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Abstract We construct a new family of smooth minimal surfaces of general type with
K 2 = 7 and pg = 0. We show that a surface in this family has ample canonical divisor and
birational bicanonical morphism. We also prove that these surfaces satisfy Bloch’s conjecture.
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1 Introduction

Minimal surfaces of general type with pg = 0 have been constructed and studied since the
1930’s (cf. [7] and [12]). These surfaces have invariants pg = q = 0 and 1 ≤ K 2 ≤ 9. For
each value of K 2, except the case K 2 = 7, there exists quite a list of examples. However, to
the best of the author’s knowledge, there is only one known family of minimal surfaces of
general type with K 2 = 7 and pg = 0 (cf. [4, Tables 1–3]). This family of surfaces is due to
M. Inoue (cf. [13]). We will show that the surfaces with K 2 = 7 constructed in [18] are in
fact Inoue surfaces (see Sect. 6).

Inoue surfaces with K 2 = 7 are quotients of complete intersections inside the product
of four elliptic curves by a group isomorphic to Z

5
2 acting freely (cf. [13]). Alternatively,

Inoue surfaces can be realized as finite Z
2
2-covers of the 4-nodal cubic surface (cf. [16,

Example 4.1]). We refer to the recent article [5], where the authors use both constructions to
study the deformations of Inoue surfaces.

The bicanonical morphism of an Inoue surface has degree 2 and is composed with exactly
one involution of the Galois group Z

2
2. The bicanonical morphism of a smooth minimal

surface of general type with K 2 = 7 and pg = 0 has degree either 1 or 2 (cf. [16] and [17]).
Involutions on surfaces of general type with K 2 = 7 and pg = 0 are studied in [15] and
[18]. Lists of numerical possibilities are given in these articles. However, no new example is
constructed (see Sect. 6). It is also claimed in a pre-version of [15] that three quotients of an

Y. Chen (B)
School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China
e-mail: chenyifan1984@gmail.com

123



1276 Y. Chen

Fig. 1 Configurations of p0, p1, . . . , p′
3 and p

Inoue surface by the involutions are rational surfaces. However, we point out that one of the
quotients is birational to an Enriques surface (see Sect. 6).

In this article, we construct a family of surfaces with K 2 = 7 and pg = 0, as finite
Z

2
2-covers of certain singular Del Pezzo surfaces of degree one. These surfaces have ample

canonical divisor. For a surface S in our family, the bicanonical morphism of S is not composed
with any involution of the Galois group Z

2
2. Using the results of [17], we show that the

bicanonical morphism of S is birational. So the family is indeed new.
We show that three quotients of S by the involutions have Kodaira dimensions −∞, 0, 1,

respectively, realizing some numerical possibilities on the lists of [15] and [18]. Applying
the results of [3], we prove that S satisfies Bloch’s conjecture.

Notation and conventions We make the convention that the indices i ∈ {1, 2, 3} should be
understood as residue classes modulo 3. We denote by g1, g2, g3 the nonzero elements of
the group G := Z

2
2 and by χi ∈ G∗ the nontrivial character orthogonal to gi for i = 1, 2, 3.

Linear equivalence is denoted by ≡. The rest of the notation is standard in algebraic geometry.

2 Certain weak Del Pezzo surfaces of degree one

In this section, we construct a family of weak Del Pezzo surfaces of degree one as blowup
of P

2 at eight points. We use (x1 : x2 : x3) as the homogeneous coordinates for P
2. Let

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p0 = (1 : 1 : 1) and let p′
j be the

infinitely near point over p j corresponding to the line p j p0 for j = 1, 2, 3. We state a lemma
on conics passing through some of these points (Fig. 1).

Lemma 2.1 For each i = 1, 2, 3, there is a unique conic ci passing through the points
pi , pi+1, p′

i+1, pi+2 and p′
i+2. Its defining polynomial is xi (xi+1 + xi+2) − xi+1xi+2 = 0.

Moreover, ci does not pass through the point p′
i .

Let σ : W → P
2 be the blowup at the eight points p0, p1, p′

1, p2, p′
2, p3, p′

3 and p, where
the eighth point p satisfies the Zariski open conditions:

(I) p 	∈ ∪3
i=1{p0 pi : xi+1 = xi+2} ∪3

i=1 {pi+1 pi+2 : xi = 0};
(II) p 	∈ c1 ∪ c2 ∪ c3.

