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Abstract We consider Ricci flow of complete Riemannian manifolds which have bounded
non-negative curvature operator, non-zero asymptotic volume ratio and no boundary. We
prove scale invariant estimates for these solutions. Using these estimates, we show that there
is a limit solution, obtained by scaling down this solution at a fixed point in space. This limit
solution is an expanding soliton coming out of the asymptotic cone at infinity.
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1 Introduction and statement of results

Let (Mn, h) be a smooth n-dimensional, complete, non-compact Riemannian manifold with-
out boundary, with non-negative curvature operator and bounded curvature. In particular
(M, h) has non-negative sectional curvature and non-negative Ricci curvature. Any rescal-
ing of this space also has non-negative sectional curvatures, and hence for every sequence of
scalings (M, ci h, pi ), ci ∈ R

+, pi ∈ M, i ∈ N, there exists a subsequence which converges
in the pointed Gromov–Hausdorff sense to a metric space (X, dX ) (see Proposition 10.7.1 in
[2]) which is a metric space with curvature ≥ 0 (see Definition 4.6.2 in [2]). In the case that
pi = p for all i ∈ N, the limit is known as (X, dX , 0) the asymptotic cone at infinity and it is
unique: see Lemma 3.4 of [17]. It is the Euclidean cone over a metric space (V, dV ) where
(V, dV ) is an Alexandrov space of curvature bounded from below by one, and 0 is the tip of
the cone: see Corollary 3.5 of [17] for example.

F. Schulze
Department of Mathematics, University College London, 25 Gordon St, WC1E 6BT London, UK
e-mail: f.schulze@ucl.ac.uk

M. Simon (B)
Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: miles.simon@ovgu.de

123



626 F. Schulze, M. Simon

The Euclidean cone CV over a metric space V is homeomorphic to the space R
+
0 × V/ ∼

with the quotient topology, where (r, y) ∼ (s, x) if and only if (r = s = 0) or (r = s and
x = y). The metric is given by:

dCV ((r, x), (s, y)) := r2 + s2 − 2rs cos(min(dV (x, y), π)).

In the case that CV arises as a Gromov–Hausdorff limit in the setting described above, and
the sequence (M, ci h, pi ) is non-collapsing, then V is homeomorphic to Sn−1. This follows
from (unpublished) results of Perelman [28] as explained and simplified by Kapovitch in the
paper [23]. See Appendix B.

Notation A pointed sequence (Xi , di , pi )of metric spaces is non-collapsing if vol(B1(pi ))≥
δ > 0 for some δ > 0 independent of i .

Our aim is to flow such cones (CV, dCV ) by Hamilton’s Ricci flow (introduced in [18]).
We will show that a solution to Ricci flow with initial value given by the cone exists, that the
solution is immediately smooth, and that it is an expanding Ricci soliton with non-negative
curvature operator. For an interval I (open, closed, half open, finite or infinite length) and
a smooth manifold M without boundary, a smooth (in space and time) family of complete
Riemannian metrics {g(·, t)}t∈I solves Ricci flow if ∂

∂t g(t) = −2 Ricci(g(t)) for all t ∈ I .
If I = (0, T ), we say (M, g(t))t∈(0,T ) is a solution to Ricci flow with initial value (M, d0)

((M, d0) a metric space), if limt↘0(M, d(g(t))) = (M, d0) in some to be specified sense
((M, d(g)) is the metric space associated to (M, g)).

Definition 1.1 Let (M, h) be a smooth, complete Riemannian manifold without boundary,
with non-negative Ricci curvature. The asymptotic volume ratio AVR(M, h) is

AVR(M, h) := lim
r→∞

vol(Br (x))

rn
,

where x is an arbitrary point in M .

Due to the Bishop–Gromov volume comparison principle, AVR(M, h) is well defined for
such manifolds. AVR(M, h) does not depend on the choice of base point if the curvature is
bounded: see the definition/discussion (directly before Theorem 18.3) in [22]. It also easily
follows that

vol(Br (x))

rn
≥ AVR(M, h) ∀ r > 0. (1.1)

In particular if V0 := AVR(M, h) > 0, then we have

vol(Br (x))

rn
≥ V0 > 0 ∀ r > 0. (1.2)

Theorem 1.2 Let (M, h) be a smooth, complete Riemannian manifold without boundary,
with non-negative, bounded curvature operator and positive asymptotic volume ratio V0 :=
AVR(M, h) > 0. Let (X, dX , 0) be the asymptotic cone at infinity, i.e. the unique Gromov–
Hausdorff limit of (M, ci h, p0) for any sequence ci → 0 of positive numbers and any base
point p0 ∈ M. Then:

(i) There exists a smooth solution (M, g(t))t∈[0,∞) to Ricci flow with g(0) = h.
(ii) Let gi (t) := ci g(t/ci ), i ∈ N, be the solutions to Ricci flow obtained by rescal-

ing the flows obtained in (i). The pointed solutions (M, gi (t), p0)t∈(0,∞) converge
smoothly, sub-sequentially (in the Hamilton–Cheeger–Gromov sense: see [21]) as
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Expanding solitons coming out of cones 627

i → ∞ to a limit solution (X̃ , g̃(t)t∈(0,∞), x̃0). This solution (X̃ , g̃(t)t∈(0,∞), x̃0)

satisfies (X̃ , d(g̃(t)), x̃0) → (X, dX , 0) in the Gromov–Hausdorff sense as t ↘ 0,

AVR(X̃ , g̃(t)) = AVR(X, dX ) = AVR(M, h) ∀ t > 0, and X is homeomorphic to X̃ .
Hence such a limit solution may be thought of as a solution to Ricci flow with initial
value (X, dX , 0). Furthermore, (X̃ , g̃(t))t∈(0,∞) is an expanding gradient soliton with
non-negative curvature operator. That is g̃(t) = t (φt )

∗g̃(1) and g̃(1) satisfies

Ricci(g̃(1)) − (1/2)g̃(1) + g̃(1)∇2 f (1.3)

for some smooth function f : M → R.

