

of the time, where the sequences εn > 0 and 0 < κn < 1 satisfy∑
n

εn < ∞ and
∏

n

(1 − κn) > 0.

For each n, let νn be the invariant probability supported on On. Then the sequence (νn)

converges in the weak-star topology to a measure ν that is ergodic for h and whose support
is given by

supp ν =
∞⋂

n=1

∞⋃
m=n

Om .

The lemma is just a rephrasing of Lemma 2.5 from [7], which in its turn is a refined version
of Lemma 2 from [11].

2.2 The main difficulty with higher dimensions

We want to find a sequence (On) of periodic orbits for the skew-product map ϕG that fits in
the situation of Lemma 2.1 and such that the resulting limit measure has the desired properties
of zero (fibered) Lyapunov exponents and full support.

In the paper [11], which deals with the one-dimensional case (i.e., M is the circle), the
sequence of periodic orbits is constructed in such a way that the Lyapunov exponent converges
to zero. The construction is recursive: each new orbit On+1 is chosen in order to improve the
previous one On , in the sense that the new Lyapunov exponent is closer to zero. It is easy
to modify their construction so to ensure that each new orbit is denser in the ambient space,
and thus, as we now know, obtain full support for the limit measure. There are practically no
requirements on starting orbit O1: it needs only to be attracting. We call this the bootstrapping
procedure, because it starts from nothing and by successive improvements eventually achieves
its goal. We will give more details about it later (Sect. 2.4).

With Lemma 2.1 we can guarantee ergodicity and full support of the limit measure,
and so we are left to control its Lyapunov exponent. In the one-dimensional situation of
[11], the Lyapunov exponent is given by an integral and so its dependence on the measure
is continuous with respect to the weak-star topology. Since the Lyapunov exponent along
the sequence provided by the bootstrapping procedure converges to zero, we obtain a limit
measure with zero Lyapunov exponent, as desired.

However, if M has dimension d > 1 then the Lyapunov exponents are no longer given by
integrals. Worse still, they can indeed be discontinuous as functions of the measure; the best
that can be said is that the top Lyapunov exponent is upper semicontinuous, while the bottom
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Lyapunov exponent is lower semicontinuous. So, even if all Lyapunov exponents along the
orbit On converge to zero as n → ∞, there is no guarantee that the limit measure will have
zero Lyapunov exponents.

Remark 2.2 Usually, semicontinuity helps when we are trying to produce equal Lyapunov
exponents (as e.g. in [6]). We could use semicontinuity here if we were able to apply
Lemma 2.1 with 1 − κn arbitrarily small, but this is not the case. Incidentally, we can apply
the lemma with εn arbitrarily small (see the proof of Theorem 4.1 in Sect. 5), but we make
no use of this fact.

We overcome this difficulty by working with a skew-product on a larger space called the
flag bundle. This permits us to recover continuity of Lyapunov exponents and thus prove
Theorem 1 by the same bootstrapping procedure. Passing to the flag bundle, however, has
a price: we lose one order of differentiability, and this is basically why our results need C2

regularity, as opposed to the C1 regularity required by [11].

2.3 Flag dynamics

If M is a compact manifold of dimension d , we denote by F M the flag bundle of M , that
is, the set of (x, F1, . . . , Fd) where x ∈ M and F1 ⊂ · · · ⊂ Fd are nested vector subspaces
of the tangent space Tx M , with dim Fi = i . Such a sequence of subspaces is called a flag
on Tx M . Then F M is a compact manifold, and the natural projection F M → M defines a
fiber bundle. Every Cr diffeomorphism g : M → M can be lifted to a Cr−1 diffeomorphism
Fg : F M → F M in the natural way, namely

Fg : (x, F1, . . . , Fd) �→ (
g(x), Dg(x)(F1), . . . , Dg(x)(Fd)

)
.

Given an IFS on M with set of generators G = (g0, . . . , g�−1) ∈ Diffr (M), r ≥ 1, then
we consider the IFS on the flag bundle F M with set of generators FG := (Fg0, . . . , Fg�−1).
Corresponding to this new IFS, we have a 1-step skew-product on �Z × F M which we will
denote by FϕG . Therefore we have the following commuting diagram, where then vertical
arrows are the obvious projections:

(2.1)

The main result we actually prove in this paper is the following:

Theorem 3 Let M be a compact connected manifold without boundary. Then there exist an
integer � ≥ 2 and an open set U in (Diff2(M))� such that for any G = (g0, . . . , g�−1) ∈ U
the 1-step skew-product FϕG has an ergodic invariant measure ν whose support is the whole
�Z × F M and whose fibered Lyapunov exponents all vanish. Moreover, the measure ν is the
weak-star limit of a sequence of FϕG-invariant measures νn, each of these supported on a
periodic orbit.
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Robust vanishing of Lyapunov exponents for IFS’s 475

Theorem 1 follows; let us see why.
If a probability measure ν on �Z ×F M is FϕG -invariant and ergodic, then its projection μ

on �Z × M is ϕG -invariant and ergodic. As we will see later, the fibered Lyapunov exponents
of (ergodic) ν can be expressed as linear functions of the integrals

I j (ν) :=
∫

(
(ωn),x,(Fi )

)
∈�Z×F M

log
∣∣det

(
Dgω0(x)|Fj

)∣∣ dν. (2.2)

This has important consequences:

(a) The fibered Lyapunov exponents of ν vary continuously with respect to ν, among ergodic
measures: if νn are ergodic measures converging to an ergodic measure ν, then the fibered
Lyapunov exponents of νn converge to those of ν.

(b) All the fibered Lyapunov exponents of (ergodic) ν vanish if and only if all the fibered
Lyapunov exponents of μ vanish.

Remark 2.3 In fact, each fibered Lyapunov exponent of μ is also a fibered Lyapunov expo-
nent of ν (see Example 3.9). Notice that there is no contradiction with the aforementioned
discontinuity of the fibered Lyapunov exponents with respect to μ. Indeed, a convergent
sequence of ϕG -invariant measures μn whose limit is ergodic may fail (even after passing to
a subsequence) to lift to a converging sequence of FϕG -invariant measures νn whose limit
is ergodic.

On one hand, property (b) makes Theorem 1 a corollary of Theorem 3. On the other hand,
property (a) extirpates the difficulty explained before, and so allows us to prove Theorem 3
by the bootstrapping procedure, as we explain next.

2.4 The bootstrapping procedure on the flag bundle

An important feature of the bootstrapping procedure of [11] is that each periodic orbit must
be hyperbolic attracting (along the fiber); this permits us to find each new orbit as a fixed
point of a contraction. So let us see how to detect contraction.

A linear isomorphism L of R
d induces a diffeomorphism F L of the corresponding man-

ifold of flags. If all eigenvalues of L have different moduli, then the map F L has a unique
attracting fixed point. This is instinctively clear; see Fig. 1. (Moreover, the map F L is Morse–
Smale, has d! fixed points, and no periodic points other than these; see [22].)

Hence if x is a fixed point of diffeomorphism g : M → M and the moduli of the eigen-
values of Dg(x) are all different and less than 1, then there is a unique flag f on Tx M such
that (x, f) ∈ F M is an attracting fixed point for Fg. The converse is true: all hyperbolic
attracting fixed points of Fg appear in this way.

Now let us sketch how to carry out a step in the bootstrapping procedure. Of course, some
conditions are needed for the IFS G; we will see along the way how these conditions should
look like.

Let us assume it is given a periodic point (ω, ξ) ∈ �Z × F M for FϕG whose fibered
Lyapunov exponents are all negative, different, and close to zero. Let p be the period of the
orbit. Then ω consists of infinite repetitions of the word w = ω0 . . . ωp−1. Then the “point-
flag” ξ is fixed and hyperbolic attracting for the diffeomorphism h1 := Fgωp−1 ◦ · · · ◦Fgω0 .

Our aim is to find a new periodic point (ω̃, ξ̃ ) for FϕG with the following properties:
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Fig. 1 A flag and its first four
iterates under F L , where
L : R

3 → R
3 has eigenvalues

2, 1, 1/2; the eigendirections are
also pictured

• The orbit of (ω̃, ξ̃ ) closely shadows the orbit of (ω, ξ) for most of the time.
• The fibered Lyapunov exponents of the new orbit are still negative and different but closer

to zero than those of the initial orbit.
• The new orbit is “denser” in the ambient space than the previous orbit.

This is roughly done as follows (see also Fig. 2):

• Take a small ball B0 around ξ in F M . Let n be very large. The ball B0 is mapped by hn
1

into a very small ball B1 around ξ .
• Then we select a long sequence of maps gs1 , gs2 , …, gsm in G such that the derivative

of h2 := Fgsm ◦ · · · ◦ Fgs1 at ξ is strongly expanding. This expansion, however, is not
strong enough to compensate the previous contraction, so h2 sends B1 into a ball B2 much
bigger than B1 but still much smaller than B0. (Actually the expansion factors must be
chosen more carefully, but we will leave the details for later.) All this is possible if the
set G has a property that we call maneuverability. (See Sect. 4 for a precise definition.)

• Next, we select maps Fgt1 , Fgt2 , …, Fgtk , such that:

– the union of successive images of the ball B2 gets close to any point in F M (we
say that this orbit makes a “tour”);
– the last image, which is h3(B2) where h3 := Fgtk ◦ · · · ◦ Fgt1 is contained in B0

(we say that the orbit “goes home”).

The length k of this part must be large, but it will be much smaller than either n or m,
so there is plenty of space for B3 to fit inside B0. (Actually the tour must be made on
�Z × F M , but this is not difficult to obtain.) This “tour and go home” phase is possible
if the IFS FG is positively minimal on F M (see Sect. 3.1).

• Since the composed map h3 ◦h2 ◦hn
1 sends the ball B0 inside itself, it has a fixed point ξ̃ .

Using that the derivatives of the maps Fgs are uniformly continuous, we are able to show
that ξ̃ is an attracting fixed point. Moreover, we can show that the h2 part has the effect
of making the Lyapunov exponents closer to zero. The effect of h3 in the Lyapunov
exponents is negligible, because the length k, despite big, is much smaller the length
pn + m of h2 ◦ hn

1.
• So we find the desired periodic point (ω̃, ξ̃ ), where ω̃ consists of infinite repetitions of

the word (ω0 . . . ωp−1)
ns1 . . . smt1 . . . tk .
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Robust vanishing of Lyapunov exponents for IFS’s 477

Fig. 2 A schematic picture of one bootstrapping step. The Bi ’s are balls in the flag manifold F M . The map
h2 corresponds to the “correcting” phase; its effect is to approximate the exponents to zero. The map h3
corresponds to the “tour and go home” phase; its effect is to scatter the support and close the orbit

We have sketched how the sequence of periodic orbits is produced. Of course, the actual
construction is more quantitative, in order to guarantee that the Lyapunov exponents indeed
converge to zero, and that the requirements of Lemma 2.1 are indeed fulfilled.

