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Abstract We prove estimates relating exponential or sub-exponential volume growth of
weighted graphs to the bottom of the essential spectrum for general graph Laplacians. The
volume growth is computed with respect to a metric adapted to the Laplacian, and use of these
metrics produces better results than those obtained from consideration of the graph metric
only. Conditions for absence of the essential spectrum are also discussed. These estimates
are shown to be optimal or near-optimal in certain settings and apply even if the Laplacian
under consideration is an unbounded operator.
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1 Introduction

Let � = (G, E) be an unoriented, connected, countably infinite, locally finite graph. We
assume that � has neither loops nor multiple edges. We use d to denote the graph metric
on �; given x, y ∈ G, d(x, y) is equal to the number of edges in a shortest (geodesic) path
between x and y.

We assume that � is a weighted graph, so that associated with each (x, y) ∈ G × G is
a nonnegative edge weight πxy which is symmetric (πxy = πyx for x, y ∈ G) and satisfies
πxy > 0 if and only if {x, y} ∈ E . The edge weights define a measure on G by setting
πx := π({x}) := ∑

y∈G πxy for x ∈ G, and extending to all subsets of G by countable
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116 M. Folz

additivity. If π(e) = 1 for all e ∈ E , we say that � has the standard weights. We denote
weighted graphs by the pair (�, (π(e))e∈E ); for brevity we write this as (�, π).

Let (θx )x∈G be an additional set of positive vertex weights. We will assume that the weights
(θx )x∈G are such that whenever U ⊂ G is an infinite subset which is connected in �,

∑

x∈U

θx = ∞. (1.1)

This condition is a discrete analogue of the assumption in [1] that the manifold under con-
sideration is non-compact and has infinite volume.

We will work on the (real) Hilbert space L2(θ) with inner product

〈 f, g〉L2(θ) :=
∑

x∈G

f (x)g(x)θx .

The central object of our analysis will be the graph Laplacian Lθ , which is defined pointwise
for f ∈ L2(θ) by

(Lθ f )(x) := 1

θx

∑

y∼x

πxy( f (y) − f (x)),

and which has domain of definition D(Lθ ) := { f ∈ L2(θ) : Lθ f ∈ L2(θ)}. This operator is
associated with the Dirichlet form (E, D(E)), where, for f, g ∈ D(E),

E( f, g) := 1

2

∑

x,y∈G

πxy( f (y) − f (x))(g(y) − g(x)).

We define E1( f, f ) := 〈 f, f 〉L2(θ) + E( f, f ) and let ‖ · ‖E := E1(·, ·)1/2 denote the induced
norm. The domain D(E) is given by the closure of Cc(G) in the norm ‖ · ‖E . Consequently
(E, D(E)) is a closed, regular Dirichlet form. See [11] for more on the theory of Dirichlet
forms.

Remark 1.1 The condition (1.1) together with the local finiteness of � ensures that the
infinitesimal generator associated with the regular Dirichlet form (E, D(E)) is the operator
Lθ with domain D(Lθ ). Moreover the operator Lθ with domain D(Lθ ) is self-adjoint, and the
restriction of Lθ to Cc(G) is essentially self-adjoint; these assertions follow from Theorem
5 of [16].

The generator and Dirichlet form are linked by the Gauss-Green identity; for f ∈ D(Lθ )

and g ∈ D(E),

E( f, g) = −〈Lθ f, g〉L2(θ). (1.2)

In particular, 〈−Lθ f, f 〉L2(θ) = E( f, f ) ≥ 0, and the operator −Lθ is positive semidefinite.
In general, Lθ is not a bounded operator on L2(θ). Define

A(�, π, θ) := sup
x∈G

πx

θx
,

and let ‖ · ‖ denote the norm on L2(θ). Then A(�, π, θ) ≤ ‖Lθ‖ ≤ 2A(�, π, θ), and Lθ is
bounded if and only if A(�, π, θ) < ∞. See Lemma 1 of [4] for a proof. Additionally, for
this quantity and subsequent quantities which depend on the edge weights (π(e))e∈E , if the
edge weights under consideration are the standard weights, we will simply omit reference to
the edge weights and write (for example) A(�, θ).
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Volume growth and spectrum for general graph Laplacians 117

Each choice of (θx )x∈G corresponds to a continuous-time simple random walk on (�, π)

with infinitesimal generator Lθ . Fix θ and denote the corresponding random walk by (Xt )t≥0.
This process is strong Markov; started at a vertex x ∈ G, it waits an exponentially distributed
time with parameter πx/θx and then jumps to a neighbour with jump probabilities P(x, y) :=
πxy/πx . In particular, modifying the vertex weights (θx )x∈G induces a time-change of the
random walk; the jump times change but not the jump probabilities.

We single out two choices of the vertex weights (θx )x∈G . The first is the choice (πx )x∈G .
The corresponding random walk is referred to as the constant-speed random walk (because
it jumps at exponentially distributed times with mean 1), and has infinitesimal generator

(Lπ f )(x) := 1

πx

∑

y∼x

πxy( f (y) − f (x)).

This operator is sometimes called the probabilistic or normalized Laplacian; it is a bounded
operator on L2(π) satisfying 1 ≤ ‖Lπ‖ ≤ 2.

The second choice are the vertex weights (1x )x∈G , where 1x := 1 for each x ∈ G. The
corresponding random walk is called the variable-speed random walk (because it jumps at
exponentially distributed times with parameter πx ), and has infinitesimal generator

(L1 f )(x) :=
∑

y∼x

πxy( f (y) − f (x)).

This operator is sometimes called the physical or unnormalized Laplacian, and is a bounded
operator on L2(1) if and only if the weights (πx )x∈G are bounded above.