Remark 1.3 As explained before, in this case X is the Euclidean cone over a metric space
V , and V is homeomorphic to Sn−1 (see Appendix B).

In this paper (and in particular the above theorem) g∇ j refers to the j th covariant derivative
with respect to g. In order to prove this theorem we require a priori estimates for non-
collapsed solutions with non-negative bounded curvature operator. This involves proving a
refined version of Lemma 4.3 of [31], suited to the current setting, which we now state.

Theorem 1.4 Let (Mn, g0) be a smooth, complete Riemannian manifold without boundary,
with bounded non-negative curvature operator and V0 := AVR(M, g0) > 0. Then there
exists a constant c = c(n, V0) > 0 and a solution to Ricci-flow (M, g(t))t∈[0,∞) with
g(0) = g0 such that

sup
M

|Riem(g(t))| ≤ c

t
(1.4)

for all t ∈ (0,∞).

Remark 1.5 A similar result was obtained by B.-L. Chen and X.-P. Zhu for Kähler manifolds
in Theorem 5.1 of the paper [11].

Remark 1.6 It is known that any smooth, open solution to Ricci flow with non-negative,
bounded curvature operator has constant asymptotic volume ratio, see [33, Theorem 7]. That
is, in the above theorem we have

Vt := AVR(M, g(t)) = V0,

for all t ∈ [0,∞).

2 Previous results and structure of the paper

The literature that exists on expanding, shrinking and steady solitons is vast. For a very good
and current overview of the field, we refer the reader to the survey paper of Cao [6]. Here we
mention some of the results on expanding solitons relevant to the current setting.

In the paper [4], the author constructs families of examples of Kähler gradient expanding
solitons on C

n . He also shows that any solution to Kähler Ricci flow with bounded curvature
and which

(i) exists for t ∈ (0,∞), and
(ii) has non-negative holomorphic bi-sectional and positive Ricci curvature, and
(iii) has tR(·, t) ≤ K for all t > 0, and
(iv) sup(x,t)∈M×(0,∞) tR(x, t) is attained
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must itself be an expanding Kähler gradient soliton. This result was generalised to the case of
Ricci flow with non-negative curvature operator by Chen and Zhu in [10] (see Proposition 4.2
there). That is, if we have a solution to Ricci flow which satisfies the above with condition
(i i) replaced by (ĩ i) has non-negative curvature operator and positive Ricci curvature, then
the conclusion is, the solution must be an expanding gradient soliton.

Hence, it is natural to look for solutions satisfying all or some of these conditions, when
trying to construct expanding solitons with non-negative curvature operator.

Both of these results use the Harnack inequality: the result of Cao uses the Harnack
inequality given in [3] and that of Chen and Zhu uses the Harnack inequality given in
[20].

A pre-print of Ma [25] appeared after we had completed this paper. The pre-print contains
a generalisation of the above result of Chen and Zhu [10]. In the paper [25], the condition
(ĩ i) above is replaced by the new (ĩ i) has non-negative Ricci curvature and is non-collapsed.
The paper of Ma uses the W+ functional.

In the papers [16] and [26] the W+ functional is studied globally and locally. In particular,
it is a monotone non-decreasing function. The W+ functional is a generalisation of Perleman’s
W energy (see [29]). W+ is monotone non-decreasing, and constant precisely on expanders
(up to a shift in time). See for example Theorem 1.1 in [16].

See also Corollary 6.9 of [26], where a similar result to that of [10] is proved using the
W+ functional.

It is known that if an expanding soliton has bounded curvature and Ricci > 0, then
∞ > AVR > 0. This was first proved by Hamilton for Ricci > 0 (see Proposition 9.46
in the book [12]). In the paper [7] this result was generalised to the case that the curva-
ture is not necessarily bounded: see proposition 5.1 of [7]. Sharper estimates for expanding
gradient solitons under weaker assumptions are also proved there. We refer the reader to
that paper for more details. Similar estimates may also be found in Proposition 4.1 of the
paper [8].

Note that in our setting, we may assume that Ricci > 0 after isometrically splitting off
a factor R

m (see Sect. 6 for more details). Hence, the assumption that the manifolds we
consider have AVR > 0 is natural.

Further examples of and estimates on expanding, steady and shrinking solitons on C
m

are given in [15]. In particular, they construct an example of a Ricci flow which starts as
a shrinking soliton (for time less than zero), flows into a cone at time zero and then into a
smooth expanding soliton (for time bigger than zero). They also include a discussion (with
justification) on the desirable properties of a weak Ricci flow.

The splitting result that we prove in Appendix A is essentially derived from that of Hamil-
ton in [19] (see also [5]).

