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Abstract We prove for closed, orientable surfaces in R with Willmore energy less that

87 — & and whose conformal structures are compactly contained in moduli space that after
applying appropriate Mobius transformations the conformal factors between the induced
metrics and conformal metrics of constant curvature are uniformly bounded by constants
depending only on § > 0, the genus of the surfaces and the compact subset of the moduli
space. Secondly, for a given sequence of closed, orientable surfaces as above, we prove that
the conformal factor remains bounded without applying Mobius transformations if and only
if no topology is lost. Similar estimates hold in higher codimension.
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1 Introduction

For an immersion f : ¥ — R” of a closed surface X, which we assume to be orientable,
the Willmore functional is defined by

1 =
W(f)=Z/IH| ditg.
>

=2 .
where H denotes the mean curvature vector of f, g = f*geyc the pull-back metric and 1,
the induced area measure on X. The main interest for the Willmore functional steams from
its invariance under conformal transformations.
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1342 R. M. Schitzle

We continue the work of [9] and denote by g7 the infimum of the Willmore energy
of immersions f : ¥ — R" of a closed, orientable surface X of genus p. We know
W(f) > 4 with equality only for round spheres, in particular ﬂZ > 4. We put as in [9]

k k
By = min[4n —l—Z(,B;’,i —47): 1 < p; < p, Zpi = p] : (1.1)

i=1 i=1

where Ef = 00,

en:=187/3 for n=4, (1.2)

21 for n>25,
and define the constants
Wha.p :=min@m, By, B + ey). (1.3)

For n = 3, the last term could be ommitted as ﬂ; + e3 > 8.

By Poincaré’s theorem any smooth metric g on £ 2% $2 is uniquely conformal to a unit
volume constant curvature metric

8poin = e_zug. (1.4)

The compactness theorem [9] Theorem 4.1 or Theorem 5.3 in §5 for n > 5 estimates the
conformal factor in (1.4) for the pull-back metric of a smooth immersion f : ¥ — R” of a
closed, orientable surface X of genus p with

W) < Wap — 96 (L.5)
after applying an appropriate Mobius transformation by
Il ullLoo(zy< C(n, p,3d). (1.6)

In the definition (1.3), the bound 87 excludes by the Li-Yau inequality in [11] branch
points, and the bound W, , < Bn, p prevents topological splitting in the sense that p handles
of ¥ do not group in pjand p> handles with p; + p» = p,1 < p1, p2 < p. The last
bound W, , < B}, + e, is an algebraic condition in order to apply the Hardy space theory
in the work of Miiller and Sverak [12]. As ,3[’; > 4 and e3 = 4, this does not appear in
(1.3) for n = 3. The constant e, = 2z for n > 5 is directly taken from the general situation
in [12], see §4. In [9] Theorem 6.1, the constants were adapted from [12] to our situation to
e4 = 81 /3. Whether these constants are optimal for n > 4 is not clear.

The compactness theorem [9] Theorem 4.1 was used in [10] to obtain existence of con-
formally constrained Willmore minimizers, these are minimizers of the Willmore energy of
immersions conformal to a smooth metric ggon X, when the infimum satisfies

W(Z, go, n) :=inf{W(f) | f : ¥ — R" smooth immersion conformal to go } < W .
1.7)

The existence of conformally constrained Willmore minimizers was recently extended in
[7] and [13] to W(Z, go,n) < 8w in any codimension. Moreover in [10] smoothness of
any conformally constrained Willmore minimizer was shown.

Actually even if we do not fix the metric gog or likewise the conformal class induced by

f, the estimation of the conformal factor in (1.4) gives control on the pull-back metric after
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Estimation of the conformal factor under bounded Willmore energy 1343

reparametrization, as it was shown in [9, Lemma 5.1] that a bound on the conformal factor
and on the Willmore energy

W(f),mZaXIul <A

implies that the induced conformal structure lie in a compact subset of the moduli space
depending on n, A and the genus of 2.
The first aim of this article is to prove a partial converse of [9, Lemma 5.1].

Theorem 1.1 Let f : ¥ — R" be a smooth immersion of a closed, orientable surface
Yof genus p > 1 with

81 — 46 for n=3,

W(f)i[ﬁ;—i—en—(s for n;4,

for some & > 0 and assume that the conformal structure induced by the pull-back metric of
flies in a compact subset K of the moduli space.

Then after applying an Mdbius transformation, the pull-back metric g := f*geuc is
uniformly conformal to a unit volume constant curvature metric gpoin = e~ g more
precisely

| ullzox)< Cn,p, K,$).

[m}

This converse is only partial as the energy bound is restricted by 87 and the algebraic
energy condition in (1.3). Here the bound W, , < B, p 1s replaced by the compactness in
moduli space, which is weaker by [7] Theorem 5.3 and Theorem 5.5 or [14] Theorem I.1.

The algebraic energy condition restricts the energy loss by comparing to the infimum S Z
This can be localized.

Theorem 1.2 Let f : ¥ — R" be a smooth immersion of a closed, orientable surface
¥ % 5% with

W(f) < min@8w, W(Z, f*geuc, n) + en) — 8

for some & > 0. Moreover we assume that the conformal structure induced by the pull-back
metric of f lies in a compact subset K of the moduli space.

Then after applying an Mobius transformation, the pull-back metric g = f*geuc I
uniformly conformal to a unit volume constant curvature metric gpoin = e g, more
precisely

I ullLezy< Cn, p, K, ).

[m}

Clearly Theorem 1.1 implies Theorem 1.2 as W(X, go, n) > 4x. Theorem 1.1 is suited
when working for example on a fixed Riemann surface. It extends the framework of [10] to
WI(Z, go, n) < 8 in any codimension.

There is a second aim of this article. The compactness theorem [9] Theorem 4.1 and
Theorems 1.1 and 1.2 in this article all estimate the conformal factor after applying appropriate
Mobius transformations. The dividing out the invariance group of the Willmore functional is
certainly necessary, and it is sufficient to obtain existence results of conformally constrained
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1344 R. M. Schitzle

Willmore minimizers. In applications, there is the stronger task to estimate the conformal
factor for a given sequence without applying Mobius transformations. Therefore there is
a need for a precise criterion, which can be checked on the given sequence, whether this
sequence needs preparation by Mobius transformations or not. We recall that the bound
Wh,p < ﬁ; in (1.3) prevents topological splitting by an energy bound, and we actually see
that preserving the topology is necessary and sufficient for the estimation of the conformal
factor. To be more precise, we establish for a sequence of closed, orientable embedded
surfaces ¥, C R"of fixed genus p > 1 with
lim sup W(X,,) < 8,

m—00

S € B1(0), (1.8)
H2 [, — u #0 weakly as Radon measures,

that spt p is a closed, orientable, embedded topological surface of genus(spt n) < p.
Then without loss of topology in the sense that genus(spt i) = p and with the algebraic
energy condition, we prove an estimate of the conformal factor. In a second step, we replace
no loss in topology by compactness of the conformal structures in moduli space and the
non-triviality of the topology in the sense that genus(spt ) > 1. Actually these conditions
are equivalent.
Theorem 1.3 Let X, C R”" be closed, orientable, embedded surfaces of fixed genus p > 1
with

lim sup W(Z,,) < 8,

m—0Q

Zn < B1(0),
H2| T — 1 £ 0 weakly as Radon measures.

Then spt | is a closed, orientable, embedded topological surface of genus(spt n) < p.
No topology is lost in the sense that

genus(spt ) = p
if and only if some topology is kept in the sense that
genus(spt n) > 1
and the conformal structues
[X,] lie in a compact subset of the moduli space.
In this case if moreover

lim sup W(Zp,) < W() + ey,
m—0Q
then the induced metrics gm ‘= geuc|Zm are uniformly conformal to unit volume constant
curvature metrics gpoin,m ‘= e Hmg. for m large, more precisely
limsup || up, || (5)< 00.
m—0oQ

[m}

We proceed from (1.8) and prove that some topology can always be kept in the sense
of genus(spt n) > 1 after applying appropriate Mobius transformations. This yields
Theorem 1.1 and in turn Theorem 1.2. Finally, we summarize the equivalence of no topolog-
ical loss and the compactness in moduli space in the following theorem.
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Estimation of the conformal factor under bounded Willmore energy 1345

Theorem 1.4 Let %, C R" be closed, orientable, embedded surfaces of genus p > 1
with

limsup W(Z,,) < 8m.

m— 00

Then the conformal structures induced by %, lie in a compact subset of the moduli
space if and only if no topology is lost after applying appropriate Mobius transformations,
more precisely that any subsequence has a subsequence such that after applying appropriate
Mobius transformations

H? LXn — n weakly as Radon measures
with spt u is a closed, orientable, embedded topological surface and
genus(spt n) = p.
In this case after passing to a subsequence the conformal structures converge
[2,] — [spt n] in moduli space.

[m}

The inclusion that compactness in moduli space keeps together the topology after applying
appropriate Mobius transformations was already observed in [7], where uniformly conformal
weak limits in Wli’cz(E — &) for some finite S C ¥ were obtained.

2 Convergence without loss of topology

We start proving that measure theoretic limits under bounded Willmore energy have a topol-
ogy and a genus.

Proposition 2.1 Let ¥,, € R" be closed, orientable, embedded surfaces of fixed genus
p >0 with

lim sup W(Z,,) < 8m, 2.1
m—0oQ
S S Br(0), 02
H2| T — 1 #£0 weakly as Radon measures, ’
for some R < oo.
Then spt | is a closed, orientable, embedded topological surface of genus
genus(spt u) < p. 2.3)

Moreover for a closed, orientable surface of same genus, there exists a uniformly conformal
W22 _immersion, that is [ 8euec = ez”go for some smooth metric goon X and u €
L°°(X), such that

fiE = sptu=f(D) 24)
is a bi-lipschitz homeomorphism and for s := f(ug)

[y = =Hlspt . (2.5)
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1346 R. M. Schitzle

Proof By (2.1) and lower semicontinuity

W(p) <limsup W(E,,) < 8n (2.6)

m— 00
and by the Li-Yau inequality in [11] or [8] (A.17)
0%(u, x) < W(p)/@r) <2 forall x € R™.
We replace (2.1) by the weaker assumption
lim sup W(X,,) < oo,
m—>00 2.7)
0%(u,x) <2 forall x e R,

and proceed from here.
We may assume

W(EZm) W46 (2.8)
for some W < 0o, § > 0 and get by lower semicontinuity

W(p) < limsup W(E,,) < oo. (2.9)

m— 00

By monotonicity formula, we get as in [16, Theorem 3.1]
%, — spt o in Hausdorff-distance. (2.10)
Next by the GauB3 equations and the Gau3-Bonnet theorem
/ |As, |2 dH? = V() +8n(p — 1) <4W +8x(p — 1) =: A. (2.11)
Zm

Putting o, = |Ag, |>H?| Z,,, we may assume after passing to a subsequence that
oy — o weakly as Radon measures. Clearly «(R") < A < oo, and there are at most
finitely many bad point zg,...,zy € R" with

a(xi)) > 87 —8 for k=1,...,N, (2.12)

for any fixed0 < <7 and N < A/(7Tm) =: N(p, W). As a(B,(x) — {x}) — 0 for
0 — 0 and any x € R", we can cover spt u C Ule By, j4(xy) with x; € spt o and

a (B, (xp) — {xx}) < e for k=1,....K (2.13)

and e < go(n, p, N,§) small enough chosen below. Further we may assume that x; =
x; for k=1,...,N and

a(Byg (xx)) <8m —§ for k=N+1,...,K. (2.14)
By (2.12) and (2.13), we see that x; & Bap, (xx), k #1=1,..., N, hence
By, (xp) N By, (x)) =9 for k=1,..., N. (2.15)
As u # 0, we may further assume that

spt o & Bog, (xg) for k=1,... K. (2.16)
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Estimation of the conformal factor under bounded Willmore energy 1347

