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Abstract We consider Schrödinger operators on possibly noncompact Riemannian mani-
folds, acting on sections in vector bundles, with locally square integrable potentials whose
negative part is in the underlying Kato class. Using path integral methods, we prove that under
geodesic completeness these differential operators are essentially self-adjoint on C∞

0 , and
that the corresponding operator closures are semibounded from below. These results apply
to nonrelativistic Pauli–Dirac operators that describe the energy of Hydrogen type atoms on
Riemannian 3-manifolds.

1 Introduction

A classical result from B. Simon’s seminal paper [27] states that a Schrödinger operator of
the form −�+ V in the Euclidean space R

m , with V : R
m → R a locally square integrable

potential, is essentially self-adjoint on C∞
0 (R

m), if the negative part of V is in the Kato class
K(Rm). Note here that this fact is closely related to quantum physics, in the sense that the
Coulomb potential V (x) = −1/|x | is in the above class. Having in mind that all of the above
data can be defined on any Riemannian manifold, we are interested in the following question
in this paper:

To what extent can Simon’s result be extended to Schrödinger type operators acting on
sections in vector bundles over possibly noncompact Riemannian manifolds?
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332 B. Güneysu, O. Post

Apart from a pure academic interest, this question is also particularly motivated by the
observation that it is possible to model [9,16] nonrelativistic atomic Hamiltonians on any
nonparabolic Riemannian 3-manifold (which have to be spinC, if the electron’s spin is taken
into account; in particular, the vector-valued case becomes particularly interesting from this
point of view, see Sect. 3 below). This abstraction is desirable from the physics point of
view, since one would like to understand deeply which properties of the Euclidean space R

3

actually guarantee certain spectral properties of quantum systems, or other important results
such as the stability of matter [23]. In these situations, the corresponding potential terms
are always locally square integrable, and with some control on the underlying Riemannian
structure, their negative parts are in the underlying Kato class, so that we basically are in the
initial situation.

Before we can formulate our main result, we have to introduce some notation:
Let M denote a smooth connected Riemannian manifold without boundary. The geodesic

distance on M will be written as d(x, y), and Kr (x) will stand for the open geodesic ball
with radius r around x , and

(0,∞)× M × M −→ (0,∞), (t, x, y) �−→ p(t, x, y)

will stand for the minimal positive heat kernel on M .
If F → M is a smooth Hermitian vector bundle, then, abusing the notation in the usual

way, |•|x stands for the norm and the operator norm corresponding to (•, •)x on each (finite-
dimensional) fiber Fx , and the scalar product and norm corresponding to the Hilbert space
�L2(M, F) will be written as 〈•, •〉 and ‖•‖, respectively, that is,

〈 f1, f2〉 =
∫

M

( f1(x), f2(x))x vol(dx), || f ||2 =
∫

M

| f (x)|2x vol(dx). (1)

If F̃ → M is a second bundle as above and if

P : �C∞
0
(M, F) −→ �C∞

0
(M, F̃)

is a linear differential operator, then we denote with P† the formal adjoint of P with respect
to (1). In particular, the Laplace–Beltrami operator on M is given in this sense as −� = d†d.
The symbol ∇TM will denote the Levi-Civita connection, and if nothing else is said, the
(co-)tangent bundle of M will be equipped with the Hermitian structure corresponding to the
underlying Riemannian metric of M . These data will be implicitely complexified, whenever
necessary.

Let E → M be a smooth Hermitian vector bundle, let∇ be a Hermitian covariant derivative
in E and let V : M → End(E) be a potential, that is, V is a measurable section in End(E)
such that V (x) : Ex → Ex is self-adjoint for almost every (a.e.) x ∈ M . Furthermore, let
K(M) denote the class of Kato functions1 on M . Our main result reads as follows:

Theorem 1.1 Let M be geodesically complete, let |V | ∈ L2
loc(M) and assume that V admits

a decomposition V = V1 − V2 into potentials Vj ≥ 0 with |V2| ∈ K(M). Then the operator
∇†∇/2 + V is essentially self-adjoint on �C∞

0
(M, E) and its closure is semibounded from

below.

Note that the decomposition V = V1 − V2 into nonnegative potentials need not be the
canonic one given by V = V + − V −, which can be defined through the fiberwise spectral
calculus of E .

1 See Sect. 3.5 for the definition of K(M) and for criteria for functions to be in K(M).
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Path integrals and the essential self-adjointness 333

Before we explain the strategy of the proof of Theorem 1.1, some remarks are in order:

Remark 1.2 (a) Theorem 1.1 is disjoint from the various results on essential self-adjointness
for operators of the form ∇†∇/2+ V that have been obtained in [1]. The point here is that, in
general, Kato potentials need not satisfy the inequality (2.2) from [1], i.e., for every compact
K ⊂ M there are numbers 0 < aK < 1, bK > 0 such that

⎛
⎝

∫

K

|V2(x)|2x |u(x)|2vol(dx)

⎞
⎠

1/2

≤ aK ||�u|| + bK ||u|| (2)

for any u ∈ C∞
0 (M). However, it should be noted that the main strength of the results

of [1] lies in the fact that the authors have considered arbitrary first order elliptic differential
operators instead of ∇. It would certainly be an interesting problem to see to what extent our
probabilistic techniques below can be extended to cover the latter situation, which has first
been considered in [22].

(b) Of course, taking E = M × C and ∇ = d + iβ with β ∈ �1
R
(M), we can deal with

smooth magnetic potentials within our framework. In this scalar situation, the analogue of
Theorem 1.1 can be easily deduced from (a slight variation of) Theorem 1 in [13], where the
authors can even allow magnetic potentials with possibly strong local singularities. We refer
the reader to [17] for the scalar situation in Euclidean space.