Associated with the process (Xt )t≥0 is the semigroup (Pt )t≥0, where Pt = exp(tLθ ) (or,
equivalently, Pt f (x) := E

x f (Xt )). The semigroup has a transition density pt (x, y) with
respect to the measure θ given by

pt (x, y) := 1

θy
P

x (Xt = y).

The function pt (x, y) is also called the heat kernel of (Xt )≥0.

1.1 Metrics and volume

Definition The metric ρ is adapted to the operator Lθ on (�, π) if for all x ∈ G,

1

θx

∑

y∼x

πxyρ
2(x, y) ≤ 1, (1.3)

and there exists cρ > 0 such that ρ(x, y) ≤ cρ whenever x ∼ y.

The following metrics are useful examples of adapted metrics:

1. On any weighted graph, the graph metric d is adapted to the operator Lπ . More generally,
if Lθ is bounded (so that A(�, π, θ) < ∞), then the metric 1√

A(�,π,θ)
d is adapted to Lθ .

No fixed multiple of the graph metric can be adapted to Lθ if Lθ is an unbounded operator.
In this case, since there is no uniform upper bound on πx/θx , given a metric ρ adapted to
Lθ , for any ε > 0, one can find adjacent vertices x and y with ρ(x, y) ≤ ε.
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118 M. Folz

2. On any weighted graph with vertex degrees uniformly bounded above by D, the metric
1√
D

dE is adapted to the operator L1, where for x, y ∈ G,

dE (x, y) := inf

⎧
⎨

⎩

∑

e∈γ

1 ∧ π(e)−1/2 : γ is a path joining x and y

⎫
⎬

⎭
.

If the graph is k−regular and π(e) ≥ 1 for all e ∈ E , then at each x ∈ G there is equality
in (1.3).

3. On any weighted graph, the metric dV is adapted to the operator Lθ , where for x, y ∈ G,

dV (x, y) := inf

⎧
⎨

⎩

∑

e∈γ

1 ∧ c(e) : γ is a path joining x and y

⎫
⎬

⎭
,

and for e := {u, v},

c(e) :=
(

θu

πu
∧ θv

πv

)1/2

.

This definition has appeared in several recent papers; see [6] and [7] by the author, where
adapted metrics are used to obtain heat kernel estimates and criteria for stochastic com-
pleteness, [8], where a general notion of intrinsic metric for non-local symmetric Dirichlet
forms is defined which coincides with the definition of adaptedness in the present set-
ting, [12], where adapted metrics are used to obtain criteria for stochastic completeness,
and [13], which deals with uniqueness of solutions to the heat equation. The condi-
tion (1.3) also is closely related to certain distance functions on graphs considered by
Davies in [3]. The relationship between adapted metrics and other metrics which have
appeared in the study of heat flow or random walks on graphs is discussed in Sect. 2
of [7].

Let ρ be a metric adapted to the operator Lθ . Write

Bρ(x0, r) := {x ∈ G : ρ(x0, x) ≤ r}
for the closed ball of radius r in this metric, and

Vρ(x0, r) :=
∑

x∈Bρ(x0,r)

θx

for the volume of this ball with respect to the measure (θx )x∈G .
We define the exponential rate of volume growth of (�, π) with respect to the measure θ

and the adapted metric ρ by

μρ(�, π, θ) := lim sup
r→∞

1

r
log Vρ(x0, r). (1.4)

An application of the triangle inequality shows that the right hand side of (1.4) is independent
of the choice of x0 ∈ G.

If μρ(�, π, θ) = 0 (respectively μρ(�, π, θ) ∈ (0,∞), μρ(�, π, θ) = ∞), we say that �

has subexponential (respectively exponential, superexponential) volume growth with respect
to the measure θ and the metric ρ.
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Volume growth and spectrum for general graph Laplacians 119

1.2 Spectra

Let σ(�, π, θ) denote the spectrum of −Lθ on (�, π). As a positive semidefinite self-adjoint
operator, the bottom of the spectrum of −Lθ is nonnegative, and we denote it by λ0(�, π, θ).

We have the following variational expression for the bottom of the spectrum:

λ0(�, π, θ) := inf{E( f, f ) : f ∈ D(E), ‖ f ‖2
L2(θ)

= 1}. (1.5)

For V ⊂ G, we let LV
θ denote the Dirichlet Laplacian on V , which is defined pointwise by

(LV
θ f )(x) :=

{
(Lθ f )(x) if x ∈ V,

0 if x ∈ G\V,

and which has domain of definition D(LV
θ ) := D(Lθ ) ∩ { f ∈ L2(θ) : f |G\V = 0}.

Let λV
0 (�, π, θ) denote the bottom of the spectrum of the Dirichlet Laplacian on V . If

(Gk)k∈Z+ are finite sets which increase to G, then we have that as k → ∞,

λ
Gk
0 (�, π, θ) ↓ λ0(�, π, θ); (1.6)

this follows from the fact that if U ⊂ V , then λU
0 (�, π, θ) ≥ λV

0 (�, π, θ), together with (1.5)
and the fact that Cc(G) is dense in D(E) with respect to the ‖ · ‖E norm.