The last and relatively easy step of the proof of Theorem 3 is to show that there is
a nonempty open subset of (Diff2(M))� (for sufficiently large �) where the prerequisites
explained above (maneuverability and positive minimality on the flag manifold) are satisfied.
This is done in Sect. 10.

In conclusion, the proof of Theorem 3 follows an strategy very similar to that of [11].
However, the control of the Lyapunov exponents is much more delicate because the derivatives
do not commute. Here the flags come to our aid once again: there is a distinctive feature of
flag manifolds that permits us to put all the derivatives in a standard triangular form, and
therefore neutralize the non-commutativity effects.

2.5 A C1 construction with positive entropy but smaller support

To prove Theorem 2, we use the maneuverability property to construct an orbit in �Z × F M
where the Birkhoff sums of the functions

(
(ωn), x, (Fi )

) ∈ �Z × F M �→ log
∣∣det

(
Dgω0(x)|Fj

)∣∣
(which are the integrands that appear in (2.2)) are uniformly bounded. The compact set �G

is taken as the projection on �Z × M of the closure of this orbit. By what was seen above,
this implies the zero exponents property.

Actually we impose some redundancy on the maneuverability property, which easily
implies positive topological entropy.

2.6 Organization of the rest of paper

Section 3 contains the preliminary definitions and properties. In Sect. 4 we state explicit
conditions (maneuverability and positive minimality on the flag manifold) on the IFS G that
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guarantee the existence of the measure ν satisfying the conclusions of Theorem 3. In Sect. 5 we
state Proposition 5.1, which makes precise the input and output of the recursive construction
of periodic orbits; then, assuming this proposition, we prove that the bootstrapping procedure
yields the desired results. In Sects. 6 and 7 we prove technical consequences of minimality
and maneuverability for later use. In Sect. 8 we explain how maps on flag manifolds give
rise naturally to triangular matrices, and why this is useful. Section 9 uses the material of all
previous sections to prove the main Proposition 5.1. In Sect. 10 we prove that the existence
of nonempty open sets of IFS’s satisfying the prerequisites of maneuverability and positive
minimality on the flag manifold. Finally, in Sect. 11 we prove Theorem 2.

3 Preliminaries

In this section we collect definitions and basic properties about iterated function systems
(IFS’s), flag manifolds and bundles, and the related Lyapunov exponents. Section 8 gives
deeper extra information that is needed in the end of the proof.

3.1 Iterated function systems

If N is a compact metric space and h0, …, h�−1 are homeomorphisms of N , we denote by
〈H〉 the semigroup generated by H , i.e., the set of all maps hsm ◦ · · · ◦ hs1 , where s1, …,
sm ∈ {0, . . . , � − 1}. The concatenation w = s1 . . . sm is called a word of length m on the
alphabet {0, . . . , � − 1}; we then denote h[w] = hsm ◦ · · · ◦ hs1 .

An iterated function system (or IFS) is simply a semigroup 〈H〉 with a marked set H of
generators.

The H-orbit of x ∈ N is the set of the points h(x) where h runs on 〈H〉. We say that H
(or 〈H〉) is positively minimal if for every x ∈ N the H -orbit of x is dense in M .2

Let σ be the shift transformation on the symbolic space �Z = {0, . . . , � − 1}Z. We define
the 1-step skew-product

ϕH : �Z × N → �Z × N

over σ as (ω, y) �→ (σ (ω), hω0(y)), where ω0 is the zeroth symbol of the sequence ω.

Remark 3.1 Let us mention some relations between positive minimality and the dynamics
of the associated skew-product:

(a) If the IFS 〈H〉 is positively minimal then ϕH is transitive on �Z × N .
(b) The IFS 〈H〉 is positively minimal if and only if for every point z = (ω, x) ∈ �Z ×

N , the union of the positive iterates of the local strong unstable manifold W uu
loc(z) :={

(ω̃, x); ω̃i = ωi for all i < 0
}

under ϕH are dense in �Z × N .

We will not explicitly use these facts, so we omit the (easy) proofs.

For further use, we endow the symbolic space �Z with the distance

d
(
(sn), (tn)

) = 2−n0 , where n0 = min{|n|; sn �= tn}.
On the product �Z × N we take the maximum of the distances of the two projections.

2 Lemma 10.2 below gives a practical criterion for positive minimality of an IFS.
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Robust vanishing of Lyapunov exponents for IFS’s 479

If r, k are positive integers and s−r , s−r+1, . . . , sk are symbols in {0, . . . , � − 1}, then
the cylinder [[s−r . . . ; s0 . . . sk]] is the set of (tn)n ∈ �Z such that tn = sn for all n with
−r ≤ n ≤ k. Cylinders [[s−r . . . ; ]] and [[; s0 . . . sk]] are defined analogously.

3.2 Lyapunov exponents

It is convenient to consider Lyapunov exponents in the general setting of bundle automor-
phisms. Details can be found in the book [2].

Let X be a compact metric space. Let V be a vector bundle of rank d over X , and let
π : V → X be the bundle projection. We endow V with a Riemannian norm, that is, a
continuous choice of an inner product on each fiber.

Let T : X → X be a continuous map. Let S : V → V be a vector bundle morphism
over T , i.e., a continuous map such that π ◦ S = T ◦ π which is a linear map on each fiber.
For x ∈ X and n ∈ N, the restriction of Sn to the fiber Vx := π−1(x) gives a linear map
A(n)

S (x) : Vx → VT n x . We write AS(x) = A(1)
S (x) and so A(n)

S (x) = AS(T n−1x)◦· · ·◦AS(x).
From now on, let us assume that each linear map A(x) is an isomorphism.
In the case that the vector bundle is trivial (i.e., V = X × E where E is a vector space and

π is the projection on the second factor) then the morphism S is also called a linear cocycle,
and the map A = AS : X → GL(E) is called the generator of the cocycle.

Sometimes, with some abuse of terminology, we also call a vector bundle morphism a
cocycle.

Let μ be a T -invariant ergodic probability measure on X .3 By Oseledets Theorem, for
μ-almost every point x ∈ X and every vector v ∈ Vx � {0}, the Lyapunov exponent

lim
n→+∞

1

n
log ‖A(n)(x) · v‖,

exists; moreover the ordered list of Lyapunov exponents λ1 ≥ . . . ≥ λd with repetitions
according to multiplicity (i.e., the number of linearly independent vectors with the same
exponent) is almost everywhere independent of x .

Example 3.2 Suppose that X = M is a smooth manifold of dimension d , and V = T M is
the tangent bundle of M . Let T = g be a diffeomorphism of M , and let S = Dg be the
derivative of g. This is sometimes called the “derivative cocycle”.

Now let M be a compact smooth manifold. Given a continuous map x ∈ X �→
gx ∈ Diff1(M), we consider the skew-product map ϕ on X × M defined by ϕ(x, y) =
(T (x), gx (y)); this is called a nonlinear cocycle. If ν is a probability on X × M that is
ϕ-invariant and ergodic, then the fibered Lyapunov exponents of the nonlinear cocycle ϕ with
respect to ν are the values that can occur as limits

lim
n→+∞

1

n
log ‖D(gT n−1x ◦ · · · ◦ gx )(y) · v‖, (where v ∈ Ty M � {0})

for a positive measure subset of points (x, y) ∈ X × M . Of course, these are the previously
defined Lyapunov exponents relative to the action of the derivatives on the vector bundle
X × T M .

Example 3.3 Consider the 1-step skew-product ϕH on �Z × N defined in Sect. 3.1. If N
is a smooth manifold and each generator hs is a diffeomorphism then ϕH can be viewed

3 All the measures we consider will be defined over the corresponding Borel σ -algebra.
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as a nonlinear cocycle, and each ergodic invariant measure on �Z × N gives rise to fibered
Lyapunov exponents.

Analogously, we can also consider “nonlinear cocycles” where the product X × M is
replaced by a fiber bundle over X with typical fiber M and structure group Diff1(M). For
these nonlinear cocycles, we also consider the fibered Lyapunov exponents.

3.3 Flag manifolds and linearly induced maps

Let E be a real vector space of dimension d . A flag on E is a sequence f = (Fi )i=1,...,d of
subspaces F1 ⊂ F2 ⊂ · · · ⊂ Fd = E such that dim Fi = i for each i . If each subspace Fi

is endowed with an orientation then we say that f is an oriented flag. The set of flags (resp.
oriented flags) on E will be denoted by F E (resp. F̌ E), and called the flag manifold (resp.
oriented flag manifold) of E ; indeed a differentiable structure is defined below.

Any flag (resp. oriented flag) f = (Fi ) on E can be represented by a basis (e1, . . . , ed) of
E such that for each i, (e1, . . . , ei ) is a basis (resp. positive basis) for Fi . This representation
is not unique. However, if one fixes an inner product on E , then each oriented flag f on E
has an unique orthonormal base that represents it; this basis will be denoted by O(f).

Thus one can endow the set F̌ E with a structure of smooth manifold diffeomorphic to
O(d), the Lie group of d × d orthogonal matrices. (More details are given in Sect. 8.1.) The
disorientating mapping F̌ E → F E is 2d -to-1 covering map; its deck transformations are
smooth, and therefore we can also endow F E with a differentiable structure. The manifolds
F E and F̌ E are compact and have dimension d(d − 1)/2; the former is connected, while
the latter has 2 connected components.

If E and E ′ are vector spaces of the same dimension d , then each linear isomorphism
L : E → E ′ induces a map F L : F E → F E ′ in the obvious way:

(F1 ⊂ · · · ⊂ Fd) ∈ F E �→ (L(F1) ⊂ · · · ⊂ L(Fd)) ∈ F E ′,

By pushing-forward orientations, we define an analogous map F̌ L : F̌ E → F̌ E ′. These two
maps are actually diffeomorphisms; more information about them will be given in Sect. 8.1.

Let us fix some additional notation. Suppose that E, E ′ are vector spaces of the same
dimension d , endowed with inner products. If L : E → E ′ is a linear isomorphism and
f ∈ F̌ E , we let

M(L , f) := the matrix of L w.r.t. the bases O(f) and O((F L)(f)). (3.1)

Notice that this is an upper triangular matrix, whose diagonal entries M11, …, Mdd are
positive and satisfy the identity

M11 M22 · · · Mii = det(L|Fi ). (3.2)

Example 3.4 Suppose that E = E ′ = R
d is endowed with the Euclidian inner product, and

identify the isomorphism L with a d × d invertible matrix. Suppose f0 is the canonical flag
in R

d (i.e., that O(f) is the canonical basis in R
d ). Consider the QR decomposition of L ,

i.e., the unique factorization L = Q R where Q is an orthogonal matrix and R is an upper
triangular matrix with positive diagonal entries. (Those matrices are computed using the
Gram–Schmidt process.) Then O((F L)(f0)) is the ordered basis formed by the columns of
Q, and M(L , f0) = R.