Let us now explain the strategy (which is partially motivated by [27] and [13]) of the proof
of Theorem 1.1, which is given in full detail in the following Sect. 3.5. To this end, we assume
for the rest of this section that V is as in Theorem 1.1. Then by the main result of [14], it
is always possible to define the form sum HV corresponding to the Friedrichs realization of
∇†∇/2 and V without any additional assumptions on M (see Theorem 2.6 below). The main
advantage of this observation is that, unlike in usual essential-self-adjointness proofs, instead
of directly proving that ∇†∇/2 + V is essentially self-adjoint on �C∞

0
(M, E), we will prove

that the latter space is an operator core for HV (this is the content of Theorem 2.14; Theo-
rem 1.1 itself follows directly from the latter result, which is summarized in Corollary 2.15).
In particular, we will use the full spectral calculus given by HV .

Having said this, the first step in the proof of this operator core property will be to deduce
the following smoothing property (see Proposition 2.11 below):

For any t > 0 one has e−t HV [�L2(M, E)] ⊂ �L∞
loc
(M, E). (3)

This result will be derived from the path integral formula

e−t HV f (x) = E

[
1{t<ζ(x)}V x

t �
x,−1
t f (Bt (x))

]
, (4)

where B(x) is a Brownian motion starting in x with lifetime ζ(x), where

�x
t : Ex −→ EBt (x)

is the corresponding stochastic parallel transport with respect to ∇, �
x,−1
t = �

x,∗
t its inverse,

and where

V x
t : Ex −→ Ex
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334 B. Güneysu, O. Post

is the path ordered exponential2

V x
t − 1

=
∞∑

k=1

(−1)k
∫

t�k

�x,−1
s1

V (Bs1(x)) �x
s1
. . . �x,−1

sk
V (Bsk (x)) �x

sk
ds1 . . . dsk (5)

(details on these processes and on formula (4), which is one of the main results of [15],
are included in the following section). Again, (3) and (4) are valid without any additional
assumptions on M .

Remark 1.3 Note that it is not possible to deduce (3) directly by Sobolev embedding theorems
for dim M > 3, which is the main motivation for the introduction of path integral techniques
in this context.

In a next step, we will use finite speed propagation methods to deduce the following result:

The set D(HV ) ∩ { f | f has a compact support}
is an operator core for HV , if M is geodesically complete. (6)

To be precise, we will actually prove a Davies–Gaffney inequality (see Proposition 2.13)
for approximations of HV and use the fact that this inequality always implies (is in fact
equivalent) to finite speed of propagation by the results of [3]. Then one can use a variant
of Chernoff’s theorem (see Lemma B.1) to deduce (6). The fact that we use finite speed
propagation methods in this context has been particularly motivated by the scalar situation
that has been considered in [13], where the authors apply this method in a similar way. As
has been noted in [13], this technique avoids the usage of second order cut-off functions,
which do not seem to be available without additional control on the underlying Riemannian
structure.

As a next step one can combine (6) with (3) to deduce the following fact:

The set D(HV ) ∩ �L∞
loc
(M, E) ∩ { f | f has a compact support} (7)

is an operator core for HV , if M is geodesically complete.

Then, we shall use the self-adjointness of HV to deduce that the elements f of the set (7)
satisfy ∇†∇ f ∈ �L2(M, E). Finally, if M is geodesically complete we can use a (local)
result on Friedrichs mollifiers to prove that �C∞

0
(M, E) is an operator core for HV , by

showing that �C∞
0
(M, E) is dense in (7) with respect to the graph norm corresponding

to HV .
This paper is organized as follows: In Sect. 2, we first recall some facts about Kato

potentials. The rest of Sect. 2 is completely devoted to the proof of Theorem 1.1. In Sect. 3, we
apply Theorem 1.1 in the context of Hydrogen type problems on Riemannian 3-manifolds,
which was originally the main motivation for this paper. It seems as if this result has not
been stated yet in this form in the literature even for the Euclidean R

3 (though it should
be known in this case). Finally, in the appendix, we have included a fact about Friedrichs
mollifiers, an abstract variant of Chernoff’s finite speed of propagation theorem on vector
bundles, and some facts about path ordered exponentials that we will need in our probabilistic
considerations.

2 Here, t�k = {0 ≤ s1 ≤ · · · ≤ sk ≤ t} ⊂ R
k denotes the t-scaled k-simplex for any k ∈ N, t ≥ 0.
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Path integrals and the essential self-adjointness 335

2 Kato potentials and the proof of Theorem 1.1

Let us first clarify that in this section,

M will always be a smooth connected Riemannian manifold without boundary, E → M
a smooth Hermitian vector bundle, ∇ a Hermitian covariant derivative in E , and
V : M → End(E) a potential.