A direct calculation, together with (1.5), shows that for f ∈ L2(θ),

d

dt
‖Pt f ‖2

L2(θ)
= −2〈Lθ Pt f, Pt f 〉L2(θ) ≤ −2λ0(�, π, θ)‖Pt f ‖2,

and this differential inequality together with P0 = I gives ‖Pt‖ ≤ exp(−λ0(�, π, θ)t). On
the other hand, given V ⊂ G, let (PV

t )t≥0 denote the Dirichlet heat semigroup defined by

(PV
t f )(x) =

∑

y∈G

pV
t (x, y) f (y)θy,

where pV
t (x, y) denotes the heat kernel of the Dirichlet Laplacian on V (a construction

is given in Lemma 4.5 of [22]). Since LV
θ and PV

t commute on D(LV
θ ) (see Lemma 4.13

of [22]), if (Gk)k∈Z+ are finite sets which increase to G, and λk := λ
Gk
0 (�, θ, π) has the

corresponding eigenfunction fk , it follows that for all k ∈ Z+,

d

dt
‖Pt fk‖2

L2(θ)
= −2〈LGk

θ PGk
t fk, PGk

t fk〉L2(θ) = −2λk‖PGk
t fk‖2

L2(θ)
.

This differential equation yields ‖PGk
t ‖ ≥ exp(−λk t), and using (1.6) together with the

fact that 0 ≤ pGk
t (x, y) ≤ pt (x, y) for k ∈ Z+ allows us to conclude that ‖Pt‖ =

exp(−λ0(�, π, θ)t).
In Theorem 3.1 of [19] an analogous pointwise bound for the heat kernel is proved; for

all x, y ∈ G,

lim
t→∞

1

t
log pθ

t (x, y) → −λ0(�, π, θ).

We will work primarily with the essential spectrum of −Lθ . The essential spectrum
σess(�, π, θ) consists of points of σ(�, π, θ) which are either accumulation points of
σ(�, π, θ) or which are discrete eigenvalues of −Lθ with infinite multiplicity. The discrete
spectrum of −Lθ is defined by σdisc(�, π, θ) = σ(�, π, θ)\σess(�, π, θ).
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120 M. Folz

We denote the bottom of the essential spectrum by λess
0 (�, π, θ). Clearly, λ0(�, π, θ) ≤

λess
0 (�, π, θ). The essential spectrum is invariant under finite perturbations (see Lemma 1 of

[10]), and if (Gk)k∈Z+ is any sequence of finite subsets of G which increase to G, then

λess
0 (�, π, θ) = lim

k→∞ λ
G\Gk
0 (�, π, θ); (1.7)

see Proposition 18 of [17] for a proof of (1.7).

1.3 Results

In the setting of Riemannian manifolds, Brooks proved the following result relating volume
growth in the Riemannian metric with the bottom of the spectrum:

Theorem 1.1 (Brooks, [1]) Let M be a smooth, complete, non-compact Riemannian mani-
fold with Riemannian metric ρM and Riemannian volume VM . Let λess

0 (M) denote the bottom
of the essential spectrum of the Laplace-Beltrami operator −
M on L2(M). Define, for some
x0 ∈ M,

μM := lim sup
r→∞

1

r
log VM (BρM (x0, r)).

If M has infinite volume, then

λess
0 (M) ≤ 1

4
μ2

M .

A similar estimate was subsequently established in the more general setting of strongly
local Dirichlet spaces in [20].

In the setting of unweighted graphs (where the associated Dirichlet form is nonlocal),
Fujiwara proved an analogue of these results for the spectrum of the operator −Lπ :

Theorem 1.2 (Fujiwara, [9]) If � is an unoriented, connected, countably infinite, locally
finite graph with the standard weights, and μ� := μd(�, π), then

λess
0 (�, π) ≤ 1 − 2 exp(μ�/2)

1 + exp(μ�)
.

While the Laplace-Beltrami operator 
M considered by Brooks may be unbounded, the
operator Lπ considered by Fujiwara is bounded. In this setting, there is no need to consider
metrics besides the graph metric, and the boundedness of Lπ rules out various interesting
behaviors, such as absence of essential spectrum, or the possibility of stochastic incomplete-
ness.

We have two main results for the bottom of the essential spectrum in the setting of weighted
graphs. For notational simplicity, given a metric ρ which is adapted to the operator Lθ on
(�, π), we denote the exponential volume growth in this metric by μρ := μρ(�, π, θ).

Our first result is an analogue of Theorem 1.1 for weighted graphs, and is valid even when
Lθ is unbounded.

Theorem 1.3 Let (�, π) be a weighted graph, and let the positive vertex weights (θx )x∈G

satisfy (1.1). If ρ is a metric adapted to Lθ and μρ denotes the exponential rate of volume
growth in this metric, then

λess
0 (�, π, θ) ≤ 1

8
μ2

ρ.

The exponent 2 cannot be reduced; see Example 4.1.
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Volume growth and spectrum for general graph Laplacians 121

Our second result generalizes results of Fujiwara in [6] and yields better results than
Theorem 1.3 when Lθ is bounded and μ is large.

Theorem 1.4 Let (�, π) be a weighted graph, and let the positive vertex weights (θx )x∈G

satisfy (1.1). If ρ is a metric adapted to Lθ for which there exist positive constants m, M such
that m ≤ ρ(x, y) ≤ M whenever x ∼ y, and μρ denotes the exponential rate of volume
growth in this metric, then

λess
0 (�, π, θ) ≤ 1

m2

(1 − exp( 1
2 Mμρ))2

1 + exp(Mμρ)
. (1.8)

Adapted metrics satisfying the conditions in this theorem exist if and only if Lθ is a
bounded operator. On the k−regular tree with the standard weights, there is equality in (1.8)
for Lπ when using the graph metric d , or for L1 when using the metric 1√

k
d; see Example 4.1.

Theorem 1.3 has the following two immediate corollaries:

Corollary 1.5 If there exists an adapted metric ρ such that μρ(�, π, θ) = 0, then
λess

0 (�, π, θ) = 0.