Denote by E j (respectively E ′
j , E) the total transform of the point p j (respectively p′

j , p)
and by L the pullback of a general line by σ . Then

Pic(W ) = ZL ⊕ ZE0 ⊕ ⊕3
j=1(ZE j ⊕ ZE ′

j ) ⊕ ZE

and −KW ≡ 3L − E0 − ∑3
j=1(E j + E ′

j ) − E .
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A new family of surfaces of general type 1277

The surface W is a weak Del Pezzo surface of degree 1, i.e., −KW is nef and big and
K 2

W = 1. This follows from the fact that any four of the eight points p0, p1, . . . , p′
3, p are not

collinear (cf. [11, Proposition 8.1.7]). The following proposition describes the (−2)-curves
on W .

Proposition 2.2 The surface W has exactly six (−2)-curves. Their divisor classes are as
follows:

C j ≡ L − E0 − E j − E ′
j , C ′

j ≡ E j − E ′
j for j = 1, 2, 3. (2.1)

Proof Assume that C ⊂ W is a (−2)-curve and its divisor class is x L−a0 E0−∑3
j=1(a j E j +

a′
j E ′

j ) − aE . If σ(C) is a point, then C is one of the curves C ′
1, C ′

2, C ′
3. If c := σ(C) is a

curve, then c is an irreducible curve of degree x having multiplicity at least a0 (respectively
a1, . . . , a) at the point p0 (respectively p1, . . . , p). Therefore a0, . . . , a are nonnegative
integers. If x = 1, then C is one of the curves C1, C2, C3. It suffices to exclude the case
x ≥ 2. Since C2 = −2 and KW C = 0,

x2 + 2 = a2
0 +

3∑

j=1

(
a2

j + a′2
j

)
+ a2, 3x = a0 +

3∑

j=1

(
a j + a′

j

)
+ a.

By Cauchy’s inequality, 9x2 ≤ (x2 + 2) · 8 and thus x ≤ 4.
If x = 4, then equality holds and a0 = · · · = a = 2. It follows that CC ′

1 = x − a0 − a1 −
a′

1 = −2. Then C = C ′
1, a contradiction. Hence x 	= 4.

If x = 2, then c is an irreducible smooth conic and thus a0, · · · , a ∈ {0, 1}. Moreover,
a0 + ∑3

j=1(a j + a′
j ) + a = a2

0 + ∑3
j=1(a

2
j + a′2

j ) + a2 = 6. Therefore exactly six of
a0, · · · , a are 1. This contradicts Lemma 2.1 or condition (II). Hence x 	= 2.

If x = 3, then c is an irreducible cubic and thus a0, . . . , a ∈ {0, 1, 2}. Moreover, a0 +∑3
j=1(a j + a′

j ) + a = 9 and a(a − 1) + ∑3
j=1(a j (a j − 1) + a′

j (a
′
j − 1)) + a(a − 1) = 2.

Therefore exactly one of a0, . . . , a is 2 and the others are 1. If a0 = 2 or a j = 2 or a′
j = 2, then

CC j = −1. This contradicts the fact that C is irreducible. So a = 2 and thus C ≡ −KW − E .
We exclude this case by the following lemma. ��
Lemma 2.3 The linear system | − KW − E | is empty.

Proof Assume by contradiction that | − KW − E | 	= ∅. Then an element of | − KW − E |
corresponds to a cubic c on P

2 passing through p0, p1, p2, p3, p′
1, p′

2, p′
3 and having p

as a singularity. Let F(x1, x2, x3) be the defining polynomial of c. Since c passes through
p1, p2, p3, F does not contain the terms x3

1 , x3
2 , x3

3 . Since p0 p j : x j+1 = x j+2 is the tangent
line to c at the point p j , the coefficient of the term x2

j x j+1 is the negative of the term x2
j x j+2.

We may assume that

F(x1, x2, x3) = Ax2
1 (x2 − x3) + Bx2

2 (x3 − x1) + Cx2
3 (x2 − x1) + Dx1x2x3,

where A, B, C, D ∈ C. Since c contains p0 = (1 : 1 : 1), D = 0. Assume that p = (1 : α :
β), where α 	= 0, 1, β 	= 0, 1 and α 	= β (see condition (I)). The singularity p of c imposes
the following conditions on F :

(α − β)A + α2(β − 1)B + β2(α − 1)C = 0,

A + 2α(β − 1)B + β2C = 0,

−A + α2 B + 2β(α − 1)C = 0.