Structure of the paper In chapter 3 we fix some notation. In chapter 4 we prove a
short time existence result for smooth, complete, non-collapsed Riemannian manifolds with
non-negative and bounded curvature operator. In chapter 5 we show by a scaling argu-
ment that these conditions actually imply longtime existence if the asymptotic volume
ratio is positive. Furthermore the asymptotic volume ratio for the so obtained solutions
remains constant. By blowing down such a flow parabolically we prove in chapter 6 that
we obtain a smooth limiting solution, which evolves out of the asymptotic cone at infin-
ity of the initial manifold. We furthermore show that this solution actually is an expand-
ing soliton. In Appendix A we give a proof of a splitting result, which has its origin in
the de Rham Splitting Theorem. In Appendix B we recall an approximation result from
Kapovitch/Perelman.
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Expanding solitons coming out of cones 629

3 Notation

For a smooth Riemannian manifold (M, g), and a family (M, g(t))t∈[0,T ) of smooth Rie-
mannian metrics, we use the notation

• (M, d(g)) is the metric space associated to the Riemannian manifold (M, g),
• dμg is the volume form of the Riemannian manifold (M, g),
• d(x, y, t) = distg(t)(x, y) = d(g(t))(x, y) is the distance between x and y in M with

respect to the metric g(t),
• g Br (x) is the ball of radius r and centre x measured with respect to d(g),
• Br (x, t) is the ball of radius r and centre x measured with respect to d(g(t)),
• vol(�, g) is the volume of � with respect to the metric g,
• vol(g Br (x)) = vol(g Br (x), g),
• vol(Br (x, t)) = vol(Br (x, t), g(t)),
• R(g) is the curvature operator of g,
• Riem(g) is the curvature tensor of g,
• Ricci(g) is the Ricci curvature tensor of g,
• R(g) is the scalar curvature of g,
• R(p, g) is the scalar curvature of the metric g at the point p.
• If we write Br (x) resp. vol(Br (x)) then we mean g Br (x) resp. vol(g Br (x)), where g is

a metric which will be clear from the context.

4 Short time existence

Let (Mn, g0) be any smooth, complete manifold with bounded curvature and without
boundary. From the results of Hamilton [18] and Shi [30], we know that there exists a
solution (M, g(t))t∈[0,T ) to Ricci flow with g(0) = g0 and T ≥ S(n, k0) > 0 where
k0 := supM |Riem(g0)|. That is: we can find a solution for a positive amount of time T and
T is bounded from below by a constant depending on k0 and n. The results of the paper [31]
show that if the initial manifold is smooth, complete, without boundary and has non-negative
bounded curvature operator and vol(B1(x, 0)) ≥ v0 > 0 for all x ∈ M , then there exists
a solution for a time interval [0, T ) where T ≥ S(n, v0). Note the difference to the results
of Hamilton and Shi: the lower bound on the length of the time interval of existence does
not depend on the constant k0 := supM |Riem(g0)| < ∞. Some estimates on the evolving
curvature were also proved in that paper. We state this result here, and give a proof using the
results of [31].

Theorem 4.1 Let (M, g0) be smooth, complete Riemannian manifold without boundary,
with non-negative and bounded curvature operator. Assume also that the manifold is non-
collapsed, that is

vol(B1(x, 0)) ≥ V0 > 0 ∀ x ∈ M. (4.1)

Then there exist constants T = T (n, V0) > 0 and K (n, V0) and a solution to Ricci flow
(M, g(t))t∈[0,T ) which satisfies

(at ) R(g(t)) ≥ 0,

(bt ) vol(B1(x, t)) ≥ V0/2,

(ct ) supM |Riem(g(t))| ≤ K 2/t,
(dt ) d(p, q, s) ≥ d(p, q, t) ≥ d(p, q, s) − K (

√
t − √

s)

(4.2)

for all x, p, q ∈ M, 0 < s ≤ t < T , where R(g) is the curvature operator of g.
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Proof The proof follows from the results contained in the paper [31] and some other well
known facts about Ricci flow. Using the result of [30], we obtain a maximal solution
(M, g(t))t∈[0,Tmax) to Ricci flow with g(0)=g0, where Tmax >0 and supM |Riem(g(t))|< ∞
for all t ∈ [0, Tmax) and limt↗Tmax supM |Riem(g(t))|=∞ if Tmax < ∞. Also the curvature
operator of the solution is non-negative at each time, since non-negative curvature operator
is preserved for solutions with bounded curvature due to the maximum principle: see [22]
and for example the argument in Lemma 5.1 of [31] (the argument there shows that the
maximum principle is applicable to this non-compact setting, in view of the fact that the
curvature is bounded. Maximum principles of this sort are well known: see for example [14]
or [27]). Now the result follows essentially by following the Proof of Theorem 6.1 in [32].
For convenience we sketch the argument here, and refer the reader to the proof there for more
details. Let [0, TM ) be the maximal time interval for which the flow exists and

inf
x∈M

vol(B1(x, t)) >
V0

2
, (4.3)

for all t ∈ [0, TM ). Using the maximum principle and standard ODE estimates, one shows
easily that TM > 0 (see the Proof of Theorem 7.1 in [31] for details). The aim is now to
show that TM ≥ S for some S = S(n, V0) > 0. From Lemma 4.3 of [31] we see that if
TM ≥ 1 then the estimates (at ), (bt ) and (ct ) are satisfied for all t ≤ 1, and (dt ) would then
follow from Lemma 6.1 of [31], and hence we would be finished. So w.l.o.g. TM ≤ 1. From
Lemma 4.3 of [31] once again,

|Riem(g(t)| ≤ c0(n, V0)

t
(4.4)

for all t ∈ (0, TM ) for some c0 = c0(n, V0) < ∞. First note that (dt ) holds on the interval
(0, TM ) in view of Lemma 6.1 in [31], and the fact that Ricci(g(t)) ≥ 0. Using Corollary
6.2 of [31], we see that there exists an S = S(V0, c0(V0, n)) = S(n, V0) > 0, such that
vol(B1(x, t)) > 2V0

3 for all t ∈ [0, TM ) ∩ [0, S). If TM < S, then we obtain a contradiction
to the definition of TM (TM is the first time where the condition (4.3) is violated). Hence
TM ≥ S. But then we may use Lemma 4.3, Lemma 6.1 of [31] to show that (at ), (bt ), (ct )

and (dt ) are satisfied on (0, S), as required. ��
Remark 4.2 Note that Tmax ≥ (U (n)/k0) and supM |Riem(g(t))| ≤ k0k̃(n) for all t ≤
(U (n)/k0) for our solution, where k0 := supx∈M |Riem(g0)| < ∞ and k̃(n), U (n) > 0 are
constants. This is due to the fact that our solution is constructed by extending a Shi solution,
and the solutions of Shi satisfy such estimates by scaling.