The converse of this statement is false; a counterexample is provided by the operator Lπ

on the Cayley graph of any solvable group with exponential growth (see [5]), such as the
lamplighter group.

Corollary 1.6 If there exists an adapted metric ρ such that μρ(�, π, θ) < ∞, the essential
spectrum is nonempty.

This result cannot be improved upon in the following sense: For every ε > 0, there exists
a graph (�, π) for which the essential spectrum of L1 is empty, but there exists an adapted
metric ρ such that

lim sup
r→∞

1

r1+ε
log Vρ(x0, r) < ∞.

See Example 4.2.
The main contribution of this paper is to establish quantitative upper bounds for the

bottom of the essential spectrum in terms of the adapted volume growth, which are valid
for unbounded graph Laplacians, and which are sharp or asymptotically sharp in various
instances. The similarities between the results of this paper and the corresponding results for
manifolds (and strongly local Dirichlet spaces) provide further evidence that adapted metrics
are a powerful tool for studying heat flow and random walks on graphs where the graph
Laplacian is unbounded.

Shortly after this work was completed, Haeseler, Keller, and Wojciechowski proved similar
results in the more general setting of regular Dirichlet forms (both local and non-local) in
[14]. Their paper contains proofs of Theorems 1.3 and 1.4 using slightly different techniques.
They also discuss the relationship between volume growth in the graph metric and positivity
of the bottom of the spectrum or nonemptiness of the essential spectrum, and show that the
threshold for these properties lies at cubic volume growth (with respect to the graph metric).

The structure of this paper is as follows. We prove Theorem 1.4 and 1.3 in Sect. 2; this is
accomplished by using techniques of Brooks and Fujiwara together with the adapted metrics
defined earlier. In particular, the Dirichlet forms of certain functions of these metrics can be
controlled by the L2(θ) norm. In Sect. 3, we discuss the phenomena of absence of essential
spectrum and its relation to volume growth, and in Sect. 4, we provide various examples
showing the sharpness of our results, as well as settings where the graph metric gives very
poor results and the use of adapted metrics seems to be essential.
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2 Proofs

We begin by fixing a weighted graph (�, π) and a set of positive vertex weights (θx )x∈G

satisfying (1.1). We also fix a metric ρ which is adapted to the operator Lθ , and set ρx0(x) :=
ρ(x0, x) for x0 ∈ G. By the triangle inequality, |ρx0(x) − ρx0(y)| ≤ ρ(x, y). To simplify
notation, we set μ := μρ(�, π, θ).

We note that it suffices to assume that μ < ∞. If μ = ∞, then the conclusion of Theo-
rem 1.3 is λess

0 (�, π, θ) ≤ ∞, which is trivial. If the hypotheses of Theorem 1.4 are satisfied
(with m ≤ ρ(x, y) whenever x ∼ y) and μ = ∞, then the conclusion of Theorem 1.4 is

λess
0 (�, π, θ) ≤ 1

m2 . (2.1)

This estimate may be proven directly by noting that for x ∈ G, ‖θ−1/2
x 1x‖L2(θ) = 1, and

E(θ−1
x 1x , θ

−1
x 1x ) = πx

θx
≤ 1

m2 , (2.2)

where the last inequality follows from adaptedness of ρ and the inequality m ≤ ρ(x, y) for
x ∼ y. The inequality (2.1) then follows from (2.2) and (1.5).

In particular, the assumption μ < ∞ implies that for all x0 ∈ G and r ≥ 0, the balls
Bρ(x0, r) have finite volume (i.e., for all x0 ∈ G and r ≥ 0, Vρ(x0, r) < ∞). Combining
this with (1.1), we see that for x0 ∈ G and r ≥ 0, the balls Bρ(x0, r) contain only finitely
many points, as well.

The proof follows the general techniques of [1] and [6].

Lemma 2.1 If μ < 2α, then 〈exp(−αρx0), exp(−αρx0)〉L2(θ) < ∞.

Proof We estimate

〈exp(−αρx0), exp(−αρx0)〉L2(θ) =
∑

x∈G

exp(−2αρx0(x))θx

≤ θx0 +
∞∑

r=0

∑

ρx0 (x)∈(r,r+1]
exp(−2αr)θx

= θx0 +
∞∑

r=0

(Vρ(x0, r + 1) − Vρ(x0, r)) exp(−2αr)

= (exp(2α) − 1)

∞∑

r=1

Vρ(x0, r) exp(−2αr).

The last expression is finite by the definition of μ and comparison with a geometric series.

Now, we fix α > μ/2. For j ∈ Z+, we define a sequence of ‘tent functions’ by

h j (x) :=
{

αρx0(x) if ρx0(x) ≤ j,
2α j − αρx0(x) if ρx0(x) > j,

and set f j := exp(h j ).
We also set

ϕ(t) := (1 − eαt )2

1 + e2αt
= 1 − 2eαt

1 + e2αt
.
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Volume growth and spectrum for general graph Laplacians 123

Note that on [0,∞), ϕ is increasing, and satisfies the inequality

ϕ(t) ≤ α2t2

2
. (2.3)

Proposition 2.2 If x ∼ y, for all j ∈ Z+,

( f j (y) − f j (x))2 ≤ ϕ(ρ(x, y))( f 2
j (x) + f 2

j (y)). (2.4)

Proof Fix j ∈ Z+. We prove first that for all x ∼ y and all j ∈ Z+, we have

( f j (y) − f j (x))2 ≤ ϕ(|ρx0(y) − ρx0(x)|)( f 2
j (x) + f 2

j (y)). (2.5)

We may assume without loss of generality that ρx0(y) ≥ ρx0(x). It suffices to check two
cases.

