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Abstract We prove for closed, orientable surfaces in R
3 with Willmore energy less that

8π − δ and whose conformal structures are compactly contained in moduli space that after
applying appropriate Möbius transformations the conformal factors between the induced
metrics and conformal metrics of constant curvature are uniformly bounded by constants
depending only on δ > 0, the genus of the surfaces and the compact subset of the moduli
space. Secondly, for a given sequence of closed, orientable surfaces as above, we prove that
the conformal factor remains bounded without applying Möbius transformations if and only
if no topology is lost. Similar estimates hold in higher codimension.
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1 Introduction

For an immersion f : � → R
n of a closed surface �, which we assume to be orientable,

the Willmore functional is defined by

W( f ) = 1

4

∫

�

|−→H |2 dμg,

where
−→
H denotes the mean curvature vector of f, g = f ∗geuc the pull-back metric and μg

the induced area measure on �. The main interest for the Willmore functional steams from
its invariance under conformal transformations.

This work was supported by the DFG Sonderforschungsbereich TR 71 Freiburg, Tübingen.

R. M. Schätzle (B)
Fachbereich Mathematik der Eberhard-Karls-Universität Tübingen,
Auf der Morgenstelle 10, 72076 Tübingen, Germany
e-mail: schaetz@everest.mathematik.uni-tuebingen.de

123



1342 R. M. Schätzle

We continue the work of [9] and denote by βn
p the infimum of the Willmore energy

of immersions f : � → R
n of a closed, orientable surface � of genus p. We know

W( f ) ≥ 4π with equality only for round spheres, in particular βn
p ≥ 4π . We put as in [9]

β̃n
p := min

{
4π +

k∑
i=1

(βn
pi

− 4π) : 1 ≤ pi < p,
k∑

i=1

pi = p

}
, (1.1)

where β̃n
1 = ∞,

en :=
⎧⎨
⎩

4π for n = 3,
8π/3 for n = 4,
2π for n ≥ 5,

(1.2)

and define the constants

Wn,p := min(8π, β̃n
p, β

n
p + en). (1.3)

For n = 3, the last term could be ommitted as β3
p + e3 > 8π .

By Poincaré’s theorem any smooth metric g on � �∼= S2 is uniquely conformal to a unit
volume constant curvature metric

gpoin = e−2u g. (1.4)

The compactness theorem [9] Theorem 4.1 or Theorem 5.3 in §5 for n ≥ 5 estimates the
conformal factor in (1.4) for the pull-back metric of a smooth immersion f : � → R

n of a
closed, orientable surface � of genus p with

W( f ) ≤ Wn,p − δ (1.5)

after applying an appropriate Möbius transformation by

‖ u ‖L∞(�)≤ C(n, p, δ). (1.6)

In the definition (1.3), the bound 8π excludes by the Li-Yau inequality in [11] branch
points, and the bound Wn,p ≤ β̃n,p prevents topological splitting in the sense that p handles
of � do not group in p1and p2 handles with p1 + p2 = p, 1 ≤ p1, p2 < p. The last
bound Wn,p ≤ βn

p + en is an algebraic condition in order to apply the Hardy space theory
in the work of Müller and Sverak [12]. As βn

p ≥ 4π and e3 = 4π , this does not appear in
(1.3) for n = 3. The constant en = 2π for n ≥ 5 is directly taken from the general situation
in [12], see §4. In [9] Theorem 6.1, the constants were adapted from [12] to our situation to
e4 = 8π/3. Whether these constants are optimal for n ≥ 4 is not clear.

The compactness theorem [9] Theorem 4.1 was used in [10] to obtain existence of con-
formally constrained Willmore minimizers, these are minimizers of the Willmore energy of
immersions conformal to a smooth metric g0on�, when the infimum satisfies

W(�, g0, n) := inf{W( f ) | f : � → R
n smooth immersion conformal to g0 } < Wn,p.

(1.7)

The existence of conformally constrained Willmore minimizers was recently extended in
[7] and [13] to W(�, g0, n) < 8π in any codimension. Moreover in [10] smoothness of
any conformally constrained Willmore minimizer was shown.

Actually even if we do not fix the metric g0 or likewise the conformal class induced by
f , the estimation of the conformal factor in (1.4) gives control on the pull-back metric after
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Estimation of the conformal factor under bounded Willmore energy 1343

reparametrization, as it was shown in [9, Lemma 5.1] that a bound on the conformal factor
and on the Willmore energy

W( f ),max
�

|u| ≤ �

implies that the induced conformal structure lie in a compact subset of the moduli space
depending on n,� and the genus of �.

The first aim of this article is to prove a partial converse of [9, Lemma 5.1].

Theorem 1.1 Let f : � → R
n be a smooth immersion of a closed, orientable surface

�of genus p ≥ 1 with

W( f ) ≤
{

8π − δ for n = 3,
βn

p + en − δ for n ≥ 4,

for some δ > 0 and assume that the conformal structure induced by the pull-back metric of
f lies in a compact subset K of the moduli space.

Then after applying an Möbius transformation, the pull-back metric g := f ∗geuc is
uniformly conformal to a unit volume constant curvature metric gpoin := e−2u g, more
precisely

‖ u ‖L∞(�)≤ C(n, p, K , δ).


�
This converse is only partial as the energy bound is restricted by 8π and the algebraic

energy condition in (1.3). Here the bound Wn,p ≤ β̃n,p is replaced by the compactness in
moduli space, which is weaker by [7] Theorem 5.3 and Theorem 5.5 or [14] Theorem I.1.

The algebraic energy condition restricts the energy loss by comparing to the infimum βn
p .

This can be localized.

Theorem 1.2 Let f : � → R
n be a smooth immersion of a closed, orientable surface

� �∼= S2 with

W( f ) ≤ min(8π,W(�, f ∗geuc, n)+ en)− δ

for some δ > 0. Moreover we assume that the conformal structure induced by the pull-back
metric of f lies in a compact subset K of the moduli space.

Then after applying an Möbius transformation, the pull-back metric g := f ∗geuc is
uniformly conformal to a unit volume constant curvature metric gpoin := e−2u g, more
precisely

‖ u ‖L∞(�)≤ C(n, p, K , δ).


�
Clearly Theorem 1.1 implies Theorem 1.2 as W(�, g0, n) ≥ 4π . Theorem 1.1 is suited

when working for example on a fixed Riemann surface. It extends the framework of [10] to
W(�, g0, n) < 8π in any codimension.

There is a second aim of this article. The compactness theorem [9] Theorem 4.1 and
Theorems 1.1 and 1.2 in this article all estimate the conformal factor after applying appropriate
Möbius transformations. The dividing out the invariance group of the Willmore functional is
certainly necessary, and it is sufficient to obtain existence results of conformally constrained
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1344 R. M. Schätzle

Willmore minimizers. In applications, there is the stronger task to estimate the conformal
factor for a given sequence without applying Möbius transformations. Therefore there is
a need for a precise criterion, which can be checked on the given sequence, whether this
sequence needs preparation by Möbius transformations or not. We recall that the bound
Wn,p ≤ β̃n

p in (1.3) prevents topological splitting by an energy bound, and we actually see
that preserving the topology is necessary and sufficient for the estimation of the conformal
factor. To be more precise, we establish for a sequence of closed, orientable embedded
surfaces �m ⊆ R

nof fixed genus p ≥ 1 with

lim sup
m→∞

W(�m) < 8π,

�m ⊆ B1(0),
H2�m → μ �= 0 weakly as Radon measures,

(1.8)

that spt μ is a closed, orientable, embedded topological surface of genus(spt μ) ≤ p.
Then without loss of topology in the sense that genus(spt μ) = p and with the algebraic
energy condition, we prove an estimate of the conformal factor. In a second step, we replace
no loss in topology by compactness of the conformal structures in moduli space and the
non-triviality of the topology in the sense that genus(spt μ) ≥ 1. Actually these conditions
are equivalent.

Theorem 1.3 Let �m ⊆ R
n be closed, orientable, embedded surfaces of fixed genus p ≥ 1

with
lim sup
m→∞

W(�m) < 8π,

�m ⊆ B1(0),
H2�m → μ �= 0 weakly as Radon measures.

Then spt μ is a closed, orientable, embedded topological surface of genus(spt μ) ≤ p.
No topology is lost in the sense that

genus(spt μ) = p

if and only if some topology is kept in the sense that

genus(spt μ) ≥ 1

and the conformal structues

[�m] lie in a compact subset of the moduli space.

In this case if moreover

lim sup
m→∞

W(�m) < W(μ)+ en,

then the induced metrics gm := geuc|�m are uniformly conformal to unit volume constant
curvature metrics gpoin,m := e−2um gm for m large, more precisely

lim sup
m→∞

‖ um ‖L∞(�)< ∞.


�
We proceed from (1.8) and prove that some topology can always be kept in the sense

of genus(spt μ) ≥ 1 after applying appropriate Möbius transformations. This yields
Theorem 1.1 and in turn Theorem 1.2. Finally, we summarize the equivalence of no topolog-
ical loss and the compactness in moduli space in the following theorem.
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Estimation of the conformal factor under bounded Willmore energy 1345

Theorem 1.4 Let �m ⊆ R
n be closed, orientable, embedded surfaces of genus p ≥ 1

with

lim sup
m→∞

W(�m) < 8π.

Then the conformal structures induced by �m lie in a compact subset of the moduli
space if and only if no topology is lost after applying appropriate Möbius transformations,
more precisely that any subsequence has a subsequence such that after applying appropriate
Möbius transformations

H2�m → μ weakly as Radon measures

with spt μ is a closed, orientable, embedded topological surface and

genus(spt μ) = p.

In this case after passing to a subsequence the conformal structures converge

[�m] → [spt μ] in moduli space.


�
The inclusion that compactness in moduli space keeps together the topology after applying

appropriate Möbius transformations was already observed in [7], where uniformly conformal
weak limits in W 2,2

loc (� − S) for some finite S ⊆ � were obtained.

2 Convergence without loss of topology

We start proving that measure theoretic limits under bounded Willmore energy have a topol-
ogy and a genus.

Proposition 2.1 Let �m ⊆ R
n be closed, orientable, embedded surfaces of fixed genus

p ≥ 0 with

lim sup
m→∞

W(�m) < 8π, (2.1)

�m ⊆ BR(0),
H2�m → μ �= 0 weakly as Radon measures,

(2.2)

for some R < ∞.
Then spt μ is a closed, orientable, embedded topological surface of genus

genus(spt μ) ≤ p. (2.3)

Moreover for a closed, orientable surface of same genus, there exists a uniformly conformal
W 2,2−immersion, that is f ∗geuc = e2u g0 for some smooth metric g0 on � and u ∈

L∞(�), such that

f : � ≈−→ sptμ = f (�) (2.4)

is a bi-lipschitz homeomorphism and for μ f := f (μg)

μ f = μ = H2spt μ. (2.5)
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1346 R. M. Schätzle

Proof By (2.1) and lower semicontinuity

W(μ) ≤ lim sup
m→∞

W(�m) < 8π (2.6)

and by the Li-Yau inequality in [11] or [8] (A.17)

θ2(μ, x) ≤ W(μ)/(4π) < 2 for all x ∈ R
n .