5 Long time existence and estimates

The long time existence result follows essentially from scaling.

Theorem 5.1 Let (M, g0) be smooth, complete, without boundary, with non-negative
bounded curvature operator. Assume also that AVR(M, g0) =: V0 > 0. Then there exists a
solution to Ricci flow (M, g(t))t∈[0,∞) with g(0) = g0. Furthermore, the solution satisfies
the following estimates.

(at ) R(g(t)) ≥ 0
(b′

t ) AVR(M, g(t)) ≥ (V0/2) > 0

(ct ) supM |Riem(g(t))| ≤ K 2

t ,

(dt ) d(p, q, 0) ≥ d(p, q, t) ≥ d(p, q, s) − K (
√

t − √
s)
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Expanding solitons coming out of cones 631

for all t ∈ [0,∞) and p, q ∈ M, where K = K (n, V0) > 0 is a positive constant and R(g)

is the curvature operator of g.

Remark 5.2 From [33, Theorem 7] it is already known that in fact AVR(M, g(t)) = V0.

Proof Let c ∈ (0,∞) and g̃0 := cg0. Then we still have AVR(M, g̃0) = V0 > 0 and
supM |Riem(g̃0)|<∞ as AVR(M, g) is a scale invariant quantity. From the Bishop–Gromov
comparison principle, we have vol(B̃1(x))≥V0 >0 for all x ∈ M . Using the result above (The-
orem 4.1), we obtain a solution (M, g̃(t))t∈[0,T (n,V0)) satisfying g̃(0)= g̃0 and the estimates
(at ), (bt ), (ct ), (dt ) for all t ∈ [0, T (n, V0)). Setting g(t) := (1/c)g̃(ct), for t ∈ [0, (T/c))
we also obtain a solution to Ricci flow with bounded non-negative curvature operator, satis-
fying g(0)= g0 and the estimates (at ), (ct ) and (dt ) for all t ∈ [0, (T/c)), as (at ), (ct ), (dt )

are invariant under this scaling. Furthermore, c(n/2)vol(B(1/
√

c)(x, t))≥(V0/2) for all x ∈ M

for all t ∈ [0, (T/c)) by scaling. Hence vol(Br (x, t)) ≥ (V0/2)rn for all r ≤ 1√
c

due to the
Bioshop–Gromov volume comparison principle. Now taking a sequence ci →0 (in place of
c in the argument above), we obtain the result, in view of this estimate, (at ) and (ct ), and the
estimates of Shi and the compactness Theorem of Hamilton [21], see [22]. Note that in fact
supM |Riem(g(t))|≤ k0k̃(n) for all t ≤ U (n)/k0, where k0 := supM |Riem(g0)|, in view of

Remark 4.2. Additionally supM |Riem(g(t))|≤ K 2k0
U (n)

for all t ≥U (n)/k0 in view of the scale
invariant estimate (ct ) and hence the results of Shi (see [22]) apply. ��

We now prove a modified version of Corollary 6.2 of [31] (see also Corollary 5.2 of [32]).

Lemma 5.3 Let Mn be smooth, with ∂ M = ∅ and let (Mn, g(t))t∈[0,T ) be a solution to
Ricci flow with bounded curvature satisfying (at ), (ct ) for some constant K . Assume that
there exists v0 > 0 such that

vol(B1(x, 0)) ≥ v0 > 0 ∀x ∈ M. (5.1)

Then for every δ > 0 there exists an S = S(K , δ, v0, n) > 0 such that

vol(B1(x, t)) ≥ (1 − δ)v0 > 0 ∀x ∈ M, ∀t ∈ [0, S) ∩ [0, T ). (5.2)

Proof If this were not the case, then there exist solutions (Mn
i , i g(t))t∈[0,Ti ) satisfying the

stated conditions and there exist ti ∈ [0, Ti ), ti
i→∞−→ 0 and points pi ∈ Mi such that

vol(B1(pi , ti )) ≤ (1 − δ)v0. A subsequence of (Mi , d(i g(0)), pi ) converges to (Y, d, p)

in the pointed Gromov–Hausdorff limit. Clearly then (Mi , d(i g(ti )), pi ) also converges to
(Y, d, p), in view of the characterisation of Gromov–Hausdorff convergence given in Corol-
lary 7.3.28 of [2], and the estimate (dt ) (since ti → 0). Note, the estimate (dt ) follows from
Lemma 6.1 of [31]. A result of Cheeger and Colding says that volume is continuous under the
limit of non-collapsing spaces with Ricci curvature bounded from below (see Theorem 5.4
of [9]):

lim
i→∞ vol(B1(pi , ti )) = Hn(B1(p)) = lim

i→∞ vol(B1(pi , 0)).

But this is a contradiction as we then have

(1 − δ)v0 ≥ vol(B1(pi , ti )) → Hn(B1(p)) = lim
i→∞ vol(B1(pi , 0)) ≥ v0.

��
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6 Rescaling

In this chapter we show that it is possible to scale down solutions of the type obtained in
Theorem 5.1 to obtain an expanding soliton coming out of the asymptotic cone (X, dX ) at
infinity of (M, h).