The coefficient matrix has determinant 2αβ(α − 1)(β − 1)(α − β), which is nonzero, we
have A = B = C = 0. Hence | − KW − E | = ∅. ��
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1278 Y. Chen

The (−2)-curves C1, C ′
1, C2, C ′

2, C3, C ′
3 are pairwise disjoint. Let η : W → � be the

morphism contracting these curves. By Proposition 2.2, � has six nodes and −K� is ample.
Now we turn to study the (−1)-curves on W . Denote by � the strict transform of the line

p0 p. Then � is a (−1)-curve and � ≡ L − E0 − E . Note that the pencil of lines on P
2

passing through p0 induces a the fibration g : W → P
1. Denote by F a general fiber of g.

Then F ≡ L − E0. Moreover, g has exactly four singular fibers:

C j E ′
j C ′

j � E
◦ ◦ ◦ ◦ ◦
1 2 1 1 1

for j = 1, 2, 3. Here numbers on nodes represent the multiplicities.
Starting from the two (−1)-curves � and E , we will find two more (−1)-curves. We first

need some properties of the linear system | − 2KW |.
Proposition 2.4 ([11, Theorem 8.3.2]) The linear system | − 2KW | defines a morphism
φ : W → P

3. It factors as a birational morphism η : W → � contracting exactly the six
(−2)-curves and a finite morphism q : � → Q of degree 2, where Q is a quadric cone.

See [11, Theorem 8.3.2] for a general statement on weak Del Pezzo surfaces of any degree
and for a proof.

Proposition 2.5 (1) The linear system |−2KW −�| consists of a single (−1)-curve. Denote
this (−1)-curve by B̃2. Then B̃2� = 3 and B̃2 E = 1.

(2) The linear system |−2KW − E | consists of a single (−1)-curve. Denote this (−1)-curve
by B̃3. Then B̃3� = 1 and B̃3 E = 3.

(3) The curve � + E + B̃2 + B̃3 has only nodes.

Proof (1) There is an exact sequence

0 → OW (−2KW − �) → OW (−2KW ) → O�(−2KW ) → 0.

Since −2KW � = 2, by Proposition 2.4, h0(W, OW (−2KW − �)) ≥ 1.
Now assume that A ∈ | − 2KW − �|. Then A2 = −1 and KW A = −1. Since −KW

is nef and big, we may assume that A = A1 + A2, where A1 is an irreducible curve
with −KW A1 = 1 and Supp(A2) is contained in the union of the (−2)-curves. Since �

is disjoint from the (−2)-curves, we have A1 A2 + A2
2 = (−2KW − �)A2 = 0. Since

(A1 + A2)
2 = A2 = −1, it follows that A2

1 + A1 A2 = −1. In particular, A2
1 ≤ −1. By

the adjunction formula, A1 is a (−1)-curve and thus A1 A2 = A2
2 = 0. Hence A2 = 0

and A = A1 is a (−1)-curve.
Hence |−2KW −�| consists of a (−1)-curve B̃2. Moreover, B̃2� = (−2KW −�)� = 3
and B̃2 E = (−2KW − �)E = 1.

(2) The proof is similar to (1).
(3) Recall that � + E is disjoint from the (−2)-curves, since they are contained in different

fibers of g. It follows that B̃2 ≡ −2KW −� and B̃3 ≡ −2KW − E are also disjoint from
the (−2)-curves. Note that B̃2 B̃3 = (−2KW −�)(−2KW − E) = 1 and B̃2 E = B̃3� =
�E = 1. It suffices to prove that

(a) � (respectively E) intersects B̃2 + B̃3 transversely.
(b) B̃2 (respectively B̃3) intersects � + E transversely.

For (a), let M := B̃2 + B̃3. Then |M | induces a genus 0 fibration h : W → P
1. Since

MC j = MC ′
j = 0 for j = 1, 2, 3, the six (−2)-curves are contained in the singular fibers
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A new family of surfaces of general type 1279

of h. We claim that h has exactly four singular fibers: B̃2 + B̃3 and M j ( j = 1, 2, 3) :
(−2) 
 j (−2)◦ ◦ ◦

1 2 1

where the (−2)-curves are C1, . . . , C ′
3, and 
 j is a (−1)-curve for j = 1, 2, 3.