By the usual abuse of notation, we will denote the quadratic form corresponding to a sym-
metric sequilinear form in some Hilbert space with the same symbol. The symbol H0 stands
for the Friedrichs realization of ∇†∇/2, that is, H0 is the nonnegative self-adjoint operator
in �L2(M, E) which corresponds to the closure qH0 of the quadratic form given by the sym-
metric nonnegative operator ∇†∇/2, defined initially on �C∞

0
(M, E). Note the well-known:

Remark 2.1 If M is geodesically complete, then one has

D(qH0) = { f | f ∈ �L2(M, E),∇ f ∈ �L2(M, E ⊗ T∗M)}, (8)

qH0( f, h) = 1

2

∫

M

(∇ f (x),∇h(x))x vol(dx),

and �C∞
0
(M, E) is an operator core for H0, and one has

D(H0) = { f | f,∇†∇ f ∈ �L2(M, E)}, H0 f = 1

2
∇†∇ f. (9)

Next, we remark that V defines a quadratic form in �L2(M, E) by setting

D(qV ) = { f | f ∈ �L2(M, E), (V f, f ) ∈ L1(M)},
qV ( f ) =

∫

M

(V (x) f (x), f (x))x vol(dx). (10)

We will often require a global Kato assumption on some negative part of V . Before
recalling some facts on Kato functions, let us first introduce some notation: Let M :=
(�,F ,F∗,P) be a filtered probability space which satisfies the usual assumptions. We
assume that M is chosen in a way such that M carries an appropriate family of Brownian
motions

B(x) : [0, ζ(x))×� −→ M, x ∈ M,

where ζ(x) : � → [0,∞] is the lifetime of B(x). We will freely use the fact

P{Bt (x) ∈ N , t < ζ(x)} =
∫

N

p(t, x, y)vol(dy) for any measurable N ⊂ M

in the following.
Now a measurable function w : M → C is said to be in the Kato class K(M) of M , if

lim
t→0+ sup

x∈M
E

⎡
⎣

t∫

0

1{s<ζ(x)}|w(Bs(x))|ds

⎤
⎦ = 0, which is equivalent to (11)

lim
t→0+ sup

x∈M

t∫

0

∫

M

p(s, x, y)|w(y)|vol(dy)ds = 0. (12)
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336 B. Güneysu, O. Post

The local Kato class Kloc(M) is defined in the obvious way,

Kloc(M) := {w|1Kw ∈ K(M) for all compact K ⊂ M} ⊃ K(M),
and generally, Kloc(M) may depend on the Riemannian structure of M .

For future reference, we note:

Lemma 2.2 (a) One has K(M) ⊂ L1
loc(M) and L∞(M) ⊂ K(M).

(b) For any w ∈ L1
loc(M) and a.e. x ∈ M one has

P{w(B•(x)) ∈ L1
loc[0, ζ(x))} = 1. (13)

(c) For any w ∈ Kloc(M) and all x ∈ M one has

P{w(B•(x)) ∈ L1
loc[0, ζ(x))} = 1.

(d) For any w ∈ K(M), t ≥ 0, one has

sup
x∈M

E

[
1{t<ζ(x)}e

∫ t
0 |w(Bs (x))|ds

]
< ∞. (14)

Proof Part (a) is an elementary result which is included in [14], and the parts (b)–(d) are
included in Prop. 2.4 and Prop. 2.5 in [15]. ��

Let us now point out that [14] that one always has

L∞(M) ⊂ K(M) ⊂ L1
loc(M),

but with some control on the Riemannian structure of M , one can easily produce a large class

of Kato functions. To this end, we first note the following highly nontrivial self-improvement
result of on-diagonal upper estimates for p(t, x, y), which will be very useful in the
following:

Theorem 2.3 Assume that there is a C > 0 and a t0 ∈ (0,∞] such that

sup
x∈M

p(t, x, x) ≤ C

tdim M/2 for all 0 < t ≤ t0.

Then there are C1, C2 > 0 such that

sup
x,y∈M

p(t, x, y) ≤ C1

tdim M/2 e−d(x,y)2/(C2t) for all 0 < t ≤ t0.

The reader may find a proof of this result in [12] (see Theorem 1.1 therein for a more
general result).

For any p ≥ 1 let Lp
u,loc(M) denote the space of uniformly locally p-integrable functions

on M , that is, a measurable function v : M → C is in Lp
u,loc(M), if and only if

sup
x∈M

∫

K1(x)

|v(y)|p vol(dy) < ∞. (15)

Note the simple inclusions

Lp(M) ⊂ Lp
u,loc(M) ⊂ Lp

loc(M).
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Now one has the following result:

Proposition 2.4 Let p be such that p ≥ 1 if m = 1, and p > m/2 if m ≥ 2.
(a) If there is C > 0 and a t0 > 0 such that

sup
x∈M

p(t, x, x) ≤ C

tdim M/2 for all 0 < t ≤ t0, (16)

then one has

Lp(M)+ L∞(M) ⊂ K(M). (17)

(b) Let M be geodesically complete, and assume that there are constants C1, . . . ,C6, t0 > 0
such that for all 0 < t ≤ t0, x, y ∈ M, r > 0 one has

vol(Kr (x)) ≤ C1rdim M eC2r

and
C3

tdim M/2 e−C4d(x,y)2/t ≤ p(t, x, y) ≤ C5

tdim M/2 e−C6d(x,y)2/t .

Then one has

Lp
u,loc(M)+ L∞(M) ⊂ K(M). (18)

Proof (a) Indeed, Theorem 2.3 implies the existence of a C̃ > 0 such that for all 0 < t ≤ t0
one has3

sup
x,y∈M

p(t, x, y) ≤ C̃

tdim M/2 .

Now we can directly apply Proposition 2.8 in [14] (the corresponding proof is elementary
and essentially only uses Hölder’s inequality).

(b) We can use Theorem 3.3 from [21] with ν := m, β := 2, V (r) := C1rmeC2r ,�1(s) :=
C3e−C4s2

, �2(s) := C5e−C6s2
to deduce the asserted inclusion (keeping L∞(M) ⊂ K(M)

in mind). Indeed, one just has to note that
∞∫

1

max(rmeC2r , rm)e−C6r2

r
dr =

∞∫

1

eC2r rm−1e−C6r2
dr < ∞, (19)

which is obvious. ��
Remark 2.5 Let us note that (16) is satisfied, for example, if M is geodesically complete
with Ricci curvature bounded from below and a positive injectivity radius (see example [21],
p. 110). The reader may find these and several other aspects on Kato functions in [14] and,
particularly, in [21].