We replace (2.1) by the weaker assumption

lim sup
m→∞

W(�m) < ∞,

θ2(μ, x) < 2 for all x ∈ R
n,

(2.7)

and proceed from here.
We may assume

W(�m) ≤ W − δ (2.8)

for some W < ∞, δ > 0 and get by lower semicontinuity

W(μ) ≤ lim sup
m→∞

W(�m) < ∞. (2.9)

By monotonicity formula, we get as in [16, Theorem 3.1]

�m → spt μ in Hausdorff-distance. (2.10)

Next by the Gauß equations and the Gauß-Bonnet theorem
∫

�m

|A�m |2 dH2 = 4W(�m)+ 8π(p − 1) ≤ 4W + 8π(p − 1) =: A. (2.11)

Putting αm := |A�m |2H2�m , we may assume after passing to a subsequence that
αm → α weakly as Radon measures. Clearly α(Rn) ≤ A < ∞, and there are at most

finitely many bad point z1, . . . , zN ∈ R
n with

α({xk}) ≥ 8π − δ for k = 1, . . . , N , (2.12)

for any fixed 0 < δ < π and N ≤ A/(7π) =: N (p,W). As α(B	(x) − {x}) → 0 for
	 → 0 and any x ∈ R

n , we can cover spt μ ⊆ ⋃K
k=1 B	k/4(xk) with xk ∈ spt μ and

α(B2	k (xk)− {xk}) < ε2 for k = 1, . . . , K (2.13)

and ε ≤ ε0(n, p, N , δ) small enough chosen below. Further we may assume that xk =
xk for k = 1, . . . , N and

α(B2	k (xk)) < 8π − δ for k = N + 1, . . . , K . (2.14)

By (2.12) and (2.13), we see that xl �∈ B2	k (xk), k �= l = 1, . . . , N , hence

B	k (xk) ∩ B	l (xl) = ∅ for k = 1, . . . , N . (2.15)

As μ �= 0, we may further assume that

spt μ �⊆ B2	k (xk) for k = 1, . . . , K . (2.16)
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Estimation of the conformal factor under bounded Willmore energy 1347

Next by the monotonicity formula, see [16, 1.2] or [8, A.3 and A.5], writing ⊥ for the
projection onto (Txμ)

⊥,

∫

B	(x)

f rac|(ξ − x)⊥|2|ξ − x |4 dμ(ξ) < ∞ for all x ∈ R
n, 	 > 0,

and by (2.7), we can additionally assume for some θ2(μ, xk) < γk < 2 that

mu(B7	k/8(xk)) < γkπ(7	k/8)2,∫

B2	k (xk )

|(ξ − xk)
⊥|2

|ξ − xk |4 dμ(ξ) < ε2.

We get from above (2.2) and (2.7) for 0 < rm � 	k/4, rm → 0 and m large enough
that

∫

�m∩B	k (xk )−Brm (xk )

|A�m |2 dH2 < ε2,

H2(�m ∩ B7	k/8(xk)) < γkπ(7	k/8)2,∫

�m∩B	k (xk )−Brm (xk )

|(ξ − xk)
⊥|2

|ξ − xk |4 dH2(ξ) < ε2, (2.17)

for k = 1, . . . , K , and

∫

�m∩B	k (xk )

|A�m |2 dH2 < 8π − δ/2 for k = N + 1, . . . , K . (2.18)

By Hausdorff-convergence in (2.10) and xk ∈ spt μ, we get �m ∩ B	k/4(xk) �= ∅ for m
large. Moreover �m is not contained in any B	k (xk) for m large by (2.16), and, as �m is
connected, any component of �m ∩ Bσ (xk), σ < 9	k/16, extends to ∂B9	k/16(xk) in the
sense of [9, Lemma 2.1 (a)]. Then we obtain as in [9, 4.16] for the multiplicity Mk = mk = 1
as in [9, 2.5], that is there is exactly one component of Dk

m := Dk
m,σ of �m ∩ Bσ (xk) for

σ ∈ [5	k/8, 7	k/8] appropriate as in Theorem 5.2 and that the multiplicity of its boundary
entering in [9, 2.6] equals one in the sense

∣∣∣∣∣∣∣
∫

∂Dk
m

kgm ds − 2π

∣∣∣∣∣∣∣
≤ C(n)εα(n)

for appropriate α(n) > 0. Denoting the genus of Dk
m ⊕ B1(0) by pm,k , we get by the

Gauß-Bonnet theorem
∣∣∣∣∣∣∣

∫

Dk
m

Kgm dμgm + 4πpm,k

∣∣∣∣∣∣∣
≤ C(n)εα(n). (2.19)
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1348 R. M. Schätzle

Passing to a subsequence, we may assume pk := pm,k is independent of m and after
renumbering xk , we may assume that

Dk
m is not a disc, pk ≥ 1,

or ∫
�m∩B	k (xk )

|A�m |2 dH2 > 4en − δ,

⎫⎬
⎭ for k = 1, . . . , Ñ , (2.20)

and

Dk
m is a disc, pk = 0,∫
�m∩B	k (xk )

|A�m |2 dH2 ≤ 4en − δ,

}
for k = Ñ + 1, . . . , K , (2.21)

when observing that (2.21) is certainly true for k = N + 1, . . . , K by (2.18), as en ≥ 2π ,
and ∫

∂Dk
m

|Kgm | dμgm ≤ 1

2

∫

∂Dk
m

|A�m |2 dμgm ≤ 4π − δ/4,

hence pk = pm,k = 0 by (2.19) for C(n)εα(n) < δ/4.
Then as in [9, Lemma 2.1 (b)], we may replace �m in BMrm (xk) for k =1, . . . , Ñ and M

large observing (2.15) to obtain a closed, orientable, embedded surface �̃m for
m large and Mrm � 	k/4 and

�m = �̃m in R
n −

Ñ⋃
k=1

BMrm (xk),

∫

�̃m∩B	k (xk )

|A�̃m
|2 dH2 < C(n)ε2 for k = 1, . . . , Ñ , (2.22)

D̃k
m := �̃m ∩ Bσ (xk) is a disc for k = 1, . . . , Ñ .

Clearly

genus(�̃m) = p −
Ñ∑

k=1

pk ≤ p, (2.23)

and we choose � ∼= �̃m with 0 ≤ genus(�) ≤ p.
Next

W(�̃m) ≤ W(�m)+
Ñ∑

k=1

1

4

∫

�̃m∩BMrm (xk )

|−→H �̃m
| dH2 ≤ W(�m)+ C(n)Nε2 ≤ W − δ/2

(2.24)

by (2.8) for ε = ε(n, N , δ) small enough. Again by the Li-Yau inequality in [11] or [8]
(A.16)

|H2(�m ∩ BMrm (xk))− H2(�̃m ∩ BMrm (xk))| ≤ CW M2r2
m for k = 1, . . . , Ñ ,

hence by (2.2)

H2�̃m → μ (2.25)
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Estimation of the conformal factor under bounded Willmore energy 1349

and as in [16] Theorem 3.1

�̃m → spt μ in Hausdorff-distance. (2.26)

Further we see from (2.11) and (2.22) that

∫

�̃m

|A�̃m
| dH2 ≤

∫

�m

|A�m | dH2 +
Ñ∑

k=1

∫

�̃m∩BMrm (xk )

|A�̃m
| dH2

≤ A + C(n)Nε2 ≤ A + 1

for ε = ε(n, N ) small enough, and putting α̃m := |A�̃m
|2H2�̃m , we get after passing to a

subsequence that α̃m → α̃ weakly as Radon measures and by (2.13), (2.21) and (2.22) that

α̃(B2	k (xk)) ≤ α(B2	k (xk)− B	k (xk))+ C(n)ε2 ≤ C(n)ε2< π for k = 1,. . . , Ñ ,

α̃(B2	k (xk)) ≤ α(B2	k (xk)− B	k (xk))+ 4en − δ < 4en − δ/2 for k = Ñ +1,. . . , K ,

α̃(B2	k (xk)− {xk}) = α(B2	k (xk)− {xk})< ε2 for k = Ñ + 1,. . . , K , (2.27)

for ε = ε(n, N , δ) small enough. We get from (2.26) that �̃m ⊆ ⋃K
k=1 B	k/2(xk) for m

large and from (2.27)
∫

�̃m∩B	k (xk )

|A�̃m
|2 dH2 < 4en − δ/2,

∫

�̃m ∩B	k (xk )−B	k /2(xk )

|A�̃m
|2 dH2 < C(n)ε2

for k = 1, . . . , K . For ε ≤ ε(n,W, δ/2)/C(n) as in Theorem 5.2, this verifies (5.9) and
(5.10) for � = W, δ/2 and m large. (5.11) is verified by (2.21) and (2.22), when observing

(2.19). For �̃m ∼= � �∼= S2, we choose diffeomorphisms f̃m : � ≈−→�̃m and conclude by
[9] Theorem 3.1 or Theorem 5.2 for the pull-back metrics g̃m := f̃ ∗

m geuc and the conformal
smooth unit volume constant curvature metrics g̃poin,m = e−2ũm g̃m that

‖ ũm ‖L∞(�)≤ C(n,W, 	l/	k, K , p, δ/2) (2.28)

for m large. Then by Proposition 6.1 after appropriate reparametrization of f̃m , we get for
a subsequence that

f̃m → f weakly in W 2,2(�),weakly∗ in W 1,∞(�),
ũm → u weakly in W 1,2(�),weakly∗ in L∞(�),
g̃poin,m → gpoin smoothly,

f ∗geuc = e2u gpoin,

(2.29)

in particular f is a W 2,2−immersion uniformly conformal to gpoin . By uniform convergence
f̃m → f , bounded covergence

√
g̃m → √

g and (2.25), we see

μ f := f (μg) ← f̃m(μg̃m ) = H2�̃m → μ. (2.30)


�
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We continue with our original assumption (2.1) instead of (2.7) and get by Proposition
7.2 and (2.6) that

W( f ) = W(μ) < 8π

and

f : � ≈−→ spt μ = f (�)

is a bi-lipschitz homeomorphism and by (2.30)

μ = μ f = H2spt μ,

which is (2.4) and (2.5), hence spt μ ∼= � is a closed, orientable, embedded topological
surface of genus ≤ p by (2.23), which is as in (2.3), and the proposition is proved in the
case that � �∼= S2.

In case �̃m ∼= � ∼= S2, we may assume after translation that 0 ∈ �̃m . We select
	 > 0 with α̃(B2	(0) − {0}) < ε2 and choose some xk = 0, 	k = 	. Then as in [9,
Lemma 2.1 (b)], we replace �̃m in B	(0) for m large to obtain a closed, orientable, embed-
ded surface Sm with

Sm = �̃m in R
n − B	(0),∫

Sm ∩B	(0)

|ASm |2 dH2 < C(n)ε2,

Sm = Lm in B	/2(0),

(2.31)

for some 2 − plane Lm � 0, which we may assume to be fixed L = Lm after suitable
rotations. As the rotations and the above translations are compact, we still have (2.25) with
a rotated and translated μ. By the estimate in (2.31), we see that Sm ∩ Bσ (0) is a disc for
appropriate σ = σm,k ∈ [5	/8, 7	/8], hence recalling �̃m ∼= S2

Sm ∼= S2. (2.32)

Assuming by (2.1) that

W(�m) ≤ 8π − δ

for some δ > 0, we get as in (2.24)

W(Sm) ≤ W(�m)+ C(n)(N + 1)ε2 ≤ 8π − δ/2

for ε ≤ ε(n, N , δ). By the Li-Yau inequality in [11] or [8, A.16]

	−2H2(Sm ∩ B	) ≤ C,

hence after passing to a subsequence

H2Sm → β weakly as Radon measures. (2.33)

Then by lower semicontinuity and the Li-Yau inequality in [11] or [8, A.17]

θ2(β) ≤ W(β)/(4π) < 2. (2.34)

Now we take any orientable, connected surface H ⊆ R
2 with H −B	/4(0) = L−B	/4(0),

and which is not a disc, say

q := genus(H ∪ {∞}) ≥ 1. (2.35)

123



Estimation of the conformal factor under bounded Willmore energy 1351

We replace Sm in B	/4(0) by H ∩ B	/4(0) to obtain a obtain a closed, orientable, embed-
ded surface �m �∼= S2 with

�m = �̃m in R
n − B	(0),

�m = Sm in R
n − B	/4(0), (2.36)

�m = H in B	/2(0).