Next by the monotonicity formula, see [16, 1.2] or [8, A.3 and A.5], writing L for the
projection onto (7 wt,

/ frac|(€ — x)F?1E — x|* du(€) < 0o forall x e R", 0 >0,

Bg (x)
and by (2.7), we can additionally assume for some 02 (, x) < Yk < 2 that

mu(B7o, /3(xk)) < v (Tok/8)?,
12
[ o

|§ — xk
Bagy, (xk)

We get from above (2.2) and (2.7) for 0 < r,, < 0r/4,rm — 0 and m large enough
that

|As, |? dH? < &2,
Zm ﬂng (xk)_Brm (x)

H2 (S N Brgys(xi)) < vir(Tok/8)?,

RN
M dH2(E) < €2, 2.17)
|& — x|
i ﬁng (Xk)*Brm (xx)
for k=1,...,K,and
|As, |2 dH? < 87 —58/2 for k=N+1,.... K. (2.18)

Zm ﬂBQk (Xk)

By Hausdorff-convergence in (2.10) and x; € spt u, we get X, N By, j4(xy) # @ for m
large. Moreover X%, is not contained in any By, (xx) for m large by (2.16), and, as %,, is
connected, any component of X, N By (xx), 0 < 90x/16, extends to 9 By, /16(xx) in the
sense of [9, Lemma 2.1 (a)]. Then we obtain as in [9, 4.16] for the multiplicity My = my = 1
as in [9, 2.5], that is there is exactly one component of D’,; = D’,j”, of X,, N By (xy) for
o € [50k/8, 70k /8] appropriate as in Theorem 5.2 and that the multiplicity of its boundary
entering in [9, 2.6] equals one in the sense

/ kg, ds — 27| < C(n)e*™

aDk

for appropriate a(n) > 0. Denoting the genus of DX @ B1(0) by py.x, we get by the
Gauf3-Bonnet theorem

/ K, ditg, +47pmi| < C(n)e*™. (2.19)

Dy,
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1348 R. M. Schitzle

Passing to a subsequence, we may assume pi = pp k 1S independent of m and after
renumbering xi, we may assume that

Dfn is not a disc, pr > 1,
or for k=1,...,N, (2.20)
2 422
fzmmngm) |As, |2 dH? > de, — 6,
and
D’,; is adisc, pr =0,

|Azm|2dH2§4en_5’} for k=N+1,....K, (2.21)

f):m ﬂBQk (Xk)

when observing that (2.21) is certainly true for k = N +1,..., K by (2.18), as ¢, > 2m,
and

1
[ 1Kol ding, =5 [ 14, P dig, < am - /4
aDf, oD,

hence pr = pmi =0 by (2.19) for C(n)e*™ < §/4.

Thenasin [9, Lemma 2.1 (b)], we may replace %, in By, (x) for k=1, ..., Nand M
large observing (2.15) to obtain a closed, orientable, embedded surface im for
m large and Mr,, < or/4 and

N
DI i‘:m in R"— U BMr,,, (xx),
k=1

/ |A§m|2 dH?> < C(n)e® for k=1,...,N, (2.22)
EnNBg, (xi)
DY := %, NBy(xy)isadiscfor k=1,...,N.

Clearly
N
genus(En) =p — > pr < p, (2.23)
k=1

and we choose ¥ = f]m with 0 < genus(X) < p.
Next

-~ il 1 — 2 2
W(En) < W(z,,,)JrzZ [Hg [dH? <W(Zp) + C)Ne> <W —§/2
S S0Bu, (0
(2.24)

by (2.8) for ¢ = e(n, N,§) small enough. Again by the Li-Yau inequality in [11] or [8]
(A.16)

|H2(Zm O By, (51)) — H2(E N Bugr, ()| < CWM%r2 for k=1,...,N,
hence by (2.2)
H S, — 1 (2.25)
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Estimation of the conformal factor under bounded Willmore energy 1349

and as in [16] Theorem 3.1
Y, — spt u in Hausdorff-distance. (2.26)

Further we see from (2.11) and (2.22) that

/|Aim|dH2 §/|Agm|d7-t2+z / |Ag, | dH?
im R Em mBMrm (xx)

<A+CH)Ne*<A+1

for ¢ = ¢(n, N) small enough, and putting &, := |As |27-£2 | 5., we get after passing to a
subsequence that &,, — & weakly as Radon measures and by (2.13), (2.21) and (2.22) that

&(Bag, (x1)) < a(Bag, (xk) — B, (xi))+ C(m)e? < C(m)e? < for k=1,...,N

a(B2g, (xr)) < a(Bag (xk)— By, (x))+ 4e, — 6 < de,,— 5/2  for k=N+1,....K
a(Bog, (x1) — {x1}) = a(Bag, (xk)— {xk}) < &2 fork=N+1,..., K, (2.27)
for ¢ = e(n, N, §) small enough. We get from (2.26) that S C U,le By, j2(xy) for m
large and from (2.27)

/ |As, [P dH* < de, — /2,
)ilntQk(Xk)
/ |As, I dH* < Cn)e?
i:mmB,Qk (Xk)_BQk/Z (xx)

for k =1,...,K.For ¢ <e(n,W,§/2)/C(n) asin Theorem 5.2, this verifies (5.9) and
(5.10) for A =W, §/2 and m large. (5.11) is verified by (2.21) and (2.22), when observing

(2.19). For f]m =X Z S2, we choose diffeomorphisms fm : Z;)f)m and conclude by
[9] Theorem 3.1 or Theorem 5.2 for the pull-back metrics g, = S geue and the conformal
smooth unit volume constant curvature metrics g poin,m = e 2mg  that

I dm llLeozy< Cn, W, a1/ok, K, p.8/2) (2.28)

for m large. Then by Proposition 6.1 after appropriate reparametrization of fm, we get for
a subsequence that

fin — f weakly in W>2(2), weakly* in W (%),
i — u weakly in WH2(2), weakly* in L®(X),

5 (2.29)
&poin,m —> &poin SMoothly,

* 2u
S geuc = € 8poins

inparticular f isa W22 —immersion uniformly conformalto g poin- By uniform convergence
fm — f, bounded covergence /g, — /g and (2.25), we see

wr = f ) < fulug,) =H 1w — p. (2.30)

[m}
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1350 R. M. Schitzle

We continue with our original assumption (2.1) instead of (2.7) and get by Proposition
7.2 and (2.6) that

W(f) =W(n) <8r
and
fiT = sptp=f(%)
is a bi-lipschitz homeomorphism and by (2.30)
=y =H*|spt u,

which is (2.4) and (2.5), hence spt u = ¥ is a closed, orientable, embedded topological
surface of genus < p by (2.23), which is as in (2.3), and the proposition is proved in the
case that ¥ % S2.

In case f)m = 3 $2, we may assume after translation that 0 € im. We select
o > 0with a(By(0) — {0}) < €2 and choose some x; = 0, ox = 0. Then as in [9,
Lemma 2.1 (b)], we replace f)m in B, (0) for m large to obtain a closed, orientable, embed-
ded surface S,, with

11

Sw =%, inR" — B,(0),
|As, |* dH? < C(n)e?,

SuBq (0)
Sm = L in BQ/Z(O)a

(2.31)

for some 2 — plane L,, > 0, which we may assume to be fixed L = L,, after suitable
rotations. As the rotations and the above translations are compact, we still have (2.25) with
a rotated and translated w. By the estimate in (2.31), we see that S, N B, (0) is a disc for
appropriate ¢ = o,k € [50/8, 70/8], hence recalling PO

Sy = 82, (2.32)
Assuming by (2.1) that
W(E,) <8r —3§
for some & > 0, we get as in (2.24)
W(Sp) < W(Ey) + Cn)(N + 1)e? < 87 —§/2
for ¢ < e(n, N, §). By the Li-Yau inequality in [11] or [8, A.16]
0 H*(Su N By) < C,
hence after passing to a subsequence
H? LS» — B weakly as Radon measures. (2.33)
Then by lower semicontinuity and the Li-Yau inequality in [11] or [8, A.17]
0%(B) < W(B)/(4m) < 2. (2.34)

Now we take any orientable, connected surface H C R2 with H— By/4(0) = L—B,/4(0),
and which is not a disc, say

q = genus(H U {o0}) > 1. (2.35)
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Estimation of the conformal factor under bounded Willmore energy 1351

We replace S, in By/4(0) by H N By/4(0) to obtain a obtain a closed, orientable, embed-
ded surface T, 2 S? with

[y =3, inR"— By(0),
Ty = Su inR" — By(0), (2.36)
[y = H in By2(0).

Then clearly
X (Cm) = x (S — Bo2(0)) + x (H N By/2(0)),
and by (2.32) and (2.35)
genus(I'y,) = genus(H U {o0}) =¢q > 1. (2.37)

W) <W(Sn) + W(H) <8t +W(H) < o0 (2.38)
is bounded, we get as above after passing to a subseqeuence
H? [I'y = v weakly as Radon measures. (2.39)
Clearly by (2.25), (2.33) and (2.36)
v[R" = By(0)) = pul(R" — B,(0)).
VL(R" — By/4(0)) = BL(R" — By/4(0)), (2.40)
v[Bp/2(0) = H?[(H N By2(0)).

We see 02(v) = 02(H*|H) < lin Byp(0) and by (2.34) that 62(v) = 6%(B) <
2in R" — B,/4(0), hence combining

0%(v,x) <2 forall x eR". (2.41)

Therefore I'y, satisfy with (2.38) and (2.41) the weaker assumption in (2.7), and we can
proceed with I';, as in the beginning of the proof. As I',, = H in B,2(0) by (2.36) is
smooth, we see that there are no bad points for I', in By/2(0). Then by (2.22) for I');,

Ty =Ty =H inByn_my,0) (2.42)
with r,, — 0, and we conclude for Mr,, < ¢/4 that

X(Cm) = x (T — Bpa(0)) + x (H N Bya(0)) < 1+ x(H N Bya(0)) = x(H N {o0}),

hence genus(f‘m) > genus(H U {o0}) =¢q . As genus(fm) < genus(I'y) = q by (2.23)
and (2.37), we get

genus(Ty) =g > 1, (2.43)

in particular ' = T, is not a sphere. Then by above there is a uniformly conformal
W22 —immersion

hiT > spt v (2.44)
which is a bi-lipschitz homeomorphism. Moreover by (2.37) and (2.43)
genus(spt v) = genus(I') = genus(f’m) =q = genus(H U {o0}),

@ Springer



1352 R. M. Schitzle

and, as spt v = H in B,,>(0) by (2.42), we conclude as above
x(spt v—DBy3(0)) = x (spt v)— x(spt v N By3(0))=x(spt v)— (x(H U {ooh)— 1) =1,
hence

spt v — B,/3(0) is a topological disc. (2.45)

Nextas i = v in R" — B, (0) by (2.40), we get that spt 11— B, (0) is an open, orientable,
topological 2—manifold. As o can be arbitrarily small and 0 € ¥, was arbitrary, spt p is
an open, orientable, topological 2-manifold. Observing that spf 1 is compact and connected
by (2.2), (2.10) and conectedness of %,,, we get

spt u is a closed, orientable, topological surface.