Case 1 j ≥ ρx0(y) ≥ ρx0(x) or j ≤ ρx0(x) ≤ ρx0(y).

In this case, one verifies directly that there is equality in (2.5).

Case 2 ρx0(x) < j < ρx0(y).

First, the inequality 2 j −(ρx0(y)+ρx0(x)) ≤ ρx0(y)−ρx0(x) is equivalent to j ≤ ρx0(y),
which is true by hypothesis. A direct computation and the fact that ϕ is increasing on [0,∞)

then yields the inequality

( f j (y) − f j (x))2

f 2
j (x) + f 2

j (y)
= ϕ(2 j − (ρx0(x) + ρx0(y)))

≤ ϕ(ρx0(y) − ρx0(x))

= ϕ(|ρx0(y) − ρx0(x)|).
Finally, combining (2.5) with the inequality |ρx0(x) − ρx0(y)| ≤ ρ(x, y) and the fact that ϕ

is increasing on [0,∞) yields that for all x ∼ y and all j ∈ Z+,

( f j (y) − f j (x))2 ≤ ϕ(|ρx0(y) − ρx0(x)|)( f 2
j (x) + f 2

j (y))

≤ ϕ(ρ(x, y))( f 2
j (x) + f 2

j (y)),

which completes the proof. ��
We will now use (2.4) to prove two new bounds:

Corollary 2.3 Suppose there exist constants m, M > 0 such that m ≤ ρ(x, y) ≤ M when-
ever x ∼ y. Then for all x ∼ y and j ∈ Z+,

( f j (y) − f j (x))2 ≤ ρ2(x, y)

m2 ϕ(M)( f 2
j (x) + f 2

j (y)).

Proof The inequality m ≤ ρ(x, y) is equivalent to ρ2(x,y)

m2 ≥ 1, and since ρ(x, y) ≤ M
and ϕ is increasing on [0,∞), ϕ(ρ(x, y)) ≤ ϕ(M). Combining these with (2.4) gives the
result. ��
Corollary 2.4 For x ∼ y and any j ∈ Z+,

( f j (y) − f j (x))2 ≤ ρ2(x, y)
α2

2
( f 2

j (x) + f 2
j (y)).
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Proof This follows from (2.4) together with (2.3). ��
These estimates give us control of E( f j , f j ), as follows:

Proposition 2.5 Suppose that f ∈ D(E) has the property that for all x ∼ y, ( f (y) −
f (x))2 ≤ Cρ2(x, y)( f 2(x) + f 2(y)). Then

E( f, f ) ≤ C‖ f ‖2
L2(θ)

.

Proof Using adaptedness of ρ, we have

E( f, f ) := 1

2

∑

x,y∈G

πxy( f (y) − f (x))2

≤ C

2

∑

x∈G

∑

y∼x

πxyρ
2(x, y)( f 2(x) + f 2(y))

= C
∑

x∈G

(
1

θx

∑

y∼x

πxyρ
2(x, y)

)

f 2(x)θx

≤ C‖ f ‖2
L2(θ)

.

��
We should check that f j ∈ D(E) for all j ∈ Z+. Fix j ∈ Z+. Since h j ≤ 2α j −αρx0 , 0 ≤

f j ≤ exp(2α j − αρx0), so Lemma 2.1 gives f j ∈ L2(θ) and the estimate in Proposition 2.5

shows that ‖ f j‖E < ∞. Note that for any ε > 0, if Rε
j := j ∨

(
2 j − log ε

α

)
, then on

G\Bρ(x0, Rε
j ), 0 ≤ f j ≤ ε. Since Bρ(x0, Rε

j ) is finite (using (1.1) and the assumption that
μ < ∞), f ε

j := ( f − ε)+ ∈ Cc(G); note that E( f ε
j , f ε

j ) ≤ E( f j , f j ). Now, since f ε
j ↑ f j

as ε ↓ 0, we conclude that ‖ f ε
j − f j‖E → 0 as ε ↓ 0, and hence f j ∈ D(E).

Combining Corollary 2.3 and Corollary 2.4 with Proposition 2.5, we have the following:

Proposition 2.6 Suppose there exist constants m, M > 0 such that m ≤ ρ(x, y) ≤ M
whenever x ∼ y. For all j ∈ Z+,

E( f j , f j ) ≤ 1

m2

(1 − exp(αM))2

1 + exp(2αM)
‖ f j‖2

L2(θ)
.

Proposition 2.7 For all j ∈ Z+,

E( f j , f j ) ≤ α2

2
‖ f j‖2

L2(θ)
.

Now, to combine the previous results, we assume that there exists a positive, increasing,
continuous function t �→ Iρ(t) such that

E( f j , f j ) ≤ Iρ(α)‖ f j‖2
L2(θ)

. (2.6)

Let K be a finite set, and define MK := max{ρ(x0, x) : x ∈ K } and g j := f j (1 − 1K ). Note
that by construction, Bρ(x0, MK ) ⊃ K .