Then clearly

χ(�m) = χ(Sm − B	/2(0))+ χ(H ∩ B	/2(0)),

and by (2.32) and (2.35)

genus(�m) = genus(H ∪ {∞}) = q ≥ 1. (2.37)

As

W(�m) ≤ W(Sm)+ W(H) ≤ 8π + W(H) < ∞ (2.38)

is bounded, we get as above after passing to a subseqeuence

H2�m → ν weakly as Radon measures. (2.39)

Clearly by (2.25), (2.33) and (2.36)

ν(Rn − B	(0)) = μ(Rn − B	(0)),

ν(Rn − B	/4(0)) = β(Rn − B	/4(0)), (2.40)

νB	/2(0) = H2(H ∩ B	/2(0)).

We see θ2(ν) = θ2(H2H) ≤ 1 in B	/2(0) and by (2.34) that θ2(ν) = θ2(β) <

2 in R
n − B	/4(0), hence combining

θ2(ν, x) < 2 for all x ∈ R
n . (2.41)

Therefore �m satisfy with (2.38) and (2.41) the weaker assumption in (2.7), and we can
proceed with �m as in the beginning of the proof. As �m = H in B	/2(0) by (2.36) is
smooth, we see that there are no bad points for �m in B	/2(0). Then by (2.22) for �m

�̃m = �m = H in B	/2−Mrm (0) (2.42)

with rm → 0, and we conclude for Mrm < 	/4 that

χ(�̃m) = χ(�̃m − B	/4(0))+ χ(H ∩ B	/4(0)) ≤ 1 + χ(H ∩ B	/4(0)) = χ(H ∩ {∞}),
hence genus(�̃m) ≥ genus(H ∪ {∞}) = q . As genus(�̃m) ≤ genus(�m) = q by (2.23)
and (2.37), we get

genus(�̃m) = q ≥ 1, (2.43)

in particular � ∼= �̃m is not a sphere. Then by above there is a uniformly conformal
W 2,2−immersion

h : � ≈−→ spt ν (2.44)

which is a bi-lipschitz homeomorphism. Moreover by (2.37) and (2.43)

genus(spt ν) = genus(�) = genus(�̃m) = q = genus(H ∪ {∞}),
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1352 R. M. Schätzle

and, as spt ν = H in B	/2(0) by (2.42), we conclude as above

χ(spt ν− B	/3(0))=χ(spt ν)− χ(spt ν ∩ B	/3(0))=χ(spt ν)− (χ(H ∪ {∞})− 1)= 1,

hence

spt ν − B	/3(0) is a topological disc. (2.45)

Next as μ = ν in R
n − B	(0) by (2.40), we get that spt μ− B	(0) is an open, orientable,

topological 2−manifold. As 	 can be arbitrarily small and 0 ∈ �̃m was arbitrary, spt μ is
an open, orientable, topological 2-manifold. Observing that spt μ is compact and connected
by (2.2), (2.10) and conectedness of �m , we get

spt μ is a closed, orientable, topological surface.

We select an open neighbourhood U (0) in spt μ of 0 which is a disc and γ := ∂U (p)
is a closed Jordan arc. For 	 small enough, we have γ ∩ B2	(0) = ∅ and

γ ⊆ spt μ− B	(0) = spt ν − B	(0) ⊆ spt ν − B	/3(0).

The last set is a disc by (2.45), hence the interior Iγ of γ in spt ν − B	/3(0) is a disc as
well. Now Iγ is connected and

∂ Iγ ∩ ∂B	(0) = γ ∩ ∂B	(0) = ∅
hence

Iγ ⊆ spt ν − B	(0) or Iγ ⊆ spt ν ∩ B	(0).

Observing that

Iγ ∩ spt ν − B	(0) ⊇ γ �= ∅,
we get

Iγ ⊆ spt ν − B	(0) = spt μ− B	(0).

We see that Iγ and U (0) are open, closed and connected in spt μ− γ , hence these are
connetced components of spt μ− γ . As 0 ∈ U (0), 0 �∈ Iγ by above and spt μ− γ can
have at most two components, we get

spt μ = U (0)+ γ + Iγ . (2.46)

Sicne both U (0) and Iγ are discs, we get

spt μ ∼= S2,

which is (2.3) in the case � ∼= S2.
Finally by (2.44) and compactness of spt μ, we get a finite atlas {ϕ−1

1 , . . . , ϕ−1
L } of

uniformal conformal W 2,2-immersions

ϕl : B1(0)
≈−→ Ul ⊆ spt μ for l = 1, . . . , L ,

which are further bi-lipschitz homeomorphisms. This means in particular that

gl := ϕ∗
l geuc = e2ul g0,l
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for smooth metrics gl on B1(0) and ul ∈ L∞
loc(B1(0)). Introducing local conformal coor-

diantes for the smooth metrics g0,l , we may assume after rearranging the atlas that ϕl are
conformal with

gl := ϕ∗
l geuc = e2ul geuc

and ul ∈ L∞(B1(0)). Then all transitions maps

ϕk,l := ϕ−1
k ◦ ϕl := ϕ−1

l (Ul ∩ Uk)
≈−→ ϕ−1

k (Ul ∩ Uk)

are conformal, hence holomorphic after possibly reversing the orientation, in particular
smooth. As ul ∈ L∞(B1(0)) and Dϕk,l is continuous, we see that Dϕk,l have full
rank everywhere. Then ϕk,l , being bijective, is a holomorphic diffeomorphism. With this
atlas spt μ is a compact, simply sonnected Riemann surface. By [6, Lemma 2.3.3], there
exists a smooth conformal metric g0 on spt μ, that is

ϕl : (B1(0), geuc)
≈−→ (Ul , g0)

is conformal, and more precisely ϕ∗
l g0 = e2vl geuc for some vl ∈ C∞(B1(0)), hence

ϕ∗
l g0 = e2vl geuc = e2(vl −ul )ϕ∗

l geuc

and g0 = e2(vl −ul )◦ϕ−1
l geuc. As ul , vl ∈ L∞

loc(B1(0)), we get

g0 = e2u0 geuc onspt μ for some u0 ∈ L∞(spt μ). (2.47)

We remark, since only ul ∈ L∞(B1(0)), we cannot conclude that geuc is smooth on
spt μ with respect to the holomorphic atlas above.

By the uniformisation theorem for simply connected Riemann surfaces, see [4, Theorem
IV.1.1], (spt u, g0) is conformally equivalent to the sphere S2 with standard metric
gS2 := geuc|S2, hence there is a conformal diffeomorphism

f : (S2, gS2)
≈−→ (spt μ, g0),

say

f ∗g0 = e2vgS2 for some v ∈ C∞(S2). (2.48)

Now for any conformal chart ψ : V
≈−→ B1(0) of S2 with V ⊆ f −1

l (Ul) for some l, we
see that

ψl := ϕ−1
l ◦ ( f |V ) ◦ ψ−1 : B1(0) → B1(0)

is conformal, hence smooth, and we conclude that f ∈ W 2,2(S2,Rn) and is lipschitz.
Calculating the pull-back metrics by (2.47) and (2.48), we get

f ∗geuc = f ∗(e−2u0 g0) = e2(v−(u0◦ f ))gS2

with v − (u0 ◦ f ) ∈ L∞(S2), hence f is a W 2,2-immersion uniformly conformal to gS2 .
Then by Proposition 7.2 (7.7)

μ f = f (μg) = # f −1 · H2 f (S2) = H2spt μ,

as f is bijective.
Since H�m is bounded in L2(H2�m) by (2.1), we get from (2.2) that μ has weak

mean curvature in L2(μ) and by Allard’s integral compactness theorem, see [1, Theorem
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1354 R. M. Schätzle

6.4] or [15, Remark 42.8], that μ is an integral varifold. Moreover by (2.1), (2.2) and lower
semicontinuity

W(μ) ≤ lim sup
m→∞

W(�m) < 8π,

hence by [8] (A.10) and (A.17) that θ2(μ) ≥ 1 on spt μ and θ2(μ) ≤ W(μ)/4π < 2,
hence μ has unit density μ−almost everywhere and by above

μ = H2spt μ = μ f ,

hence (2.5). Then by Proposition 7.2 and above

W( f ) = W(μ) < 8π

and

f : S2 ≈−→ spt μ = f (S2)

is a bi-lipschitz homeomorphism, which is (2.4) in the case that � ∼= S2, and the proposition
is fully proved. 
�
Remarks 1. The sphere case when � ∼= S2 in the above proposition is more elaborate, since
we cannot estimate the conformal factor in (2.28) by [9] Theorem 3.1 or Theorem 5.2 as in
the case when � �∼= S2 due to the presence of non-trivial conformal transformations on the
sphere. For n = 3, this could be done for W(�m) ≤ 6π by [2] and [3].

2. For a second homeomorphism f̂ : �̂ ≈−→ spt μ with f̂ a uniformly conformal
W 2,2−immersion, say f̂ ∗geuc = e2û ĝpoin for some smooth unit volume constant

curvature metric ĝpoin and û ∈ L∞(�̂), we see that φ := f −1 ◦ f̂ : �̂ ≈−→� is a
homeomorphism. Moreover as f is bi-lipschitz and f̂ is lipschitz, we get that φ is
lipschitz and calculate the pull-back metric with (2.29)

e2û ĝpoin = f̂ ∗geuc = φ∗ f ∗geuc = φ∗(e2u gpoin) = e2u◦φφ∗gpoin .

We see that

φ : (�̂, ĝpoin) → (�, gpoin)

is conformal, hence holomorphic or anti-holomorphic, in particular smooth. As
u ∈ L∞(�), û ∈ L∞(�̂) and Dφ is continuous, we see that Dφ hat full rank

everywhere on �̂, and, as φ is bijective, we get that φ is a diffeomorphism. Then
the conformal structures induced by f respectively f̂ coincide, and we can define the
conformal structure induced by spt μ by putting

[spt μ] := [(�, f ∗geuc)] = [(�̂, f̂ ∗geuc)]. (2.49)


�
Certainly by Möbius invariance of the Willmore funcitonal, the limit can be a sphere, and

most of the information would be lost. Therefore it is important to have a device to ensure,
after appropriately applying Möbius transformations, the non-triviality of the limit which
means for us to keep some topology. This was for example done in the existence proof of
Willmore minimizers under fixed genus in [16, Lemma 4.1] to avoid round spheres. Other
examples are the arrangement lemma in [9, Lemma 4.1] or the 3-points normalization lemma
in [13, Lemma III.1]. Here we successively apply [9, Lemma 4.1] to keep some topology in
the general situation of the previous proposition.
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Estimation of the conformal factor under bounded Willmore energy 1355

Proposition 2.2 Let �m ⊆ R
n be closed, orientable, embedded surfaces of genus p ≥ 1

with

lim sup
m→∞

W(�m) < 8π. (2.50)

Then after applying appropriate Möbius transformations and passing to a subsequence

�m ⊆ B1(0),
H2�m → μ �= 0 weakly as Radon measures,

(2.51)

with spt μ is a closed, orientable, embedded topological surface and

genus(spt μ) ≥ 1. (2.52)

Proof We avoid the case � ∼= S2 in the previous proposition by applying appropriate
Möbius transformations as in [9, Lemma 4.1] and may assume that

�m ⊆ B1(0),∫

�m∩B	0 (x)

|A0
�m

|2 dH2 ≤ 1

2

∫

�m

|A0
�m

|2 dH2 for all x ∈ R
n, (2.53)

	0 = 	0(n, E) > 0 and where E := ∫
�m

|A0
�m

|2 dH2. By (2.50) we may assume

W(�m) < 8π − δ (2.54)

for some δ > 0 and get by the Li-Yau inequality in [11] or [8, A.16]

	−2H2(�m ∩ B	) ≤ C,

hence after passing to a subsequence

H2�m → μ weakly as Radon measures.