If f in a non-oriented flag then the entries of M(L , f) are well-defined up to sign, and the
diagonal entries are well-defined and positive.
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3.4 Flag bundle dynamics

As is Sect. 3.2, let π : V → X be a vector bundle of rank d over a compact metric space X ,
endowed with a Riemannian metric, and let S : V → V be a vector bundle morphism over a
continuous map T : X → X that is invertible in each fiber.

Let FV be the flag bundle associated to V , that is, the fiber bundle over X whose fiber
(FV )x over x ∈ X is the flag manifold of Vx . The vector bundle morphism S induces a fiber
bundle morphism F S of FV also over T . This is summarized by the following diagrams:

Analogously we define the oriented versions F̌V and F̌ S.

Remark 3.5 The original proof of Oseledets Theorem relies on this construction to reduce
the general case to the case of triangular cocycles: see [19, pp. 228–229], also [14, § 4], [5,
§ 3.4.2].

Example 3.6 Let us come back to the situation of Example 3.2. Consider the flag bundle
F(T M) associated to T M ; by simplicity we denote it by F M and call it the flag bundle of
the manifold M . It is a compact manifold of dimension d(d + 1)/2, and it is connected if
M is. If T = g is Cr diffeomorphism of M , let S = Dg be the derivative of g. We obtain
an induced morphism F(Dg) of the flag bundle F(T M) = F M , which by simplicity we
denote by Fg. This morphism is a Cr−1 diffeomorphism of F M (and a homeomorphism if
r = 1). Analogously we define F̌ M and F̌g. If M is endowed with a Riemannian metric
then F̌ M can be naturally identified with the orthonormal frame bundle. The Riemannian
metric on M induces Riemannian metrics on F M and F̌ M , as explained in Sect. 8.2.

Consider an ergodic probability measure ν for F S. (Evidently, such measures always
exist.) We define the Furstenberg vector of S with respect to ν as ��(S, ν) = (�1, . . . , �d),
where

� j :=
∫

FV

log Mi,i (AS(x), f)dν(x, f). (3.3)

(Recall that AS(x) denotes the restriction of S to the fiber π−1(x).)
In view of (3.2), we have:

�1 + · · · + � j =
∫

FV

log
∣∣ det AS(x)|Fj

∣∣dν(x, f), where f = (Fi ). (3.4)

Expressions like (3.3) and (3.4) are called Furstenberg–Khasminskii formulas; see [2].
An obvious but important feature of the map ν �→ ��(ν) is that it is continuous with

respect to the weak-star topology.
The next result relates the Furstenberg vector with the previously defined Lyapunov expo-

nents:4

4 The continuous-time version of Proposition 3.7 is sometimes called the Liao spectrum theorem; see e.g. [9].

123



482 J. Bochi et al.

Proposition 3.7 Suppose ν is an ergodic probability measure for F S. Let μ be the projection
of ν on X (thus an ergodic probability measure for T ), and let λ1, …, λd be the Lyapunov
exponents of S with respect to μ. Then there is a permutation (k1, k2, . . . , kd) of (1, . . . , d)

such that the Furstenberg vector (�1, . . . , �d) is given by �i = λki .

Proof Using (3.4), the proposition follows from corresponding results for grassmannians;
see [2, pp. 265, 211]. ��

It follows from Proposition 3.7 that the Furstenberg vector is independent of the choice
of the Riemannian metric on the vector bundle V .5

The next result, which will be proved in Sect. 8.3, relates the fibered Lyapunov exponents
of the nonlinear cocycle F S with the Furstenberg vector:

Proposition 3.8 Suppose ν is an ergodic probability measure for F S, and let ��(ν) =
(�1, . . . , �d) be its Furstenberg vector. Then the fibered Lyapunov exponents of F S with
respect to ν form the list of numbers

�i − � j , where i < j,

with repetitions according to multiplicity.

Example 3.9 Consider an IFS with set of generators G = (g0, . . . , g�−1) ∈ (Diff2(M))�.
We can consider the iterated function system 〈FG〉 generated by FG = (Fg0, . . . , Fg�−1).
The associated 1-step skew-product FϕG := ϕFG fibers over ϕG , i.e., the diagram (2.1)
commutes. Let ν be an ergodic invariant probability for FϕG , and let μ be its projection
on �Z × M . Let us consider the fibered Lyapunov exponents of these nonlinear cocycles.
Let λ1 ≥ · · · ≥ λd be the fibered Lyapunov exponents of μ. Then there is a permutation
(k1, k2, . . . , kd) of (1, . . . , d) such that:

(a) regarding FϕG as a nonlinear cocycle over ϕG , the fibered Lyapunov spectrum of ν is
{λki − λk j ; i < j};

(b) regarding FϕG as a nonlinear cocycle over σ , the fibered Lyapunov spectrum of ν is
{λk} ∪ {λki − λk j ; i < j}.

In particular, we see that Theorem 3 implies Theorem 1.

4 Sufficient conditions for zero exponents

In this section we state explicit conditions on an IFS G = (g0, . . . , g�−1) ∈ (Diff1(M))�

that are sufficient for the existence of fully supported ergodic measures with zero exponents
as those in Theorem 3.

The first condition is that the IFS FG of induced homeomorphisms of the flag manifold
F M is positively minimal on F M . For conciseness, we say that the IFS G is positively
minimal on the flag manifold.

The next condition is this. We say that a finite set G ⊂ Diff1(M) has the maneuverability
property if for every (x, f) ∈ F M and for every sequence of signs t = (t1, . . . , td) ∈
{−1,+1}d , d = dim M , there is g ∈ G such that

ti log Mi,i (Dg(x), f) > 0 for each i,

5 Of course, we can also prove this fact directly by showing that when the metric is changed the integrand in
(3.3) [or (3.4)] is replaced by a cohomologous one.
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where Mi,i (Dg(x), f) is the i th entry on the diagonal of the matrix M(Dg(x), f) (defined in
Sect. 3.3).

Now we can state the following result:

Theorem 4.1 Consider a finite subset G = {g0, . . . , g�−1} of Diff2(M) with the following
properties:

(a) Positive minimality on the flag manifold.
(b) Maneuverability.
(c) There is a map g ∈ 〈G〉 with a fixed point x0 ∈ M such that the eigenvalues of Dg(x0)

are all negative, simple, and of different moduli.

Then the skew-product map FϕG possesses an ergodic invariant measure ν with support
�Z × F M whose fibered Lyapunov exponents are all zero. Moreover, the measure ν is the
weak-star limit of a sequence of FϕG-invariant measures νn, each of these supported on a
periodic orbit.

Remark 4.1 Notice that the hypotheses of the theorem are meaningful for C1 IFS’s. However,
our proof requires C2 regularity. We do not know if the C1 result is true.

Remark 4.2 It is possible (by adapting arguments from Sect. 9) to show that Conditions (a)
and (b) actually imply Condition (c), and therefore the latter could be removed from the
statement of Theorem 4.1. As our ultimate goal is to show the existence of the robust examples
from Theorems 1 and 3, we chose to sacrifice generality in favor of briefness.

The proof of Theorem 4.1 will take Sects. 5–9. In Sect. 10 we will prove that there exist
nonempty C2-open sets of IFS’s satisfying the hypotheses of the theorem (provided the
number � of generators is large enough, depending on the manifold M). Since the measure ν

produced by Theorem 4.1 satisfies precisely the conclusions of Theorem 3, the latter follows.
As we have seen in Sect. 3.4, Theorem 3 implies Theorem 1.

5 The bootstrapping procedure

As explained in the Introduction, the measure ν in Theorem 4.1 will be obtained as the limit
of a sequence of measures supported on periodic orbits, and this sequence is constructed
recursively by a “bootstrapping procedure”. We state below Proposition 5.1, which gives
the recursive step of the procedure. Then we explain how Theorem 4.1 follows from that
proposition and Lemma 2.1. The proof of the proposition is given in Sect. 9.

To begin, we need a few definitions.
The euclidian angle between two nonzero vectors u, v ∈ R

d is denoted by �(u, v).
Consider the open cone of C ⊂ R

d consisting of the vectors

C = {�λ = (λ1, . . . , λd) ∈ R
d ; 0 > λ1 > · · · > λd

}
.

We call a function τ : C → R projective if τ(t�λ) = τ(�λ) for all �λ ∈ C and t > 0.
Suppose z = (ω, y) is a periodic point of ϕG of period p. Then ω = w∞, where w is the

finite word ω0 . . . ωp−1, and y ∈ M is a fixed point of g[w]. Let us denote

�λ(z) := (λ1(z), . . . , λd(z)),

where λ1(z) ≥ · · · ≥ λd(z) are the Lyapunov exponents of the skew-product map ϕG with
respect to the invariant measure supported on the periodic orbit of z. If these exponents are
all different we define the stable flag of z by s(z) := (S1(z) ⊂ · · · ⊂ Sd(z)) where
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Si (z) = E1(z) ⊕ · · · ⊕ Ei (z)

and Ei (z) is the eigenspace of Dg[w](y) associated to λi (z). Then s(z) is a hyperbolic
attracting fixed point of Fg[w]. If in addition all exponents λi (z) are negative (i.e., �λ(z) ∈ C)
then (z, s(z)) is a hyperbolic attracting periodic point of FϕG . (Formal proofs of these
assertions will be given in Sect. 8.)

We assume a Riemannian metric was fixed on the manifold M . This induces a Riemannian
metric on the flag manifold F M , as we will see in Sect. 8.

Proposition 5.1 (Improving a periodic orbit) Consider a finite set G = {g0, . . . , g�−1} of
Diff2(M) satisfying the hypotheses of Theorem 4.1. Then there exists a projective continuous
function τ : C → (0, 1) such that the following holds:

Given numbers θ, ε, δ > 0 and a periodic point z of ϕG with �λ(z) ∈ C, there exists another
periodic point z̃ of larger period with the following properties:

(a) The vector �λ(z̃) belongs to C and satisfies

0 < ‖�λ(z̃)‖ < τ(�λ(z))‖�λ(z)‖ and �(�λ(z̃), �λ(z)) < θ. (5.1)

(b) There is a positive number κ < min(1, ‖�λ(z)‖) such that the orbit of (z̃, s(z̃)) under
FϕG ε-shadows the orbit of (z, s(z)) during a proportion 1 − κ of the time.

(c) The orbit of (z̃, s(z̃)) under FϕG is δ-dense in �Z × F M.

We remark that the proposition is a multidimensional version of Lemma 3 from [11].
Next we explain how this proposition allows us to recursively construct the desired

sequence of periodic measures whose limit is the measure sought after by Theorem 4.1.
The other ingredients are Propositions 3.7 and 3.8, which allow us to pass the Lyapunov
exponents to the limit, and Lemma 2.1, which gives the ergodicity and full support.