Lemma 2.8 For all j ∈ Z+, 〈g j , g j 〉L2(θ) < ∞, and

lim
j→∞〈g j , g j 〉L2(θ) = ∞.
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Proof First, for j ∈ Z+,

〈g j , g j 〉L2(θ) =
∑

x∈Bρ(x0, j)

g2
j (x)θx +

∑

x∈G\Bρ(x0, j)

g2
j (x)θx

≤ exp(2α j)Vρ(x0, j) + exp(4α j)〈exp(−αρx0), exp(−αρx0)〉L2(θ),

and finiteness follows from Lemma 2.1.
For the second part, if j > MK , then since g j ≥ 1 on Bρ(x0, j)\Bρ(x0, MK ), it follows

that

〈g j , g j 〉L2(θ) ≥ Vρ(x0, j) − Vρ(x0, MK ), (2.7)

and (2.7) follows from Vρ(x0, MK ) < ∞ and Vρ(x0, j) ↑ ∞ as j → ∞ (using (1.1)). ��
Next, we estimate the Dirichlet forms E(g j , g j ) as follows:

Proposition 2.9 There exists a constant c(ρ, α, K ) such that for j ∈ Z+,

E(g j , g j ) ≤ c(ρ, α, K ) + Iρ(α)〈g j , g j 〉L2(θ).

Additionally, g j ∈ D(E) for each j ∈ Z+.

Proof Fix j ∈ Z+. First, we note that g j = f j on G\Bρ(x0, MK ), and for all j ∈ Z+ and
r > 0, since h j (x) ≤ αρx0(x) for all x ∈ G, we have 0 ≤ g j ≤ f j ≤ exp(αρx0) ≤ exp(αr)

on Bρ(x0, r).

Consequently, we have the crude estimate

E(g j , g j ) ≤ E( f j , f j ) + π(Bρ(x0, MK + cρ)) sup
x∈Bρ(x0,MK +cρ)

|g2
j (x)|

≤ E( f j , f j ) + π(Bρ(x0, MK + cρ)) exp(2α(MK + cρ)). (2.8)

The reason for using the larger distance MK + cρ is that all edges with at least one end in
Bρ(x0, MK ) have both ends in Bρ(x0, MK + cρ). We also have the simple estimate

〈 f j , f j 〉L2(θ) ≤ 〈g j , g j 〉L2(θ) + exp(2αMK )Vρ(x0, MK ). (2.9)

Combining (2.8) with (2.6) and (2.9) gives the desired result, with

c(ρ, α, K ) = exp(2αMK )(π(Bρ(x0, MK + cρ)) exp(2αcρ) + Iρ(α)Vρ(x0, MK )).

The argument that was used to show f j ∈ D(E) also shows that g j ∈ D(E). ��
Finally, we can show the following result:

Theorem 2.10 Assume that ρ is such that (2.6) holds. Then

λess
0 (�, π, θ) ≤ Iρ(μ/2).

Proof We argue by contradiction. Suppose that

Iρ(μ/2) ≤ λess
0 (�, π, θ).

By definition, there exists a finite subset K such that Iρ(μ/2) < λ
G\K
0 (�, π, θ). Since

t �→ Iρ(t) is increasing and continuous, we can find a constant α such that μ < 2α and such
that

Iρ(μ/2) < Iρ(α) < λ
G\K
0 (�, π, θ).
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On the other hand, from Proposition 2.9

E(g j , g j )

〈g j , g j 〉L2(θ)

≤ c(ρ, α, K )

〈g j , g j 〉L2(θ)

+ Iρ(α),

so letting j → ∞ and using Lemma 2.8 shows that for any ε > 0, we can choose j0 := j0(ε)
such that

E(g j0 , g j0)

〈g j0 , g j0〉L2(θ)

≤ Iρ(μ/2) + ε.

In particular, there exists some j0 ∈ Z+ such that

E(g j0 , g j0)

〈g j0 , g j0〉L2(θ)

< λ
G\K
0 (�, π, θ).

This is a contradiction, since g j0 ∈ D(E), g j0 |K = 0, and

λ
G\K
0 (�, π, θ) := inf

{
E( f, f )

〈 f, f 〉L2(θ)

: f ∈ D(E), f �= 0, f |K = 0

}

.

We conclude that λess
0 (�, π, θ) ≤ Iρ(μ/2).

Finally, combining Proposition 2.6 with Theorem 2.10 proves Theorem 1.4, and combining
Proposition 2.6 with Theorem 2.10 proves Theorem 1.3.

Remark We briefly discuss the relevance of the condition (1.1) to the proof. Assume that
(1.1) does not hold. Under the assumption μ < ∞, all metric balls with respect to ρ have
finite volume, but do not necessarily contain only finitely many points. Consequently, while
one can still use Cc(G) functions to approximate the functions (g j ) j∈Z+ in the ‖ · ‖L2(θ)

norm, one cannot necessarily use Cc(G) functions to approximate the functions (g j ) j∈Z+
in the ‖ · ‖E norm, and hence gk may fail to belong to D(E) for some sufficiently large
k ∈ Z+. In this case, one may then take the domain of the Dirichlet form to be the larger set
Dmax(E) := { f ∈ C(G) : E1( f, f ) < ∞}, and Proposition 2.9 shows that g j ∈ Dmax(E)

for all j ∈ Z+. However, since gk cannot be approximated in the ‖ · ‖E norm by Cc(G)

functions, the Dirichlet form (E, Dmax(E)) would fail to be regular.

3 Discreteness of the spectrum

If the operator Lθ is bounded on L2(θ), then the essential spectrum is nonempty. For graphs
with the standard weights and the operator Lπ , Theorem 1 of [10] establishes necessary
and sufficient conditions for the essential spectrum to consist of a single point in terms of
isoperimetric quantities.

If Lθ is unbounded, it is possible for the essential spectrum to be empty (or, equivalently,
for the spectrum to be discrete). By Corollary 1.6, a necessary condition for absence of
essential spectrum is that for any adapted metric ρ, μρ(�, π, θ) = ∞. Graphs with discrete
spectrum (using the operator L1) are given in Example 4.2 and 4.3 of Sect. 4. These examples
also show that for any ε > 0, it is possible to find a graph (�, π) and a metric ρ adapted to
L1 such that μρ(�, π,1) = ∞ and L1 has empty essential spectrum, but for every x0 ∈ G,

lim
r→∞

1

r1+ε
log Vρ(x0, r) = 0.
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In particular, in these examples the essential spectrum becomes empty precisely as the volume
growth changes from exponential to superexponential.