We select an open neighbourhood U (0) in spt ;v of O which is adisc and y := U (p)
is a closed Jordan arc. For ¢ small enough, we have y N B,,(0) =¥ and

y Cspt u— By(0) = spt v — B,(0) C spt v — By3(0).

The last set is a disc by (2.45), hence the interior [, of y in spt v — B,/3(0) is a disc as
well. Now [, is connected and

01, N3B,(0) =y NIBy©O0) =0
hence
I, Csptv —m or I, CsptvN By0).
Observing that
I, Nsptv—B,(0) 2y # 0,
we get
I, gsptv—m=sptu—m.

We see that I, and U(0) are open, closed and connected in spt u — y, hence these are
connetced components of spt u —y.As 0 € U(0),0 ¢ I, by above and spt u — y can
have at most two components, we get

spt u=U@O)+y +1,. (2.46)
Sicne both U(0) and /,, are discs, we get
spt = S2,

which is (2.3) in the case ¥ = §°.
Finally by (2.44) and compactness of spt w, we get a finite atlas {(pfl, e wzl} of
uniformal conformal W?2-immersions

@ :B1(0) —> U Csptu for I=1,...,L,
which are further bi-lipschitz homeomorphisms. This means in particular that

. 2
81 = (p[*geuc =e u[gO,l
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Estimation of the conformal factor under bounded Willmore energy 1353

for smooth metrics g; on By(0) and u; € Ly, (B1(0)). Introducing local conformal coor-
diantes for the smooth metrics go ;, we may assume after rearranging the atlas that ¢; are
conformal with

. 2
81 = Gol*geuc = e goyc

and u; € L°°(B1(0)). Then all transitions maps

oes = o= NUINUY) — o (U N U)

are conformal, hence holomorphic after possibly reversing the orientation, in particular
smooth. As u; € L°°(B;(0)) and Dgy, is continuous, we see that Dy ; have full
rank everywhere. Then ¢y ; , being bijective, is a holomorphic diffeomorphism. With this
atlas spr p is a compact, simply sonnected Riemann surface. By [6, Lemma 2.3.3], there
exists a smooth conformal metric go on spt u, that is

@1+ (B1(0). geue) —> (Ul 80)
is conformal, and more precisely ¢} go = e Zeuc for some v; € C°°(B1(0)), hence

= 2 _ul)(p[*geuc

(p[*gO = ezvlgeuc
and go = 62(”’_“’)°“’flgeuc. As uy, vy € LTS (B1(0)), we get
g0 = ezuogeuc onspt u for some ug € L (spt ). (2.47)

We remark, since only u; € L°°(B1(0)), we cannot conclude that g, is smooth on
spt . with respect to the holomorphic atlas above.
By the uniformisation theorem for simply connected Riemann surfaces, see [4, Theorem
IV.1.1], (spt u,go) is conformally equivalent to the sphere S> with standard metric
82 1= Zeuc|S?, hence there is a conformal diffeomorphism
[ (8%, gg2) — (spt v, go),
say
f*go =e* g forsome v e C®(S%). (2.48)

Now for any conformal chart ¢ : V = B1(0) of $? with V C fz_l (Up) for some [, we
see that

V=@ o (FIV) oy Bi(0) — Bi(0)

is conformal, hence smooth, and we conclude that f € Wz’z(Sz, R") and is lipschitz.
Calculating the pull-back metrics by (2.47) and (2.48), we get

f*geuc = f*(ei2u0g0) = 62(1)7(”00]‘.))&5‘2

with v — (ug o f) € L®($?%), hence fisa W22.immersion uniformly conformal to gg2.
Then by Proposition 7.2 (7.7)

= flug) =#f" - HLf(S?) = H:Lspt e,

as f is bijective.
Since Hy,, is bounded in L2(H% | Z) by (2.1), we get from (2.2) that u has weak
mean curvature in L2(x) and by Allard’s integral compactness theorem, see [1, Theorem

@ Springer



1354 R. M. Schitzle

6.4] or [15, Remark 42.8], that w is an integral varifold. Moreover by (2.1), (2.2) and lower
semicontinuity

W(p) <limsup W(E,,) < 8x,

m— 00

hence by [8] (A.10) and (A.17) that 6%(u) > 1onspr wand 02(n) < W(p)/4n < 2,
hence p has unit density p—almost everywhere and by above

p=Hlspt p = py,
hence (2.5). Then by Proposition 7.2 and above
W(f) =W(n) <8r
and
fi82ssptp=f(S?)

is a bi-lipschitz homeomorphism, which is (2.4) in the case that & = §2, and the proposition
is fully proved. o

Remarks 1. The sphere case when ¥ = S2 in the above proposition is more elaborate, since
we cannot estimate the conformal factor in (2.28) by [9] Theorem 3.1 or Theorem 5.2 as in
the case when = 2% S2 due to the presence of non-trivial conformal transformations on the
sphere. For n = 3, this could be done for W(Z,,) < 6 by [2] and [3].

2. For a second homeomorphism f > — spt u with f a uniformly conformal
W22 _immersion, say  fgeuc = 32"§p0,-n for some smooth unit volume constant

curvature metric g poin and it € L>®(3), we see that ¢ := flo f 35y isa
homeomorphism. Moreover as f is bi-lipschitz and f is lipschitz, we get that ¢ is
lipschitz and calculate the pull-back metric with (2.29)

ezug'poin = fA*geuc = ¢*f*geuc = ¢*(32Mgpoin) = 62"°¢¢*gpom~
We see that

¢ : (ﬁ:’ g’poin) g (27 gpoin)

is conformal, hence holomorphic or anti-holomorphic, in particular smooth. As
u € L*¥X),un € Loo(fi) and D¢ is continuous, we see that D¢ hat full rank
everywhere on 3, and, as ¢ is bijective, we get that ¢ is a diffeomorphism. Then
the conformal structures induced by f respectively f coincide, and we can define the

conformal structure induced by spt p by putting

[spt 1] == [(Z, £*8euc)] = [(E, F*Leuc)]. (2.49)
o

Certainly by Mobius invariance of the Willmore funcitonal, the limit can be a sphere, and
most of the information would be lost. Therefore it is important to have a device to ensure,
after appropriately applying Mobius transformations, the non-triviality of the limit which
means for us to keep some topology. This was for example done in the existence proof of
Willmore minimizers under fixed genus in [16, Lemma 4.1] to avoid round spheres. Other
examples are the arrangement lemma in [9, Lemma 4.1] or the 3-points normalization lemma
in [13, Lemma III.1]. Here we successively apply [9, Lemma 4.1] to keep some topology in
the general situation of the previous proposition.
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Proposition 2.2 Let ¥,, € R" be closed, orientable, embedded surfaces of genus p > 1
with

lim sup W(Z,,) < 8. (2.50)

m—0Q

Then after applying appropriate Mébius transformations and passing to a subsequence

2:m - Bl(o)a

H? [ — u #0 weakly as Radon measures, 251
with spt | is a closed, orientable, embedded topological surface and
genus(spt u) > 1. (2.52)

Proof We avoid the case ¥ = S§? in the previous proposition by applying appropriate
Mobius transformations as in [9, Lemma 4.1] and may assume that

Ym € Bi(0),
1
/ 1AL 12 dH? < E/|A°m|2 dH? forall x € R", (2.53)
2:mﬁBQO (x) o

00 = 00(n, E) > 0 and where E := fEm |A%m |2 dH2. By (2.50) we may assume
W(Zy) <8t — 3§ (2.54)
for some § > 0 and get by the Li-Yau inequality in [11] or [8, A.16]
0 PHA(Zn N By) < C,
hence after passing to a subsequence
H? |X,, — n weakly as Radon measures.

Now by (2.53), we cannot have %,, C By, (x) forany x € R",as E > 0, since X, are
no round spheres. Therefore diam %,, > go and HE(Z,) > cogg by [16, Lemma 1.1].
As X,, € B1(0) by (2.53), we have n(R") = limy,— 00 H2(Z,,) > 0,in particular p # 0,
hence together with (2.53), we get (2.51). Then we have (2.1) and (2.2) for R = 1, and we
proceed as in Proposition 2.1 and use the notation there.

By the Gaul} equations and the Gau3-Bonnet theorem, we have with (2.54)

/ |AY P dH? = 2W(S) + 87(p — 1) € [87p, 8 (p + 1) — 26[. (2.55)
Em

Extending Dfn = X, N By (xg) outside B, (xr) to a flat plane near infinity as in
[9, Lemma 2.1 (b)], we obtain

/ |AY |? dH* — 2W(D},) — 8mpi| < C(m)e®™.
D},
Observing by extension to the inside as in (2.22) that
W(Ey — DY) > 4 — C(n)e*™,
hence by (2.54)
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W(DE) = W(E) = W(Ew — Db) < d4m — 8 + C(n)e*™, (2.56)
we get for Cn)e*™ < §
/ |AY |* dH? €18 pr — 8, 87 (pr + 1) — L. (2.57)
D},

Choosing or < g, we get from (2.53), (2.55) and (2.57)
8mpr — 8 < / |AY P dH? <dm(p+1) -3,
EmNBoy (x)
hence
pe<(p+D/2<p for k=1,...,N, (2.58)
and we see that one disc cannot take all the topology. When
spt = 82, (2.59)

we have ¥ = im =~ §2, and see from (2.23) that N > 1 and after renumbering in (2.20)
that

pr=1 (2.60)

For p =1, this is impossible by (2.58), and the proposition is proved for p = 1.
To proceed for p > 2, we do the replacement of %, as in (2.22) but only in

Bumy, (xp)fork =2, ..., N and obtain intermediate closed, orientable, embedded surfaces
I'),. We get as in (2.24) for W = 8z that

lim supW(I'y,) < 87

m— 00

and as in (2.25) and (2.26)

H2 Ty — W,

I',, — spt u in Hausdorff-distance. (2.61)

and calculate by our assumption f}m >~ §2, (2.58) and (2.60) that

genus(T'y) = genus(Ty) +pr=pi €{l,....p—1}.

Then by induction and compressing by a factor of 1/2, there are Mobius transformations
®,, such that after passing to a subseqeuence

@, T € By2(0),

H? [P,y — v #0 weakly as Radon measures, (2.62)
with spt v is a closed, orientable, embedded topological surface and
genus(spt v) > 1. (2.63)
We claim
P Zn S B1(0), (2.64)

H> [P, X, — v # 0 weakly as Radon measures,

for m large, which yields (2.51) and (2.52) by (2.63).

@ Springer



Estimation of the conformal factor under bounded Willmore energy 1357

To prove (2.64), we work with Hausdorff convergence and get from (2.10) for ®,,T,
that

®,,I';;, — spt v in Hausdorff-distance. (2.65)
We claim

®,, %, — spt v in Hausdorff-distance. (2.66)

If this is true, we see @, X, C B(0) for m large, as spt v € By,2(0) by (2.62) and
(2.65), which is the first part in (2.64). As W(®,, X)) = W(Z,,) < 87 — § by (2.54), we
get by the Li-Yau inequality in [11] or [8] (A.16) after passing to a subsequence

H | D, S — B weakly as Radon measures.