Now by (2.53), we cannot have �m ⊆ B	0(x) for any x ∈ R
n , as E > 0, since �m are

no round spheres. Therefore diam �m ≥ 	0 and H2(�m) ≥ c0	
2
0 by [16, Lemma 1.1].

As �m ⊆ B1(0) by (2.53), we have μ(Rn) = limm→∞ H2(�m) > 0, in particular μ �= 0 ,
hence together with (2.53), we get (2.51). Then we have (2.1) and (2.2) for R = 1, and we
proceed as in Proposition 2.1 and use the notation there.

By the Gauß equations and the Gauß-Bonnet theorem, we have with (2.54)∫

�m

|A0
�m

|2 dH2 = 2W(�m)+ 8π(p − 1) ∈ [8πp, 8π(p + 1)− 2δ[. (2.55)

Extending Dk
m = �m ∩ Bσ (xk) outside Bσ (xk) to a flat plane near infinity as in

[9, Lemma 2.1 (b)], we obtain∣∣∣∣∣∣∣
∫

Dk
m

|A0
�m

|2 dH2 − 2W(Dk
m)− 8πpk

∣∣∣∣∣∣∣
≤ C(n)εα(n).

Observing by extension to the inside as in (2.22) that

W(�m − Dk
m) ≥ 4π − C(n)εα(n),

hence by (2.54)
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W(Dk
m) = W(�m)− W(�m − Dk

m) ≤ 4π − δ + C(n)εα(n), (2.56)

we get for C(n)εα(n) < δ∫

Dk
m

|A0
�m

|2 dH2 ∈]8πpk − δ, 8π(pk + 1)− δ[. (2.57)

Choosing 	k ≤ 	0, we get from (2.53), (2.55) and (2.57)

8πpk − δ <

∫

�m ∩B	k (x)

|A0
�m

|2 dH2 ≤ 4π(p + 1)− δ,

hence

pk < (p + 1)/2 ≤ p for k = 1, . . . , Ñ , (2.58)

and we see that one disc cannot take all the topology. When

spt μ ∼= S2, (2.59)

we have � ∼= �̃m ∼= S2, and see from (2.23) that Ñ ≥ 1 and after renumbering in (2.20)
that

p1 ≥ 1. (2.60)

For p = 1, this is impossible by (2.58), and the proposition is proved for p = 1.
To proceed for p ≥ 2, we do the replacement of �m as in (2.22) but only in

BMrm (xk)for k = 2, . . . , Ñ and obtain intermediate closed, orientable, embedded surfaces
�m . We get as in (2.24) for W = 8π that

lim sup
m→∞

W(�m) < 8π

and as in (2.25) and (2.26)

H2�m → μ,

�m → spt μ in Hausdorff-distance.
(2.61)

and calculate by our assumption �̃m ∼= S2, (2.58) and (2.60) that

genus(�m) = genus(�̃m)+ p1 = p1 ∈ {1, . . . , p − 1}.
Then by induction and compressing by a factor of 1/2, there are Möbius transformations

�m such that after passing to a subseqeuence

�m�m ⊆ B1/2(0),

H2�m�m → ν �= 0 weakly as Radon measures,
(2.62)

with spt ν is a closed, orientable, embedded topological surface and

genus(spt ν) ≥ 1. (2.63)

We claim
�m�m ⊆ B1(0),

H2�m�m → ν �= 0 weakly as Radon measures,
(2.64)

for m large, which yields (2.51) and (2.52) by (2.63).
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To prove (2.64), we work with Hausdorff convergence and get from (2.10) for �m�m

that

�m�m → spt ν in Hausdorff-distance. (2.65)

We claim

�m�m → spt ν in Hausdorff-distance. (2.66)

If this is true, we see �m�m ⊆ B1(0) for m large, as spt ν ⊆ B1/2(0) by (2.62) and
(2.65), which is the first part in (2.64). As W(�m�m) = W(�m) < 8π − δ by (2.54), we
get by the Li-Yau inequality in [11] or [8] (A.16) after passing to a subsequence

H2�m�m → β weakly as Radon measures.

As diam(spt ν) > 0, we get diam(�m�m) ≥ 	 for some 	 > 0, hence H2(�m�m) ≥
c0	

2 by [16] Lemma 1.1. As �m�m ⊆ B1(0) by above, we have β(Rn) =
limm→∞ H2(�m�m) > 0, in particular β �= 0. Therefore we have (2.1) and (2.2) for
�m�m and proceed as in Proposition 2.1. Then �m�m → spt β in Hausdorff-distance

by (2.10), hence spt β = spt ν by (2.66). We get by (2.5)

β = H2spt β = H2spt ν = ν,

and (2.64) follows.
It remains to establish (2.66). We first prove

�m(∞) �→ ∞. (2.67)

Otherwise we rotate under sterographic projection R
n ∪ {∞} ∼= Sn slightly from

�m(∞) to ∞ and get Möbius transformations �m with

�m(�m(∞)) = ∞,

�m → idRn smoothly on compact subsets of R
n .

Then by (2.62) and (2.65)

�m�m�m ⊆ B3/4(0) for m large,
H2�m�m�m → ν �= 0 weakly as Radon measures,

�m�m�m → spt ν in Hausdorff-distance.

As �m�m(∞) = ∞, we see that �m�m is an isometry multiplied by some factor
λm > 0 . Then by (2.61) and above

λm = H2(�m�m�m)/H2(�m) → ν(Rn)/μ(Rn) =: λ ∈]0,∞[,
and we see for the isometries Um := λ−1

m �m�m that

Um�m → λ−1spt ν in Hausdorff-distance.

We select any xm ∈ �m and get by (2.61) after passing to a subsequence that xm → x ∈
spt μ and Um xm → y ∈ λ−1spt ν. We concldue that

|Um(0)| ≤ |Um(xm)| + |Um(xm)− Um(0)| = |Um(xm)| + |xm | → |y| + |x |,
hence after passing to a subsequence Um → U . Then by above and (2.61)

U (spt μ) ← Um�m → λ−1spt ν,

hence spt μ ∼= spt ν. This contradicts (2.59) and (2.63), hence we get (2.67).
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From (2.67), we get after passing to a subsequence that �m(∞) → b ∈ R
n , and (2.62) is

true for �m replaced by �m −�m(∞) and ν replaced by its translation (x �→ x − b)#ν,
in particular we can assume �m(∞) = 0. Let I be the inversion at the unit sphere, that is
I (x) := x/|x |2, then I ◦�m are Möbius transformations with I�m(∞) = ∞, hence are

isometries multiplied by a factor λm > 0 and

I�m(x) = λm Om(x − am) for all x ∈ R
n

and some am ∈ R
n and some orthogonal Om . After passing to a subsequence we get

Om → O , and (2.62) remains true for �m replaced by OT
m�m and ν replaced by its

rotation OT
# ν. Since OT

m I = I OT
m and I −1 = I , we calculate

OT
m�m(x) = I (λm(x − am)) for all x ∈ R

n,

hence we may assume

�m(x) = I (λm(x − am)) for all x ∈ R
n . (2.68)

If 0 �∈ spt ν, then spt ν ⊆ B1/2(0)− Bε(0) for some ε > 0 by (2.62), and we get that
(2.62) remains true for �m replaced by I�m and ν replaced by its inversion I#ν. Then we
have I�m(∞) = ∞, which was already excluded in (2.67).

Therefore 0 ∈ spt ν, and we select by (2.65) and spt ν �= {0} by (2.63) sequences
xm, ym ∈ �m with xm → x �= 0, ym → 0 . Then clearly by (2.68)

I (xm), I (ym) ∈ I�m�m = λm(�m − am),

hence

∞ ← |I (xm)− I (ym)| ≤ diam(λm(�m − am)) = λmdiam(�m).

By (2.61), we see diam(�m) → diam(spt μ) < ∞ and conclude λm → ∞. From
(2.68), we calculate the modulus of the derivative

|D�m(x)| = λm |DI (λm(x − am))| = 1

λm |x − am |2 for x ∈ R
n . (2.69)

For a subsequence, we may assume that am → a ∈ R
n ∪ {∞} and get

|D�m | → 0 uniformly on compact subsets of R
n − {a}.

Now we are coming back to our construction from (2.22) and see

�m = �̃m in R
n −

Ñ⋃
k=1

BMrm (xk),

�m = �m in R
n −

Ñ⋃
k=2

BMrm (xk), (2.70)

�m = �̃m in R
n − BMrm (x1).

If a �= x1, then

diam(�m(BMrm (x1))) → 0

and �m�m and �m�̃m have the same limit in Hausdorff-distance, hence by (2.65)

�m�̃m → spt ν in Hausdorff-distance.
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Then as above by the Li-Yau inequality and (2.5)

H2�m�̃m → ν weakly as Radon measures.

Next lim supm→∞ W(�̃m) < 8π by (2.24) for W = 8π , and we conclude by Proposition
2.1

genus(spt ν) ≤ genus(�̃m) = genus(spt μ),

which contradicts (2.59) and (2.63), hence we get a = x1.
Then as above �m�m and �m�m have the same limit in Hausdorff-distance, hence by

(2.65)

�m�m → spt ν in Hausdorff-distance,

which is (2.66), and the proposition is proved. 
�
Remark We strengthen (2.56) to

W(Dk
m) ≥ βn

pk
− 4π − C(n)εα(n),

W(�m − ∪Ñ
k=1 Dk

m) ≥ βn
genus(�) − C(n)εα(n),

hence

W(�m) = W
(
�m − ∪Ñ

k=1 Dk
m

)
+

Ñ∑
k=1

W(Dk
m)

≥ βn
genus(�) − C(n)εα(n) +

Ñ∑
k=1

(βn
pk

− 4π − C(n)εα(n))

≥ βn
genus(�) +

Ñ∑
k=1

(βn
pk

− 4π)− C(n, N )εα(n)).

Now

p = genus(�)+
Ñ∑

k=1

pk

by (2.23), and if the limit keeps some topology in the sense that genus(�) = genus(spt μ) ≥
1 then pk < p, and we conclude

1 ≤ genus(spt μ) < p �⇒ W(�m) ≥ β̃n
p − C(n, N )εα(n)

for the constant defined in (1.1).
We conclude, if we strengthen (2.1) to

lim sup
m→∞

W(�m) < min(8π, β̃n
p), (2.71)

then we have after applying appropriate Möbius transformations that no topology is lost in
the sense that

genus(spt μ) = p.


�
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Estimation of the conformal factor is only possible, if no topology is lost. In the next
proposition, we prove that if no topology is lost then the induced conformal structures lie in a
compact subset of moduli space. Actually we do not need this proposition for the estimation
of the conformal factor, but it will give together with the following section the equivalence
of no topological loss after applying appropriate Möbius transformations and compactness
in moduli space.

Proposition 2.3 If in Proposition 2.1 no topology is lost in the sense that

genus(spt μ) = p ≥ 1, (2.72)

then the conformal structures induced by �m lie in a compact subset of the moduli space.