Actually, since −KW is nef, any irreducible component A in a singular fiber is either
a (−2)-curve or a (−1)-curve. Since −KW M = −KW (B̃2 + B̃3) = 2, any singular
fiber contains either one (−1)-curve with multiplicity 2, or two (−1)-curves with each
multiplicity 1. Since the (−2)-curves of W are pairwise disjoint, any singular fiber is of
one of the following types:

(−2) (−1) (−2) (−1) (−2) (−1) (−1) (−1)◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 1 1 1 1 1 1

Each fiber of the first two types contributes 2 to the Picard number ρ(W ). Note that W
has six (−2)-curves and ρ(W ) = 9. By considering how the (−2)-curves are distributed
along the singular fibers, we see that there are four singluar fibers, one of which is B̃2+ B̃3,
the other three are of the first type. Our claim is proved.
Since M� = (−4KW − � − E)� = 4, h|� : � → P

1 is of degree 4. Since � is disjoint
from C j and C ′

j , �
 j = 1
2�M = 2. Thus M j induces ramification points of h|� . The

Riemann-Hurwitz formula implies that h|� does not have any other ramification points
than those on M1, M2, M3. In particular, � intersects the fiber B̃2 + B̃3 transversely. A
similar argument shows that E intersects B̃2 + B̃3 transversely.
For (b), we return to the fibration g : W → P

1. Note that the singular fibers of g are
of the same types of those of h. Also note that B̃2 F = B̃2(� + E) = 4 and B̃3 F =
B̃3(� + E) = 4. A similar argument as the proof of (a) shows that B̃2 (respectively B̃3)
intersects � + E transversely.

For later use, we prove the following lemma.

Lemma 2.6 The linear system | − 2KW + �| defines a birational morphism φ : W → P
5

and φ contracts exactly the six (−2)-curves C1, . . . , C ′
3.

Proof Since H1(W, OW (−2KW )) = 0 and (−2KW + �)� = 1, the trace of | − 2KW + �|
on � is complete and base point free. By Proposition 2.4, |−2KW +�| is base point free. By
Ramanujam’s vanishing theorem and Riemann–Roch theorem, h0(W, OW (−2KW+�))=6.
Since (−2KW + �)2 = 7 and I m(φ) is nondegenerate, φ is birational.

Now assume that C is an irreducible curve and (−2KW + �)C = 0. Then C2 < 0.
Since −KW is nef, C is either a (−2)-curve or a (−1)-curve. If C is a (−1)-curve, then
�C = 2KW C = −2. This contradicts the fact that � is a (−1)-curve. Therefore C is one of
the (−2)-curves C1, . . . , C ′

3. Hence φ contracts exactly the (−2)-curves C1, . . . , C ′
3. ��

3 Construction of surfaces of general type

In this section, we construct a family of surfaces of general type as finite Z
2
2-covers of the

weak Del Pezzo surface W . First, we define three effective divisors on W

�1 : = Fb + � + (C1 + C ′
1 + C2 + C ′

2) ≡ 4L − 4E0 − 2E ′
1 − 2E ′

2 − E,

�2 : = B̃2 + (C3 + C ′
3) ≡ −2KW − 2E ′

3 + E, (3.1)

�3 : = B̃3 ≡ −2KW − E .
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1280 Y. Chen

Here we require that

(A) The curve Fb is a smooth fiber of the fibration g : W → P
1 (see Sect. 2);

(B) The divisor � := �1 + �2 + �3 has only nodes.
By Proposition 2.5, B̃2 + B̃3 + � has only nodes. Since Fb, �, B̃2, B̃3 are disjoint from
the (−2)-curves C1, . . . , C ′

3, (B) is equivalent to the requirement that Fb intersects the
curve B̃2 + B̃3 transversely. By Bertini’s theorem, this is the case for a general fiber of g.

We also define three divisors

L1 = −2KW − E ′
3,

L2 = −KW + (2L − 2E0 − E ′
1 − E ′

2 − E),

L3 = −KW + (2L − 2E0 − E ′
1 − E ′

2 − E ′
3).