As diam(spt v) > 0, we get diam(P,,%,,) > o for some ¢ > 0, hence H2(D, Zy) >
C0Q2 by [16] Lemma 1.1. As &,,%X,, < B;(0) by above, we have B(R") =
limy—s 00 H2(®p ) > 0, in particular B # 0. Therefore we have (2.1) and (2.2) for
®,,%,, and proceed as in Proposition 2.1. Then ®,,%,, — spt B in Hausdorff-distance
by (2.10), hence spt B = spt v by (2.66). We get by (2.5)

B :HZLspt B :Hstpt V=,

and (2.64) follows.
It remains to establish (2.66). We first prove

@, (00) 7> 00. (2.67)

Otherwise we rotate under sterographic projection R"” U {oo} = S§" slightly from
®,,(00) to co and get Mobius transformations W, with

Wi (@ (00)) = 00,
W,, — idrr smoothly on compact subsets of R”.

Then by (2.62) and (2.65)

W, @, T © B3j4(0) for m large,
H2 | W, @ Ty — v # 0 weakly as Radon measures,
v, ®,, I, — spt v in Hausdorff-distance.

As W, D, (0c0) = oo, we see that W, d,, is an isometry multiplied by some factor
Am > 0. Then by (2.61) and above

o = H (W @y ) /H (D) = v(R")/pu(R") =: ) €]0, o0,
and we see for the isometries U,, := A;l v, ®,, that
Ul — A_lspt v in Hausdorff-distance.

We select any x,, € I, and get by (2.61) after passing to a subsequence that x,, — x €
spt wand Upx, — y € A~ Lspt v. We concldue that

U (O)] = Un ()| + U (xXm) — U (O)] = [Up ()| + x| = |y + [x],
hence after passing to a subsequence U,, — U. Then by above and (2.61)
U(spt n) < U,y — A_lspt v,
hence spt u = spt v. This contradicts (2.59) and (2.63), hence we get (2.67).
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From (2.67), we get after passing to a subsequence that ®,,(co) — b € R”, and (2.62) is
true for ®,, replaced by ®,, — ®,,(0c0) and v replaced by its translation (x — x — b)zv,
in particular we can assume ®,,(co) = 0. Let I be the inversion at the unit sphere, that is

I(x):= x/|x|2, then I o ®,, are Mobius transformations with 1 ®,, (c0) = o0, hence are
isometries multiplied by a factor A,, > 0 and

1®,,(x) = 1, Op(x — a,,) forall x € R”

and some a, € R" and some orthogonal O,,. After passing to a subsequence we get
O, — O, and (2.62) remains true for &, replaced by O,z; ®,, and v replaced by its
rotation O v. Since OF1 =10 and 17! = I, we calculate

Ol ®,(x) = I (A (x — ay)) forall x e R",
hence we may assume
@, (x) = I (o (x — ap)) forall x € R™. (2.68)

If 0 ¢ sptv,then spt v C By/2(0) — B;(0) for some ¢ > 0 by (2.62), and we get that
(2.62) remains true for ®,, replaced by /®,, and v replaced by its inversion Iyv. Then we
have I®,,(co0) = oo, which was already excluded in (2.67).

Therefore 0 € spt v, and we select by (2.65) and spr v # {0} by (2.63) sequences
Xms Ym € I'ym with x,,, = x # 0, y,, — 0. Then clearly by (2.68)

I(xm), I(ym) € 1Py = (T — am),
hence
00 « [[(xn) — I (ym)| < diamAm (T — am)) = Andiam(Lp).

By (2.61), we see diam(I',,) — diam(spt ) < oo and conclude A, — oo. From
(2.68), we calculate the modulus of the derivative
1
D@y (x)| = A | DI A (x — am))| = ———— for x € R". (2.69)
Am|X — am|
For a subsequence, we may assume that a,, — a € R" U {oco} and get
|[D®,,| — 0 uniformly on compact subsets of R" — {a}.

Now we are coming back to our construction from (2.22) and see

N
T =T in R — ) Bar, (),
k=1

N
Sp=Tn in R" = ) Bur, (x2), (2.70)
k=2

[y =%, inR"— By, (x1).

If a # x1, then
diam(®y, (Buyy,, (x1))) = 0
and ®,,T,, and ®,,%,, have the same limit in Hausdorff-distance, hence by (2.65)

®,,%,, — spt v in Hausdorff-distance.
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Then as above by the Li-Yau inequality and (2.5)
H> Ko S =V weakly as Radon measures.

Next limsup,, , o, W(Z,) < 87 by (2.24) for W = 87, and we conclude by Proposition
2.1

genus(spt v) < genus(flm) = genus(spt 1),

which contradicts (2.59) and (2.63), hence we get a = x.
Then as above ®,,I", and ®,,%,, have the same limit in Hausdorff-distance, hence by

(2.65)
®,,%,, — spt v in Hausdorff-distance,

which is (2.66), and the proposition is proved. O

Remark We strengthen (2.56) to
W(D}) = By, — 41 — Cn)e*™,

m

W(Ey, — Uljc\llel]’{n) > ﬂ;enus(E) — C(n)ea(n),
hence
_ N
WEn) =W (5 — UL, D5) + > Wk
k=1
N
> Bponusczy — COVE™ + D" (Bn —4m — C(m)e*™)
k=1
N
z 'Bgenm(z) + Z(ﬂ;k —4m) — C(n, N)Sa(n)).
k=1
Now
N
p = genus(X) + Z Dk
k=1

by (2.23), and if the limit keeps some topology in the sense that genus(X) = genus(spt i) >
1 then p; < p, and we conclude

1< genus(spt ) < p == W(En) = fj — C(n, N)e*™

for the constant defined in (1.1).
We conclude, if we strengthen (2.1) to

lim sup W(Z,,) < min(87, B)), (2.71)

m— 00

then we have after applying appropriate M&bius transformations that no topology is lost in
the sense that

genus(spt ) = p.

[}
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Estimation of the conformal factor is only possible, if no topology is lost. In the next
proposition, we prove that if no topology is lost then the induced conformal structures lie in a
compact subset of moduli space. Actually we do not need this proposition for the estimation
of the conformal factor, but it will give together with the following section the equivalence
of no topological loss after applying appropriate Mobius transformations and compactness
in moduli space.

Proposition 2.3 [fin Proposition 2.1 no topology is lost in the sense that
genus(spt u) = p > 1, (2.72)
then the conformal structures induced by %, lie in a compact subset of the moduli space.

Proof We proceed with the notation of Proposition 2.1. If no topology is lost as in (2.72),
we get from (2.23) that

prk=0 for k=1,...,K, (2.73)
in particular D,’; = bfn are discs, and by construction in (2.22) there are diffeomorphisms
Ym f;m — ?m s

Ym =id on T, —UN_ By, (xp), (2.74)
Y (i N BMrm (xx)) € BMrm (xk).

We define f,, := ¥, o fm D A Y, 8m = [y 8euc and consider the unit volume
constant curvature metrics gpoin,m = e 2tm gm-By(2.4)and x; € spt u = f(X), wedefine
qr := f~'(xx) and seeforany Q' cC Q:=3% —{q1, ..., qg} by uniform convergence

in (2.29) and r,, — O that d(f, (), xx) > Mry, hence f,, (') N By, (xx) = @, and
fn = fon.8m =8m on @ (2.75)
for m large depending on £2’, in particular by (2.29)
gm — [ Geue = €™ gpoin pOintwise in Q.
By elementary differential geometry, we know
—Agttm + 2 (B)e 2 = Kg,  —Ag,iim + 27 x (E)e 2 = K,

on X, hence

= A = Ti) == Ng (uy— i) =—27 X (Z)(e ¢ —1) inQ', (2.76)
and, as x(X)=2(1—-p) <0,

A (i — )4 =0 in

gpoin,m

for m large. For any ¢ € Q there exists an open neighbourhood U (g) CC Q of ¢ which
isadisc by ¢ : U(g) = B;(0). Then by local maximum estimates, see [5, Theorem 8.17],
(2.29) and writing ¢ : Uy(q) = B,(0) that

sup (Um — upy) < C(gpoin» @) N Wy — um)+ ||L2(U3/4(q))
Uiy2(q)
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for m large. To estimate the norm on the right-side, we observe

1= /'Lgpom.m(E) = /e—Zum d/'Lgm =z / e—2um d/,Lg,m

x U(q)
= / eZ(Qmium) dugpuin,m Z / (1 + ﬁm - u"l)i dug]wimm
U(q) U(q)
and get using (2.29)
Uy — Uy = _C(gpain’ q) on U1/2(‘]) (2.77)

for m large.
Then by (2.76)

|A§p,,,-,1y,,, (Um — )| < C(gpoina p.q) in U1/2(Q)’

and u, — i, — I > 0on Uyp(g) for I' = C(gpoin,q), and we get by the Harnack
inequality, see [5, Theorem 8.17 and 8.18], and (2.29)

sup (uy — ity —1I') < C(gpoin» q) Uinfq)(um — iy —T) + C(gpoins P:q)
1/4

Ui/a(q)
and
sup (um — tpy) < C(gpoin>q) inf (um — lm) + C(gpoins P> q) (2.78)
Uyya(q) Uy 4(q)
for m large.

Now iflimsup,,_, o, SUPy, 4(q) Um < OO, Wesee from (2.28) and (2.77) that u,, is bounded
from above and below on Uj/4(q). Otherwise for a subsequence SUPY, 4 (q) Um —> OO Then
by (2.28) and (2.78)

inf wu, — oo,
U14(q)
hence u;,; — oo uniformly on Uy 4(q).
Covering appropriately, we get after passing to a subsequence either

u,; — oo uniformly on compact subsets of €2,
or (2.79)
U, is uniformly bounded on compact subsets of 2.

We define
by = inf{lgpm.n’m (¥) | v is a closed geodesic in (X, gpoin,m)} > 0,
where /g, . denotes the length with respect to  gpoin,m- By the Mumford com-

pactness theorem, see e.g. [17] Theorem C.1, the conformal structures induced by
&poin,m respectively by g, lie in a compact subset of the moduli space, if

liminf €, > 0. (2.80)

m— 00

Therefore we prove (2.80) and assume ¢,, < 1 in the following.
If (2.80) is not true, we get after passing to a subsequence that ¢,, — 0. We first prove
this implies the first case in (2.79), that is

U, — oo uniformly on compact subsets of €2. (2.81)
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By definition of ¢, there exists a closed geodesic ¥y in (X, gpoin,m) of length
by < Lo = lgpoin.m (Ym) < 2¢,,. Further 1y, is non-nullhomotopic, see [17, pp. 184—
185].

We consider any non-nullhomotopic curve y,, in ¥ with

Lm0 = lgpoinm (Ym) = 0. (2.82)

As Dfn = Bs(xx) N Xy, 0 € [501/8, 70k /8] appropriate, are discs by (2.73), we
see that p, = fu(¥yu) cannot stay in any Bsg,/8(xx) N Xy As X, = fin(X) C
U,le By, 2(xx) for m large, we get after passing to a subsequence

Ym N By 2(x;) #9 forsome [ € {1,..., K} (2.83)
and
le,,(Ym) = 01/8 forsome l €{l,..., K} (2.84)
and m large. If
Pm N By p(xx) =9 forall kel{l,...,N} (2.85)

apd m large, in particular / ¢ {1,..., N}, we see by (2.74) and Mr,, < or that f, =
fm on y,, and by uniform convergence in (2.29)

lilnl)iélofd(f(ym),xk) > or/2 forall ke{l,...,N}.
Putting
Q= f! (]R” —U,ILIW) ccQ for 0<71<l,
we see
Ym € Q74 CC Q for m large. (2.86)

We get from (2.82) and (2.84) that the first case in (2.79) is true, that is (2.81).