Proof We proceed with the notation of Proposition 2.1. If no topology is lost as in (2.72),
we get from (2.23) that

pk = 0 for k = 1, . . . , K , (2.73)

in particular Dk
m

∼= D̃k
m are discs, and by construction in (2.22) there are diffeomorphisms

ψm : �̃m
≈−→�m,

ψm = id on �m − ∪Ñ
k=1 BMrm (xk),

ψm(�̃m ∩ BMrm (xk)) ⊆ BMrm (xk).

(2.74)

We define fm := ψm ◦ f̃m : � ≈−→ �m, gm := f ∗
m geuc and consider the unit volume

constant curvature metrics gpoin,m = e−2um gm . By (2.4) and xk ∈ spt μ = f (�), we define
qk := f −1(xk) and see for any �′ ⊂⊂ � := � − {q1, . . . , qÑ } by uniform convergence

in (2.29) and rm → 0 that d( f̃m(�
′), xk) > Mrm , hence f̃m(�

′) ∩ BMrm (xk) = ∅, and

fm = f̃m, gm = g̃m on �′ (2.75)

for m large depending on �′, in particular by (2.29)

gm → f ∗geuc = e2u gpoin pointwise in �.

By elementary differential geometry, we know

−�gm um + 2πχ(�)e−2um = Kgm , −�g̃m ũm + 2πχ(�)e−2ũm = Kg̃m

on �, hence

−�g̃poin,m (um − ũm)=−e2ũm�g̃m (um −ũm)=−2πχ(�)(e−2(um−ũm )−1) in�′, (2.76)

and, as χ(�) = 2(1 − p) ≤ 0,

�g̃poin,m (ũm − um)+ ≥ 0 in �′

for m large. For any q ∈ � there exists an open neighbourhood U (q) ⊂⊂ � of q which
is a disc by ϕ : U (q) ∼= B1(0). Then by local maximum estimates, see [5, Theorem 8.17],
(2.29) and writing ϕ : U	(q) ∼= B	(0) that

sup
U1/2(q)

(ũm − um) ≤ C(gpoin, q) ‖(ũm − um)+ ‖L2(U3/4(q))
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Estimation of the conformal factor under bounded Willmore energy 1361

for m large. To estimate the norm on the right-side, we observe

1 = μgpoin,m (�) =
∫

�

e−2um dμgm ≥
∫

U (q)

e−2um dμg̃m

=
∫

U (q)

e2(ũm−um ) dμg̃poin,m ≥
∫

U (q)

(1 + ũm − um)
2+ dμg̃poin,m

and get using (2.29)

um − ũm ≥ −C(gpoin, q) on U1/2(q) (2.77)

for m large.
Then by (2.76)

|�g̃poin,m (um − ũm)| ≤ C(gpoin, p, q) in U1/2(q),

and um − ũm − � ≥ 0 on U1/2(q) for � = C(gpoin, q), and we get by the Harnack
inequality, see [5, Theorem 8.17 and 8.18], and (2.29)

sup
U1/4(q)

(um − ũm − �) ≤ C(gpoin, q) inf
U1/4(q)

(um − ũm − �)+ C(gpoin, p, q)

and

sup
U1/4(q)

(um − ũm) ≤ C(gpoin, q) inf
U1/4(q)

(um − ũm)+ C(gpoin, p, q) (2.78)

for m large.
Now if lim supm→∞ supU1/4(q) um < ∞, we see from (2.28) and (2.77) that um is bounded

from above and below on U1/4(q). Otherwise for a subsequence supU1/4(q) um → ∞. Then
by (2.28) and (2.78)

inf
U1/4(q)

um → ∞,

hence um → ∞ uniformly on U1/4(q).
Covering appropriately, we get after passing to a subsequence either

um → ∞ uniformly on compact subsets of �,
or

um is uniformly bounded on compact subsets of �.
(2.79)

We define

�m := inf{lgpoin,m (γ ) | γ is a closed geodesic in (�, gpoin,m)} > 0,

where lgpoin,m denotes the length with respect to gpoin,m . By the Mumford com-
pactness theorem, see e.g. [17] Theorem C.1, the conformal structures induced by
gpoin,m respectively by gm lie in a compact subset of the moduli space, if

lim inf
m→∞ �m > 0. (2.80)

Therefore we prove (2.80) and assume �m ≤ 1 in the following.
If (2.80) is not true, we get after passing to a subsequence that �m → 0. We first prove

this implies the first case in (2.79), that is

um → ∞ uniformly on compact subsets of �. (2.81)
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1362 R. M. Schätzle

By definition of �m , there exists a closed geodesic γm in (�, gpoin,m) of length
�m ≤ �m,0 = lgpoin,m (γm) ≤ 2�m . Further γm is non-nullhomotopic, see [17, pp. 184–
185].

We consider any non-nullhomotopic curve γm in � with

�m,0 = lgpoin,m (γm) → 0. (2.82)

As Dk
m = Bσ (xk) ∩ �m, σ ∈ [5	k/8, 7	k/8] appropriate, are discs by (2.73), we

see that γ̃m := fm(γm) cannot stay in any B5	k/8(xk) ∩ �m . As �m = fm(�) ⊆
∪K

k=1 B	k/2(xk) for m large, we get after passing to a subsequence

γ̃m ∩ B	l/2(xl) �= ∅ for some l ∈ {1, . . . , K } (2.83)

and

lgm (γm) ≥ 	l/8 for some l ∈ {1, . . . , K } (2.84)

and m large. If

γ̃m ∩ B	k/2(xk) = ∅ for all k ∈ {1, . . . , Ñ } (2.85)

and m large, in particular l �∈ {1, . . . , Ñ }, we see by (2.74) and Mrm ≤ 	k that fm =
f̃m on γm and by uniform convergence in (2.29)

lim inf
m→∞ d( f (γm), xk) ≥ 	k/2 for all k ∈ {1, . . . , Ñ }.

Putting

�τ := f −1
(
R

n − ∪Ñ
k=1 Bτ	k (xk)

)
⊂⊂ � for 0 < τ < 1,

we see

γm ⊆ �1/4 ⊂⊂ � for m large. (2.86)

We get from (2.82) and (2.84) that the first case in (2.79) is true, that is (2.81).
In case (2.85) is not true, we can choose l ∈ {1, . . . , Ñ } in (2.83). As γ̃m cannot stay in

B5	l/8(xl), we get as in (2.84) a subarc γm,0 of γm whose image γ̃m,0 := fm(γm,0) has its
endpoints in ∂B	l/2(xl) and ∂B5	l/8(xl) and is contained in B5	l/8(xl)− B	l/2(xl). Then
we see by (2.15) that

γ̃m,0 ∩ B	k (xk) = ∅ for all k �= l, k ∈ {1, . . . , Ñ },

hence as above
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Estimation of the conformal factor under bounded Willmore energy 1363

γm,0 ⊆ �1/4 ⊂⊂ � for m large. (2.87)

Clearly lgm (γm,0) ≥ 	l/8 and again by (2.82), we get that the first case in (2.79) is true,
that is (2.81).

We conclude from (2.81) together with (2.28), (2.29) and (2.75) for any �′ ⊂⊂ � that

diam(�′, gpoin,m) ≤ e− inf�′ um diam(�′, gm) = e− inf�′ um diam(�′, g̃m)

≤ e− inf�′ um esup� ũm diam(�, g̃poin,m) ≤ Ce− inf�′ um → 0. (2.88)

For p = 1, that is �m are tori, there exist lattices �m = Z + (am + ibm)Z ⊆
C with 0 ≤ am ≤ 1/2, bm > 0, a2

m + b2
m ≥ 1 and such that (�m, gpoin,m) is isometric to

(C/�m, b−1
m geuc), as gpoin,m have unit volume, see [6, §2.7]. Here we see �m = 1/

√
bm ,

and at each point of (�m, gpoin,m) there exists a non-nullhomotopic curve γm of length
�m → 0. Then by (2.86) and (2.87), we get γm ∩ �1/4 �= ∅ for m large, and we conclude
by (2.88) that

diam(�m, gpoin,m) ≤ �m + diam(�1/4, gpoin,m) → 0.

But

diam(�m, gpoin,m) = diam(C/�m, b−1
m geuc) ≥ √

bm/2 = 1/(2�m) → ∞,

which is a contradiction, and the proposition is proved for p = 1.
For p ≥ 2, we proceed similarly and obtain from the collar lemma, see [17, Lemma D.1],

for any closed geodesic γm in (�, gpoin,m) of length �m ≤ �m,0 = lgpoin,m (γm) ≤ 2�m ,
which exists by definition of �m , a neighbourhood Um of γm in (�, gpoin,m) isometric to
T/ ∼, where

T := {(reiθ | 1 ≤ r ≤ e�m,0(4π(p−1))1/2 , |θ − π/2| < θ0}
is considered in the hyperbolic plane with hyperbolic metric divided by 4π(p − 1) > 0
in order to adjust to our convention of curvature Kgpoin,m = −4π(1 − p), ∼ identifies
eiθ and e�m,0+iθ , and θ0 is a fixed positive constant, as we assume �m ≤ 1. Here γm

corresponds to θ = π/2 , say γm(t) :∼= et+iπ/2. We select a second closed geodesic
γ̂m(t) :∼= et+i((π+θ0)/2), 0 ≤ t ≤ �m,0(4π(p − 1))1/2, with length lgpoin,m (γ̂m) = �m,0 and
which is homotopic to γm , hence is non-nullhomotopic, see [17, pp. 184–185].

Since θ �→ eiθ is a geodesic in the hyperbolic plane and geodesics in the hyperbolic
plane are globally miniminzing, we see with hyperbolic distance that

dgpoin,m (γm(t), γ̂m(t)) = dH

(
et+iπ/2, et+i(π+θ0)/2

)
/
√

4π(p − 1) ≥ δ

for some fixed δ = δ(θ0, p) > 0, as �m ≤ 1, in particular

dgpoin,m (γm, γ̂m) ≥ δ − 2�m,0 ≥ δ/2 for m large, (2.89)

as �m,0 ≤ 2�m → 0. As both γm and γ̂m are non-nullhomotopic, we see by (2.86) and
(2.87) that γm ∩�1/4, γ̂m ∩�1/4 �= ∅ for m large and conclude by (2.88) that

dgpoin,m (γm, γ̂m) ≤ diam(�1/4, gpoin,m) → 0,

which contradicts (2.89), and the proposition is fully proved.

Remark Combining Proposition 2.3 with the previous remark after Proposition 2.2, we see
that the conformal structures induced by smooth immersions f : � → R

n of a closed,
orientable surface � of genus p ≥ 1 with
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1364 R. M. Schätzle

W( f ) ≤ min(8π, β̃n
p)− δ

lie in a compact subset of moduli space depending on n, p, δ > 0. This was already proved
in [7, Theorems 5.3 and 5.5] and [14, Theorem 1.1]. 
�

Now we estimate the conformal factor if no topology is lost under the algebraic energy
restriction in order to apply the Hardy space theory. This gives a precise criterion, when the
conformal factor can be estimated for a given sequence without applying Möbius transfor-
mations.

Proposition 2.4 If in Proposition 2.1 no topology is lost, in the sense that

genus(spt μ) = p ≥ 1, (2.90)

and

lim sup
m→∞

W(�m) < W(μ)+ en, (2.91)

then the induced metrics gm := geuc|�m are uniformly conformal to unit volume constant
curvature metrics gpoin,m := e−2um gm for m large, more precisely

lim sup
m→∞

‖ um ‖L∞(�)< ∞. (2.92)

Proof We continue with the notation of the Proposition 2.1 and want to exclude the real bad
points in (2.20). Firstly by (2.90), we get genus(�) = genus(�̃m) = p = genus(�m) and
from (2.23) that

pk = 0 for k = 1, . . . , K . (2.93)

Next as f is a uniformly conformal W 2,2-immersion, we get from [10] Proposition 5.2,
Theorem 7.2 and (2.5)

1

4

∫

�

|A f |2 dμ f + 2π(1 − genus(�)) = W( f ) = W(μ f ) = W(μ).