There are connections with stochastic incompleteness of graphs. In [18], the following
result is established:

Theorem 3.1 (Keller-Lenz-Wojciechowski, [18]) Let (�, π) be a weakly spherically sym-
metric weighted graph equipped with a measure θ . If (�, π, θ) is stochastically incomplete
(i.e., if the continuous-time random walk on (�, π) associated with Lθ explodes with positive
probability), then λ0(�, π, θ) > 0 and σess(�, π, θ) = ∅.

In fact, their bound gives a quantitative estimate on the bottom of the spectrum in terms
of certain volume growth quantities different than the ones considered in this paper.

Restricting for a moment to the setting of weakly spherically symmetric graphs, there is a
large gap between the minimum possible volume growth for stochastic incompleteness and
the minimum possible volume growth for discreteness of the spectrum. In previous work of
the author (see [7]), the following result was established:

Theorem 3.2 (F., [7]) Let (�, π) be a weighted graph, let (θx )x∈G be positive vertex weights
(we do not assume that (1.1) is satisfied), and let ρ be a metric adapted to Lθ . If there exists
x0 ∈ G and r0 > 0 such that

∞∫

r0

r

log Vρ(x0, r)
dr = +∞,

then (�, π, θ) is stochastically incomplete.

Consequently, stochastic completeness is implied by the estimate

Vρ(x0, r) ≤ Cecr2 log r

for some adapted metric ρ. In general r2 cannot be replaced with r2+ε and log r cannot be
replaced with (log r)1+ε . On the other hand, as is done in Example 4.2 and Example 4.3, for
every ε > 0 one can find a weighted graph (�, π) where the essential spectrum is empty and

Vρ(x0, r) ≤ Cecr1+ε

.

Consequently, the adapted volume growth thresholds for stochastic incompleteness and
absence of essential spectrum are in general very different. The relation between the prop-
erties of stochastic incompleteness, discrete spectrum, and positive bottom of spectrum are
discussed in [18]. For general weighted graphs, none of these three properties imply any of
the others.

4 Examples

Example 4.1 k−regular tree, k ≥ 3.

We let Tk denote the k−regular tree, which we equip with the standard weights. In [2], [21],
it was proven that

λ0(Tk, π) = 1 − 2
√

k − 1

k
. (4.1)
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This graph satisfies μd(Tk, π) = log(k − 1). Consequently, Theorem 1.4 yields

λess
0 (Tk, π) ≤ (1 − exp( 1

2μd(Tk, π)))2

1 + exp(μd(Tk, π))
= 1 − 2

√
k − 1

k
,

so that there is equality in Theorem 1.4. This was observed previously in [9].
Similarly, for L1, k−regularity implies kLπ = L1, and hence (4.1) implies

λ0(Tk,1) = k

(

1 − 2
√

k − 1

k

)

= k − 2
√

k − 1.

We compute the volume growth in the adapted metric 1√
k

d . In this metric, two vertices

at distance r are at distance
√

kr in the graph metric, and consequently |B 1√
k

d(x0, R)| =
∑√

k R
j=0 (k − 1) j , from which it follows immediately that

μ 1√
k

d(Tk,1) = √
k log(k − 1).

Again, Theorem 1.4 yields

λess
0 (Tk,1) ≤ k ·

(1 − exp( 1
2
√

k
μ 1√

k
d(Tk,1)))2

1 + exp( 1√
k
μ 1√

k
d(Tk,1))

= k − 2
√

k − 1,

so that Theorem 1.4 may yield sharp results for the operator L1 also.
Note also that for large k, λ0(Tk,1) ≥ k

2 , whereas μ 1√
k

d(Tk,1) = √
k log(k − 1).

Consequently, for any ε ∈ (0, 2) and any C > 0, if one takes K = K (ε, C) large enough,
then

λ0(TK ,1) > C

(

μ 1√
k

d(Tk,1)

)2−ε

,

so that Theorem 1.3 is asymptotically sharp.

Example 4.2 Birth-death process:

Set � := (Z+, Enn), where Enn denotes the set of nearest-neighbor edges, and set πα({n, n+
1}) := (n + 1)2 logα+(n + 1) for α ∈ (−∞, 2), where log+(x) := log(x) ∨ 1.

Since πα(Bd(0, r)) ≤ Cr3+ε for large r , it follows that μd(�, πα, πα) = 0 for any
α ∈ (−∞, 2), and hence λess

0 (�, πα, πα) = 0 for all α ∈ (−∞, 2).
However, the situation is quite different for the unbounded operator L1. In this setting,

we use the adapted metric 1√
2

dE . As R → ∞, we have

1√
2

dE (0, R) = 1√
2

R∑

j=1

1

j logα/2
+ ( j)

∼
√

2

2 − α
log1−α/2(R),

from which it follows that

log |B 1√
2

dE
(0, r)| �

(
2 − α√

2
r

)2/(2−α)

,
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and hence

μ 1√
2

dE
(�, πα,1) =

⎧
⎨

⎩

0 if α < 0,√
2 if α = 0,

∞ if 0 < α < 2.

We conclude that λess
0 (�, πα,1) = 0 for α < 0.

The case α = 0, which corresponds to exponential volume growth, is more subtle. From
Theorem 1.3, we have

λess
0 (�, π0,1) ≤ 1

8
(μ 1√

2
dE

(�, πα,1))2 = 1

4
.