The following result is also included in [14]. It shows that, remarkably, one can always
define the form sum of H0 and V under the following very weak assumptions on V :

Theorem 2.6 Let V be such that there is a decomposition V = V1 − V2 into potentials
Vj ≥ 0 with |V1| ∈ L1

loc(M) and |V2| ∈ K(M). Then one has

D(qH0 + qV ) = D(qH0) ∩ D(qV1), (20)

and qH0 + qV is a densely defined, closed and semibounded from below quadratic form in
�L2(M, E).

3 Of course this inequality can also be deduced with an elementary argument.
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338 B. Güneysu, O. Post

In the situation of Theorem 2.6, the form sum H0 � V will be denoted with HV , that is,
HV is the self-adjoint semibounded from below operator corresponding to qH0 + qV .

Remark 2.7 In the situation of Theorem 2.6, assume that M is geodesically complete. Then
Proposition 2.14 in [14] states that �C∞

0
(M, E) is a form core for HV .

Let us add the following simple observation:

Lemma 2.8 Let |V | ∈ L2
loc(M) and assume that there is a decomposition V = V1 − V2

into potentials Vj ≥ 0 with |V2| ∈ K(M). Furthermore, let H̃V,min denote the operator

∇†∇/2 + V with domain of definition �C∞
0
(M, E), and let HV,min := H̃V,min. Then one has

HV,min ⊂ HV .

Proof Since HV is closed, it is sufficient to prove H̃V,min ⊂ HV . But if f ∈ �C∞
0
(M, E),

h ∈ D(qHV ), then f ∈ D(qHV ) and we have

qHV ( f, h) = 1

2
〈∇†∇ f , h〉 + 〈V f , h〉, (21)

so f ∈ D(HV ) and HV f = 1
2∇†∇ f + V f . ��

As we have already remarked in the introduction, an essential step in the proof of Theo-
rem 1.1 will be to deduce an L2 � L∞

loc smoothing property of the Schrödinger semigroup

(e−t HV )t≥0 ⊂ L (�L2(M, E)),

which will be deduced from a path integral formula for e−t HV . In order to formulate the latter
formula in our geometric context, for any t ≥ 0 the stochastic parallel transport with respect
to (B(x),∇) will be written as a pathwise unitary map

�x
t : Ex −→ EBt (x), defined in {t < ζ(x)} ⊂ �.

Now Theorem 2.11 in [15] states the following Feynman–Kac type path integral formula:

Theorem 2.9 In the situation of Theorem 2.6, for a.e. x ∈ M, there is a unique process

V x : [0, ζ(x))×� −→ End(Ex )

which satisfies

dV x
t

dt
= −V x

t (�
x,−1
t V (Bt (x))�

x
t ), V x

0 = 1 (22)

pathwise in the weak sense, and for any f ∈ �L2(M, E), t ≥ 0, a.e. x ∈ M one has

e−t HV f (x) = E

[
1{t<ζ(x)}V x

t �
x,−1
t f (Bt (x))

]
. (23)

Remark 2.10 The set of x for which V x exists is, by definition, equal to the set x for which
one has (13) for w = |V |, and if x is in this set, then the asserted formula (5) from the
introduction follows from Lemma C.1.

We will use (23) to deduce:

Proposition 2.11 In the situation of Theorem 2.6, one has

e−t HV [�L2(M, E)] ⊂ �L∞
loc
(M, E) for any t > 0. (24)
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Remark 2.12 Note that Lemma 2.2, Theorem 2.6, Theorem 2.9, and Proposition 2.11 are all
valid without any further assumptions on the Riemannian structure of M .

Proof of Proposition 2.11 We define scalar potentials v j : M → [0,∞), v : M → R by

v1(•) := min σ(V1(•)), v2(•) := max σ(V2(•)), v(•) := v1(•)− v2(•).
Let x be such that (13) holds for w = |V1| and w = |V2|. Then V x exists, and V ≥ v1,
Lemma C.1 and −v ≤ v2 imply

|V x
t |x 1{t<ζ(x)} ≤ e− ∫ t

0 v(Bs (x))ds1{t<ζ(x)}
≤ e

∫ t
0 v2(Bs (x))ds1{t<ζ(x)}P-a.s. for any t ≥ 0,

so that for any t > 0 one has∣∣∣E
[
1{t<ζ(x)}V x

t �
x,−1
t f (Bt (x))

]∣∣∣
x

≤ E

[
1{t<ζ(x)}e

∫ t
0 v2(Bs (x))ds | f (Bt (x))|Bt (x)

]

≤
√

E

[
1{t<ζ(x)}e2

∫ t
0 v2(Bs (x))ds

]√
E

[
1{t<ζ(x)}| f (Bt (x))|2Bt (x)

]

=
√

E

[
1{t<ζ(x)}e2

∫ t
0 v2(Bs (x))ds

]√√√√
∫

M

| f (y)|2y p(t, x, y)vol(dy). (25)

Since for any h ∈ L1(M), the function

M −→ C, z �−→
∫

M

h(y)p(t, z, y)vol(dy)

is in C∞(M) (see Theorem 7.19 in [11]), we can use (14) with w = v2 to deduce that for
any compact K ⊂ M one has

sup
z∈K

⎛
⎝E

[
1{t<ζ(z)}e2

∫ t
0 v2(Bs (z))ds

] ∫

M

| f (y)|2y p(t, z, y)vol(dy)

⎞
⎠ < ∞,

so that, in view of (25), the assignment

x �−→ E

[
1{t<ζ(x)}V x

t �
x,−1
t f (Bt (x))

]

defines an element of �L∞
loc
(M, E), and (24) is implied by the path integral formula from

Theorem 2.9. ��
Next, we are going to deduce a finite propagation speed result, which will be used later on

to prove that the compactly supported elements of D(HV ) are an operator core for HV under
geodesic completeness. The essential observation is that finite speed of propagation is always
implied by a Davies–Gaffney type inequality, through a Paley–Wiener type theorem [3]. As
we have already remarked in the introduction, we have borrowed this method from [13].