Next by (2.1) and (2.91), we may assume

W(�m) ≤ min(8π,W(μ)+ en)− δ

for some δ > 0 and m large, and get by the Gauß equations and the Gauß–Bonnet Theorem
as in (2.11) and genus(�) = genus(�m) = p that∫

�m

|A�m |2 dH2 ≤
∫

R2

|A f |2 dμ f + 4en − 4δ

for m large. Putting α f := |A f |2μ f and recalling αm := |A fm |2H2�m → α and
spt αm ⊆ BR(0) by (2.2), we get

α(Rn) = lim
m→∞αm(R

n) ≤ α f (R
n)+ 4en − 4δ. (2.94)

Recalling α̃m := |A f̃m
|2H2�̃m → α̃, we get by (2.29) for any η ∈ C0

0 (R
n), η ≥ 0, that

∫
η dα f =

∫

�

(η ◦ f )|A f |2 dμg ≤ lim inf
m→∞

∫

�

(η ◦ f̃m)|A f̃m
|2 dμg̃m

= lim
m→∞

∫
η dα̃m =

∫
η dα̃,
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Estimation of the conformal factor under bounded Willmore energy 1365

hence

α f ≤ α̃. (2.95)

By (2.22), we see that

αm = α̃m in R
n − ∪N

k=1 BMrm (zk)

and as rm → 0 and with (2.95)

α = α̃ ≥ α f in R
n − {z1, . . . , zN }.

Since α f ({x}) = 0 for any x ∈ R
n , we get from (2.94)

α(Rn) ≤ α f (R
n)+ 4en − 4δ = α f (R

n − {z1, . . . , zN })+ 4en − 4δ

= α(Rn − {z1, . . . , zN })+ 4en − 4δ

and

α({z1, . . . , zN }) ≤ 4en − 4δ. (2.96)

Combining with (2.93), we see that (2.20) is vacant for δ as above. This yields by (2.22)
that �m = �̃m ∼= �, hence g̃m = f̃ ∗

m gm, gpoin,m = f̃ ∗
m g̃poin,m, um = ũm ◦ fm , and (2.92)

follows from (2.28), and the proposition is proved. 
�

3 Compactness in moduli space

In [7], it was proved that compactness in moduli space gives uniformly conformal weak limits
in W 2,2

loc (�−S) for some finite S ⊆ �. In our set up, we clarify that if some topology is kept
under compactness in moduli space then no additional choice of Möbius transformations is
necessary to keep all topology.

Proposition 3.1 If in Proposition 2.1 some topology is kept in the sense that

genus(spt μ) ≥ 1, (3.1)

and the conformal structures induced by �m lie in a compact subset of the moduli space,
then

genus(spt μ) = p, (3.2)

that is no topology is lost, and

[�m] → [spt μ] in moduli space (3.3)

in the sense of (2.49).

Proof We use the notation of Proposition 2.1 and consider a closed, orientable surface

�p of genus p ≥ 1 and diffeomorphisms fm : �p
≈−→�m . As the conformal struc-

tures induced by the pull-back metrics gm := f ∗
m geuc lie in a compact subset of the moduli

space choosing the parametrizations fm appropriately and passing to a subsequnce, we may
assume that the unit volume constant curvature metrics

gpoin,m := e−2um gm → gpoin,0 smoothly on �p. (3.4)
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By (2.1), we may assume

W( fm) ≤ 8π − δ (3.5)

for some δ > 0. As fm(�p) = �m ⊆ BR(0) by (2.2), we get by the Li-Yau inequality in
[11] or [8, A.16]

μgm (�p) ≤ C. (3.6)

We define νm := |A fm |2μgm and see by the Gauß equations and the Gauß–Bonnet
theorem as in (2.11) that

νm(�p) =
∫

�p

|A fm |2 dμgm = 4W( fm)+ 8π(p − 1) ≤ 8π(p + 3) =: A0 < ∞,

hence after passing to a subsequence νm → ν weakly as Radon measures on �p . Clearly
ν(�p) ≤ A0 < ∞, and there are at most finitely many bad points q1, . . . , qL ∈ �p with

ν({ql}) ≥ ε0(n) for l = 1, . . . , L , (3.7)

for ε0(n) small enough choosen below, and we consider the open set�0 := �p−{q1, . . . , qL }.
For any q ∈ �0 there exists an open neighbourhood ϕ : U (q) ∼= B1(0) of q with

ν(U (q)) < ε0(n) (3.8)

and for m large that ∫

U (q)

|A fm |2 dμgm ≤ ε0(n)− δ (3.9)

for some δ = δ(q) > 0. By elementary differential geometry and the Gauß–Bonnet theorem,
we know

−�gm um + 2πχ(�p)e
−2um = Kgm on �p. (3.10)

By the uniformisation theorem for simply connected Riemann surfaces, see [4, Theorem
IV.1.1], we can parametrize fm ◦ ϕ−1

m : B1(0) ∼= U (q) → R
n conformally with respect to

the euclidean metric on B1(0), possibly after replacing U (q) by a slightly smaller ball. Then
by [12] Theorem 4.2.1 and (3.9) for ε0(n) small enough, there exists vm ∈ C∞(U (q))
with

−�gmvm = Kgm on U (q) (3.11)

satisfying

‖vm‖L∞(U (q)) ≤ C(n, δ)
∫

B1(0)

|A fm |2 dμgm ≤ C(n, q). (3.12)

Actually one can choose ε0(n) = 4π , see Proposition 5.1. By (3.10), we see

−�gpoin,m (um − vm) = −2πχ(�p) in U (q), (3.13)

hence by local maximum estimates, see [5, Theorem 8.17], and (3.4), writing ϕ : U	(q) ∼=
B	(0) that

sup
U1/2(q)

(um − vm) ≤ C(gpoin,0, q)
(

‖ 2πχ(�p) ‖L2(U3/4(q)) + ‖ (um − vm)+ ‖L2(U3/4(q))

)
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Estimation of the conformal factor under bounded Willmore energy 1367

and by (3.12)

sup
U1/2(q)

um ≤ C(n, p, gpoin,0, q)
(

1+ ‖ um,+ ‖L2(U3/4(q))

)

for m large. To estimate the norm on the right-side, we observe by (3.6)

C ≥ μgm (�p) ≥
∫

U3/4(q)

e2um dμgpoin,m ≥
∫

U3/4(q)

(1 + um)
2+ dμgpoin,m

and get for m large

sup
U1/2(q)

um, |D fm | ≤ C(n, p, gpoin,0, q). (3.14)

Then �− um + vm ≥ 0 in U1/2(q) for � = C(n, p, gpoin,0, q), hence by (3.13) and the
Harnack inequality, see [5] Theorem 8.17 and 8.18, and (3.4) that

sup
U1/4(q)

(� − um − vm) ≤ C(gpoin,0, q)

(
inf

U1/4(q)
(� − um − vm)+ ‖ 2πχ(�p) ‖L2(U1/2(q))

)

and by (3.12)

sup
U1/4(q)

(� − um) ≤ C(n, p, gpoin,0, q) inf
U1/4(q)

(� − um)+ C(n, p, gpoin,0, q), (3.15)

Now if lim infm→∞ infU1/4(q) um > −∞, we see from (3.14) that um is bounded from
below and above on U1/4(q). Otherwise for a subsequence infU1/4(q) um → −∞. Then

sup
U1/4(q)

(� − um) = � − inf
U1/4(q)

um → ∞

and by (3.15)

∞ ← inf
U1/4(q)

(� − um) = � − sup
U1/4(q)

um,

hence um → −∞ uniformly on U1/4(q).
Covering appropriately, we get after passing to a subsequence either

um → −∞ uniformly on compact subsets of �0,

or
um is uniformly bounded on compact subsets of �0.

(3.16)

We choose open neighbourhoods U (ql) of ql which are pairwise disjoint discs and put

�′ := �p − ∪L
l=1U (ql) ⊂⊂ �0. (3.17)

In the first case in (3.16), we see by (3.4) that diamgm (�
′) → 0 for the intrinsic diameter,

hence

diam( fm(�
′)) → 0.

In the notation of Proposition 2.1, as �m = fm(�p) ⊆ ∪K
k=1 B	k/2(xk) for m large, we

get after passing to a subsequence

fm(�
′) ⊆ B5	k/8(xk) ∩�m ⊆ Dk

m = �m ∩ Bσ (xk) for some k ∈ {1, . . . , K } (3.18)
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for some appropriate σ ∈ [5	k/8, 7	k/8] and m large. We know that Dk
m is connected,

and its boundary ∂Dk
m consists of a single Jordan curve. Therefore the complement of

�m − ∂Dk
m = �m − ∂Bσ (xk) consists of exactly two components which are

Dk
m and �m − Bσ (xk).

As fm is a diffeomorphism, we know that γm := f −1
m (∂Dk

m) is a single Jordan curve in
�p, in particular connected, and, as γm ∩�′ = ∅ by (3.18), we conclude

γm ⊆ U (ql) for some l ∈ {1, . . . , L}
after passing to a subsequence. As U (ql) is a disc, the complement of γm in �p consists
of exactly two components, one of which is the interior Im of γm in U (ql) which moreover
is a disc as well. We call the other component the exterior Em , and see that Em is not a
disc, as Im ⊕ Em = �p �∼= S2. These components correspond under fm to the components
of �m − ∂Dk

m .
By (3.18), we see f −1

m (Dk
m) �⊆ U (ql), hence Dk

m
∼= f −1

m (Dk
m) = Em is not a disc and

�m − Bσ (xk) = f −1
m (Im) is a disc.

Then Dk
m appears in (2.20) and is replaced in the construction of Proposition 2.1 by a disc,

and we get

genus(�) = genus(�̃m) ≤ genus
(
(�m − Bσ (xk))⊕ B1(0)

)
= 0.

But genus(�) = genus(spt μ) ≥ 1 by (3.1), hence can exclude the first case in (3.16).
Therefore we have the second case in (3.16) and prove that no topology is lost in Propo-

sition 2.1 in the sense of (3.2). If (3.2) is not satisfied, we get from (2.23) that Ñ ≥ 1 and
after renumbering in (2.20) that

p1 ≥ 1. (3.19)

This means that D1
m is not a disc and by construction in (2.22), there exists a closed

curve γm in BMrm (x1)∩�m which is not null-homotopic in �m . As γ
�p
m := f −1

m (γm) is
connected and U (ql) are discs, it has to meet �′ in (3.17), hence

qm ∈ γ�p
m ∩�′ �= ∅.

Passing to a subsequence, we get qm → q ∈ �′ ⊆ �0, and we select an open neigh-

bourhood U (q) ⊂⊂ �0 of q which is a disc, say ϕ : U (q)
≈−→B1(0), ϕ : U	(q) ∼= B	(0).