In case (2.85) is not true, we can choose [ € {1, ..., IV} in (2.83). As y,, cannot stay in
Bsg,/8(x1), we get as in (2.84) a subarc yy, 0 of ¥, whose image V.0 := fin(Vim,0) hasits
endpoints in 9By, /2(x;) and 9 Bsp,/8(x;) and is contained in Bsy, /8(x;) — By, /2(x;7). Then

we see by (2.15) that
Ym0 N By (xi) =0 forall k#lLkell,..., ]\7},
hence as above
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Ym0 S Q14 CC Q for m large. (2.87)

Clearly lg, (vim,0) > 0i/8 and again by (2.82), we get that the first case in (2.79) is true,
that is (2.81).
We conclude from (2.81) together with (2.28), (2.29) and (2.75) for any ' CC Q that

A

< e~ infoy ”'"diam(Q/, om) = o~ infey “n diam (Y, Zm)

< e~ o tm gSUPs i i (2, & poinm) < Ce™ M2 5 0. (2.88)

dl'am(Q/» gpain,m)

For p = 1, thatis X, are tori, there exist lattices I';,, = Z + (ay + iby)Z <
C with 0 < ay < 1/2,by > 0,a% + b2, > 1 and such that (X, gpoin,m) is isometric to
(C/ Ty, b,;lgeuc), as gpoin,m have unit volume, see [6, §2.7]. Here we see £, = 1/5/bp,
and at each point of (X, gpoin,m) there exists a non-nullhomotopic curve y;, of length
£, — 0. Then by (2.86) and (2.87), we get y;,, N Q1,4 # @ for m large, and we conclude
by (2.88) that

diam(zm’ gpoin,m) <4y +diam(Ql/47 gpuin,m) — 0.
But

diam(Zy,, gpoin,m) =diam(C/ Ty, byzlgeuc) > Vb /2 =1/2¢y,) — oo,

which is a contradiction, and the proposition is proved for p = 1.

For p > 2, we proceed similarly and obtain from the collar lemma, see [17, Lemma D.1],
for any closed geodesic yy, in (X, gpoin,m) of length £,, < £, 0 = lgpain.m Vm) < 24y,
which exists by definition of £,,, a neighbourhood U,, of y;, in (X, gpoin,m) isometric to
T/ ~, where

Ti={(re" |1 < r < 0@ =D 19 70 < gy

is considered in the hyperbolic plane with hyperbolic metric divided by 4z (p — 1) > 0
in order to adjust to our convention of curvature K, = —4mr(1 — p), ~ identifies
L 0+i0

poin,m
e and e ,and 6y is a fixed positive constant, as we assume £, < 1. Here y,,
corresponds to 0 = /2, say ym(f) = e'T7/2. We select a second closed geodesic
P (1) 1= " FTH0/D 0 <t < £, 0(4m(p — 1)"/2, with length g, . (Pn) = €m0 and
which is homotopic to y;,, hence is non-nullhomotopic, see [17, pp. 184—185].

Since 6 > ¢/? is a geodesic in the hyperbolic plane and geodesics in the hyperbolic
plane are globally miniminzing, we see with hyperbolic distance that

d. .0 () = dy (T2, ot +i+60)/2 Adr(p —1) > §
epsinan Vi (0), P (0)) = dig (1712, [Wax(p—1) =

for some fixed § = 8y, p) > 0, as £, < 1, in particular
g ppinm Vs Vm) = 8 — 2l 0 > 8/2 form large, (2.89)

as {yo < 24, — 0. As both y, and 7, are non-nullhomotopic, we see by (2.86) and
(2.87) that y,, N 2174, Ym N Q14 # ¥ for m large and conclude by (2.88) that

dgp,,,-,,,m Ym» ),/\m) =< diam(91/4, gpain,m) — 0,
which contradicts (2.89), and the proposition is fully proved.

Remark Combining Proposition 2.3 with the previous remark after Proposition 2.2, we see
that the conformal structures induced by smooth immersions f : ¥ — R" of a closed,
orientable surface ¥ of genus p > 1 with
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1364 R. M. Schitzle

W(f) < min@87, B) — 8

lie in a compact subset of moduli space depending on n, p, § > 0. This was already proved
in [7, Theorems 5.3 and 5.5] and [14, Theorem 1.1]. ]

Now we estimate the conformal factor if no topology is lost under the algebraic energy
restriction in order to apply the Hardy space theory. This gives a precise criterion, when the
conformal factor can be estimated for a given sequence without applying Mdbius transfor-
mations.

Proposition 2.4 [f in Proposition 2.1 no topology is lost, in the sense that

genus(spt u) =p > 1, (2.90)
and
lim sup W(Z,;,) < W(w) + e, (2.91)
m— 00

then the induced metrics gm = Zeuc|Xm are uniformly conformal to unit volume constant
curvature metrics gpoin,m ‘= e~2mg  for m large, more precisely

lim sup || Um ||L°°(E)< Q. (292)
m— 00
Proof We continue with the notation of the Proposition 2.1 and want to exclude the real bad

points in (2.20). Firstly by (2.90), we get genus(X) = genus(flm) = p = genus(X,,) and
from (2.23) that

pr=0 for k=1,...,K. (2.93)

Nextas f is a uniformly conformal W?2-immersion, we get from [10] Proposition 5.2,
Theorem 7.2 and (2.5)

1
3 1A duy 2w — genus () = W) = W) = W,
x

Next by (2.1) and (2.91), we may assume
W(Z,) < min(8m, W(w) + e,) — 8
for some § > 0 and m large, and get by the Gaul3 equations and the Gau3—Bonnet Theorem
asin (2.11) and genus(X) = genus(X,;) = p that
/ Az, | dH? < / |Af P dp s+ dey — 45
o R2

for m large. Putting o := |Af|2uf and recalling «,, := |Afm|2H2 ¥, — a and
spt o, € Br(0) by (2.2), we get

a®") = lim o (R") < oy (R") +dey — 43, (2.94)

Recalling @, := |Afm PHZ|E, — &, we get by (2.29) for any n € Cg(]R”), n > 0, that

2 E r 2
/ndaf :/(Uof)|Af| dpg flgglglof/(UOfm)lAﬂll dug,
D) )

m—0o0

= lim nd&m=/nd&,
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Estimation of the conformal factor under bounded Willmore energy 1365

hence
af <a. (2.95)
By (2.22), we see that
oy =0, inR"— Uﬁ:lm
and as r,; — 0 and with (2.95)
a=a>ar inR"—{z1,..., 25}
Since ay({x}) =0 forany x € R", we get from (2.94)
a®R") < af(R") +4e, —48 =ap(R" —{z1,...,2n)) +4e, — 48
=a®" —{z1.....2n)) +4e, — 48
and
a({zi, ..., zN}) < de, —46. (2.96)

Combining with (2.93), we see that (2 20) is vacant for § as above. This yields by (2.22)

that %, = Em = ¥, hence gn = f 8m > &poin,m = f gpom ms Um = U 0 fi, and (2.92)
follows from (2.28), and the proposition is proved. O

3 Compactness in moduli space

In [7], it was proved that compactness in moduli space gives uniformly conformal weak limits
in Wfo’f(E — &) for some finite S C X. In our set up, we clarify that if some topology is kept
under compactness in moduli space then no additional choice of Mobius transformations is
necessary to keep all topology.

Proposition 3.1 If in Proposition 2.1 some topology is kept in the sense that

genus(spt n) > 1, 3.1)
and the conformal structures induced by %, lie in a compact subset of the moduli space,
then

genus(spt n) = p, (3.2)
that is no topology is lost, and

[Z,] — [spt n] in moduli space 3.3)

in the sense of (2.49).

Proof We use the notation of Proposition 2.1 and consider a closed, orientable surface

¥, of genus p > 1 and diffeomorphisms f,, : X pi) Y. As the conformal struc-
tures induced by the pull-back metrics g, := f,:geuc lie in a compact subset of the moduli
space choosing the parametrizations f,, appropriately and passing to a subsequnce, we may
assume that the unit volume constant curvature metrics

—2uy,

8poin,m ‘=€ &n —> &poin,0 smoothly on X . 3.4
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By (2.1), we may assume
W(fm) <87 =6 (3.5

for some 6 > 0. As f,,(X),) = X, € Bgr(0) by (2.2), we get by the Li-Yau inequality in
[11]or [8, A.16]

Mg (Ep) = C. (3.6)
We define v, := |Aj, |*11,, and see by the GauB equations and the GauB-Bonnet
theorem as in (2.11) that
() = [ 17, dig, = V(h) + 87 = 1) = 82(p +3) = Ao < o0,
=)

hence after passing to a subsequence v, — v weakly as Radon measures on X ,. Clearly

V(X)) < Ag < 00, and there are at most finitely many bad points g1, ...,q; € X, with
v({qi}) = eo(n) for I=1,...,L, (3.7)
for &y (n) small enough choosen below, and we consider the openset o := X, —{q1,...,qL}.

For any g € Q¢ there exists an open neighbourhood ¢ : U(g) = B1(0) of ¢ with
v(U(q)) < eo(n) (3.8)
and for m large that
/ 1A, 17 dug, < eo(n) =8 (3.9)
U(q)

for some § = §(¢) > 0. By elementary differential geometry and the Gaul—Bonnet theorem,
we know

— Agttm + 2 x(Zp)e 2" = K, on . (3.10)

By the uniformisation theorem for simply connected Riemann surfaces, see [4, Theorem
IV.1.1], we can parametrize f, o ¢, 1. B1(0) = U(g) — R" conformally with respect to
the euclidean metric on Bj(0), possibly after replacing U (g) by a slightly smaller ball. Then
by [12] Theorem 4.2.1 and (3.9) for eo(n) small enough, there exists v, € C*®(U(q))
with

— Ag, v =K, on U(g) 3.11)
satisfying
lvmllLow g)) = C(n, 8) / 1A g, [* dug, < Cn,q). (3.12)
B1(0)

Actually one can choose g (n) = 4m, see Proposition 5.1. By (3.10), we see

= Dgpoinm Um — Vm) = =27 x(Zp) in U(q), (3.13)

hence by local maximum estimates, see [5, Theorem 8.17], and (3.4), writing ¢ : Uy(q) =
B, (0) that

SUp (i = ) = C8poin0- @) (I 27X (Zp) N2y g + I W = v+ 2wy )
Uiy2(q)
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Estimation of the conformal factor under bounded Willmore energy 1367

and by (3.12)

sup uy < C(n, p, &poin,0,q) (1+ I m,+ ||L2(U3/4(q)))
Ui2(q)

for m large. To estimate the norm on the right-side, we observe by (3.6)

C > Mgm(zp) > / eZum dp(,gpoin,m = / (1 + um)%— dﬂgpoin,m

Us/a(q) Us/a(q)
and get for m large
Sup U, | Df| < C(n, p, &poin,0, q)- (3.19)
Ui2(q)

Then I' —uy, + v,y > 0in Uyya(q) for I' = C(n, p, gpoin,0, ), hence by (3.13) and the
Harnack inequality, see [5] Theorem 8.17 and 8.18, and (3.4) that

sup (' —um — vm) < C(gpoin.0, q) ( inf (' —um —vp) + || 27 x(2)p) ||L2(U1/2(q)))
Uiya(q) Uiya(q)

and by (3.12)

sup (I' —uy) < C(n, p, gpoin,0.q) inf (' —uy) + Cn, p, &poin,0, q)- (3.15)
Uy/4(q) Uia(q)

Now if liminf,,_ infU1/4(q) u, > —oo, we see from (3.14) that u,, is bounded from
below and above on Uj,4(q). Otherwise for a subsequence infy, J4(q) Um —> —00. Then

sup ("' —uy) =T — inf wu, — oo
Uiya(q) Uiya(a)

and by (3.15)

00« inf (' —upy) =T — sup uy,
Uiya@) Ui/4(q)

hence u;; — —oo uniformly on Uj/4(q).
Covering appropriately, we get after passing to a subsequence either

u,, — —oo uniformly on compact subsets of g,
or (3.16)
Uy, is uniformly bounded on compact subsets of €.