Proposition 2.13 Let M be geodesically complete.

(a) If V is bounded, then there is a constant D > 0 such that for all open sets U1,U2 ⊂ M,
all f1, f2 ∈ �L2(M, E) with supp( f j ) ⊂ U j and all t > 0 one has

|〈e−t HV f1, f2〉| ≤ eDt e−d(U1,U2)
2/(4t)‖ f1‖‖ f2‖. (26)
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(b) Let V be as in Theorem 2.6 and assume HV ≥ 0. Then for any compactly supported
f ∈ �L2(M, E) and any t > 0, the section cos(t

√
HV ) f has a compact support.

Proof (a) Under the assumption that V is bounded and nonnegative, we are going to prove (26)
with D = 0, which of course proves the assertion. To this end, we are going to use the well-
known exponential-weight method, that goes back to [10] (see also [3]): Let q : M → R be a
bounded Lipschitz function with |dq| ≤ C a.e. in M . For any f ∈ �C∞

0
(M, E), Lemma 2.8

and the Sobolev product rule

∇(e2qe−t HV f ) = de2q ⊗ e−t HV f + e2q∇e−t HV f (27)

imply

d

dt
‖eqe−t HV f ‖2

= −2�〈∇†∇e−t HV f, e2qe−t HV f 〉 − 2〈V e−t HV f, e2qe−t HV f 〉
= −2�〈eq∇e−t HV f, eqdq ⊗ e−t HV f 〉 − 2‖eq∇e−t HV f ‖2

−2〈V e−t HV f, e2qe−t HV f 〉. (28)

Using Cauchy–Schwarz on the fibers for the first term and V ≥ 0 for the last term, the latter
expression can be estimated by

≤ 2
∫

M

eq(x)|∇e−t HV f (x)|x eq(x)|dq(x)|x |e−t HV f (x)|x vol(dx)

−2‖eq∇e−t HV f ‖2, (29)

which, using XY ≤ X2 + Y 2/4, is

≤ 1

2
‖eq |dq|e−t HV f ‖2 ≤ C2

2
‖eqe−t HV f |2. (30)

Thus, setting E f,q(t) := ‖eqe−t HV f ‖2, putting everything together and using Gronwall, we
arrive at

E f,q(t) ≤ eC2t/2E f,q(0). (31)

Now let U1,U2 be disjoint, let f ∈ �C∞
0
(M, E)with supp( f ) ⊂ U2, and let a > 0. Then the

function q := ad(•,U2) is bounded and Lipschitz with |dq| ≤ a a.e. in M and (31) implies

‖1U1 e−t HV f ‖2

≤ e−ad(U1,U2)ea2t/2E f,q(0)

= e−ad(U1,U2)ea2t/2
∫

U2

| f (x)|2x ead(x,U2)vol(dx)

= e−ad(U1,U2)ea2t/2‖ f ‖2, (32)

so that by choosing a appropriately

‖1U1 e−t HV f ‖ ≤ e−d(U1,U2)
2/(4t)‖ f ‖, (33)

which carries over to f2 by a density argument. Finally, we have
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|〈e−t HV f1, f2〉| = |〈 f1, 1U1 e−t HV f2〉| ≤ e−d(U1,U2)
2/(4t)‖ f1‖‖ f2‖ (34)

by Cauchy–Schwarz and (33), and everything is proved.
(b) It is sufficient to prove that for any U j , f j as in (a) and any 0 < s < d(U1,U2) one

has

〈cos(s
√

HV ) f1, f2〉 = 0. (35)

Indeed, the latter implies that if supp( f ) ⊂ Kr (x) for some r > 0, x ∈ M , then for any t > 0
one has

supp(cos(t
√

HV ) f ) ⊂ Kr+t (x), (36)

and the latter set is compact by the geodesic completeness of M . It remains to prove (35).
If V is bounded and HV ≥ 0, then (35) follows directly from (a): Indeed, one can use the

same arguments as those in the proof of theorem 3.4 in [3] to see this. Essentially, one has
to use a variant of the Paley–Wiener theorem, which has to be applied to an appropriately
rescaled version of the analytic function z �→ 〈e−zHV f1, f2〉, Re z > 0.

Next, we assume that V is locally integrable and bounded from below with HV ≥ 0. Then
putting Vn := min(V, n) for n ∈ N (in the sense of the fiberwise spectral calculus of E) we
find by the above that (35) is satisfied for V replaced with Vn , but monotone convergence of
quadratic forms (see the proof of theorem 2.11 in [15]) gives HVn → HV as n → ∞ in the
strong resolvent sense, which implies (35).