Proof of Theorem 1.2 We assume that (M, h) is a smooth manifold with non-negative,
bounded curvature operator and positive asymptotic volume ratio V0 := AVR(M, h) > 0.
Now let ci → 0 be a sequence of positive numbers, converging to zero. Then (M, ci h, p0)

converges in the pointed Gromov–Hausdorff sense to the metric cone (X, dX , 0). By The-
orem 5.1 and Remark 5.2 there exists a Ricci flow (M, g(t))t∈[0,∞) with g(0) = h which
satisfies (at ), (ct ) and AVR(M, g(t)) = AVR(M, g(0)). By Hamilton’s Harnack estimate,
see for example equation 10.46 of Chapter 10, §4 of [12], we have

∂

∂t

(
tR(p, g(t))

) ≥ 0 (6.1)

for all t ∈ [0,∞) for all p ∈ M . We define the scaled Ricci flows (M, gi (t))t∈[0,∞) by

gi (t) := ci g(t/ci ).

Note that these flows still satisfy (at ), (ct ) and AVR(M, gi (t)) = AVR(M, h). Hence, we
may take a pointed limit of the flows (M, gi (t), p0)t∈(0,∞) to obtain a smooth Ricci flow
(X̃ , g̃(t), x̃0)t∈(0,∞). with

Ṽ0 := AVR(X̃ , g̃(t)) ≥ AVR(M, h) = V0 > 0 (6.2)

for all t ∈ (0,∞). Ṽ0 is a constant by Remark 5.2. Note that we also have the following
estimates: dX (·, ·) ≥ d(g̃(t))(·, ·) ≥ dX (·, ·) − K

√
t where (X, dX , 0) is the asymptotic

cone at infinity of (M, h). These estimates follow after taking a limit of the estimates (dt )

d(ci h)(·, ·) ≥ d(gi (t))(·, ·) ≥ d(ci h)(·, ·) − K
√

t , which hold by construction of our solu-
tion. In particular we see that (X, g̃(t), x̃0) converges in the pointed Gromov–Hausdorff sense
to (X, dX , 0) as t → 0.

As in the Proof of Lemma 5.3 a result of Cheeger and Colding gives that volume is
continuous under the Gromov–Hausdorff limit of non-collapsing spaces with Ricci curva-
ture bounded below. Thus since (X̃ , g̃(t), x̃0) converges to the asymptotic cone at infinity
(X, dX , 0) of (M, h, p0) as t → 0, and the Bishop–Gromov volume comparison principle
holds, we have

Ṽ0 ≤ AVR(X, dX ) = AVR(M, h) = V0 ,

and thus Ṽ0 = V0.

Note: We have also proved here that AVR(X, dX ) := limr→∞ vol(dX Br (p))
rn is well defined.

By (6.1), we also have ∂
∂t (tR(p, gi (t))) ≥ 0 for all t ∈ [0,∞) and all p ∈ M . For p ∈ M

define S(p) := limt→∞ tR(p, g(t)), which is a well defined and positive real (non-infinite)
number by (6.1) and (ct ). Since this quantity is scale-invariant it follows that

lim
i→∞ t0R(p, gi (t0)) = S(p)

for any fixed t0 > 0. Note that the convergence of (M, gi (t), p0) → (X̃ , g̃(t), x̃0) is smooth
on compact sets contained in (0,∞)× X̃ , and p0 is mapped by the diffeomorphisms involved
in the pointed Hamilton–Cheeger–Gromov convergence onto x̃0, thus we have
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Expanding solitons coming out of cones 633

tR(x̃0, g̃(t)) = S(p0)

for all t > 0.

Remark After completing this paper we noticed that we could use the Proof of Proposition 12
of the paper of Brendle [1] at this point to show that (X, g̃(t)) is an expanding gradient soliton.
We include here our original proof which follows the lines of that given in [12].

Now note, that if Ricci(y, g̃(t))(Y, Y ) = 0 for some Y ∈ Ty X̃ , for some y ∈ X̃ , then
we have in view of the de Rham Decomposition Theorem (see Appendix A with h of the
Decomposition Theorem equal to Ricci) a splitting, (X̃ , g̃(t)) = (L × �, h ⊕ l(t)) where
(L , h) has zero curvature operator and (�, l(t)) has positive Ricci curvature (here we use
that Ricci(Y, Y ) = 0 implies sec(Y, V ) = 0 for all V in view of the fact that R ≥ 0). In
fact (L , h) = (Rk, h) where h is the standard metric. This may be seen as follows. If (L , h)

is not (Rk, h), then the first fundamental group of (L , h) is non-trivial. This would imply in
particular that the first fundamental group of (L ×�, h ⊕ l(t)) = (X̃ , g̃(t)) is also non-trivial
(if it were trivial, then the first fundamental group of (L , h) would be trivial which would lead
to a contradiction). Using the same argument given in Theorem 9.1 of [31] (see Lemma 6.1
in this paper for some comments thereon), we see that (X̃ , g̃(t), x̃0) is homeomorphic to
(X, dX , 0), and hence (X, dX ) has non-trivial first fundamental group. But as explained at
the beginning of this paper (X, dX ) is a cone over a standard sphere. In particular (X, dX )

is homeomorphic to R
n . Hence (X, dX ) has trivial first fundamental group which leads to a

contradiction.
Hence, we may write (X̃ , g̃(t)) = (Rk × �, h ⊕ l(t)) where (�, l(t)) is a solution to the

Ricci flow satisfying (at ), (ct ) and Ricci(l(t)) > 0 for all t > 0. Using Fubini’s theorem, it
is easy to see that the asymptotic volume ratio of l(t) is given by (ωn−k/ωn)Ṽ0 > 0, where
ωm is the volume of the m-dimensional Euclidean unit ball.