Proof of Theorem 4.1 By assumption (c), there is a periodic point z0 ∈ �Z ×F M of ϕG such
that �λ(z0) ∈ C. Fix a constant � > 0 such that the close �-cone around �λ(z0), that is

{�u ∈ R
d

� {0}; �(�u, �λ(z0)) ≤ �
}
,

is contained in C. Let τ : C → (0, 1) be the continuous projective function produced by
Proposition 5.1, and let τ0 be its infimum on the �-cone around �λ(z0). Then 0 < τ0 < 1.
Fix sequences (θn), (εn) and (δn) of strictly positive numbers such that

∞∑
n=0

θn < �,

∞∑
n=0

εn < ∞, lim
n→∞ δn = 0.

We will define inductively a sequence (zn) of periodic points of ϕG . Assume that zn is
already defined. Then we apply Proposition 5.1 using the numbers εn, θn and δn to find
another periodic point zn+1 with the following properties:

(a) The vector �λ(zn+1) belongs to C and satisfies

0 < ‖�λ(zn+1)‖ < τ(�λ(zn))‖�λ(zn)‖ and �(�λ(zn+1), �λ(zn)) < θn .

(b) There is a positive number κn < min(1, ‖�λ(zn)‖) such that the orbit of (zn+1, s(zn+1))

under FϕG εn-shadows the orbit of (zn, s(zn)) during a proportion 1 − κn of the time.
(c) The orbit of (zn+1, s(zn+1)) under FϕG is δn-dense in �Z × F M .
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This recursively defines the sequence (zn).
Let νn be the FϕG -invariant measure supported on the orbit of (zn, s(zn)). To complete

the proof, we will show that the sequence (νn) converges in the weak-star topology to a
measure ν with the desired properties.

Observe that

�(�λ(zn), �λ(z0)) < θ0 + · · · + θn−1 < �.

In particular τ(�λ(zn)) ≥ τ0 for every n, and therefore, by (a),

‖�λ(zn)‖ ≤ τ n
0 ‖�λ(z0)‖ and κn < min(1, τ n

0 ‖�λ(z0)‖).
The latter implies that

∏
(1 − κn) > 0. Therefore all hypotheses of Lemma 2.1 are satisfied,

and we conclude that the measure ν = lim νn exists, is ergodic, and has support

supp ν =
∞⋂

n=0

∞⋃
m=n

supp νn .

Since each supp νn is δn-dense, and δn → 0, it follows that ν has full support.
Since �λ(zn) → �0, it follows from Proposition 3.7 that the sequence of Furstenberg vectors

��(νn) also converges to zero. Since the Furstenberg vector is continuous with respect to the
weak-star topology, we have that ��(ν) = �0. This implies that the fibered Lyapunov exponents
of ν are zero (recall Example 3.9), concluding the proof of Theorem 4.1. ��

6 Exploiting positive minimality

The aim of this section is to prove Lemma 6.3, a simple but slightly technical consequence
of positive minimality, which will be used in Sect. 9 in the proof of Proposition 5.1.

We begin with the following lemma:

Lemma 6.1 (Go home) Let H = {h0, . . . , h�−1} be a positively minimal set of homeomor-
phisms of a compact metric space N. For every nonempty open set U ⊂ N there exists
k0 = k0(U ) ∈ N

∗ such that for every x ∈ N there exists a word w of length at most k0 on
the alphabet {0, . . . , � − 1} such that h[w](x) ∈ U.

Proof Fix the set U . By positive minimality, for every x ∈ N there is a word w(x) on the
alphabet {0, . . . , � − 1} such that h[w(x)](x) ∈ U . By continuity, there is a neighborhood
V (x) of x such that h[w(x)](V (x)) ⊂ U . By compactness, we can cover N by finitely many
sets V (xi ). Let k0 be the maximum of the lengths of the words w(xi ). ��

For the next lemma, recall from Sect. 3.1 the distance on �Z × N and the cylin-
der notation. Let us also use the following notation for segments of orbits: f [0,k](x) :=
{x, f (x), f 2(x), . . . , f k(x)}.
Lemma 6.2 (Tour and go home) Let H = {h0, . . . , h�−1} be a positively minimal set of
homeomorphisms of a compact metric space N. For every δ > 0 and every nonempty open
set U ⊂ N, there exists k1 = k1(δ, U ) ∈ N

∗ such that for every x ∈ N there exists a word
w = s0s1 . . . sk−1 of length k ≤ k1 on the alphabet {0, . . . , � − 1} such that:

(a) for every ω ∈ [[; s0s1 . . . sk−1]], the segment of orbit ϕ
[0,k]
H (ω, x) is δ-dense in �Z × N;

(b) h[w](x) ∈ U.
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Proof Let δ and U be given. Choose a finite (δ/2)-dense subset Y ⊂ N . Let m ∈ N be such
that 2−m ≤ δ and let W be the set of all words of length 2m +1 on the alphabet {0, . . . , �−1}.
Enumerate the set Y × W as {(yi , wi ) ; 1 ≤ i ≤ r}. For each i ∈ {1, . . . , r}, let Bi be the
open ball of center yi and radius δ/2. Let w−

i be the initial subword of wi of length m, and

let Ui = (
h[w−

i ]
)−1

(Bi ). Define also Ur+1 = U .

Let x ∈ N be given. We apply Lemma 6.1 and find a word w′
1 of length at most k0(U1) such

that h[w′
1] sends x into U1. Inductively, assuming that words w′

1, …, w′
i−1 (where i ≤ r + 1)

are already defined, we apply Lemma 6.1 and find a word w′
i of length at most k0(Ui ) such

that h[w′
i ] sends h[w′

1w1...w
′
i−1wi−1](x) into Ui . Define

w = w′
1w1 . . . w′

rwrw
′
r+1.

We can bound the length k of w independently of x .
Property (b) is obviously satisfied; let us check property (a). Assume that ω ∈

[[; s0s1 . . . sk−1]], where w = s0s1 . . . sk−1. Fix any point (ω∗, x∗) ∈ �Z×N ; we will show that
a point in the segment of orbit ϕ[0,k]

H (ω, x) is δ-close to (ω∗, x∗). Write ω∗ = (s∗
n )n∈Z. By the

δ/2-denseness of Y and the definition of the set {(yi , wi ); 1 ≤ i ≤ r}, there exists i such that

d(yi , x∗) < δ/2 and wi = s∗−m . . . s∗
m .

Let ni be the length of the word w′
1w1 . . . w′

i−1wi−1w
′
iw

−
i ; so m ≤ ni ≤ k − m. Consider

the iterate (xni , ωni ) = ϕ
ni
H (ω, x). Then we have:

• xni ∈ Bi , that is, d(xni , yi ) < δ/2, and in particular d(xni , x∗) < δ.
• ωni ∈ [[s0 . . . sni −1; sni . . . sk−1]] and in particular d(ωni , ω

∗) ≤ 2−m ≤ δ, because
sni −m . . . sni +m = wi = s∗−m . . . s∗

m .

This shows that (ωni , xni ) and (ω∗, x∗) are δ-close, concluding the proof. ��
The following is an immediate corollary of Lemma 6.2.

Lemma 6.3 (Group tour and go home) Let H = {h0, . . . , h�−1} be a positively minimal set
of homeomorphisms of a compact metric space N. For every δ > 0 and every nonempty open
set U ⊂ N, there exist � = �(δ, U ) > 0 and k1 = k1(δ, U ) ∈ N

∗ such that for every ball
B ⊂ N of radius �, there exists a word w = s0s1 . . . sk−1 on the alphabet {0, . . . , � − 1} of
length k ≤ k1 such that:

(a) for every (ω, x) ∈ [[; s0s1 . . . sk−1]] × B, the segment of orbit ϕ
[0,k]
H (ω, x) is δ-dense in

�Z × N;
(b) h[w](B) ⊂ U.

Proof Use Lemma 6.2 and continuity. ��

7 Exploiting maneuverability

The next lemma says that if an induced IFS on the flag bundle satisfies the maneuverability
condition, then we can select orbits whose derivatives in the upper triangular matrix form
(3.1) have approximately prescribed diagonals.

Lemma 7.1 (Products with prescribed diagonals) If G = {g0, . . . , g�−1} ⊂ Diff1(M) has
the maneuverability property then there exists c > 0 such that the following holds. For every
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η > 0 there is q ∈ N
∗ such that for all (x, f) ∈ F M and every (χ1, . . . , χd) ∈ [−c, c]d there

is a word w of length q on the alphabet {0, . . . , � − 1} such that

∣∣∣∣ 1

q
log Mi,i (Dg[w](x), f) − χi

∣∣∣∣ < η

for all i = 1, . . . , d.

Proof Take C > 0 such that, for all s ∈ {0, . . . , � − 1} and x ∈ M ,

e−C ≤ ‖(Dgs(x))−1‖−1 ≤ ‖Dgs(x)‖ ≤ eC . (7.1)

Using continuity and compactness, we can make maneuverability uniform in the following
way: there exists a constant c > 0 such that for every (x, f) ∈ F M and for every sequence
of signs t = (t1, . . . , td) ∈ {−1,+1}d there is s ∈ {0, . . . , � − 1} such that

ti log Mi,i (Dgs(x), f) ≥ c for each i.

Notice that [as a consequence of (3.2)] the left hand side is at most C . Given η > 0, let
q := �C/η�.

Now let (x, f) ∈ F M and (χ1, . . . , χd) ∈ [−c, c]d be given. We inductively define the
symbols s0, s1, …, sq−1 forming the word w. The idea of the proof is simple: at each step
we look at diagonal obtained so far, choose signs pointing towards the objective vector
(χ1, . . . , χd), and apply uniform maneuverability to pass to the next step.

Precisely, we choose the symbol s0 so that for each i = 1, . . . , d , the number λ
(0)
i :=

log Mi,i (Dgs0(x), f) has absolute value at least c and has the same sign as χi (where we
adopt the convention that the sign of 0 is +1). Assume that s0, …, sn−1 were already defined.
Let (xn, fn) := (Fg[s0s1...sn−1])(x, f). Then we choose the symbol sn such that for each

i = 1, . . . , d , the number λ
(n)
i := log Mi,i (Dgsn (xn), fn) has absolute value at least c and

has the same sign as the number

δ
(n)
i := n · χi − log Mi,i (Dg[s0s1...sn−1](x), f) = n · χi −

n−1∑
j=0

λ
( j)
i .