Clearly for m large, we have qm ∈ U (q) ∩ γ
�p
m . As U (q) is a disc and γ

�p
m is not

null-homotopic, γ
�p
m cannot stay in U (q), hence there is

qm,	 ∈ γ�p
m ∩ ∂U	(q) for 0 < 	 < 1. (3.20)

As fm(γ
�p
m ) = γm ⊆ BMrm (x1), we get

| fm(qm,	)− x1| → 0 for 0 < 	 < 1. (3.21)

Next choosing

�′ ∪ U (q) ⊂⊂ �′′ ⊂⊂ �′′′ ⊂⊂ �0

and writing

�gpoin,m fm = e2um�gm fm = e2um
−→
H fm on �p,
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Estimation of the conformal factor under bounded Willmore energy 1369

we estimate by (3.16)
∫

�′′′
|e2um

−→
H fm |2 dμgpoin,m ≤ C

∫

�p

|−→H fm |2 dμgm ≤ C

and get by standard elliptic theory, see [5, Theorem 8.8], (2.2) and (3.4) for m large

‖ fm ‖W 2,2(�′′)≤ C,

hence after passing to a subsequence using (3.4)

fm → f0 weakly in W 2,2
loc (�0),weakly∗ in W 1,∞

loc (�0),

gm → g0 := f ∗
0 geuc weakly in W 1,2

loc (�0),

um → u0 weakly in W 1,2
loc (�0),weakly∗ in L∞

loc(�0),

g0 = f ∗
0 geuc = e2u0 gpoin,0,

(3.22)

with u0 ∈ L∞
loc(�0) and in particular, we have fm → f0 uniformly on compact subsets of

�0. Passing to a subsequence in (3.20) and (3.21) for fixed 0 < 	 < 1, we get qm,	 → q	
for this subsequence and

q	 ∈ ∂U	(q), f0(q	) = x1, (3.23)

in particular q	 �= q	̃ for 	 �= 	̃.
Now for any η ∈ C0(Rn), η ≥ 0, and Fatou’s lemma by (3.22)

∫

�0

(η ◦ f0) dμg0 ≤ lim inf
m→∞

∫

�0

(η ◦ fm) dμgm = lim inf
m→∞

∫
η dμ fm

hence for μ f0 := f0(μg0 |�0) and observing μ fm = H2�m → μ by (2.2)
∫

�0

η dμ f0 ≤
∫
η dμ,

and

μ f0 ≤ μ. (3.24)

As u0 ∈ L∞
loc(�0), we get by Proposition 7.1 and (2.7) that

# f −1
0 (x) ≤ θ2(μ f0 , x) ≤ θ2(μ, x) < 2 for all x ∈ R

n,

hence

f0 : �0 → R
n is injective. (3.25)

As {q	|0 < 	 < 1} ⊆ f −1
0 (x1) ∩ �′′, this is a contradiction, and we get (3.2) and may

choose � = �p .
It remains to prove (3.3). We know by (3.4) that

[�m] = [gpoin,m] → [gpoin,0],
and, as [spt μ] = [ f ∗geuc] = [gpoin] by (2.29) and (2.49), we have to prove

[gpoin,0] = [gpoin]. (3.26)
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1370 R. M. Schätzle

From Proposition 7.1, we know that θ2(μ f0) > 0 on f0(�0), hence f0(�0) ⊆ spt μ by

(3.24). Since f : � ≈−→ spt μ is bi-lipschitz by Proposition 2.1 and f0 is locally lipschitz,
as u0 ∈ L∞

loc(�0) in (3.22), we see that

φ : f −1 ◦ f0 : �0 → �

is locally lipschitz and is injective by (3.25). Clearly f ◦ φ = f0 and by (2.29) and (3.22)

e2u0 gpoin,0 = f ∗
0 geuc = φ∗ f ∗geuc = φ∗(e2u gpoin) = e2u◦φφ∗gpoin, (3.27)

hence

φ : (�0, gpoin,0) → (�, gpoin)

is conformal, hence holomorphic after possibly reversing the orientation, in particular smooth.
As u ∈ L∞(�), u0 ∈ L∞

loc(�0) and Dφ is continuous, we see that Dφ has full
rank everywhere on �0. Then φ, being injective, is a diffeomorphism onto the open set
� := φ(�0) ⊆ �.

Recalling �0 = � − {q1, . . . , ql}, we choose open neighbourhoods U (ql) of ql , which
are pariwise disjoint discs, and smooth closed Jordan curves γ 0

l in U (ql) such that ql

lie in the interior I 0
l of γ 0

l in U (ql). Then U0 := �0 − ∪L
l=1 I 0

l ⊂⊂ �0 is open with l
boundary components and χ(U0) = χ(�) − l. As φ is a diffeomorphism, we see that
U := φ(U0) ⊆ � is open and

χ(U ) = χ(�)− l. (3.28)

Clearly φ(∂U0) ⊆ ∂U . On the other hand for w ∈ ∂U , there exists yk ∈ U0 with φ(yk) →
w. For a subsequence we see yk → y ∈ U0 ⊆ �0, hence w = φ(y) ∈ �. If y ∈ U0, then
w ∈ U , which is a contradiction. Therefore y ∈ ∂U0 and w ∈ φ(∂U0). Together

∂U = φ(∂U0) = ∪L
l=1φ(γ

0
l ),

and the boundary of U in � consists of l Jordan curves γl := φ(γ 0
l ) ⊆ �. The boundary

of the exterior V := � − U of U lies in ∂U = ∪L
l=1γl , hence ∂V consists of at most l

Jordan curves. As χ(V ) = χ(�) − χ(U ) = l by (3.28), we see that each component of
V = � − U is a disc.

Since φ(I 0
l −{ql}) is connected and lies in �−U ⊆ �−U = V , it is contained in one of

these discs, which we call Dl . By the uniformisation theorem for simply connected Riemann
surfaces, see [4, Theorem IV.1.1], these are conformally equivalent to the disc or the plane
in C. Extending beyond the Jordan curves γ 0

l and γl , we get conformal diffeomorphisms

ϕl : B1(0)
≈−→ (I 0

l , gpoin,0), ϕl(0) = ql , ψl : B1(0)
≈−→(Dl , gpoin). Then

hl := ψ−1
l ◦ φ ◦ ϕl : B1(0)− {0} → B1(0)

is holomorphic and injective. Therefore hl extends to a holomorphic function on
B1(0) with h′

l(0) �= 0, and φ extends to a holomorphic function φ : (�, gpoin,0) →
(�, gpoin) and Dφ has full rank everywhere on �. Then φ(�) is open and compact,
hence φ(�) = � and φ is surjective. Also φ is a local diffeomorphism, hence a covering
projection, as � is compact. Then #φ−1(q) is finite and constant for q ∈ �. As φ is
injective on �0 = � − {q1, . . . , ql}, we see that φ is injective, hence a diffeomorphism.
From (3.27), we see φ∗gpoin = e2u0−2(u◦φ)gpoin,0, hence φ∗gpoin = gpoin,0, which yields
(3.26), and the proposition is proved. 
�
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Estimation of the conformal factor under bounded Willmore energy 1371

Combining the previous proposition with §2, we estimate the conformal factor and get
the equivalence of no topologiccal loss after applying appropriate Möbius transformations
and compactness in moduli space.

Theorem 3.1 Let �m ⊆ R
n be closed, orientable, embedded surfaces of fixed genus p ≥ 1

with

lim sup
m→∞

W(�m) < 8π, (3.29)

�m ⊆ B1(0),

H2�m → μ �= 0 weakly as Radon measures. (3.30)

Then spt μ is a closed, orientable, embedded topological surface of genus(spt μ) ≤ p.
No topology is lost in the sense that

genus(spt μ) = p (3.31)

if and only if some topology is kept in the sense that

genus(spt μ) ≥ 1 (3.32)

and the conformal structues

[�m] lie in a compact subset of the moduli space. (3.33)

In this case if moreover

lim sup
m→∞

W(�m) < W(μ)+ en, (3.34)

then the induced metrics gm := geuc|�m are uniformly conformal to unit volume constant
curvature metrics gpoin,m := e−2um gm for m large, more precisely

lim sup
m→∞

‖ um ‖L∞(�)< ∞. (3.35)

Proof Proposition 2.1 implies that spt μ is a closed, orientable, embedded topological
surface of genus(spt μ) ≤ p. By Proposition 2.4 the assumptions (3.31) and (3.34) imply
(3.35). It remains to prove the equivalence of (3.31) on the ond side and (3.32) and the relative
compactness of the conformal structures [�m] on the other side.

When no topology is lost in the sense of (3.31), the conformal structures lie in a compact
subset of moduli space by Proposition 2.3 and obviously we have (3.32).

Conversely if some topology is kept in the sense of (3.32) and if the conformal structures
lie in a compact subset of moduli, we get (3.31) by Propsition 3.1. 
�
Theorem 3.2 Let �m ⊆ R

n be closed, orientable, embedded surfaces of genus p ≥ 1
with

lim sup
m→∞

W(�m) < 8π.

Then the conformal structures induced by �m lie in a compact subset of the moduli
space if and only if no topology is lost after applying appropriate Möbius transformations,
more precisely that any subsequence has a subsequence such that after applying appropriate
Möbius transformations

H2�m → μ weakly as Radon measures
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with spt μ is a closed, orientable, embedded topological surface and

genus(spt μ) = p.

In this case after passing to a subsequence the conformal structures converge

[�m] → [spt μ] in moduli space.

Proof When no topology is lost for all subsequences, the conformal structures lie in a compact
subset of moduli space by Proposition 2.3.

Conversely by Proposition 2.2 any subsequence has a subsequence such that after applying
appropriate Möbius transformations some topology is kept in the sense that genus(spt μ) ≥
1, and when the conformal structures lie in a compact subset of moduli, we get by Propsition
3.1 that genus(spt μ) = p and the convergence of the conformal structues as above. 
�

4 Main results

For a closed, orientable surface � with smooth metric g0 or at least uniformly conformal
to a smooth metric, we recall the definition in (1.7)

W(�, g0, n) := inf{W( f ) | f : � → R
n smooth immersion conformal to g0}.

Theorem 4.1 Let f : � → R
n be a smooth immersion of a closed, orientable surface

� �∼= S2 with

W( f ) ≤ min(8π,W(�, f ∗geuc, n)+ en)− δ (4.1)

for some δ > 0. Moreover we assume that the conformal structure induced by the pull-back
metric of f lies in a compact subset K of the moduli space.

Then after applying an Möbius transformation, the pull-back metric g := f ∗geuc is
uniformly conformal to a unit volume constant curvature metric gpoin := e−2u g, more
precisely

‖ u ‖L∞(�)≤ C(n, p, K , δ).

Proof We consider a sequence of smooth immersions fm : � → R
n with pull-back metrics

gm := f ∗
m geuc,

W( fm) ≤ min(8π,W(�, gm, n)+ en)− δ (4.2)

and with conformal structures induced by gm converging in moduli space. As W( fm) ≤
8π−δ by (4.2), we apply Proposition 2.2 and can proceed after applying appropriate Möbius
transformations and passing to a subsequence as in Proposition 2.1 with some topology
kept, that is genus(spt μ) ≥ 1. By Proposition 3.1 no topology is lost in the sense that
genus(spt μ) = genus(�), and we get a uniformly conformal W 2,2−immersion f :
� → R

n with

[gm] = [ fm(�)] → [spt μ] = [ f ∗geuc] in moduli space

by (3.3). Then by [10, Proposition 5.1 and Theorem 5.1]

lim sup
m→∞

W(�, gm, n) ≤ W(�, f ∗geuc, n) ≤ W( f ),
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Estimation of the conformal factor under bounded Willmore energy 1373

hence by (4.2)

lim sup
m→∞

W( fm) < W( f )+ en,

which verifies (2.91). Then by Proposition 2.4

lim sup
m→∞

‖ um ‖L∞(�)< ∞,

and the theorem follows, as fm was an arbitrary sequence. 
�
As W(�, g, n) ≥ βn

p and e3 = 4π , we obtain the following corollary, which may be
considered as a pratial converse of [9, Lemma 5.1].