We show in the following that (�, l(t))t∈(0,∞) is a gradient expanding soliton, generated
by some smooth function f . Hence (X̃ , g̃(t)) = (Rk ×�, h ⊕ l(t)) is an gradient expanding
soliton: ∇2 f (t)−Ricci(l(t))−(1/(2t))l(t) = 0 on � and ∇2v(t)−Ricci(h)−(1/(2t))h = 0

on R
k where v(x, t) = |x |2

4t , and hence ∇2 f̃ (t) − Ricci(g̃(t)) − (1/(2t))g̃(t) = 0 for all

t > 0 on X̃ with f̃ (x, y, t) = f (y, t) + v(x, t) for (x, y) ∈ (Rk × �).
For simplicity let us denote l(t) again by g̃(t), i.e. we assume that k = 0.
Now we proceed similarly to Chapter 10, §6 of [12] (see alternatively Theorem 4.3 of [10]).
We use a splitting result similar to that of [5] (which essentially follows the proof of the
splitting result in [19]). This splitting result is proved in Appendix A.

Remark In [12] and [10] it is assumed that tR(·, t) achieves its maximum somewhere in
order to conclude that the solution is a soliton. We make no such assumption. We show that
∇ R(x̃0) = 0 in view of the fact that ∂

∂t (t R(t, x̃0)) = 0, and then argue as in [12] and [10].

For the rest of this argument we work with the Riemannian metrics g̃(t). For ease of reading
we introduce the notation R(x, t) := R(x, g̃(t)), Ricci(x, t) := Ricci(g̃(t))(x) and so on.
All metrics and covariant derivatives are taken with respect to the metrics g̃(t). We assume
that g̃i j = δi j at points where we calculate, and indices that appear twice are summed. We
saw before, that we may assume that ∂

∂t (tR(x̃0, t)) = 0. But then

0 = ∂

∂t
(tR(x̃0, t))t=1 = �R(x̃0, 1) + 2|Ricci|2(x̃0, 1) + R(x̃0, 1). (6.3)

123



634 F. Schulze, M. Simon

By Theorem 10.46 in [12], with vi j = Ricij, we have

Z(Y ) := ∇i∇ j Ricij = |Ric|2 + 2(∇jRicij)Yi + RicijYiYj + R

2t
≥ 0 , (6.4)

for any tangent vector Y . In particular for

Y = −(Ric−1)jidiv(Ric)j
∂

∂xi = −(1/2)(Ric−1)ji∇jR
∂

∂xi ,

we see that

Z(Y ) = (1/2)�R + |Ricci|2 − (1/2)(Ric−1)ij(∇iR)(∇jR)

+(1/4)Ricij(Ric−1)si∇sR(Ric−1)jk∇kR + R

2t

= (1/2)

(
�R + 2|Ricci|2 − (1/2)(Ric−1)ij(∇iR)(∇jR) + R

t

)
≥ 0. (6.5)

Using (6.3), we have

0 ≤ Z(Y )(x̃0, 1) = −(1/4)(Ricci−1)i j (∇i R)(∇ j R)(x̃0, 1) (6.6)

and hence ∇R(x̃0, 1) = 0. This implies that

Z(Y )(x̃0, 1) = 0

which is a global minimum for Z(Y ). Now we use the evolution equation for Z(Y ), which
is given by equation (10.73) in [12]. It implies in particular that

∂

∂t
Z(Y ) ≥ �Z(Y ), (6.7)

and hence by the strong maximum principle, we must have Z(Y ) = 0 everywhere. By looking
once again at the equation (10.73) in [12] and using the matrix Harnack inequality and the
fact that Z(Y ) = 0, we get

∂

∂t
Z(Y ) ≥ 2vi j (∇kYi − Rik − (1/(2t))δik)(∇kY j − R jk − (1/(2t))δ jk).

If at some point in space and time we have ∇Y − Ricci − (1/(2t))g̃ �= 0 as a tensor, then we
get 2vi j (∇kYi − Rik − (1/(2t))δik)(∇kY j − R jk − (1/(2t))δ jk) > 0 which would imply that
∂
∂t Z(Y ) > 0 at this point in space and time which would imply that there are points in space
and time with Z(Y ) > 0, which is a contradiction. Hence ∇Y − Ricci − (1/(2t))g̃ = 0,
which implies that g̃(t) is an expanding gradient soliton.

For completeness we include the following Lemma, whose statement and proof appeared
in the proof we just gave.

Lemma 6.1 Let (X̃ , g̃(t), x̃0)t∈(0,∞) := limi→∞(M, gi (t), p0)t∈(0,∞) be the solution
obtained above, and (X, dX , 0) be the pointed Gromov–Hausdorff limit of (M, ci h, p0) =
(M, gi (0), p0), (ci → 0). Then (X̃ , d(g̃(t)), x̃0) → (X, dX , 0) in the pointed Gromov–
Hausdorff sense as t → 0. That is, the solution flows out of the cone (X, dX , 0). Furthermore,
X̃ is homeomorphic to X which is homeomorphic to R

n.

Proof (We repeat the proof given above). Using the same argument given in Theorem 9.1
of [31], we see that (X̃ , g̃(t), x̃0) is homeomorphic to (X, dX , 0) (note that in the argument
there, U and V should be bounded open sets: this is sufficient to conclude that the topologies
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are the same, since any open set can be written as the union of bounded open sets in a metric
space). But as explained at the beginning of this paper (X, dX ) is a cone over a sphere, where
the topology of the sphere is the same as that of the standard sphere. In particular (X, dX ) is
homeomorphic to R

n . ��

Appendix A: de Rham splitting

In this appendix, we explain some known splitting results, which follow from the de
Rham Splitting Theorem. We give proofs for the reader’s convenience. We follow essen-
tially the argument given in the Proof of Theorem 2.1 of [5] which follows closely that of
Lemma 8.2/Theorem 8.3 of [19].