Let us prove that this sequence of symbols has the required properties. Let i ∈ {1, . . . , d}
be fixed. We will prove the following fact, which (in view of the definition of q) implies the
lemma:

∣∣∣δ(n)
i

∣∣∣ ≤ C for eachn ∈ {1, . . . , q}. (7.2)

First we check the case n = 1. Since λ
(0)
i and χi have the same sign, we have

∣∣∣δ(1)
i

∣∣∣ =
∣∣∣χi − λ

(0)
i

∣∣∣ ≤
∣∣∣λ(0)

i

∣∣∣ ≤ C,
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where in the last step we used (7.1). Next, assume that (7.2) holds for some n < q . Then∣∣∣δ(n+1)
i

∣∣∣ =
∣∣∣χi + δ

(n)
i − λ

(n)
i

∣∣∣
≤
∣∣∣χi

∣∣∣ +
∣∣∣δ(n)

i − λ
(n)
i

∣∣∣
=

∣∣∣χi

∣∣∣ +
∣∣∣∣∣δ(n)

i

∣∣ − ∣∣λ(n)
i

∣∣∣∣∣ (because δ
(n)
i and λ

(n)
i have the same sign)

=
∣∣∣χi

∣∣∣︸︷︷︸
≤c

+ max
(∣∣δ(n)

i

∣∣, ∣∣λ(n)
i

∣∣)
︸ ︷︷ ︸

≤C

− min
(∣∣δ(n)

i

∣∣, ∣∣λ(n)
i

∣∣)
︸ ︷︷ ︸

≥c

≤ C.

This proves (7.2) and the lemma. ��
Remark 7.2 Estimate (7.2) resembles general results by Shapley, Folkman, and Starr on the
approximation of convex hulls of a sum of sets by points of the sum; see [3, p. 396ff].

8 Triangularity

Estimating the size of products of matrices (and hence computing Lyapunov exponents) may
be a difficult business. The task is much simpler if the matrices happen to be upper triangular:
in that case the non-commutativity is tamed (see Proposition 8.5 and Lemma 8.6 below).
Working in the flag bundle has the advantage of making all derivatives upper triangular, in a
sense that will be made precise.

8.1 Linearly induced map between flag manifolds

We continue the discussion from Sect. 3.3. Here we will give geometrical information about
diffeomorphisms F L : F E → F E ′ induced by linear maps L : E → E ′.

Fix an integer d ≥ 2. Recall that the orthonormal group O(d) is a compact manifold
of dimension d(d − 1)/2, whose tangent space at the identity matrix is the vector space
so(d) of antisymmetric matrices. For each (i, j) with 1 ≤ j < i ≤ d , let Xi j be the d × d
matrix such that its (i, j)-entry is 1, its ( j, i)-entry is −1, and all other entries are zero. Then
(Xi j )1≤ j<i≤d is a basis of so(d). For reasons that will become apparent later, we order this
basis as follows:(

Xd,1 ; Xd−1,1, Xd,2 ; Xd−2,1, Xd−1,2, Xd,3 ; . . . ; X2,1, X3,2, . . . , Xd,d−1
)
. (8.1)

We call this the canonical basis or canonical frame of so(d). Pushing forward by
right translations, we extend this to a frame field on O(d), called the canonical frame
field. We take on O(d) the Riemannian metric for which the canonical frames are
orthonormal.6

Now let E be a real vector space of dimension d , endowed with an inner product. Given
any ordered flag f0 ∈ F̌ E , recall that O(f0) represents the ordered orthonormal basis that
represents f0. We define a bijection ιf0 : F E → O(d) as follows: ιf0(f) is the matrix of the

6 This metric is obviously right-invariant. Actually, it is also left-invariant. Indeed, a calculation shows that
〈X, Y 〉 = − tr XY/2 for X, Y ∈ so(d), which is invariant under the adjoint action of the group, and therefore
can be uniquely extended to a bi-invariant Riemannian metric. Another remark: this inner product is the Killing
form divided by −2(d − 2) (if d > 2).
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basis O(f) with respect to the basis O(f0). Notice that given another flag f1, the following
diagram commutes:

Since right translations are diffeomorphisms, we can pull-back under any ιf0 the differentiable
structure of O(d) and obtain a well-defined differentiable structure of F̌ E . (This makes
more precise the explanation given in Sect. 3.3.) Analogously, right translations preserve the
canonical frame field on O(d), we can pull it back under any ιf0 and obtain a well-defined
frame field on F̌ E that we call canonical. We endow F̌ E with the Riemannian metric that
makes these frames orthonormal.

Let L : E → E ′ be an isomorphism between real vector spaces of dimension d . Endow E
and E ′ with inner products and consider on F̌ E and F̌ E ′ the associated canonical frame fields.
For any f ∈ F̌ E , let T (L , f) denote the matrix of the derivative of the map F̌ L : F̌ E → F̌ E ′
with respect to the frames at the points f and (F̌ L)(f).

The following result is probably known, but we weren’t able to find a reference:

Proposition 8.1 The matrix T (L , f) is upper triangular. The entries in its diagonal form the
list (with repetitions according to multiplicity):

Mi,i (L , f)

M j, j (L , f)
where 1 ≤ j < i ≤ d. (8.2)

Proof Fix any f ∈ F̌ E and let f′ = F L(f). Let � = �L ,f be the diffeomorphism that makes
the following diagram commute:

Notice that � fixes the identity matrix, and that T (L , f) coincides with the matrix of D�(Id)

with respect to the canonical basis (8.1) of so(d).
Let R = M(L , f). If Q ∈ O(d) then �(Q) is the unique matrix Q̂ ∈ O(d) such that

RQ = Q̂ R̂ for some upper triangular matrix R̂ with positive diagonal entries.7

Given X ∈ so(d), let us compute Y := D�(Id)(X). Take a differentiable curve Q(t)
such that Q(0) = Id and Q′(0) = X . Let Q̂(t) = �(Q(t)); so Y = Q̂′(0). Write RQ(t) =
Q̂(t)R̂(t), where R̂(t) is upper triangular with positive diagonal entries. Differentiating this
relation at t = 0, and using that Q̂(0) = Id and R̂(0) = R, we obtain R X = Y R + R̂′(0).
In particular, R X R−1 − Y is upper triangular. It follows that Y is the unique antisymmetric
matrix whose under-diagonal part coincides with the under-diagonal part of R X R−1. More
explicitly, write R = (ri j ), R−1 = (si j ), X = (xi j ), Y = (yi j ); then

i > j ⇒ yi j =
∑
k,�

rik xk�s�j .

7 Those familiar with the QR algorithm will recognize this equation; see Remark 8.3.
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Consider the matrix T (L , f) of D�(Id) with respect to the canonical basis {Xi, j }1≤ j<i≤d of
so(d); its ((i, j), (k, �))-entry is riks�j , which vanishes unless k ≥ i > j ≥ �. In particular,
this entry vanishes if i − j > k − �. Under the chosen ordering (8.1) of the canonical basis
{Xi, j }, the sequence i − j is nonincreasing. Therefore T (L , f) is an upper triangular matrix.
What are its diagonal entries? The ((i, j), (i, j))-entry is rii s j j = rii/r j j . ��

Let us now consider non-oriented flags. Let H be the subgroup of O(d) formed by the
matrices ⎛

⎜⎝
±1

. . .

±1

⎞
⎟⎠ . (8.3)

Take any f0 ∈ F̌ E . Then there is a bijection [ιf0 ] such that the following diagram commutes:

The adjoint action of H does not preserve the canonical frame on so(d), but each vector in the
frame is either preserved or multiplied by −1, so the action preserves an “up-to-sign frame”.
We push it forward by right translations and obtain a field of up-to-sign frames on O(d)/H ,
which is then pulled back to a well-defined field of up-to-sign frames on F E . There is are
unique Riemannian metrics that make these up-to-sign frames orthonormal.

Now consider the diffeomorphism F L : F E → F E ′ induced by a liner isomorphism
L : E → E ′. Let T (L , f) denote the up-to-sign matrix of the derivative of the map F L with
respect to the up-to-sign frames at the points f and (F̌ L)(f). Notice that the diagonal entries
are well-defined. It follows from Proposition 8.1 that this “matrix” is upper-triangular and
that its diagonal entries are the numbers (8.2).

As a consequence, we have the following fact:8

Corollary 8.2 (Stable flag) Suppose that L : E → E is a linear isomorphism whose eigen-
values have distinct moduli and are ordered as |λ1| > · · · > |λd |. Consider the flag
s = (Si ) ∈ F E where Si is spanned by eigenvectors corresponding to the first i eigen-
values. Then s is a hyperbolic attracting fixed point of F L.

Remark 8.3 The QR algorithm is the most widely used numerical method to compute the
eigenvalues of a matrix A0 ∈ GL(d, R) (see [23, p. 356]).9 It runs as follows: starting with
n = 0, compute the QR decomposition of An , say, An = Qn Rn , let An+1 := Rn Qn ,
increment n, and repeat. Let us interpret the sequence of matrices An produced by the algo-
rithm in terms of the diffeomorphism F A0 : FR

d → FR
d . If f0 is the canonical flag of

R
n then An is the matrix of A0 with respect to an orthonormal basis that represents the

flag fn := (F A0)
n(f0). If the eigenvalues of A0 have different moduli then the sequence

(fn) converges. (Actually F A0 is a Morse–Smale diffeomorphism whose periodic points are
fixed: see [22].) It follows that the sequence (An) converges to upper triangular form. In

8 Similar results are obtained in [22]; see Lemma 4.
9 We thank Carlos Tomei for telling us about the QR algorithm.
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particular, if n is large then the diagonal entries of An give approximations to the eigenvalues
of A0. (In practice, the algorithm is modified in order to accelerate convergence and reduce
computational cost.)

8.2 Geometry of the flag bundles

Now consider a compact connected manifold M . We will discuss in more detail the flag
bundles F̌ M and F M , defined in Example 3.6.

The tangent space of the flag manifold F̌ M at a point ξ = (x, f) ∈ F̌ M has a canonical
subspace called the vertical subspace, denoted by Vert(ξ), which is the tangent space of the
fiber (F̌ M)x = F̌(Tx M) at ξ .

Now fix a Riemannian metric on M . Then we can define the horizontal subspace, denoted
Horiz(ξ), as follows: for each smooth curve starting at the point x , consider the parallel
transport of the flag f, which gives a smooth curve in the manifold F̌ M ; consider the initial
velocity w ∈ Tξ (F̌ M) of the curve. Then Horiz(ξ) consists of all vectors w obtained in this
form.10 The tangent space of F̌ M at ξ splits as

Tξ (F̌ M) = Vert(ξ) ⊕ Horiz(ξ). (8.4)

If π : F̌ M → M is the projection, then Vert(ξ) is the kernel of the derivative Dπ(ξ), and
the restriction of to Horiz(ξ) is an isomorphism onto Tx M .