(3.2)

It follows that 2Li ≡ �i+1 + �i+2, Li + �i ≡ Li+1 + Li+2 for i = 1, 2, 3.
By [8, Section 1] or [9, Theorem 2], the data (3.1) and (3.2) define a finite G-cover

π̃ : V → W . Conditions (A) and (B) imply that V is smooth. By the formulae in [9, Section 2],

2KV ≡ π̃∗(2KW + �) ≡ π̃∗
⎛

⎝−2KW + � +
3∑

j=1

(C j + C ′
j )

⎞

⎠ , (3.3)

pg(V ) = pg(W ) +
3∑

i=1

h0(W, OW (KW + Li )). (3.4)

Since C j or C ′
j (for j = 1, 2, 3) is a connected component of �, the (set-theoretic)

inverse image π̃−1C j or π̃−1C ′
j is a disjoint union of two (−1)-curves. Let ε : V → S be the

blowdown of these twelve (−1)-curves. By construction, there is a finite G-cover π : S → �

such that the following diagram commutes:

V
ε ��

π̃

��

S

π

��
W

η �� �

(3.5)

The discussion above shows that

2KS ≡ π∗(−2K� + γ ), (3.6)

where γ = η(�) is a (−1)-curve contained in the smooth locus of �.

Theorem 3.1 S is a smooth minimal surface of general type with K 2
S = 7 and pg(S) = 0.

Moreover, KS is ample.

Proof By (3.6), K 2
S = 1

4 4(−2K� + γ )2 = 7. To show that pg(S) = pg(V ) = 0, we use
(3.4). Since pg(W ) = 0, it suffices to show that h0(W, OW (KW + Li )) = 0 for i = 1, 2, 3.

By (3.2) and the configurations of the eight points on P
2, it is clear that |KW + L2| and

|KW +L3| are empty. Now assume by contradiction that |KW +L1| 	= ∅. Let D ∈ |KW +L1|.
By (3.2) and (2.1), DC3 = DC ′

3 = −1 and thus D ≥ C3 + C ′
3. Note that D − C3 − C ′

3 ≡
2L − E1 − E ′

1 − E2 − E ′
2 − E3 − E . This contradicts condition (II). Therefore |KW +L1| = ∅

and thus pg(S) = 0.
Lemma 2.6 implies that −2K� + γ is ample. Since π is a finite morphism, KS is ample

by (3.6). In particular, S is minimal and of general type. ��
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We have constructed a family of surfaces with a Z
2
2-action, parameterized by a

3-dimensional open subset {(p, Fb)| p ∈ P
2 satisfying conditions (I) and (II), Fb ∈

|F |satisfying conditions (A) and (B)} of P
2 × P

1. A natural question arises: is this a new
family? To the best of the author’s knowledge, the Inoue surfaces are the only known smooth
minimal surfaces of general type with K 2 = 7 and pg = 0. So we intend to show that the
surfaces constructed here satisfy different properties from the Inoue surfaces.

4 The bicanonical map

It is known that the bicanonical morphism of an Inoue surface has degree 2 (cf. [16, Example
4.1]). In this section, we prove that our surfaces have birational bicanonical morphism. So
they are indeed new surfaces.

Proposition 4.1 For a surface S as in Theorem 3.1, the dimensions of the eigenspaces
of H0(S, OS(2KS)) for the G-action are as follows: dim H0(S, OS(2KS))inv = 6, dim
H0(S, OS(2KS))χ1 = 1, dim H0(S, OS(2KS))χ2 = 1 and dim H0(S, OS(2KS))χ3 = 0.

Proof By the formulae in [9, Section 2],

dim H0(S, OS(2KS))χi = h0(W, OW (2KW + Li+1 + Li+2))

for i = 1, 2, 3 and dim H0(S, OS(2KS))inv = h0(W, OW (2KW + �)). By (3.2) and (2.1),

2KW + L1 + L3 ≡ (2L − E1 − E2 − E3 − E ′
3 − E) +

3∑

j=1

(C j + C ′
j ),

2KW + L1 + L2 ≡ (2L − E1 − E2 − E3 − 2E) +
3∑

j=1

(C j + C ′
j ).

It is immediate that dim H0(S, OS(2KS))χ2 = 1 and dim H0(S, OS(2KS))χ3 = 0.
By (3.2), (3.3) and Lemma 2.6, we have dim H0(S, OS(2KS))inv = 6. Since

h0(S, OS(2KS)) = K 2
S + 1 = 8, it follows that dim H0(S, OS(2KS))χ1 = 1. ��

Corollary 4.2 The bicanonical morphism ϕ : S → P
7 is not composed with any involution

of the group G.

Theorem 4.3 For a surface S as in Theorem 3.1, the bicanonical morphism ϕ : S → P
7 is

birational.