Finally, if V is as in Theorem 2.14 and HV ≥ 0, let us set Vn := max(−n, V ). Then each
Vn is locally integrable and bounded from below with HVn ≥ 0 and again everything follows
from the above and monotone convergence of quadratic forms (this is also included in the
proof of theorem 2.11 in [15]). ��

Now we are in the position to prove the main result of this paper:

Theorem 2.14 Let M be geodesically complete, let |V | ∈ L2
loc(M) and assume that V has

a decomposition V = V1 − V2 into potentials Vj ≥ 0 with |V2| ∈ K(M). Then �C∞
0
(M, E)

is an operator core for HV and one has

D(HV ) = { f | f, (∇†∇ + V ) f ∈ �L2(M, E)}. (37)

Proof We have to prove that�C∞
0
(M, E) is dense in D(HV )with respect to the graph ‖•‖HV .

This will be proven in four steps:
(I) If χ ∈ C∞

0 (M) and f ∈ D(HV ), then χ f ∈ D(HV ) and

HV (χ f ) = χHV f − ∇(dχ)� f − 1

2
(�χ) f. (38)

Here, (dχ)� denotes the vector field corresponding to the 1-form dχ (with respect to the
underyling Riemannian metric).

We first note that the Sobolev product rule

∇(χ f ) = (dχ)⊗ f + χ∇ f (39)

[which is applicable in view of (8) and (20)] shows that χ f is in D(qHV ), so that in order to
prove χ f ∈ D(HV ), it is sufficient to construct a u ∈ �L2(M, E) such that

qHV (χ f, h) = 〈u, h〉 (40)
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for all h ∈ D(qHV ), where then HV (χ f ) is given by u. To this end, we calculate

qHV (χ f, h)

= 1

2
〈∇(χ f ),∇h〉 + 〈V (χ f ), h〉

= 1

2
〈∇ f ,∇(χh)〉 − 1

2
〈∇ f , (dχ)⊗ h〉 + 1

2
〈(dχ)⊗ f ,∇h〉 + 〈V f , χh〉

= 〈HV f , χh〉 − 〈∇(dχ)� f , h〉 + 1

2
〈(d†dχ) f , h〉,

where we have used (39) in the second equality, and f ∈ D(HV ) together with an integration
by parts formula (Lemma 8.8 in [1]) and the Sobolev product rule

∇†(α ⊗ f ) = (d†α) f − ∇α� f

for (sufficiently) smooth 1-forms α in the third equality. In particular, we found a candidate
u in (40) and it has the desired form as in (38). ��

(II) The space

D0(HV ) := D(HV ) ∩ { f | f has a compact support}
is dense in D(HV ) with respect to ‖•‖HV .

Proof By adding a constant, we can assume that HV ≥ 0. But then the result readily follows
from combining Proposition 2.13 with Lemma B.1. ��

(III) The space

D0∞,loc(HV ) := D0(HV ) ∩ �L∞
loc
(M, E)

is dense in D0(HV ) with respect to ‖•‖HV .

Proof Let f ∈ D0(HV ) and take r > 0, y ∈ M with supp( f ) ⊂ Kr (y). Furthermore,
pick a χ ∈ C∞

0 (M) with χ = 1 in Kr+1(y) and set ft := χe−t HV f for any t > 0.
Then Proposition 2.11 implies ft ∈ D0∞,loc(HV ) and clearly ‖ ft − f ‖ → 0 as t → 0+.
Furthermore, (I) implies HV (χ f ) = HV f and also

HV ( ft − f ) = χHV e−t HV f − ∇(dχ)�e−t HV f − 1

2
(�χ)e−t HV f − χHV f

+∇(dχ)� f + 1

2
(�χ) f.

Now it is easily seen that ‖HV ( ft − f )‖ → 0 as t → 0+. ��
(IV) �C∞

0
(M, E) is dense in D0∞,loc(HV ) with respect to ‖ • ‖HV and one has

D(HV ) = { f | f, (∇†∇ + V ) f ∈ �L2(M, E)}. (41)

Proof Let f ∈ D0∞,loc(HV ). By Lemma 2.8 and the self-adjointness of HV we have HV ⊂
H∗

V,min, but it is well-known that (see for example p.644 in [1])

D(H∗
V,min) = { f | f, (∇†∇ + V ) f ∈ �L2(M, E)}.

In particular D0∞,loc(HV ) ⊂ D(H∗
V,min) implies w := ∇†∇ f + V f ∈ �L2(M, E). As

f is locally bounded with a compact support, one also has V f ∈ �L2(M, E), so that
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∇†∇ f = w − V f ∈ �L2(M, E). But now the assertion follows directly from Proposi-
tion A.1, which is in fact a local result (and which again heavily uses that f is locally
bounded with a compact support).

Finally, (41) simply follows from the essential self-adjointness of H̃V,min, which follows
from(II) and the by now proven fact that �C∞

0
(M, E) is an operator core for HV . ��

We immediately get:

Corollary 2.15 Theorem 1.1 holds, that is, under the assumptions of Theorem 2.14, the
operator ∇†∇/2+V is essentially self-adjoint on�C∞

0
(M, E), and its closure is semibounded

from below.

Proof Combining Theorem 2.14 with Lemma 2.8 immeadiately gives HV,min = H∗
V,min =

HV . ��

3 Application to Hydrogen type problems on Riemannian 3-manifolds

In this section, we shall explain a typical application of Theorem 1.1: The essential self-
adjointness of nonrelativistic Hamiltonians corresponding to hydrogen type atoms, with the
electron’s spin is taken into account. To this end, let us first explain what the analogues of
the Coulomb potential and the Pauli operator are in a general curved setting. Here, we are
going to follow [16] closely.

Throughout Sect. 3, we will assume that M is a smooth connected Riemannian
3-manifold without boundary.