We choose open neighbourhoods U(g;) of ¢; which are pairwise disjoint discs and put
Q =%, - UL Ug) cc Q. (3.17)

In the first case in (3.16), we see by (3.4) that diamg,, (2') — 0 for the intrinsic diameter,
hence

diam(f, (")) — 0.

In the notation of Proposition 2.1, as X, = fu (X)) € Ule By, j2(xx) for m large, we
get after passing to a subsequence

fn(Q) C Bsg/8(xi) N Xy C DI,; =X, N Bs(x;) forsome ke {l,...,K} (3.18)
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for some appropriate o € [Sox/8, 7ox/8] and m large. We know that DX is connected,
and its boundary 8D§z consists of a single Jordan curve. Therefore the complement of
X — 8Dfn = X,, — 0By (xx) consists of exactly two components which are

DY and %, — B, (xp).

As f, is a diffeomorphism, we know that y,, := £,/ (dDX) is a single Jordan curve in
¥ ,, in particular connected, and, as y, N Q' = @ by (3.18), we conclude

Ym S U(q;) forsome !l e{l,...,L}

after passing to a subsequence. As U(gy) is a disc, the complement of ¥, in X, consists
of exactly two components, one of which is the interior 7, of y,, in U(g;) which moreover
is a disc as well. We call the other component the exterior E,,, and see that E, is nota
disc,as I, ®E, =X, ZS 2. These components correspond under f,, to the components
of %, —dDk.
By (3.18), we see f,, '(DX) & U(q), hence DX = f-1(DK) = E,, isnota disc and
Y — Bo(xp) = £, (L) is a disc.

Then Dﬁ appears in (2.20) and is replaced in the construction of Proposition 2.1 by a disc,
and we get

genus(X) = genus(im) < genus ((Em — By (xp)) @® BI(O)) =0.

But genus(¥) = genus(spt u) > 1 by (3.1), hence can exclude the first case in (3.16).

Therefore we have the second case in (3.16) and prove that no topology is lost in Propo-
sition 2.1 in the sense of (3.2). If (3.2) is not satisfied, we get from (2.23) that N >1 and
after renumbering in (2.20) that

pr=1 (3.19)

This means that D,l,, is not a disc and by construction in (2.22), there exists a closed

curve ¥ in By, (x1) N X, which is not null-homotopic in X,,. As y,,:;" = fin 1(ym) is
connected and U(g;) are discs, it has to meet €’ in (3.17), hence

dm EV}EPOQI#@-

Passing to a subsequence, we get g, — g € Q' C o, and we select an open neigh-
bourhood U(g) CC o of ¢ whichis a disc, say ¢ : U(q)— B1(0), ¢ : Uy(q) = B, (0).

Clearly for m large, we have ¢g,, € U(g) N )/,E”. As U(g) is adisc and y,,?” is not

P

. z . .
null-homotopic, y,,” cannot stay in U (g), hence there is

Gmo € V" NdUL(q) for 0<go<1. (3.20)
AS fru(rm") = Vi S Butr, (1), we get
| fin(@m,0) —x1] = 0 for 0<p <1. (3.21)
Next choosing
QUU@ cc ' ccQ” cc
and writing

A fn =" A, —P2wH,; ony
8 m = EmJm — Jm P

poin,m
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Estimation of the conformal factor under bounded Willmore energy 1369

we estimate by (3.16)
/ |ezuml__l)fm|2 d“’gpoin,m = C/ |I—-I)fm|2 dl’l’gm = C
QM ):17
and get by standard elliptic theory, see [5, Theorem 8.8], (2.2) and (3.4) for m large

I S w22 = C,
hence after passing to a subsequence using (3.4)
fn — fo weakly in W.22(S0), weakly* in W, (20),
. 1,2
8m — 80 ‘= f(;kgeuc weakly in W, - (€20), (3.22)
U, — uo weakly in WZIO‘CZ(QO), weakly™ in L7 (S2),
80 = fJgeuc = ezuogpoin,oy

with ug € LfUOC(Qo) and in particular, we have f,, — fo uniformly on compact subsets of
Q2. Passing to a subsequence in (3.20) and (3.21) for fixed 0 < ¢ < 1, we get gm0 — qp
for this subsequence and

qo € 0Uy(q),  fo(qe) = x1, (3.23)

in particular g, # g3 for o # 0.
Now for any n € C%(R™), n > 0, and Fatou’s lemma by (3.22)

/(n o fo) dig, < lim inf/(n o fm) dig, = lim inf/ri dug,
m— 00 m-—00
Qo Q0

hence for g = fo(ig,|20) and observing wuy, = H?|Z, — 1 by (2.2)

/ndufo f/ndu,

Qo
and
W < I (3.24)
As ug € L;’;’C(Qo), we get by Proposition 7.1 and (2.7) that
#1700 <0 (g, x) <6%(u,x) <2 forall x eR",
hence

fo : Qo — R" is injective. (3.25)

As {gol0 <o <1} C fo_1 (x1) N ", this is a contradiction, and we get (3.2) and may
choose ¥ = X,.
It remains to prove (3.3). We know by (3.4) that

[Xn] = [gpoin,m] - [gpain,O]’

and, as [spt u] = [f*geuc] = [gpoin] by (2.29) and (2.49), we have to prove

[gpoin,O] = [gpain]~ (326)
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From Proposition 7.1, we know that Qz(ufo) > 0on fp(0), hence fo(20) C spt nu by

(3.24).Since f: X = spt p is bi-lipschitz by Proposition 2.1 and fj is locally lipschitz,
as ug € L (Qp) in (3.22), we see that

loc
d:flofo: Q>3
is locally lipschitz and is injective by (3.25). Clearly f o ¢ = fo and by (2.29) and (3.22)

ezuogpoin,o = fO*geuc =" geuc = ¢*(62ugpoin) = €2u0¢¢*gpoim (3.27)

hence

@ 1 (20, gpoin,0) = (X, &poin)

is conformal, hence holomorphic after possibly reversing the orientation, in particular smooth.
As u € L*®(X),uo € Lj5.(20) and D¢ is continuous, we see that D¢ has full
rank everywhere on . Then ¢, being injective, is a diffeomorphism onto the open set
Q= ¢(Q) € Z.

Recalling Q9 =X —{q1, ..., g1}, we choose open neighbourhoods U (g;) of g;, which
are pariwise disjoint discs, and smooth closed Jordan curves ylo in U(g;) such that ¢g;

lie in the interior 110 of ylo in U(g;). Then Uy := Qo — U,Lzlll0 CC Qo is open with [
boundary components and x(Up) = x(X) —I. As ¢ is a diffeomorphism, we see that
U :=¢Uy) C X isopen and

x(WU) =x(%) - 1. (3.28)

Clearly ¢(0Up) € dU. On the other hand&r w € AU, there exists y; € Ug with ¢ (yr) —
w. For a subsequence we see yr — y € Up C Qo, hence w = ¢(y) € Q. If y € Uy, then
w € U, which is a contradiction. Therefore y € dUp and w € ¢ (3Up). Together

AU = ¢(0Up) = U= 0 (D),

and the boundary of U in ¥ consists of / Jordan curves y; := ¢(y10) C Q. The boundary
of the exterior V := ¥ — U of U liesin dU = Ulelyl, hence 9V consists of at most /
Jordan curves. As x (V) = x(X) — x(U) =1 by (3.28), we see that each component of
V =% —U isadisc.

Since (,15(110 —{q:}) is connected and liesin Q—U € ¥ —U = V, itis contained in one of
these discs, which we call D;. By the uniformisation theorem for simply connected Riemann
surfaces, see [4, Theorem IV.1.1], these are conformally equivalent to the disc or the plane
in C. Extending beyond the Jordan curves ylo and y;, we get conformal diffeomorphisms

@12 B1(0) —> (I, 8 poin0)s #1(0) = g1, ¥ : B1(0)—> (Dy. gpoin)- Then
hl = 1//171 O¢ oQp: B](O) - {0} — BI(O)

is holomorphic and injective. Therefore #4; extends to a holomorphic function on
B1(0) with h;(O) # 0, and ¢ extends to a holomorphic function ¢ : (X, gpoin,0) —
(X, gpoin) and D¢ has full rank everywhere on X. Then ¢(X) is open and compact,
hence ¢(X) = X and ¢ is surjective. Also ¢ is alocal diffeomorphism, hence a covering
projection, as ¥ is compact. Then #¢$~!(g) is finite and constant for ¢ € . As ¢ is

injective on Qo = ¥ — {q1, ..., q1}, we see that ¢ is injective, hence a diffeomorphism.
From (3.27), we see ¢*gpoin = 62”0_2("°"’)gp0m,0, hence ¢*gpoin = &poin,0, Which yields
(3.26), and the proposition is proved. O
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Combining the previous proposition with §2, we estimate the conformal factor and get
the equivalence of no topologiccal loss after applying appropriate Mobius transformations
and compactness in moduli space.

Theorem 3.1 Let ¥,, € R" be closed, orientable, embedded surfaces of fixed genus p > 1
with

lim sup W(Z,,) < 8, (3.29)
m—0oQ
Zm € B1(0),
H2| S, — £ 0 weakly as Radon measures. (3.30)

Then spt [ is a closed, orientable, embedded topological surface of genus(spt u) < p.
No topology is lost in the sense that

genus(spt u) = p (3.31)

if and only if some topology is kept in the sense that

genus(spt n) > 1 (3.32)
and the conformal structues
[2,,] lie in a compact subset of the moduli space. (3.33)
In this case if moreover
linrin_)s;p W(Em) < W) + ey, (3.34)

then the induced metrics gm = geuc|Xm are uniformly conformal to unit volume constant
curvature metrics gpoin,m ‘= e 2mg  for m large, more precisely

lim sup || Um ||L°C(E)< Q. (3.35)
m—0Q
Proof Proposition 2.1 implies that spt p is a closed, orientable, embedded topological
surface of genus(spt n) < p. By Proposition 2.4 the assumptions (3.31) and (3.34) imply
(3.35). Itremains to prove the equivalence of (3.31) on the ond side and (3.32) and the relative
compactness of the conformal structures [%,,] on the other side.
When no topology is lost in the sense of (3.31), the conformal structures lie in a compact
subset of moduli space by Proposition 2.3 and obviously we have (3.32).
Conversely if some topology is kept in the sense of (3.32) and if the conformal structures
lie in a compact subset of moduli, we get (3.31) by Propsition 3.1. O

Theorem 3.2 Let X, € R" be closed, orientable, embedded surfaces of genus p > 1
with

limsup W(Z,,) < 8m.

m— 00

Then the conformal structures induced by %, lie in a compact subset of the moduli
space if and only if no topology is lost after applying appropriate Mobius transformations,
more precisely that any subsequence has a subsequence such that after applying appropriate
Mobius transformations

H? L X — 1 weakly as Radon measures
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with spt | is a closed, orientable, embedded topological surface and
genus(spt u) = p.
In this case after passing to a subsequence the conformal structures converge

[Z,,] — [spt u] in moduli space.