Proof By [16] and [17], ϕ has degree either 1 or 2. By Lemma 2.6, | − 2K� + γ | defines a
birational morphism of �. Since 2KS = π∗(−2K� + γ ) and S is a Z

2
2-Galois cover of �, ϕ

is birational if and only if ϕ is not composed with any involution of the Galois group. Thus
ϕ is a birational by Corollary 4.2. ��

5 The intermediate double covers and Bloch’s conjecture

By construction, we see that the automorphism group of the surface S in Theorem 3.1 contains
at least three involutions. Involutions on surfaces of general type with K 2 = 7 and pg = 0
are studied in [18] and [15]. Lists of numerical possibilities are given in these articles. The
surfaces constructed here realize some possibilities of their lists.
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1282 Y. Chen

Proposition 5.1 Let S be a surface as in Theorem 3.1.

(1) The involution g1 has 9 isolated fixed points on S and S/g1 is a rational surface.
(2) The involution g2 has 9 isolated fixed points on S and S/g2 is birational to an Enriques

surface.
(3) The involution g3 has 7 isolated fixed points on S. Moreover, S/g3 has Kodaira dimension

1 and KS/g3 is nef.

Proof (1) The Z
2
2-cover π̃ : V → W of (3.5) factors through the intermediate double cover

π̃1 : V1 → W . The covering data associated to π̃1 is �2 + �3 ≡ 2L1. Note that V1

has exactly one node, lying over the node of B̃2 + B̃3. The inverse image π̃−1
1 C3 or

π̃−1
1 C ′

3 is a (−1)-curve, while the inverse image π̃−1
1 Ck or π̃−1

2 C ′
k (k = 1, 2) is a disjoint

union of two (−2)-curves. Contracting all these curves, we obtain the quotient surface
S/g1. By construction, S/g1 has exactly 9 nodes (the images of the node of V1 and the
8 (−2)-curves π̃−1

1 Ck, π̃
−1
1 C ′

k (k = 1, 2)). Hence g1 has 9 isolated fixed points on S.
In the proof of Proposition 2.4 (3), we show that |M | = |B̃2 + B̃3| gives a genus 0
fibration h : W → P

1. For a general M , we have M(�2 + �3) = 0. So the pullback of
M by π̃1 is a disjoint union of two smooth rational curves. Applying Stein factorization
to the morphism h ◦ π̃ : V1 → P

1, we conclude that V1 has a genus 0 fibration. Since V1

is a quotient of V , q(V1) = 0. Hence V1 is a rational surface and so is S/g1.
(2) Consider the intermediate double cover π̃2 : V2 → W associated to the data �1 + �3 ≡

2L2. Then V2 has exactly 5 nodes, lying over the 5 nodes of Fb +�+ B̃3. Contracting the
inverse image π̃−1

2 (C j ) and π̃−1
2 (C ′

j ) ( j = 1, 2, 3), we obtain S/g2. It has 9 nodes (the

images of the 5 nodes and the 4 (−2)-curves π̃−1
2 C3, π̃

−1
2 C ′

3). Hence g2 has 9 isolated
fixed points on S.
Since V2 is a quotient of V , pg(V2) = q(V2) = 0. To show that V2 is birational to an
Enriques surface, it suffices to show that P2m+1(V2) = 0 and P2m(V2) = 1 for m ≥ 1.
Note that KV2 = π̃∗

2 (KW + L2). Therefore,

P2m(V2) = h0(W, OW (2mKW + (2m − 1)L2) + h0(W, OW (2mKW + 2mL2))

By (3.2),

2mKW + 2mL2 ≡ 2m� + m(C1 + C ′
1 + C2 + C ′

2). (5.1)

It is immediate that h0(W, OW (2mKW + 2mL2)) = 1.
By (3.2), it is clear that |2KW + L2| = ∅. For m ≥ 2, by (5.1),

2mKW + (2m − 1)L2 ≡ 2(m − 1)� + (m − 1)(C1 + C ′
1 + C2 + C ′

2) + (2KW + L2).

Note that �(2KW + L2) = −2, Ck(2KW + L2) = C ′
k(2KW + L2) = −1(k = 1, 2).

Similarly to the proof of Theorem 3.1, it is easy to show |2mKW + (2m − 1)L2| = ∅.
Hence P2m(V2) = 1.
A similar argument using (5.1) shows that P2m+1(V2) = 0 for m ≥ 1. Hence V2 is
birational to an Enriques surface.