Firstly, we want to point out that “nonparabolicity” is the appropriate setting that admits
natural analogues of the Coulomb potential:

Definition 3.1 The Riemannian manifold M is called nonparabolic, if one has

∞∫

0

p(t, x, y)dt < ∞ for some (any) x, y ∈ M with x �= y.

Then

G : M × M −→ (0,∞],G(x, y) :=
∞∫

0

p(t, x, y)dt

is called the Coulomb potential on M .

It should be noted that nonparabolicity always implies noncompactness. The essential
point for the interpretation of G as the Coulomb potential is that M is nonparabolic, if and
only if M admits a positive Green’s function, and then G is the minimal positive Green’s
function (see [16] and the references therein for these facts). The following criterion can be
easily deduced from Theorem 2.3:

Lemma 3.2 Assume that there is a C > 0 such that for all t > 0 one has

sup
x∈M

p(t, x, x) ≤ Ct−3/2. (42)
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Then M is nonparabolic and there is a C̃ > 0 with

G(x, y) ≤ C̃

d(x, y)
f or all x, y ∈ M. (43)

Next, we will explain the natural analogues of the Pauli-operator in our general setting.
To this end, we give ourselves a Pauli–Dirac structure (c,∇) on M in the sense of [16], that
is, with a smooth Hermitian vector bundle E → M with rank E = 2,

c : T∗M −→ End(E)

is a Clifford multiplication4and ∇ is a Clifford connection5 with respect to c.

Remark 3.3 The existence of a Pauli–Dirac structure on M is a topological restriction,
namely, M admits a Pauli–Dirac structure, if and only if M is a spinC manifold. This fact
has also been explained in [16].

The Pauli–Dirac operator D(c,∇) with respect to (c,∇) is defined by

D(c,∇) := c ◦ ∇ : �C∞
0
(M, E) −→ �C∞

0
(M, E),

which is a linear first order differential operator with D(c,∇)† = D(c,∇). If (e j ) is some
smooth local orthonormal frame for TM , then one has D(c,∇) = ∑

j c(e∗
j )∇e j . Furthermore,

D(c,∇)2 is a generalized Laplacian on M which is given by the following Lichnerowicz
formula:

Lemma 3.4 The differential form tr[∇2]/i ∈ �2(M) is real-valued and closed, and one has

D(c,∇)2 = ∇†∇ + 1

4
scal(•)1 + 1

2

∑
i< j

tr[∇2](ei , e j )c(e
∗
i )c(e

∗
j ). (44)

The last lemma makes it plausible [see also Remark 3.6 (b) below] to call P(c,∇) :=
D(c,∇)2 the Pauli–Dirac operator with respect to (c,∇).

Clearly, if one has (42), then G(•, y) exists and is locally square integrable for any y ∈ M ,
and for any such y and κ ≥ 0 one can consider the operator

H̃(c,∇; κ, y) := P(c,∇)− κG(•, y)1

in �L2(M, E) with domain of definition �C∞
0
(M, E), which gives rise to a symmetric oper-

ator. Let us furthermore define the smooth potential

V (c,∇) := 1

4
scal(•)1 + 1

2

∑
i< j

tr
[∇2] (ei , e j )c(e

∗
i )c(e

∗
j ). (45)

4 A Clifford multiplication c is a morphism of smooth vector bundles such that for all α ∈ �1(M) one has

c(α) = −c(α)∗, c(α)∗c(α) = |α|2.

5 A Clifford connection is a Hermitian connection with the following property: for all α ∈ �1(M) and all
X ∈ �C∞ (M,TM), ψ ∈ �C∞ (M, E) one has

∇X (c(α)ψ) = c(∇TM
X α)ψ + c(α)∇Xψ.
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With these preparations, Theorem 1.1 has the following important consequence:

Theorem 3.5 Assume that M is geodesically complete with (42) and that V (c,∇) admits a
decomposition

V (c,∇) = V1(c,∇)− V2(c,∇)
into potentials Vj (c,∇) ≥ 0 with |V2(c,∇)| ∈ K(M). Then for any κ ≥ 0 and y ∈
M, the operator H̃(c,∇; κ, y) is essentially self-adjoint and its closure H(c,∇; κ, y) is
semibounded from below.

Proof Using (43) and Proposition 2.4 (a), one easily checks that Theorem 1.1 can be applied
with

V := 1

4
scal(•)1 + 1

2

∑
i< j

tr[∇2](ei , e j )c(e
∗
i )c(e

∗
j )− κG(•, y)1,

which proves the claim. ��
Remark 3.6 (a) Let

S(c,∇) :=
∫

M

∣∣∣∣∣∣

∥∥∥∥∥∥
1

4
scal(•)1 + 1

2

∑
i< j

tr[∇2](ei , e j )c(e
∗
i )c(e

∗
j )

∥∥∥∥∥∥

∣∣∣∣∣∣
2

x

vol(dx) ∈ [0,∞],

where |‖ • ‖|x stands for the fiberwise Hilbert–Schmidt norm. Using | • |x ≤ |‖ • ‖|x and
Proposition 2.4 (a), one sees that the assumption on V (c,∇) in Theorem 3.5 is obviously
satisfied under (42), if S(c,∇) < ∞. This variant of Theorem 3.5 has been deduced in [16]
with completely different methods, namely, using results of [1] (which rely on pure PDE
methods).