Since Vert(ξ) = Tf(F̌(Tx M)), there is a well-defined canonical frame on Vert(ξ) (see the
previous subsection). On the other hand, there is a natural frame on Horiz(ξ), namely, the
unique frame sent by Dπ(ξ) to the frame O(f) of Tx M . By concatenating these two frames
(in the same order as in (8.4)), we obtain a frame of Tξ (F̌ M), which will called canonical.
So we have defined a canonical field of frames on F̌ M . We endow F̌ M with the Riemannian
metric that makes these frames orthonormal.

Suppose that g : M → M is a C2 diffeomorphism. Then g induces a C1 diffeomorphism
F̌g : F̌ M → F̌ M . Take ξ = (x, f) ∈ F̌ M and consider the derivative D(F̌g)(ξ); expressing
it as a matrix with respect to the canonical frames, we obtain:

(
T (Dg(x), f) ∗

0 M(Dg(x), f)

)
, (8.5)

where M and T are the matrices defined in Sects. 3.3 and 8.1, respectively. Recalling Propo-
sition 8.1, we see that the matrix (8.5) is upper triangular, and the entries in its diagonal
are:

Mi,i (Dg(x), f)

M j, j (Dg(x), f)
and Mk,k(Dg(x), f) (where 1 ≤ j < i ≤ d and 1 ≤ k ≤ d). (8.6)

The case of non-oriented flags is analogous. There is a canonical field of “up-to-sign
frames” on F M . Given a diffeomorphism g and a point ξ = (x, f) ∈ F M the entries of the
matrix (8.5) which represents D(Fg)(ξ); are defined up to sign, while the diagonal entries
are well-defined.

Remark 8.4 The triangularity property seem above can be summarized abstractly as follows:
The fiber bundle F̌(F̌ M) → F̌ M has a special section which is invariant for under F̌(F̌g),
for any g ∈ Diff2(M).

10 This field of horizontal subspaces is actually an Ehresmann connection on the principal bundle F̌ M .
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8.3 The Lyapunov exponents in the flag bundle

Using the description obtained in Sect. 8.1 for the derivatives of linearly-induced maps on
flag manifolds, the proof of Proposition 3.8 will be reduced to the following standard result:

Proposition 8.5 (Lyapunov exponents of triangular cocycles) Let T : X → X be a contin-
uous transformation of a compact metric space, and let μ be an ergodic invariant measure
for T . Suppose A : X → GL(d, R) is a continuous map that takes values on upper-triangular
matrices. Consider the morphism S(x, v) = (T (x), A(x) · v) of the trivial vector bundle
V = X × R

d . Then the Lyapunov exponents of S with respect to μ, repeated according to
multiplicity, are the numbers∫

X

log |aii (x)|dμ(x), i = 1, 2, . . . , d,

where aii (x) are the diagonal entries of the matrix A(x).

Proof See Lemma 6.2 in [14] (as mentioned there, the argument applies to any triangular
cocycle over a compact metric space).11 ��
Proof of Proposition 3.8 We fix a continuous map T : X → X of a compact metric space X ,
a vector bundle V of rank d over X endowed with a Riemannian metric, and a vector bundle
morphism S : V → V over T . that is invertible in each fiber.

First we will prove the corresponding statement of Proposition 3.8 for oriented flags.
Let π : F̌V → X be the bundle projection. Consider the vector bundle W over F̌V
whose fiber Wξ over ξ ∈ FV is the tangent space of the flag manifold F̌(Vπ(ξ)) at ξ .
Using the canonical frame field explained in Sect. 8.1, this vector bundle can be trivialized
as W = (F̌V ) × R

d(d−1)/2. The derivative of F̌ S : F̌V → F̌V induces a vector bun-
dle automorphism U : W → W , which under the trivializing coordinates has a generator
A : X → GL(d(d − 1)/2, R) taking values on upper triangular matrices, with diagonals
given by expressions as (8.2). Applying Proposition 8.5, the desired result follows.

The case of non-oriented flags follows easily from the oriented case and the following
observation: any F S-invariant ergodic probability on FV can be lifted to a F̌ S-invariant
ergodic probability on F̌V . ��

8.4 Products of triangular matrices

Proposition 8.5 indicates that off-diagonal entries of “random” products of triangular matrices
are dominated by the diagonals. We will also need the following simple deterministic version
of this fact:

Lemma 8.6 (Products of triangular matrices) Given numbers d ∈ N
∗, C > 1, λ ∈ R, and

η > 0, there exists N ∈ N
∗ with the following property: If R(0), R(1), …is a sequence of

upper triangular matrices whose entries satisfy the bounds

|Ri, j (n)| ≤ C,

C−1 ≤ |Ri,i (n)| ≤ eλ.

11 As we mentioned in Remark 3.5, Oseledets [19] reduced the proof of his theorem to the triangular case.
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Then, for every n ≥ N,

‖R(n − 1) · · · R(0)‖ ≤ e(λ+η)n .

Proof Let P(n) = R(n − 1) · · · R(0). For i ≤ j , the (i, j)-entry of this matrix is given by

Ri, j (n) =
∑

R jn , jn−1(n − 1) · · · R j2, j1(1)R j1, j0(0),

where the sum is taken over all non-increasing sequences

j = j0 ≥ j1 ≥ · · · ≥ jn = i. (8.7)

Fix one of those sequences. Let m be the number of strict inequalities that appear in (8.7).
Then

|R jn , jn−1(n − 1) · · · R j2, j1(1)R j1, j0(0)| ≤ Cmeλ(n−m) ≤ C2meλn .

Using that m ≤ d − 1, and summing over all sequences (8.7), we obtain

|Pi, j (n)| ≤ C2(d−1)

(
n

j − i

)
eλn .

Since these binomial coefficients are polynomial functions of n, the lemma follows. ��

9 Improving a periodic orbit

In this section we prove Proposition 5.1. A very rough outline of the proof can be found
in Sect. 2.4; the basic notation can be found in Fig. 2. Let us give some extra informal
explanations before the actual proof:

• The matrices in (8.5) that represent the derivatives are upper-triangular; to determine the
Lyapunov exponents of the new periodic orbit we only need to know the matrix diagonals.
In particular, since the “tour and go home” proportion of the orbit will be much smaller
than the rest, it will be negligible for the estimation of Lyapunov exponents.

• Nevertheless, we still will need to estimate norms of derivatives, since we will want to fit
images of balls inside balls (recall Sect. 2.4). Lemma 8.6 allows us to basically disregard
the off-diagonal elements. It is important to apply Lemma 8.6 only after multiplying
together the derivatives along each segment of orbit provided by Lemma 7.1, because
then the diagonal is controlled.

• Let �λ = (λi ) be the Lyapunov vector of the given periodic orbit. Let (λ̃i ) denote the
(still to be determined) new exponents, and let (χi ) be the exponents along the correcting
phase (corresponding to h2 in Sect. 2.4). So λ̃i � (1−κ0)λi +κ0χi , where κ0 is the (still
to be determined) approximate proportion of the correcting phase. We want the vectors
(λ̃i ) and (λi ) to form a small angle; so we take χi = −aλi , for some proportionality
factor a > 0. The largest correcting exponent we can take is the number c given by
Lemma 7.1. We take χd = c, and so we determine a = c/|λd |.

• Let γ = γ (�λ) be the least gap in the sequence 0 > λ1 > · · · > λd , that is,

γ (�λ) := min
{ − λ1, λ1 − λ2, λ2 − λ3, . . . , λd−1 − λd

}
. (9.1)

It follows from the description of derivatives from (8.2) that the maximum expansion
exponent (on F M) around the original orbit is −γ (�λ). Analogously, the maximum expan-
sion exponent along the correcting phase is χd = c. Since we want the ball B2 to have
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(much) smaller radius than B0, it is necessary that (1 − κ0)(−γ ) + κ0c < 0, that is,
κ0 < γ/(γ + c). We choose

κ0 := γ

2C
,

where C > max(γ, c) is an upper bound for all expansions.
• Finally, we estimate the factor

|λ̃i |
|λi | � (1 − κ0) + κ0(−a) ≤ 1 − aκ0 = 1 − cγ

2C |λd | .

We choose τ as something bigger than the right-hand side, e.g.:

τ(�λ) := 1 − c

C
· γ (�λ)

|λd | , (9.2)

This is a continuous projective function, as required.

Now we give the formal proof:

Proof of Proposition 5.1 Suppose the set G = {g0, . . . , g�−1} ⊂ Diff2(M) satisfies the
assumptions (a), (b) and (c) of Theorem 4.1. Fix constants C > c > 0, where C satisfies
(7.1) and c is given by Lemma 7.1. For any �λ ∈ C, let γ (�λ) be the “gap” defined by (9.1).
Define the function τ : C → (0, 1) by (9.2).

Now fix a periodic point z of ϕG with �λ(z) ∈ C and constants θ, ε, δ > 0. For simplicity,
write (λ1, . . . , λd) = �λ = �λ(z) and γ = γ (�λ). Let p be the minimal period of z; so z =
(w∞, x0) where w is a word of length p and x0 ∈ M . Let f0 = s(z) and ξ0 = (x0, f0) ∈ F M .
By definition,

λi = 1

p
log Mi,i

(
Dg[w](x0), f0). (9.3)

Let η > 0 be a very small number; we will see along the proof how small it needs to
be. Of course, each smallness condition that will appear must involve only the objects that
defined up to this point.

Let n0 ∈ N
∗ be such that

2−pn0 < ε. (9.4)

To simplify notation, let hs = Fgs for each letter s = 0, . . . , � − 1, and so h[w] = Fg[w]
for each word on this alphabet.

If ξ ∈ F M and r > 0, let B(ξ, r) ⊂ F M denote the ball of center ξ and radius r , with
respect to the Riemannian norm on F M explained in Sect. 8.2.

Claim 9.1 There exist � > 0 and n1 ∈ N
∗ such that:

ξ ∈ B(ξ0, �), j ≥ n1 ⇒ ∥∥Dh[w j ](ξ)
∥∥ ≤ exp

[
(−γ + 3η)pj

]
. (9.5)

In particular,

h[wn1 ]
(
B(ξ0, �)

) ⊂ B(ξ0, �). (9.6)

Proof of the claim The map h[w] has ξ0 as an attracting fixed point. Recalling (8.6), we see
that the moduli of the eigenvalues of Dh[w](ξ0) are the numbers

eλk p and e(λi −λ j )p where 1 ≤ k ≤ d and 1 ≤ j < i ≤ d.
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In particular, the spectral radius of Dh[w](ξ0) is e−γ p . Therefore there is j0 ∈ N
∗ such that

‖Dh[w j0 ](ξ0)‖ ≤ exp
[
(−γ + η)pj0

]
.

By continuity of Dh[w], there is � > 0 such that

ξ ∈ B(ξ0, �) ⇒ ∥∥Dh[w j0 ](ξ)
∥∥ ≤ exp

[
(−γ + 2η)pj0

]
.