(3) Consider the intermediate double cover π̃3 : V3 → W associated to the data �1 + �2 ≡
2L3. Then V3 has exactly 7 nodes, lying over the 7 nodes of the curve Fb + � + B̃2.
The inverse image π̃−1

3 C j or π̃−1
3 C ′

j ( j = 1, 2, 3) is a (−1)-curve. Contracting these
(−1)-curves, we obtain S/g3, which has 7 nodes. Thus g3 has 7 isolated fixed points on
S. By construction, there are double covers π3 : S/g3 → � and p3 : S → S/g3 such
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that the following diagram commutes.

V
ε ��

��������

π̃

��

S

p3 ��������
π

V3 ��

π̃3��������
��

S/g3

π3��������

W η
�� �

By (3.2), 2KV3 ≡ π̃∗
3 (2KW + 2L3) ≡ π̃∗

3 (L − E0 + C1 + C2 + C3 + C ′
1 + C ′

2 + C ′
3). In

Sect. 2, we show that |L − E0| gives a genus 0 fibration g : W → P
1, and the (−2)-curves

C1, . . . , C ′
3 are contained in the fibers of g. This induces a fibration on g′ : � → P

1.
Denote the general fiber of g′ by F ′. From the diagram, 2KS/g3 ≡ π∗

3 (F ′). Thus KS/g3

is nef, K 2
S/g3

= 0 and S/g3 has Kodaira dimension 1. ��
Remark 5.1 We remark that (2) (respectively (3)) realize some numerical possibilities of
case a) (respectively case b)) of [18, Theorem 4.1]. (1), (2) and (3) realize respectively the
following possible cases in the list of [15]:

(1) k = 9, K 2
W = −2, W is a rational surface and B0 = �0

(3, 0)
+ �1

(1,−2)
.

(2) k = 9, K 2
W = −2, W is birational to an Enriques surface and B0 = �0

(3,−2)
.

(3) k = 7, K 2
W = 0, W is minimal proper elliptic and B0 = �0

(2,−2)
.

These cases are different from those of the Inoue surfaces. See [15, Section 5] and Sect. 6.

Recently, it is shown in [3] that the Bloch’s conjecture ([6]) holds for Inoue surfaces with
K 2 = 7 and pg = 0, by using the method of “enough automorphisms” ([14] and [1]). We
observe that the results of [3] apply to our surfaces.

Theorem 5.2 Let S be a surface as in Theorem 3.1. Then S satisfies the Bloch’s conjecture,
i.e., the kernel T (S) of the natural morphism A0

0(S) → Alb(S) is trivial. In particular,
A0

0(S) = 0.

Proof The first statement follows directly from [3, Proposition 1.3,Corollary 1.5] and Propo-
sition 5.1. Since Alb(S) is trivial in our case, Bloch’s conjecture says that A0

0(S) = 0.

6 Remarks on related topics

In a pre-version of [15], it is claimed that the three quotients of an Inoue surface by the
involutions are rational. The claim turns out to be wrong. We will point out that one of the
quotients is birational to an Enriques surface. In [18], a family of surfaces of general type
with K 2 = 7 is constructed as bidouble planes. However, here we show that this family
consists of Inoue surfaces.

We first stick to the same notation of [18, Section 4.2] (Fig. 2).
Let p, p1, p2, p3 be four points in general position of P

2, and let p′
k (k = 1, 2) be the

infinitely near point of pk corresponding to the line pk p. Denote by Tj ( j = 1, 2, 3) the
line p j p and by T4 a general line passing through p. Denote by C1, C2 two distinct smooth
conics passing through p1, p2, p′

1, p′
2. Denote by L a quintic passing through p, having pk
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Fig. 2 Configurations of p, p1, p2, p3, p′
1 and p′

2

(k = 1, 2) as a (2, 2)-singularity and having p3 as an ordinary triple point (See the last
paragraph in [18, Subsection 4.2.1]).

We claim that L is a union of a conic C and a cubic �, where C is the conic passing
through p1, p2, p′

1, p′
2, p3, and � is a cubic passing through p, p1, p2, p′

1, p′
2 and having p3

as an ordinary double point. Note that LC = 11. The claim follows from Bézout’s Theorem.
In [18], it is claimed that the smooth minimal model of the bidouble plane associated to

the following branch divisors is a surface of general type with K 2 = 7 and pg = 0 :
D1 = L = C + �, D2 = T1 + C1 + C2, D3 = T2 + T3 + T4. (6.1)

We explain how to find the smooth minimal model of the bidouble plane and show that this
is indeed an Inoue surface with K 2 = 7.