(b) In the situation of Theorem 3.5, the operator H(c,∇; κ, y) can be interpreted [16] as
the nonrelativistic Hamiltonian corresponding to an atom with one electron and a nucleus
with ∼ κ protons, where the electron’s spin has been taken into account and the nucleus
is considered as fixed in y with respect to the electron. Here, in view of Lemma 3.4, the
underlying magnetic field is given by tr[∇2]/i ∈ �2(M). In particular, the above mentioned
assumption S(c,∇) < ∞ is reasonable from the physics point of view, for it corresponds in
a certain sense to a “finite magnetic self-energy” [it is essential for this interpretation to take
the Hilbert–Schmidt norm in the definition of S(c,∇)].
Acknowledgments The first author (BG) is indebted to Ognjen Milatovic for many discussions on essential
self-adjointness in the past three years, in particular, for bringing the reference [13] into our attention (which
helped us to remove an unnecessary assumption from the original version of Theorem 1.1). Both authors kindly
acknowledge the financial support given by the SFB 647 “Space–Time–Matter” at the Humboldt University
Berlin, where this work has been started.

Appendix A. Friedrichs mollifiers

We record the following result on Friedrichs mollifiers here. Let M be a smooth connected
Riemannian manifold without boundary, E → M a smooth Hermitian vector bundle, ∇ a
Hermitian covariant derivative in E , and V : M → End(E) a potential.
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Proposition A.1 Let |V | ∈ L2
loc(M) and assume that f ∈ �L∞

loc
(M, E) is compactly sup-

ported with ∇†∇ f ∈ �L2
loc
(M, E) in the sense of distributions. Then there is a sequence

( fn)n∈N ⊂ �C∞
0
(M, E) such that

lim
n→∞ ‖ fn − f ‖ = 0,

lim
n→∞ ‖∇†∇ fn − ∇†∇ f ‖ = 0,

lim
n→∞ ‖V fn − V f ‖ = 0.

Remark A.2 Note that one indeed has f ∈ �L2(M, E), which follows from f ∈ �L∞
loc
(M, E)

and the fact that f has a compact support. Furthermore, ∇†∇ f ∈ �L2(M, E) follows from
∇†∇ f ∈ �L2

loc
(M, E) and the fact that ∇†∇ f has a compact support.

Proof of Proposition 4.3 Since most of the arguments should be well-known, we only sketch
the proof. Let m := dim M and let d be the fiber dimension of E . Since f is compactly
supported, we can use a partition of unity argument to assume that f is supported in a
relatively compact coordinate domain U ⊂ M (which is identified with an open subset
of R

m) such that there is a smooth orthonormal frame for E over U , and we denote the
components of f in this frame with f (1), . . . , f (d). Now take some 0 ≤ jr ∈ C∞

0 (R
m) with

j (z) = 0 for |z| ≥ 1 and
∫

Rm

j (z)dz = 1.

For r > 0 let jr ∈ C∞
0 (R

m) be given by jr (z) = r−m j (r−1z). Let r > 0 be small enough in
the following such that the functions

x �−→
∫

Rm

jr (x − y) f (i)(y)dy, i = 1, . . . , d, (46)

define an element

fr ∈ �C∞
0
(U, E) ⊂ �C∞

0
(M, E).

Since the sections fr − f and ∇†∇ fr − ∇†∇ f are compactly supported, the convergence

lim
r→0+ ‖ fr − f ‖ = 0 (47)

follows from Lemma 5.13 (ii) in [1], and

lim
r→0+ ‖∇†∇ fr − ∇†∇ f ‖ = 0

follows from the L2
loc-version of Proposition 5.14 in [1], which can be proven with analogous

arguments. Note that so far we have only used that f is locally square integrable with a
compact support.

The local boundedness assumption on f comes into play as follows: Namely, this assump-
tion combined with the compact support assumption implies that f is actually bounded and
so (46) implies

| fr (x)|x ≤ ‖ f ‖∞ for all x, r. (48)
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Since [in view of (47)] we may assume that fr → f a.e. in M , and since fr has a compact
support, the required convergence

lim
r→0+ ‖V fr − V f ‖ = 0

now follows from (48) and dominated convergence. ��

Appendix B. Finite speed of propagation

The following lemma is usually referred to as Chernoff’s finite speed of propagation
method [2]. Let M be a smooth connected Riemannian manifold without boundary, and
let E → M be a smooth Hermitian vector bundle.

Lemma B.1 Let S be a self-adjoint nonnegative operator in�L2(M, E). Assume furthermore
that D0(S), the compactly supported elements of D(S), are dense in �L2(M, E) and that for
any f ∈ D0(S) and any t > 0, the section cos(t

√
S) f has a compact support. Then D0(S)

is an operator core for S.

Proof The proof is a straightforward generalisation of the proof of Theorem 3 in [13]. ��

Appendix C. Path ordered exponentials

In the following lemma, we collect some known facts about path ordered exponentials for
the convenience of the reader:

Lemma C.1 Let H be a finite dimensional Hilbert space, let T ∈ (0,∞] and let F ∈
L1

loc([0, T ),L (H )). Then the following assertions hold:

(a) There is a unique weak (= ACloc) solution Y : [0, T ) → L (H ) of the ordinary initial
value problem

d

dt
Y (t) = Y (t)F(t), Y (0) = 1. (49)

(b) For any 0 ≤ t < T one has

Y (t) = 1 +
∞∑

k=1

∫

0≤s1≤...≤sk≤t

F(s1) . . . F(sk)ds1 . . . dsk . (50)

(c) If F(•) is Hermitian a.e. in [0, T ) and if there exists a real-valued function c ∈ L1
loc[0, T )

such that for all v ∈ H it holds that

〈F(•)v, v〉H ≤ c(•)‖v‖2
H a.e. in [0, T ),

then one has

‖Y (t)‖H ≤ e
∫ t

0 c(s)ds for all 0 ≤ t < T .

Proof See [7] and the Appendix C of [15]. ��
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