We will show that λess
0 (�, π0,1) ≥ λ0(�, π0,1) ≥ 1

9 . To do this, it suffices to show that if
f ∈ Cc(Z+),

∑

n∈Z+
(n + 1)2( f (n) − f (n + 1))2 ≥ 1

9

∑

n∈Z+
f 2(n). (4.2)

For n ∈ Z+, we define g ∈ Cc(Z+) by g(n) := (n + 1)( f (n) − f (n + 1)). Since f (n) → 0
as n → ∞, we can reconstruct f from g as

f (n) =
∑

j≥n

1

j + 1
g( j);

consequently, (4.2) is equivalent to

9
∑

n∈Z+
g2(n) ≥

∑

n∈Z+

⎛

⎝
∑

j≥n

1

j + 1
g( j)

⎞

⎠

2

.

It suffices to show that the operator T : Cc(Z+) → Cc(Z+) defined by

(T f )(n) :=
∑

j≥n

1

j + 1
f ( j)

is bounded on L2(1), and satisfies ‖T ‖ ≤ 3. This is accomplished through an application of
Schur’s test. Let u(n) := (n + 1)−1/2. Then for n ∈ Z+, simple estimation using the integral
test shows that

(T u)(n) ≤ 3u(n),

(T ∗u)(n) ≤ 3u(n),

and hence Schur’s test implies that ‖T ‖ ≤ √
3 · 3 = 3.

A similar calculation shows the absence of essential spectrum for 0 < α < 2. In this
case, we consider the graphs (�k, πα,k), where �k is the subgraph of � induced by the subset
{ j ∈ Z+ : k ≥ j} and πα,k are the restriction of the edge weights πα to �k . Proceeding as
above, we consider the operator

(Tα f )(n) :=
∑

j≥n

1

( j + 1) logα/2
+ ( j + 1)

f ( j),
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on (�k, πα,k). If uα(n) := (n + 1) logα/2
+ (n + 1), then

(Tαu)(n) ≤ 3

logα/2
+ (k + 1)

uα(n),

(T ∗
α u)(n) ≤ 3

logα/2
+ (k + 1)

uα(n),

so that on (�k, πα,k), ‖Tα‖ ≤ 3
logα/2

+ (k+1)
, and consequently λ0(�k, πα,k,1) ≥ logα+(k+1)

9 .

Since λess
0 (�, πα,1) = limk→∞ λ0(�k, πα,k,1) = ∞, we conclude that the essential

spectrum is empty for 0 < α < 2.

This example shows that even for graphs on which the VSRW behaves very differently
from the CSRW (and, in particular, the operator L1 is unbounded), the critical behavior
of the bottom of the spectrum for the operator L1 is correctly predicted by computing the
volume growth in a metric adapted to L1. Moreover, the relevant volume growth estimate
for unbounded operators, Theorem 1.3, is analogous to Brooks’ result for manifolds.

In addition to the present results on the spectra of weighted graphs, other phenomena for
the operators Lθ are correctly predicted by estimating volume growth in adapted metrics. For
example, in [7], a volume growth criterion for stochastic completeness (or non-explosiveness)
of the VSRW is established. This result also employs adapted metrics, and (as with the present
criteria) is analogous to volume growth criteria for manifolds. When applied to this example,
the results of [7] show that on (�α, πα) the VSRW is non-explosive if α ≤ 1, and it is not
difficult to show directly that the VSRW is explosive if α > 1.

It seems that the condition of adaptedness is in many respects the correct one for analyz-
ing continuous-time simple random walks on graphs, especially if the corresponding graph
Laplacian is unbounded. Adapted metrics are capable of detecting ‘fine’ changes in geometry
which are not visible to the graph metric (such as modifying the exponent on the logarithm
in this example) but which may nevertheless have a major effect on analytic properties of the
Laplacian or the behavior of the associated random walk. These metrics allow one to prove
various sharp estimates which are not possible to obtain using only the graph metric (such
as heat kernel estimates and volume growth thresholds for various phenomena), and results
such as Theorem 1.3 and Theorem 3.2 are directly analogous to existing results for manifolds
or for metric measure spaces.

Example 4.3 Spherically symmetric trees with increasing rate of branching:

Let �α be a tree rooted at x0, with all vertices at a graph distance of r from x0 having
k(r) := �2rα� neighbors at a graph distance of r + 1 from x0 for 0 ≤ α < 2. We equip these
graphs with the standard weights, and consider the operator L1.

Using the adapted metric dV , we have that if d(x0, xR) = R and 0 < α < 2, then

dV (x0, xR) �
R∑

j=1

1

jα/2 � R1−α/2.

Consequently, if dV (x0, y) � r , then d(x0, y) � r2/(2−α). As well, |Bd(x0, r)| =
∑r

j=0
∏ j

i=0 k(i), so that

log |BdV (x0, r)| �
r2/(2−α)
∑

j=1

log jα �
{

r if α = 0,

r2/(2−α) log r if 0 < α < 2.
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Since we have exponential volume growth for α = 0 in the dV metric, Corollary 1.6 implies
that the essential spectrum of L1 on �0 is nonempty.

For 0 < α < 2, since �α has positive Cheeger constant at infinity, Theorem 2 of [15]
implies that the essential spectrum is empty. In particular, for any ε > 0 there exists some
α0 ∈ (0, 2) such that on �α0 , μdV (�α0 ,1) ≤ Cecr1+ε

and the essential spectrum of L1 on
�α0 is empty.

Consequently, this example and Example 4.2 show that Corollary 1.6 is optimal in certain
settings.
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