Theorem 7.1 Let h(t)t∈[0,T ) be a smooth (in space and time) bounded family of symmetric
two tensors defined on a simply connected complete manifold Mn without boundary, satisfying
the evolution equation

∂

∂t
hi j = g(t)�hi j + φi j (7.1)

where h(x, t) ≥ 0 for all (x, t) ∈ M×[0, T ) and φ(x, t)(v, v) ≥ 0 for all (x, t) ∈ M×[0, T )

and for all v ∈ Tx M which satisfy h(x, t)(v, v) = 0. We also assume g is a smooth family of
metrics (in space and time) satisfying g0 |D(i, j)g| + g0 |D(i, j)h| ≤ k(i, j) < ∞ everywhere,
where i, j ∈ N and D(i, j) refers to taking i time derivatives and j covariant derivatives
with respect to g0, and k(i, j) ∈ R are constants. Then for all x ∈ M, t > 0, the null space
of h(x, t) is invariant under parallel translation and constant in time. There is a splitting,
(M, g(t)) = (N × P, r(t)⊕ l(t)), where r, l are smooth families of Riemannian metrics such
that h > 0 on N (as a two tensor), and h = 0 on P.

Proof Let 0 ≤ σ1(x, t) ≤ σ2(x, t) ≤ . . . ≤ σn(x, t) be the eigenvalues of h(x, t). Assume
that σ1(x0, t0)+σ2(x0, t0)+ . . .+σk(x0, t0) > 0 at some point x0 and some time t0. Define a
smooth function ηt0 : M → R

+
0 which is positive at x0 and zero outside of B1(x0, 0) (the ball

in M of radius one with respect to g0), and satisfiesσ1(·, t0)+σ2(·, t0)+. . .+σk(·, t0) > ηt0(·).
Solve the Dirichlet problem:

∂

∂t
ηi = g(t)�ηi

ηi (·, t)|∂ Bi (x0,0) = 0 ∀ t ∈ [t0, T )

ηi (·, t0) = ηt0(·) (7.2)

Using the estimates for g we see that the solutions exist for all time and all satisfy interior
estimates independent of i (see for example Theorem 10.1, chapter IV, §10 in [24]), and we
may take a subsequence to obtain a smooth solution η : M × [t0, T ) → R of the equation

∂

∂t
η = g(t)�η

η(·, t0) = ηt0(·) (7.3)

From the strong maximum principle, η(·, t) > 0 for all t > t0. Also, the construction and
the estimates on g guarantee that sup(M\Bi (x0,0))×[t0,S] |η(·, t)| → 0 as i → ∞. for all
S < T . We claim that σ1(·, t) + · · · + σk(·, t) ≥ η(·, t) for all t ≥ t0. One proves first, that
σ1(·, t) + · · · + σk(·, t) − η(·, t) + εeρ2(·,t)(1+at)+at ≥ 0 for arbitrary small ε > 0 and an

123



636 F. Schulze, M. Simon

appropriately chosen constant a, where here ρ(x, t) = dist(x, x0, t) (a > 0 does not depend
on ε: a depends on the constants in the statement of the Theorem). This is done by using the
maximum principle. See for example the argument in the Proof of Lemma 5.1 in [31] for
details. Now let ε go to zero. This implies σ1(·, t) + · · · + σk(·, t) ≥ η(·, t) for all t ≥ t0 and
hence σ1(·, t) + · · · + σk(·, t) > 0 for all t > t0. Hence

dim(null(h(x, t))) = min{i ∈ {0, . . . , n}|σ1(x, t) + · · · + σi (x, t) = 0}
is constant on some short time interval t0 < t < t0 + δ for any t0 ∈ [0, T ). Hence
rank(h(x, t)) is constant in space and time for some short time interval t0 < t < t0 + δ

for any t0 ∈ [0, T ). Now we let v be a smooth vector field in space and time lying in the
null space of h (at each point in space and time). We can always construct such sections
which have length one in a small neighbourhood, by defining it locally smoothly, and then
multiplying by a cut-off function. We follow closely the Proof of Lemma 8.2 of Hamilton
([19]) and Theorem 2.1 of [5]. In the following we use the notation ∇ and � to refer to g(t)∇
and g(t)�. Using h(v, v) ≡ 0 we get

0 = ∂

∂t
(h(v, v)) =

(
∂

∂t
hi j

)
viv j + hi j

((
∂

∂t
vi

)
v j + vi

(
∂

∂t
v j

))

=
(

∂

∂t
hi j

)
viv j , (7.4)

since hi jv
i = 0 and hi jv

j = 0 (since v is in the null space of h). Furthermore, since
hi jv

iv j ≡ 0 we get

0 = �(hi jv
iv j )

= (�h)i jv
iv j + 2�(v)i hi jv

j

+4gklv j∇khi j∇lv
i + 2gkl hi j∇kv

j∇lv
i (7.5)

The term 2�(v)i hi jv
j is once again zero, since hi jv

j = 0. Using this, (7.5), (7.4) and the
evolution equation for h we get

0 =
(

∂

∂t
(hi j ) − (�h)i j − φi j

)
(viv j )

= 4gklv j∇khi j∇lv
i + 2gkl hi j∇kv

j∇lv
i − φi jv

iv j (7.6)

Now use

v j∇khi j = ∇k(v
j hi j ) − hi j∇kv

j = −hi j∇kv
j

to conclude

2gkl hi j∇kv
j∇lv

i + φi jv
iv j = 0 (7.7)

Since φ(v, v) ≥ 0 (and h ≥ 0) we see that φi jv
iv j = 0. That is, v is also in the null space of

φ. But then, (7.7) shows that X R(x, t) := ∇Rv(x, t) is in the null space of h for any vector
R ∈ Tx M [choose orthonormal coordinates at x at time t , so that ∂

∂x1 (x) := R/‖R‖g(x,t) and
use this in Eq. (7.7)]. This shows that the null space of h is invariant under parallel transport
for each fixed time, as explain in the following for the readers convenience:

Let v1(x), . . . , vk(x) be a smooth o.n. basis for null(h(x, t)) in a small spatial neigh-
bourhood of x0, and extend this to a smooth family v1, . . . , vn of vectors which is
an o.n. basis everywhere in a small spatial neighbourhood of x0. Let X0 ∈ Tx0 M
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satisfy g(X0, vi (x0)) = 0 for all i ∈ {k + 1, . . . , n} and let γ : [0, 1] → M be
any smooth curve, starting in x0 and whose image is contained in the neighbour-
hood of x0 in question. Then parallel transport X0 along γ . Call this vector field X .
Write X (τ ) = ∑n

i=1 Xi (τ )vi (γ (τ )). We claim X (τ ) = ∑n
i=k+1 Xi (τ )vi (γ (τ )). Let

X�(τ ) = ∑k
i=1 Xi (τ )vi (γ (τ )), and X⊥(τ ) = ∑n

i=k+1 Xi (τ )vi (γ (τ )). First note that
for i ∈ {1, . . . , k}, and V the tangent vector field along γ :

g(∇V (X⊥), vi ) = V (g(X⊥, vi )) − g(X⊥,∇V vi ) = 0 (7.8)

in view of ∇V vi ∈ span{v1, . . . , vk} and X⊥ ∈ span{vk+1, . . . , vn}. Furthermore, for
j ∈ {k + 1, . . . , n} we have

g(∇V (X⊥), v j ) = g(∇V (X − X�), v j )

= −g(∇V (X�), v j )

= −g

(
k∑

i=1

V (Xi )vi , v j

)

− g

(
k∑

i=1

Xi∇V vi , v j

)

= −
k∑

i=1

Xi g(∇V vi , v j )

= 0 (7.9)

in view of the fact that ∇V vi ∈ span{v1, . . . , vk}. Hence X⊥ is also parallel along γ .
Since X⊥(0) = 0 we have X⊥ ≡ 0.

We have also shown, that null(h) ⊂ null(φ). Let v(x0, s) for s ∈ (t, t + δ) be smoothly
dependent on time, and v(x0, s) ∈ null(h(x0, s)) for each s ∈ (t, t + δ). Extend this vector
at each time s ∈ (t, t + δ) by parallel transport along geodesics emanating from x0 to obtain
a local smooth vector field v(·, ·) which satisfies v(x, s) ∈ null(h(x, s)) for all x (in a small
ball) and all s ∈ (t, t + δ). In particular,

∇iv ∈ null(h(x0, s)) and �v(x, s) = (gkl∇k∇lv)(x, s) ∈ null(h(x0, s)).

Hence

0 = ∂

∂t
(hi jv

i ) =
(

hi j
∂

∂t
vi

)
+ (vi (�h)i j ) + viφi j

= hi j
∂

∂t
vi + �(vi hi j ) + viφi j

= hi j
∂

∂t
vi (7.10)

where we have used that v ∈ null(φ). Hence ∂
∂t v(x0, s) ∈ null(h(x0, s)). Assume that at

time s0 we have null(h(x0, s0)) = R
k ⊂ R

n = Tx0 M and let {e1(t), . . . , en(t)} be a smooth
(in time) o.n. basis of vectors with {e1(t), . . . , ek(t)} a smooth (in time) o.n. basis of vectors
of null(h(x0, t)). Let el

i (t) := 〈ei (t), el(0)〉, where {e1(0), . . . , en(0)} refer to the standard
basis vectors of R

n and 〈·, ·〉 is the standard inner product on R
n . ∂

∂t ei (t) ∈ null(h(t))

for all i ∈ {1, . . . , k} implies ∂
∂t ei (t) = ∑k

j=1 a j
i (t)e j (t) for some smooth functions

a j
i : [0,∞) → R, i, j ∈ {1, . . . , k}. Then we have a system of ODEs (l ∈ {1, . . . , n},

i ∈ {1, . . . , k})
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∂

∂t
el

i (t) =
k∑

j=1

a j
i (t)el

j (t)

el
i (0) = δl

i . (7.11)

By assuming el
j (t) = 0 for all l ≥ k + 1 we still have a solvable system, and hence the

solution satisfies (by uniqueness) el
j (t) = 0 for all l ≥ k + 1. That is {e1(t), . . . , ek(t)}

remains in R
k .

null(h(x0, t)) is a space which is invariant under parallel transport (from the argument
above). Hence the de Rham splitting theorem (see [13]) says, M splits isometrically at time
s as N (s) ⊕ P(s) where h(·, s) = 0 on P(s) and h(·, s) > 0 on N (s). We can do this it
every time s. But the second part of the argument shows that N (s) = N (s0) for all s and
P(s) = P(s0) for all s. ��

Appendix B: An approximation result by V. Kapovitch/G. Perelman

Let (Mi , di , p0) be a non-collapsing sequence of non-negatively curved n−dimensional,
smooth, complete manifolds without boundary such that (Mn

i , di , p0) → (X, dX , 0) as
i → ∞ (in the GH sense) where X = CV is an Euclidean cone with non-negative cur-
vature over the metric space (V, dV ) (with sectional curvature not less than 1 in the sense
of Alexandrov), and (Mi , di , p0) are smooth with sec ≥ 0. This is the situation examined
in Sect. 1. It is well known that the space of directions �0(X) of (X, dX ) at 0 is (V, dV ):
see Theorem 10.9.3 (here we have used that the tangent cone of X at 0 is equal to X , since
X is a cone). Now Theorem 5.1 of [23] says that �0(X) is homeomorphic to �p0 Mi (for i
big enough) which is isometric to the standard sphere Sn−1 since the (Mi , gi ) are smooth
manifolds. That is V is homeomorphic to Sn−1.
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