Proof When no topology is lost for all subsequences, the conformal structures lie in a compact
subset of moduli space by Proposition 2.3.

Conversely by Proposition 2.2 any subsequence has a subsequence such that after applying
appropriate Mobius transformations some topology is kept in the sense that genus(spt ;1) >
1, and when the conformal structures lie in a compact subset of moduli, we get by Propsition
3.1 that genus(spt u) = p and the convergence of the conformal structues as above. O

4 Main results

For a closed, orientable surface ¥ with smooth metric go or at least uniformly conformal
to a smooth metric, we recall the definition in (1.7)

W(Z, go, n) := inf{W(f) | f: ¥ — R" smooth immersion conformal to go}.

Theorem 4.1 Let [ : ¥ — R" be a smooth immersion of a closed, orientable surface
> 2 S? with

W(f) < min(8, W(Z, f*geuc, n) +en) — 8 4.1

for some § > 0. Moreover we assume that the conformal structure induced by the pull-back
metric of f lies in a compact subset K of the moduli space.

Then after applying an Mobius transformation, the pull-back metric g ‘= f*geuc Is
uniformly conformal to a unit volume constant curvature metric gpoin = e g, more
precisely

| ullpezy< C(n, p, K, $).
Proof We consider a sequence of smooth immersions f;, : ¥ — R” with pull-back metrics
gm = fm8euc
W(fim) < min(@m, W(X, gm, n) + en) — 8 4.2)

and with conformal structures induced by g, converging in moduli space. As W(f,) <
8m —§ by (4.2), we apply Proposition 2.2 and can proceed after applying appropriate Mobius
transformations and passing to a subsequence as in Proposition 2.1 with some topology
kept, that is genus(spt () > 1. By Proposition 3.1 no topology is lost in the sense that
genus(spt ;) = genus(X), and we get a uniformly conformal W22 _immersion f :
¥ — R" with

[gm] = [fm(2)] = [spt 1] = [f*geuc] in moduli space
by (3.3). Then by [10, Proposition 5.1 and Theorem 5.1]

lim sup W(Z, gm, 1) < W(Z, f*geuc, 1) < W(f),

m—00
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hence by (4.2)
lim sup W(fn) < W(f) + e,

m—00

which verifies (2.91). Then by Proposition 2.4

limsup || uy ||Lo(z)< 00,
m—0o0

and the theorem follows, as f;;; was an arbitrary sequence. O

As W(X,g,n) > ,3;’, and e3 = 4w, we obtain the following corollary, which may be
considered as a pratial converse of [9, Lemma 5.1].

Theorem 4.2 Let f : X — R" be a smooth immersion of a closed, orientable surface
Y of genus p > 1 with

87 — 6 for n =3,

Bl ten—8 forn=4, “3)

W(f) = [

for some § > 0 and assume that the conformal structure induced by the pull-back metric of
f lies in a compact subset K of the moduli space.

Then after applying an Mdbius transformation, the pull-back metric g := f*geuc is

uniformly conformal to a unit volume constant curvature metric gpoin = e g, more
precisely

lullpemy= Cn, p, K, §). (4.4)

O

Also we generalize the lower semicontinuity of W(X, g, n)with respect tog of [10] Propo-
sition 5.1 below the energy level W, , to the energy level 8. We write W(X, ¢, n) :=
W(Z, g, n) for the conformal structure ¢ induced by g.

Proposition 4.1 Let = % S? be a closed, orientable surface and consider conformal struc-
tures ¢, — ¢ converging in moduli space. Then

liminf W(XZ, ¢y, n) < 81 =— W(Z, ¢, n) < liminf W(Z, ¢, n).
m— 00 m—00
In particular ¢ — W(Z, c, n)is continuous at ¢ with W(X, ¢, n) < 8.

Proof We select unit volume constant curvature metrics gpoin,m, &poin inducing c,,, ¢ with
&poin,m —> &poin SmMoothly on X
and smooth immersion fy, : ¥ — R" conformal to gpoin,» and with
W(fm) < W(Z, e, n) + 1/m.
Clearly by assumption and e, > 27, we see
W(fm) < min(8m, W(Z, ¢y, n) +e,) — 8

for § > 0 small enough, m large, and get by Theorem 4.1 after applying appropriate
MGobius transformations for the pull-back metrics g 1= f,igeuc = e2um &poin,m that

Limsup || uy, ||Lo(z)< 00.
m—0o0
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Then by Proposition 6.1 and the remark following after passing to an appropriate subse-
quence

fm — f weakly in W22(%),
f*8euc = ezugpoin,

for some u € L°°(X). Therefore fisa W22 —immersion uniformly conformal to g poin,
and we get from [10, Theorem 5.1]

W(Z, c,n) < W(f) <liminf W(f,) = liminf W(X, ¢y, n).
m—0Q m—00

Finally, if ¢ — W(X, ¢, n) were not continuous at ¢ with W(X, ¢, n) < 8m, by upper
semicontinuity of ¢ — W(ZX, ¢, n) in[10, Proposition 5.1], there exists a sequence ¢,, — ¢
with

liminf W(Z, ¢y, n) < W(Z, c,n) < 8.

m—00
Then by above
W(Z, c,n) < liminf W(Z, ¢, n),
m—00
which is a contradiction, and the proposition is proved. O

Appendix A: Estimates in higher dimension

In this section, we prove a higher dimensional version of [9, Theorem 6.1]. We recall the
definition of the constants in (1.2)

4 for n =3,
en =1 87/3 for n=4,
21 for n>5.

Theorem 5.1 Let f : R> — R" be a complete conformal immersion with induced metric
g = €* gouc and square integrable second fundamental form satisfying

/Kg dug =0, (5.1)
R2

16 — 6  for n =3,

/|A|2 dug <de, — 68 :=132n/3 -8 for n=4, (5.2)
2 81 — 46 for n>5,

for some § > 0. Then the limit ». = lim__, », u(z) € R exists, and

lu = 2l ooy, I1Dull 2y, I D?ull 1 g2y < Cny 5)/ AP dyig. (53)
R2

Proof For n = 3, we estimate with |K| < |A|2/2 that

1
J 1K1 = 5 [ 142 dug < 87 -2
R2 R2
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and the result follows from [9, Theorem 6.1]. For n = 4, we estimate with |A?]? =
|A]?/2 — K and (5.1) that

/|K|dug /|A°| dug < 7/|A| dug < 87 —38/4,
R2
and again the result follows from [9, Theorem 6.1].

For n > 5, we get by elementary differential geometry from geye = e~ g and K goue =0
that

— Agu =K, on R”. (5.4)

Let ¢ : R? — Gnao C P"~1(C) be the GauB map of f on R? into the Grassmanian of
oriented two planes as subset of the complex projective space, see [12, §2.2]. We know from
[12, §2.3]

1
Dol* = 514, (5.5)
in particular Dgp € L2(R?) by (5.2), hence ¢ € W&’Z(RQ, P"~1(C)) in the sense of
[12, §2.1]. Further from [12, §2.2], we know for the standard Kihler two-form w on P"~1(C)
that

¢*w = Kgvol,. (5.6)
We get by (5.1)
/(p*a) =0
R2

and by (5.2)
1

[oane =5 [1DoP an, =5 [14P au, <27 - 574,

R2 R2 R2
Then by [12, Corollary 3.5.7] there exists a smooth v : R — R with

— Av =#*¢*w in R%, lim v(z) =0, (5.7)
Z—>
and satisfying the estimates
ol 1DVl D20l a2y <Cn.0) [ 1D diag =Cr.8) [ 1AF d

R2 R?
(5.8)

We rewrite (5.7) by (5.6) into
—Agv = —e HAY = e kgt = K,

and see from (5.4) that #—v is an entire harmonic function. But[12, Theorem 4.2.1, Corollary
4.2.5] combined with (5.1), imply that u is bounded. Therefore u — v is also bounded and
reduces to a constant A. Then (5.3) follows from (5.8), which proves the theorem. ]

With this theorem, we obtain extensions of [9, Theorems 3.1 and 4.1] along the proofs given
there.
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Theorem 5.2 Let f : ¥ — R" be an immersion of a closed, orientable surface
Y of genus p > 1 with W(f) < A. Assume that f(X) C U,{il By 2 (xx) with g;/or <
R, such that forall k =1, ..., K and some § > 0 the following conditions hold:

16r — &  for n=3,
|A|2 du <de, —86=132n/3 -6 for n=4, 5.9
8T —§ for n>15,

By, (xi)
|A]> du < &2. (5.10)
Boy (xk)—Bgy /2 (xk)
Denoting by D(’j*“, 1 <« < my, the components of f~V(By (xx)) whichmeet 0Bog; /16(xk),
we further assume for all o € [50k/8, Tok/8] up to a set of measure at most o /16 that
/ Kgdpg > —2m +68 forall a=1,...,my. (5.11)
Dk

Then for ¢ < e(n, A, 8) and Cy > Co(A), there is a constant curvature metric gy = 6_2“g

such that
sup lu| < C(n, A, R, K, p, ).
=
O
Remark We see that (5.9) satisfies for n = 3,4 the weaker conditions [9] Theorem 3.1

(3.1) and (3.2) with different § and for & small enough. This follows from |K| <
|A|2/2 and |A°|2 = |A|?/2 — K and the observation by (5.11) and [9, 2.6] that

/ Ko dpg| < Ce*.

pke

We recall the definitions of the constants in (1.1), see also [9],
k k
B, ::min[47r+2(ﬂ;i —4m):1<p;i <p, Zpi :p],
i=1 i=1
where A" = o0, and in (1.3)
Wn,p = min(87T7 BZ: ﬂ; + en)-
For n = 3, the last term could be ommitted as /3]3, + e3 > 8.

Theorem 5.3 For p > 1, let C(n, p,5) be the class of closed, orientable, genus p surfaces
[ 2 = R" satisfying W(f) < Wy, p — 8 for some § > 0. Then for any f € C(n, p,5)
there is a Mobius transformation ® and a constant curvature metric go, such that the metric
g induced by ® o f satisfies

g =e*go where suplu| < C(n, p,8) < .
b
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As already pointed out in [9], the bound W ), is sharp for n = 3, but for n > 4 there is
no indication that the terms ,82 + (87 /3) or ,81’; + 27 are necessary.

There is also a version to solve (5.7) when f is an immersion of a disc, but we do not
use it in the text.

Proposition 5.1 Let f : B{(0) € R? — R", be a conformal immersion with induced metric
g = e* gouc and square integrable second fundamental form satisfying

P 8t —§ for n=3,
/ A" dpg = [471—8 for n >4, (5.12)
B1(0)

for some § > 0. Then there exists a smooth solution v : Bj(0) — R of
—Agv =K, on B1(0) (5.13)
satisfying
lvll oo, 01> 1DV 22, 0py- 1DVl 21 (8,0 < C (0, 6) / AP dpg. (514
B1(0)

Proof For n > 4, we let as in the proof of the previous theorem ¢ : B1(0) - G,2 C
P*~1(C) be the GauB map of f on Bi(0) into the Grassmanian. Extending by ¢(z) :=
¢(1/7) for |z] > 1, wesee ¢ € Wol’z(]Rz, P"~1(C)) in the sense of [12, §2.1] by (5.5) and
(5.12), and for the standard Kihler two-form @ on P*~1(C), see[12, §2.2], that fRZ ¢*w = 0.
Next by (5.5) and (5.12)

1

/J(p dug =2 / Jodug < / |Do|* du, = 5 / |A]> dug < 27 — /2.