Let σ : Ỹ → P
2 be the blowup at the six points p, p1, p2, p3, p′

1 and p′
2. Denote by L̂

the pullback of a general line of P
2 and by E (respectively E j , E ′

k) the total transform of p
(respectively p j ( j = 1, 2, 3), p′

k( k = 1, 2)). We also denote by T̃1 the strict transform of
T1, and similarly for other curves.

The surface Ỹ is the minimal resolution of the 4-nodal cubic surface Y . We explain some
geometry of Ỹ .

(1) Ỹ has exactly four (−2)-curves: T̃1 = L̂ − E1 − E ′
1 − E , T̃2 = L̂ − E2 − E ′

2 − E ,
N1 = E1 − E ′

1 and N2 = E2 − E ′
2. These curves correspond to the four nodes of Y .

(2) Ỹ contains nine (−1)-curves, which correspond to nine lines on the 4-nodal cubic surface
Y . Among these curves, there are exactly three, which are disjoint from the (−2)-curves:
T̃3 = L̂ − E3 − E , C̃ = 2L̂ − E1 − E ′

1 − E2 − E ′
2 − E3 and E3. They correspond to

three lines on Y which do not pass through any nodes. In particular, they are determined
by the 4-nodal cubic surface Y .

(3) Note that

T̃4 ∈ |L̂ − E |, T̃4 + C̃ ≡ −KỸ ,

C̃1, C̃2 ∈ |2L̂ − E1 − E ′
1 − E2 − E ′

2|, C̃1 + T̃3 ≡ C̃2 + T̃3 ≡ −KỸ ,

�̃ ∈ |3L̂ − E1 − E ′
1 − E2 − E ′

2 − 2E3 − E |, �̃ + E3 ≡ −KỸ .

So the divisor classes of T̃4, C̃1, C̃2 and �̃ are also determined by the 4-nodal cubic
surface.

The total transforms of D1, D2, D3 on Ỹ are

σ ∗(D1) = C̃ + �̃ + 2E1 + 2E ′
1 + 2E2 + 2E ′

2 + 3E3 + E,

σ ∗(D2) = T̃1 + C̃1 + C̃2 + N1 + 2E ′
1 + E + 2

(
E1 + E ′

1 + E2 + E ′
2

)
,

σ ∗(D3) = T̃2 + T̃3 + T̃4 + N2 + 2E ′
2 + E3 + 3E .
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Applying the normalization procedure in the theory of bidouble covers (cf. [9, Section 2,
Remark 3]), we obtain three new divisors:

D̃1 = C̃ + �̃,

D̃2 = T̃1 + C̃1 + C̃2 + N1 + E3,

D̃3 = T̃2 + T̃3 + T̃4 + N2.

(6.2)

The bidouble cover π̃ : S̃ → Ỹ associated to (6.2) is birational to the bidouble plane
associated to (6.1). Using the above explanation of the geometry of Ỹ and comparing (6.2)
with [16, Example 4.1 (I)], we conclude that the smooth minimal model of S̃ (and thus of
the bidouble plane) is an Inoue surface.

Now we point out a mistake in the pre-version of [15]. This observation is due to Car-
los Rito. Here we use the notation of [16, Example 4.1], as [15] uses almost the same notation
(except denoting the minimal resolution � of the 4-nodal cubic surface by P). In [15, Section
5, paragraph 4], the authors claim “Also, H0(T2, OT2(2KT2)) = 0 by a similar argument as
the case i = 1”. Here T2 is a double cover of � associated to the data D1 + D3 ≡ 2L2.
However, we will show that H0(T2, OT2(2KT2)) = 1.

It suffices to show h0(�, O�(2K� + L2)) = 0 and h0(�, O�(2K� + 2L2)) = 1,
where L2 = 6l − 2e1 − 2e2 − 2e3 − 2e4 − 3e5 − 3e6 ([16, Example 4.1] (II)). Since
2K� + L2 = −e5 − e6, clearly h0(�, O�(2K� + L2)) = 0. Note that

2K� + 2L2 ≡ (l − e1 − e2 − e5) + (l − e3 − e4 − e5) + (l − e1 − e4 − e6)

+ (l − e2 − e3 − e6) + 2(l − e5 − e6).

From the configuration of the six points on P
2 ([16, Figure 1]), it is immediate that

h0(O�, O�(2K� + 2L2)) = 1.
Finally, we remark that T2 is birational to an Enriques surface as described in [18] and it

realizes the case k = 9, K 2
W = −2 and B0 = �0

(3, 0)
+ �1

(1,−2)
on the list of [15].
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