The right-hand side is less than 1 (because η is very small); in particular, h[w j0 ] maps B(ξ0, �)

into itself. Let C1 := supF M ‖Dh[w]‖ ≥ 1. It follows from submultiplicativity of norms that
for every j ≥ j0 and ξ ∈ B, we have

∥∥Dh[w j ](ξ)
∥∥ ≤ C j− j0� j/j0�

1 exp
[
(−γ + 2η)pj0� j/j0�

]
≤ C j0−1

1 exp
[
(−γ + 2η)p( j − j0 + 1)

]
.

For sufficiently large j , the right-hand side is less than exp
[
(−γ + 3η)pj

]
, as we wanted to

show. ��
By continuity, we can reduce � so that it has the following additional properties:

h[ŵ](B(ξ0, �)) ⊂ B
(
h[ŵ](ξ0), ε

)
for any word ŵ of length ≤ pn1. (9.7)

and

e−η <
Mii

(
Dg[w](x), f

)
Mii

(
Dg[w](x0), f0

) < eη ∀(x, f) ∈ B(ξ0, �), ∀i = 1, . . . , d. (9.8)

Define

χi := c|λi |
|λd | . (9.9)

Notice that the vectors (χi ) and (λi ) are collinear, and that

0 < χ1 < χ2 < · · · < χd = c. (9.10)

Using Lemma 7.1, we find q∗ ∈ N
∗ associated to the precision η. We inductively define a

sequence w∗
j of words of length q∗ as follows: Assume w∗

0 , …, w∗
j−1 were already defined.

Let ξ∗
j = (x∗

j , f∗j ) = h[w∗
j−1···w∗

0 ](ξ0). Since |χi | ≤ c, we can apply Lemma 7.1 and select a

word w∗
j of length q∗ such that

∣∣∣∣ 1

q∗ log Mi,i

(
Dg[w∗

j ](x∗
j ), f∗j

)
− χi

∣∣∣∣ < η for all i = 1, . . . , d. (9.11)

For any j , consider the (up-to-sign) matrix of Dh[w j ](ξ∗
j ) with respect to the canonical

frames, as explained in Sect. 8.2. The diagonal entries are well-defined. By (8.5), and using
(9.11) and (9.10), we see that all these diagonal entries are less than e(c+2η)q . We apply
Lemma 8.6 and find N ∈ N

∗ such that∥∥Dh[w∗
j w

∗
j+1...w

∗
j+N−1](ξ

∗
j )
∥∥ ≤ exp

[(
c + 3η

)
q∗N

]
for each j ≥ 0. (9.12)

Let us concatenate the words w∗
0, w∗

1, . . . in blocks of N words, thus forming a sequence
w0, w1, . . . of words of length q := q∗N :

w∗
0 . . . w∗

N−1︸ ︷︷ ︸
w0

w∗
N . . . w∗

2N−1︸ ︷︷ ︸
w1

w∗
2N . . . w∗

3N−1︸ ︷︷ ︸
w2

. . .
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So (9.11) gives∣∣∣∣ 1

q
log Mi,i

(
Dg[wN j ](x∗

N j ), f∗N j

)
− χi

∣∣∣∣ < η for all i = 1, . . . , d. (9.13)

Also, defining ξ j := ξ∗
N j , (9.12) gives

∥∥Dh[w j ](ξ j )
∥∥ ≤ exp

[(
c + 3η

)
q
]

for each j ≥ 0. (9.14)

We apply Lemma 6.3 to the set U = B(ξ0, �) and find numbers �′ > 0 and k1 ∈ N

with the following properties: For every ball B ′ ⊂ F M of radius �′, there exists a word
w′ = s0s1 . . . sk−1 of length k ≤ k1 such that:

for every (ω, x) ∈ [[; s0s1 . . . sk−1]] × B ′,
the segment of orbit ϕ

[0,k]
H (ω, x)is δ − dense in �Z × F M

}
(9.15)

and

h[w′](B ′) ⊂ B(ξ0, �). (9.16)

Using that the maps in G are C2, we reduce �′ if necessary so that it has the following
additional property: if ξ ′ = (x ′, f′) and ξ ′′ = (x ′′, f′′) ∈ F M are �′-close then for any word
ŵ of length q ,

e−η <

∥∥Dh[ŵ](ξ ′)
∥∥∥∥Dh[ŵ](ξ ′′)
∥∥ < eη, (9.17)

e−η <
Mii

(
Dg[ŵ](x ′), f′

)
Mii

(
Dg[ŵ](x ′′), f′′

) < eη for each i = 1, . . . , d. (9.18)

Define

κ0 := γ

2C
, (9.19)

−β := (1 − κ0)(−γ ) + κ0c. (9.20)

Since c and γ are less than C , we have

β =
(

1 − γ + c

2C

)
γ > 0.

Now we choose large integers n, m with the following properties:

n ≥ n1, (9.21)

κ0 − η <
qm

pn + qm
< κ0, (9.22)

max(p, n0, k1)

pn + qm
< η, (9.23)

� exp

[
−β

2
(pn + qm)

]
< �′. (9.24)

Let

r j := � exp
[
(−γ + 3η)pn

]
exp [(c + 4η)q j] , for j = 0, 1, . . . , m.

It follows from (9.21) and (9.5) that

h[wn ]
(
B(ξ0, �)

) ⊂ B(ξ0, r0). (9.25)
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Claim 9.2 r j < �′ for each j = 0, 1, . . . , m.

Before proving this claim, notice that together with (9.14) and (9.17), it implies that

h[w j ]
(
B(ξ j , r j )

) ⊂ B
(
h[w j ](ξ j ), e(c+4η)qr j

) = B(ξ j+1, r j+1). (9.26)

Proof of the Claim 9.2 Since r0 ≤ r1 ≤ · · · ≤ rm , we only need to estimate rm . It follows
from the second inequality in (9.22) that

rm ≤ � exp
[(

(1 − κ0)(−γ ) + κ0c︸ ︷︷ ︸
−β

+8η
)
(pn + qm)

]
.

So, imposing η < β/14 (which is allowed), the claim follows from (9.24). ��
Let B ′ := B(ξm, �′) and find a corresponding word w′ = s0s1 . . . sk−1 of length k ≤ k1

with the properties “group tour” (9.15) and “go home” (9.16).
Consider the following word of length pn + qm + k:

w̃ = wnw0 · · · wm−1w
′.

It follows from properties (9.25), (9.26), and (9.16) that

h[w̃]
(
B(ξ0, �)

) ⊂ B(ξ0, �).

So h[w̃] has a fixed point ξ̃ = (x̃, f̃) inside B(ξ0, �). In particular, z̃ := (w̃∞, x̃) is a periodic
point for ϕG , with period pn + qm + k.

This concludes the construction of the “improved” periodic orbit. The rest of the proof
consists of checking that this orbit has the desired properties (a), (b), (c).

Verifying property (a). Consider the (periodic) orbit of (z̃, f̃) under FϕG :

(σ j (w̃∞), x̃ j , f̃ j ) := (FϕG) j (w̃∞, x̃, f̃), where j ∈ Z.

We must estimate the Lyapunov vector �λ(z̃) = (λ̃1, . . . , λ̃d). For each i = 1, . . . , d , we have

λ̃i = log Mii (Dg[w̃](x̃), f̃)

pn + qm + k
= 1

pn + qm + k

⎡
⎣n−1∑

j=0

(I) j +
m−1∑
j=0

(II) j + (III)

⎤
⎦ ,

where

(I) j = log Mii
(
Dg[w](x̃ jn), f̃ jn

)
,

(II) j = log Mii
(
Dg[w j ](x̃ pn+q j ), f̃pn+q j

)
,

(III) = log Mii
(
Dg[w′](x̃ pn+qm), f̃pn+qm

)
.

We have ∣∣∣∣ (I) j

p
− λi

∣∣∣∣ ≤ η (9.3) and (9.8),

∣∣∣∣ (II) j

q
− χi

∣∣∣∣ ≤ 4η (by (9.13) and (9.18)),

∣∣∣∣ (III)k

∣∣∣∣ ≤ C (by (7.1)).
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Using these estimates together with (9.22), (9.23), we obtain

λ̃i = pn

pn + qm + k︸ ︷︷ ︸
1−κ0+O(η)

∑
(I) j

pn︸ ︷︷ ︸
λi +O(η)

+ qm

pn + qm + k︸ ︷︷ ︸
κ0+O(η)

∑
(II) j

qm︸ ︷︷ ︸
χi +O(η)

+ k

pn + qm + k︸ ︷︷ ︸
O(η)

(III)

k︸︷︷︸
O(1)

= (1 − κ0)λi + κ0χi + O(η). (9.27)

We have

λ̃i−1 − λ̃i = (1 − κ0)(λi−1 − λi ) + κ0(χi−1 − χi ) + O(η)

≥ (1 − κ0)γ − κ0c + O(η) ≥ β + O(η) > β/2 > 0,

taking η small enough. A similar calculation gives −λ̃1 > β/2 > 0. In particular, (λ̃i )

belongs to the cone C, as required. Moreover, using (9.19),

(1 − κ0)λi + κ0χi > λi + κ0χi =
[

1 − c

2C
· γ

|λd |
]

λi .

The quantity between square brackets is positive and strictly less than the number τ(�λ)

defined in (9.2); therefore, taking η small, (9.27) guarantees that

|λ̃i | < τ(�λ)|λi |.
This gives the desired norm inequality in (5.1). Notice that the vector (λ̃i ) is not too close
to zero; indeed, |λ̃i | ≥ β/2. So, taking η small enough, the angle inequality in (5.1) follows
from (9.27) and the fact that the vectors (χi ) and (λi ) are collinear. We have checked part (a)
of the proposition.

Verifying property (b). Write the original periodic orbit in �Z × F M as

(σ j (w∞), x0
j , f0

j ) := (FϕG) j (w∞, x0, f0), where j ∈ Z.

Since (x̃0, f̃0) is inside the ball B(ξ0, �), by the invariance condition (9.6) the points
(x̃ j pn1 , f̃ j pn1) with j = 0, 1, . . . , n/n1 are also inside the ball. So, it follows from (9.7)
that

d
(
(x̃ j , f̃ j ), (x̃0

j , f̃0
j )
)

< ε for all j with 0 ≤ j ≤ pn.

So it follows from (9.4) that

d
(
(σ j (w̃∞), x̃ j , f̃ j ), (σ

j (w∞), x̃0
j , f̃0

j )
)

< ε for all j with n0 ≤ j ≤ pn − n0.

Therefore the orbit of (w̃∞, x̃, f̃) ε-shadows the orbit of (w∞, x0, f0) during a proportion

pn − 2n0 − p

pn + qm + k

of the time. It follows from (9.22) and (9.23) (taking η small) that this proportion is greater

than 1 − 2κ0. So let κ := 2κ0 = γ /C . Notice that γ < |λd | ≤ ‖�λ‖, so κ < max(1, ‖�λ‖), as
required. We have checked part (b) of the proposition.