R? B1(0) B1(0) B1(0)
Then by [12, Corollary 3.5.7] there exists a smooth v : R> — R with

— Av=x¢*» in R*, lim v(z) =0, (5.15)
—> 00

and satisfying the estimates
ol o) 1DV 225 1DVl ey < c<n,a)/|D<p|2 dpg < Cn,8) / AP dpeg.

R? B1(0)
(5.16)

As above (5.15) implies by (5.6) that —A,v = K, on B;(0), hence (5.13), and (5.16) gives
(5.14), which proves the propsition for n > 4.

We improve for n = 3 by considering the Gaull map of f on B;(0) into the sphere
as v : B(0) —> S2. Extending as above by v(z) := v(1/z)for |z] > 1, we see
ve WP (R, $?) and [n, v¥volge = 0. Next Jv = |K,| and by (5.12)

/Jv dpg =2 / |Kgldpg < / |A]* dug < 8 — 8.
R2 B1(0) B1(0)
Then proceeding as in [9, Theorem 6.1] there exists a smooth v : R> — R with

—Av = xv*volg in R?, lim v(z) =0,
—>0Q
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and satisfying the estimates
oIl oo g2ys 1DVl L2R2), I1D* V] L1 R2) < C(5>/|Dv|2dug <C©) / |AI* dpsg.
R2 By (0)

Observing that *v*volg: = K, on B1(0), this proves the proposition for n = 3 as above.

O
Remark We mention that (5.12) can be replaced along [9] Theorem 6.1 by
/ K¢l dpg <4m — 68 for n =3,
B1(0)
1 0
J5,0) 1Kel ditg + 5 [3,0) 1A * dug < 4w -3, for n—4
A%2d 4 T
fB](O)l | dug < 4m,
O

Appendix B: Convergence in W22

In this appendix, we prove a useful convergence proposition.

Proposition 6.1 Let f,, : ¥ — R" be smooth immersions of a closed, orientable surface
X uniformly conformal to some smooth unit volume constant curvature metrics gpoin,m
and

fr;lkgeuc = ezumgpoin,m,
W), | um llLes)< A

for some A < oo.

Then for a subsequence there exist diffeomorphisms ¢y, : X = % such that replacing

Sm by fin © Pm
fn — f weakly in W>2(Z), weakly* in W (%),
um — u weakly in WH-2(2), weakly* in L®(X), 6.1)

8poin,m —> &poin smoothly,

F*8euc = € gpoin- (6.2)
If
T(fm8euc) > Tin T, (6.3)
then ¢, can be chosen with ¢, >~ idy and
7T (f*8euc) = 7 (&poin) = T.

Proof By[9,Lemma5.1]the conformal structures induced by g, := fy\ geuc respectively by
&poin,m are compactly contained in moduli space, hence there exist diffeomorphisms

G X2 =, % such that for a subsequence

¢;';lgpoin,m — 8poin SII]OOthly
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to a smooth unit volume constant curvature metric g ,0;,. After reparametrizing, we may
assume ¢, = idx. We get by elementary differential geometry and the Gauf3~Bonnet
theorem

— Ag i + 27 (D)e 2 = K, . (6.4)

Therefore

2 2
/'Dum|gpain,m d’ugl’“i”vm = / |Dum|8m dﬂgm
z z

= _/Agml/tm “Um du’gm = / (Kgm - 27TX(X:)e_zum) Um d“’gm
z z

E C(E’ A) /1 du“gpain.m + / |Kgm| dlu’gm E C(Z’ A) 1 + / |Afm|2 d/"Lfm
x P P
< C(E, A +W(fw) < C(Z, A),

as W(fm), luml < A, |K| < |A|2/2 and the Gauf—Bonnet theorem. Therefore

=C(E. D),

|| Dum ||L2(2,gpom.m)—

and, as gpoin,m —> &poin, We get for a subsequence

weakly in W12(%),
um — u § weakly* in L>®°(X),
and pointwise almost everywhere on X.

Next
A | b
8poin,m fm =e Sm on

and, as |u,| < A,

2um T 12 " o2 _
le™ H g, " ditg, i e = CA) [ [Hp, |7 dig, = CAAOW(fin) = C(A),
b b

and get by standard elliptic theory, see [5] Theorem 8.8, and gpoin,m — &poin sSmoothly
that f,, is bounded in W22(X), hence after passing to a subsequence

fin — f weakly in W>2(2).

As firgeuc = e2tm 8poinym and |ty | < A, &poin,m —> &poin, Weseethat V fy, is bounded in
L*°(X), hence Vf,, — V[ is weakly* in L°°(X). By the above convergences

f*geuc = ezugpoiw
If 7(f,)geuc) — v in Teichmiiller space, we may further assume that ¢,, >~ idy and
T < ”(fm*geuc) = n(gpoin,m) - 7T(gpoin),

hence 7(f*geuc) = m(gpoin) = T, and the proposition is proved. O
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Remarks 1. Clearly (6.1) is equivalent to [10, (2.3) — (2.5)], (6.2) is [10, 2.6], and (6.3)
is [10, 2.2] with g replaced by t.

2. Convergence of the Willmore energy

W(fm) = W(f)

gives even strong convergence f,, — f in W22, see [10, Proposition 5.3].

3. Ifweadd the assumption that g ppin,m — &poin Smoothly, the statement of the proposition
is true without diffeomorphisms ¢, as it is immediately seen from the beginning of the
proof.

Appendix C: W22-immersions

Proposition 7.1 Let f : B{(0) € R? — R" with uniformly positive definite pull-back
metric in the sense that

co8euc < 8 = f*8euc < Ceuc (7.1)
for some 0 < cyp < C < oo.
Then for g = f(ug)
#f_l(x) < (2C/co) Gf(uf, x) forany x € R", (7.2)
and if further f € W22(B1(0)), then
#f7'(x) < 6%(uy, x) forallx € R". (7.3)
Proof We consider finitely many distinct py, ..., py € f~!(x) and see for o small that

By (pr) € B1(0) are pairwise disjoint. By (7.1), we get lip f < +/2C < oo and

1 F(Bro(x) = g (f 7 (Bro(x))) = 1g(UX Bo(pi)) = coNmo?,

hence
03 (s, %) = liminf i (By(x))/(Te?) = coN/L?,

which is (7.2).

To proceed for f € W22, it suffices to consider 93 (1 s, x) < 00,in particular £ s
finite. We see for ¢ small enough that x ¢ f(dB,(p;)) and claimfor w; := f(ug[Bo(pi))
that

0% (niv ) = 1. (7.4)
This implies

N
N < 0% (i x) < 0%y, x),

i=1
and (7.3) follows.

To prove (7.4), we consider f(0) = 0 with liminf), - [f(p)| > r > 0. As f is
lipschitz, the image = f(ug) = f(Jg f - 1Lg,) is anintegral varifold, see [15, 15.7]. We
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prove that ¢ has square integrable weak mean curvature in B, (0). For n € Cé (B, (0), R"),
we see that 1 o f has compact support in B1(0) and calculate the first variation

5Mf(77)=/divuf77dﬂf= /(divwmofdug,
B1(0)

where the divergence is given by
(divy ) o f=g"0 fT((Dn) o )3 f = g7 (3 f,d;(no f)).
We continue

Spp(n) = / g0 f.0j(o f)YgdL? = — / (/83 /H(no f)dL?
B1(0) B1(0)

—>
—— [ @hme au == [ Hoo ),
B1(0) B1(0)
Therefore 1y has weak mean curvature in B, (0) given by

—

H,, = > Hip el (7.5)
pef!

Then from [8, A.10], we get Oz(uf,x) > 1 forany x € spt uy N B,(0).As f(0) =0,
we get from (7.2) that 93 (i, 0) > 0, in particular 0 € spt py, and (7.4) follows. O

Proposition 7.2 Let f € W22(Z, R") for some closed surface S with uniformly positive
definite pull-back metric in the sense that

080 < & = ["8euc = Cg0 (7.6)
for some smooth metric goon X and 0 < cp < C < oo.
Then
p = fug) =#f"" - HLF(E) =#f7"HLspt py,
spt g = f(Z). (1.7)
Moreover g is an integral varifold with square integrable weak mean curvature and
W) = W(f),
#ffl(x) < Oz(uf, x) <W(f)/@m) forall x e R". (7.8)

If W(f) < 8m, then f isinjective, in particular
[ —sptpy=f(%)
is a homeomorphism and
g =H1lspt g =H1Lf(D).

If moreover f is uniformly conformal to a smooth metric goon X, that is f*geyc =
e go with u € L°(X), then f is a bi-lipschitz homeomorphism.
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Proof Againas f is lipschitz from (7.6), we see that the image puy = f(ug) = f(Jg f -
Igy) is an integral varifold and

pr=#f"1HLf(D), (7.9)

see [15, 15.7]. Clearly spt uy € f(X),as f(X) is compact, hence closed. On the other
hand by (7.2), we get Hf(uf) > 0on f(X),hence spt uy = f(X),and (7.7) follows.

As 1 o f has compact support in X forany n € Cé (R™, R"), we see as in (7.5) that pu r
has weak mean curvature given by

— —
H, = > Hs(p)eL(uy)
pef!

and

1 — 1 —
wwf)zz/|H,L,-|2duf= Z/|Hf|2 djig = W(f) < oo,
D)

which gives the first part in (7.8). Then from [8, A.17], we get 92(po) < W(uyr)/@m),and
the second part follows from (7.3).
If W(f) < 8w, weseethat #f~! < 1,hence f is injective and by (7.7)

pp="Hlspt py =HLf(Z).

Asobviusly f: X — spt uy = f(X) is surjective, we get that f is bijective, and, as f
is continuous and X is compact, we see that f is a homeomorphism.

Finally we assume f to be uniformly conformal. We already know that f is lipschitz,
and it remains to prove that its inverse is lipschitz. We will use [12, Lemma 4.2.8]. If f~!
is not lipschitz, we have pg, gr € ¥ with

| f(pr) — flai)| < ds, g0(Pr, qr)/ k. (7.10)

We get for asubsequence py — p,qr — g in X, and, as diamg, X isfinite, f(p) = f(q),
hence p =g, as f isinjective. Introducing local conformal coordinates for gy around p,
we get an open neighbourhood U (p) of p and ¢ : B (0) = U(p) with ¢(0) = p, ¢*go =
ezvgeuc, v € L®(B1(0)). Then

(fo (p)*geuc = (0*(62"5,’0) = 62(U+MO¢)geuc~

and fo:= fog : B;(0) > R" is conformal and fy € Wz’z(Bl(O)). Then for M :=||

loc
v |lLeeBy0)) + Il # ||Le(z)< 00, we can choose 0 < ¢ < I with

/ |D? fol? dL* < coe M,
B, (0)

where co = (7 tanh ) /2 is givenin [12, Lemma 4.2.8]. For k large, a square with vertices
o ' (pr), 9 H(qx) is contained in B, (0), and we get from [12, Lemma 4.2.8]

ds oo (Pi> i) < €Mds prgn (s qi) < V2| F () — fla)l,s

which contradicts (7.10), and the proposition is proved. O
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