Verifying property (c). Since for j = np + qm, the point (σ j (w̃∞), x̃ j , f̃ j ) belongs to
[[; s0s1 . . . sk−1]] × B ′; therefore property (9.15) assures that the first k iterates of this point
form a δ-dense subset of �Z × F M . We have checked the last part of Proposition 5.1. The
proof is completed. ��
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Remark 9.3 As already mentioned in Remark 4.1, our proof uses C2 regularity; the precise
places where we need it are (9.5) and (9.17). (Apart from that, we will need C2 regularity
again in Sect. 10.)

10 Construction of the open set of IFS’s

The aim of this section is to show the existence of iterated function systems that C2-robustly
satisfy the hypotheses of Theorem 4.1, i.e., to prove the following:

Proposition 10.1 Let M be a compact connected manifold. There is � ∈ N
∗ and a nonempty

open set G0 ⊂ (Diff2(M))� such that every G ∈ G0 satisfies conditions (a), (b) and (c) of
Theorem 4.1.

To begin, notice that if G0 = (g0, . . . , g�0−1), G1 = (g�0 , . . . , g�0+�1−1) and G2 =
(g�0+�1 , . . . , g�0+�1+�2−1) respectively satisfy conditions (a), (b) and (c), then G =
(g0, . . . , g�−1) with � = �0 + �1 + �2 satisfies all three conditions. Therefore, to prove
Proposition 10.1, one can prove independently the existence of open sets satisfying each of
the three conditions.

Condition (c) is trivially nonempty and C2-open (actually C1-open).

Proof that the maneuverability condition (b) is nonempty and open This is an easy compact-
ness argument, but let us spell out the details for the reader’s convenience.

Let t = (t1, . . . , td) ∈ {−1,+1}d , where d = dim M . For every (x, f) ∈ F M there is
g ∈ Diff2(M) such that

ti log Mi,i (Dg(x), f) > 0 for each i.

By continuity, it follows that there is a neighborhood U of (x, f) in F M and a neighborhood
V of g in Diff1(M) such that such that if (x ′, f′) ∈ U and g′ ∈ V then

ti log Mi,i (Dg′(x ′), f′) > 0 for each i.

By compactness, we can extract a finite subcover of F M formed by neighborhoods of the
type U , and keep the associated C2-diffeomorphisms. Repeat the same procedure for each
t = (t1, . . . , td) ∈ {−1,+1}d and collect all diffeomorphisms. This shows that Condition
(b) is nonempty and C2-open (actually C1-open). ��

In order to deal with the positive minimality condition (a), we start by proving the following
criterion:

Lemma 10.2 (Minimality criterion) Let N be a compact connected Riemannian manifold
and let H ⊂ Homeo(N ). Assume that there exists a finite open cover {Vi } of N with the
following properties:

• For every i there exists a map hi ∈ 〈H〉 whose restriction to h−1
i (Vi ) is a (uniform)

contraction.
• The cover {Vi } has a Lebesgue number δ such that the orbit of every point x ∈ N is

δ-dense in N.

Then the IFS generated by H is positively minimal.

Proof Since the cover {Vi } is finite, there exists α with 0 < α < 1 such that each restriction
hi |h−1

i (Vi ) is an α-contraction.
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Claim 10.3 If y ∈ N , r > 0, and B(y, r) ⊂ Vi then hi
(
B(h−1

i (y), α−1r)
) ⊂ B(y, r).

Proof of the claim Since hi |h−1
i (Vi ) is a (uniform) contraction, we have

y ∈ Vi ⇒ hi
(
B(h−1

i (y), α−1r)
) ⊂ B(y, r) ∪ (M � Vi ).

Since the ball B(h−1
i (y), α−1r) is connected12, the claim follows. ��

Now fix any point x ∈ N , and assume the orbit of x is ε-dense for some ε ≤ δ. For
any y ∈ N , we can find some Vi containing B(y, αε). By the ε-denseness of the orbit
of x , there is h ∈ 〈H〉 such that h(x) ∈ B(h−1

i (y), ε). It follows from Claim 10.3 that
hi ◦ h(x) ∈ B(y, αε). Since y is arbitrary, this shows that the orbit of x is αε-dense. By
induction, this orbit is αnε-dense for any n > 0; so it is dense, as we wanted to show. ��

If H is a finite set of diffeomorphisms of N satisfying the assumptions of Lemma 10.2, then
these assumptions are also satisfied for sufficiently small C1-perturbations of the elements
of H . In other words, the hypotheses of Lemma 10.2 are C1-robust.13

Therefore, to show that the positive minimality condition (a) has non-empty interior, we
are reduced to show the following:

Lemma 10.4 Given any compact connected manifold M, there is � ∈ N
∗ and g0, . . . , g�−1 ∈

Diff2(M) such that the induced diffeomorphisms Fg0, …, Fg�−1 ∈ Diff1(F N ) satisfy the
hypotheses of Lemma 10.2.

Proof This is another easy compactness argument.
For any x ∈ M and any flag f at x , there is a diffeomorphism g ∈ Diff2(M) such that x

is a hyperbolic attracting fixed point of g such that the eigenvalues of Dg(y) have different
moduli, and moreover f is the stable flag of g at x . Then (x, f) is a hyperbolic attracting fixed
point of Fg, and in particular there is a open neighborhood U (x, f) on which Fg induces a
uniform contraction. Denote V (x, f) = (Fg)(U (x, f)). The sets V (x, f) form an open cover
of F M , so that one can extract a finite subcover V0, …, V�0−1. Let g0, …, g�0−1 be the
corresponding diffeomorphisms as above.

Given two points (x, f), (x ′, f′) ∈ F M , it follows from the connectedness of M that there
is g ∈ Diff2(M) such that Fg(x, f) = (x ′, f′). A simple compactness argument shows that
there exist �1 and g�0 , …, g�0+�1−1 ∈ Diff2(M) such that for every (x, f) ∈ F M , the set
{Fg�0(x, f), . . . , Fg�0+�1−1(x, f)} is δ-dense in F M , where δ is a Lebesgue number of the
cover {V0, . . . , V�0−1}.

Denote � = �0 + �1. Now the action of H = {Fg0, . . . Fg�−1} on N = F M satisfies all
the hypotheses of Lemma 10.2, which allows us to conclude. ��

This completes the proof of Proposition 10.1; as explained in Sect. 4, the main Theorems 1
and 3 follow.

Remark 10.5 It is possible to adapt the proof of Theorem 3 for the oriented flag bundle F̌ M ,
provided that the manifold M is non-orientable (basically because F̌ M is then connected).
However, if M is orientable, then the corresponding version of Theorem 3 is false. For
example, since every diffeomorphism of M = CP2 preserves orientation (see [12, p. 140]),
the induced action on F̌ M fixes each of the two connected components, and hence no 1-step
skew-product F̌ϕG can be transitive.

12 Here we use that N is a connected Riemannian manifold (and not only a metric space).
13 Using this, it is easy to establish the existence of C1-robustly positively minimal finitely generated IFS’s
on any compact connected manifold. More interestingly, Homburg [13] shows that two generators suffice.
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11 Positive entropy

Proof of Theorem 2 Let us say that an IFS G = (g0, . . . , g�−1) ∈ (Diff1(M))2 has the
bi-maneuverability property if � is even and both IFS’s

G0 = (g0, . . . , g�/2−1) and G1 = (g�/2, . . . , g�−1). (11.1)

have the maneuverability property.
The set V ⊂ (Diff1(M))� of the IFS’s with the bi-maneuverability property is nonempty

and open, provided � is even and large enough; this follows immediately from the analogous
statements for maneuverability that we proved in Sect. 10. We will prove that the set V
satisfies the conclusions of the theorem.

Fix G ∈ V . Fix any (x0, f0) ∈ M × F M . For any θ = (θn)n ∈ {0, 1}Z = 2Z, we will
define a sequence ω(θ) = (ωn(θ))n ∈ �Z, First we define the positive part of the sequence:
Assuming by induction that ω0(θ), …, ωn−1(θ) ∈ {0, . . . , �−1} were already defined, define

(xn(θ), fn(θ)) = Fg[ωn−1(θ)...ω0(θ)](x0, f0).

By the bi-maneuverability property, we can choose a symbol ωn(θ) satisfying the following
properties:

• for each i ∈ {1, . . . , d}, the number log Mi,i (Dgωn(θ)(xn(θ)), fn(θ)) is negative if
log Mi,i (Dg[ωn−1(θ)...ω0(θ)](x0), f0) is positive and positive otherwise.

• ωn(θ) < �/2 if and only if θn = 0.

This defines the positive part of the sequence ω(θ). The negative part is defined analogously,
using the inverse maps.

The construction implies that

| log Mi,i (Dg[ωm (θ)ωm−1(θ)...ωn(θ)](xn(θ), fn(θ)))| ≤ 2C, for all m ≥ ninZ,

where C is a constant with property (7.1).
Define the following compact subset of �Z × F M :

�̃G := closure of
{(

σm(ω(θ)), xm(θ), fm(θ)
); θ ∈ 2Z, m ∈ Z

}
.

Let �G be the projection of �̃G in �Z × M .
By continuity, we have

‖Mi,i ((Dg[ωn−1...ω0](x, f)))‖ ≤ C, for all (ω, x, f) ∈ �̃G , n ≥ 0, i ∈ {1, . . . , d}.
Let us check that �G has the zero exponents property (a). Let μ be an ergodic ϕG -invariant

measure whose support is contained in �G . Let ν be a lift of μ that is ergodic for FϕG . It
follows from the Ergodic Theorem that the Furtenberg vector ��(ν) = (�1, . . . , �d) defined
by (3.3) is zero. By Proposition 3.7, the fibered Lyapunov exponents of μ are all zero.

Finally, let us check the positive entropy property (b). We have the following commutative
diagram:
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where σ2 is the 2-shift, and π(ω, x) = θ with θn = 1 if and only if ωn < �/2. Since π is
surjective, htop(ϕG |�G) ≥ htop(σ2) = log 2.

This concludes the proof of Theorem 2. ��
Remark 11.1 The C2-open sets of IFS satisfying the conclusions of Theorem 1 can be taken
also satisfying the conclusions of Theorem 2: it suffices to replace maneuverability by bi-
maneuverability in the construction.

Remark 11.2 As it is evident from its proof, Theorem 2 has a flag bundle version.

Remark 11.3 Artur Avila suggested an alternative proof of Theorem 2 using ellipsoid bundles
instead of flag bundles, and obtaining compact sets �G where derivatives along orbits are
uniformly bounded away from zero and infinity.

Acknowledgments We are grateful to the referee for some corrections.
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