Theorem 4.2 Let f : � → R
n be a smooth immersion of a closed, orientable surface

� of genus p ≥ 1 with

W( f ) ≤
{

8π − δ for n = 3,
βn

p + en − δ for n ≥ 4,
(4.3)

for some δ > 0 and assume that the conformal structure induced by the pull-back metric of
f lies in a compact subset K of the moduli space.

Then after applying an Möbius transformation, the pull-back metric g := f ∗geuc is
uniformly conformal to a unit volume constant curvature metric gpoin := e−2u g, more
precisely

‖ u ‖L∞(�)≤ C(n, p, K , δ). (4.4)


�
Also we generalize the lower semicontinuity of W(�, g, n)with respect tog of [10] Propo-

sition 5.1 below the energy level Wn,p to the energy level 8π . We write W(�, c, n) :=
W(�, g, n) for the conformal structure c induced by g.

Proposition 4.1 Let � �∼= S2 be a closed, orientable surface and consider conformal struc-
tures cm → c converging in moduli space. Then

lim inf
m→∞ W(�, cm, n) < 8π �⇒ W(�, c, n) ≤ lim inf

m→∞ W(�, cm, n).

In particular c �→ W(�, c, n)is continuous at c with W(�, c, n) ≤ 8π .

Proof We select unit volume constant curvature metrics gpoin,m, gpoin inducing cm, c with

gpoin,m → gpoin smoothly on �

and smooth immersion fm : � → R
n conformal to gpoin,m and with

W( fm) ≤ W(�, cm, n)+ 1/m.

Clearly by assumption and en ≥ 2π , we see

W( fm) ≤ min(8π,W(�, cm, n)+ en)− δ

for δ > 0 small enough, m large, and get by Theorem 4.1 after applying appropriate
Möbius transformations for the pull-back metrics gm := f ∗

m geuc = e2um gpoin,m that

lim sup
m→∞

‖ um ‖L∞(�)< ∞.
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1374 R. M. Schätzle

Then by Proposition 6.1 and the remark following after passing to an appropriate subse-
quence

fm → f weakly in W 2,2(�),

f ∗geuc = e2u gpoin,

for some u ∈ L∞(�). Therefore f is a W 2,2−immersion uniformly conformal to gpoin ,
and we get from [10, Theorem 5.1]

W(�, c, n) ≤ W( f ) ≤ lim inf
m→∞ W( fm) = lim inf

m→∞ W(�, cm, n).

Finally, if c �→ W(�, c, n) were not continuous at c with W(�, c, n) ≤ 8π , by upper
semicontinuity of c �→ W(�, c, n) in [10, Proposition 5.1], there exists a sequence cm → c
with

lim inf
m→∞ W(�, cm, n) < W(�, c, n) ≤ 8π.

Then by above

W(�, c, n) ≤ lim inf
m→∞ W(�, cm, n),

which is a contradiction, and the proposition is proved. 
�

Appendix A: Estimates in higher dimension

In this section, we prove a higher dimensional version of [9, Theorem 6.1]. We recall the
definition of the constants in (1.2)

en :=
⎧⎨
⎩

4π for n = 3,
8π/3 for n = 4,
2π for n ≥ 5.

Theorem 5.1 Let f : R
2 → R

n be a complete conformal immersion with induced metric
g = e2u geuc and square integrable second fundamental form satisfying∫

R2

Kg dμg = 0, (5.1)

∫

R2

|A|2 dμg ≤ 4en − δ :=
⎧⎨
⎩

16π − δ for n = 3,
32π/3 − δ for n = 4,
8π − δ for n ≥ 5,

(5.2)

for some δ > 0. Then the limit λ = limz→∞ u(z) ∈ R exists, and

‖u − λ‖L∞(R2), ‖Du‖L2(R2), ‖D2u‖L1(R2) ≤ C(n, δ)
∫

R2

|A|2 dμg. (5.3)

Proof For n = 3, we estimate with |K | ≤ |A|2/2 that∫

R2

|K | dμg ≤ 1

2

∫

R2

|A|2 dμg ≤ 8π − δ/2,
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Estimation of the conformal factor under bounded Willmore energy 1375

and the result follows from [9, Theorem 6.1]. For n = 4, we estimate with |A0|2 =
|A|2/2 − K and (5.1) that∫

R2

|K | dμg + 1

2

∫

R2

|A0|2 dμg ≤ 3

4

∫

R2

|A|2 dμg ≤ 8π − 3δ/4,

and again the result follows from [9, Theorem 6.1].
For n ≥ 5, we get by elementary differential geometry from geuc = e−2u g and Kgeuc = 0

that

−�gu = Kg on R
2. (5.4)

Let ϕ : R
2 → Gn,2 ⊆ P

n−1(C) be the Gauß map of f on R
2 into the Grassmanian of

oriented two planes as subset of the complex projective space, see [12, §2.2]. We know from
[12, §2.3]

|Dϕ|2 = 1

2
|A|2, (5.5)

in particular Dϕ ∈ L2(R2) by (5.2), hence ϕ ∈ W 1,2
0 (R2,Pn−1(C)) in the sense of

[12, §2.1]. Further from [12, §2.2], we know for the standard Kähler two-form ω on P
n−1(C)

that

ϕ∗ω = Kgvolg. (5.6)

We get by (5.1) ∫

R2

ϕ∗ω = 0

and by (5.2) ∫

R2

Jϕ dμg ≤ 1

2

∫

R2

|Dϕ|2 dμg = 1

4

∫

R2

|A|2 dμg ≤ 2π − δ/4.

Then by [12, Corollary 3.5.7] there exists a smooth v : R
2 → R with

−�v = ∗ϕ∗ω in R
2, lim

z→∞ v(z) = 0, (5.7)

and satisfying the estimates

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2)≤C(n, δ)
∫

R2

|Dϕ|2 dμg ≤C(n, δ)
∫

R2

|A|2 dμg.

(5.8)

We rewrite (5.7) by (5.6) into

−�gv = −e−2u�v = e−2u ∗ ϕ∗ω = Kg

and see from (5.4) that u−v is an entire harmonic function. But [12, Theorem 4.2.1, Corollary
4.2.5] combined with (5.1), imply that u is bounded. Therefore u − v is also bounded and
reduces to a constant λ. Then (5.3) follows from (5.8), which proves the theorem. 
�
With this theorem, we obtain extensions of [9, Theorems 3.1 and 4.1] along the proofs given
there.
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Theorem 5.2 Let f : � → R
n be an immersion of a closed, orientable surface

� of genus p ≥ 1 with W( f ) ≤ �. Assume that f (�) ⊆ ⋃K
k=1 B	k/2(xk) with 	l/	k ≤

R, such that for all k = 1, . . . , K and some δ > 0 the following conditions hold:

∫

B	k (xk )

|A|2 dμ < 4en − δ =
⎧⎨
⎩

16π − δ for n = 3,
32π/3 − δ for n = 4,
8π − δ for n ≥ 5,

(5.9)

∫

B	k (xk )−B	k /2(xk )

|A|2 dμ < ε2. (5.10)

Denoting by Dk,α
σ , 1 ≤ α ≤ mk, the components of f −1(Bσ (xk)) which meet ∂B9	k/16(xk),

we further assume for all σ ∈ [5	k/8, 7	k/8] up to a set of measure at most 	k/16 that∫

Dk,α
σ

Kg dμg > −2π + δ for all α = 1, . . . ,mk . (5.11)

Then for ε ≤ ε(n,�, δ) and C0 ≥ C0(�), there is a constant curvature metric g0 = e−2u g
such that

sup
�

|u| ≤ C(n,�, R, K , p, δ).


�
Remark We see that (5.9) satisfies for n = 3, 4 the weaker conditions [9] Theorem 3.1
(3.1) and (3.2) with different δ and for ε small enough. This follows from |K | ≤
|A|2/2 and |A0|2 = |A|2/2 − K and the observation by (5.11) and [9, 2.6] that∣∣∣∣∣∣∣

∫

Dk,α
σ

Kg dμg

∣∣∣∣∣∣∣
≤ Cεα.


�
We recall the definitions of the constants in (1.1), see also [9],

β̃n
p := min

{
4π +

k∑
i=1

(βn
pi

− 4π) : 1 ≤ pi < p,
k∑

i=1

pi = p

}
,

where β̃n
1 = ∞, and in (1.3)

Wn,p := min(8π, β̃n
p, β

n
p + en).

For n = 3, the last term could be ommitted as β3
p + e3 > 8π .

Theorem 5.3 For p ≥ 1, let C(n, p, δ) be the class of closed, orientable, genus p surfaces
f : � → R

n satisfying W( f ) ≤ Wn,p − δ for some δ > 0. Then for any f ∈ C(n, p, δ)
there is a Möbius transformation � and a constant curvature metric g0, such that the metric
g induced by � ◦ f satisfies

g = e2u g0 where sup
�

|u| ≤ C(n, p, δ) < ∞.


�
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Estimation of the conformal factor under bounded Willmore energy 1377

As already pointed out in [9], the bound W3,p is sharp for n = 3, but for n ≥ 4 there is
no indication that the terms β4

p + (8π/3) or βn
p + 2π are necessary.

There is also a version to solve (5.7) when f is an immersion of a disc, but we do not
use it in the text.

Proposition 5.1 Let f : B1(0) ⊆ R
2 → R

n, be a conformal immersion with induced metric
g = e2u geuc and square integrable second fundamental form satisfying

∫

B1(0)

|A|2 dμg ≤
{

8π − δ for n = 3,
4π − δ for n ≥ 4,

(5.12)

for some δ > 0. Then there exists a smooth solution v : B1(0) → R of

−�gv = Kg on B1(0) (5.13)

satisfying

‖v‖L∞(B1(0)), ‖Dv‖L2(B1(0)), ‖D2v‖L1(B1(0)) ≤ C(n, δ)
∫

B1(0)

|A|2 dμg. (5.14)

Proof For n ≥ 4, we let as in the proof of the previous theorem ϕ : B1(0) → Gn,2 ⊆
P

n−1(C) be the Gauß map of f on B1(0) into the Grassmanian. Extending by ϕ(z) :=
ϕ(1/z̄) for |z| > 1, we see ϕ ∈ W 1,2

0 (R2,Pn−1(C)) in the sense of [12, §2.1] by (5.5) and
(5.12), and for the standard Kähler two-form ω on P

n−1(C), see [12, §2.2], that
∫

R2 ϕ
∗ω = 0.

Next by (5.5) and (5.12)∫

R2

Jϕ dμg = 2
∫

B1(0)

Jϕ dμg ≤
∫

B1(0)

|Dϕ|2 dμg = 1

2

∫

B1(0)

|A|2 dμg ≤ 2π − δ/2.

Then by [12, Corollary 3.5.7] there exists a smooth v : R
2 → R with

−�v = ∗ϕ∗ω in R
2, lim

z→∞ v(z) = 0, (5.15)

and satisfying the estimates

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2) ≤ C(n, δ)
∫

R2

|Dϕ|2 dμg ≤ C(n, δ)
∫

B1(0)

|A|2 dμg.

(5.16)

As above (5.15) implies by (5.6) that −�gv = Kg on B1(0), hence (5.13), and (5.16) gives
(5.14), which proves the propsition for n ≥ 4.

We improve for n = 3 by considering the Gauß map of f on B1(0) into the sphere
as ν : B1(0) → S2. Extending as above by ν(z) := ν(1/z̄) for |z| > 1, we see
ν ∈ W 1,2

0 (R2, S2) and
∫

R2 ν
∗volS2 = 0. Next Jν = |Kg| and by (5.12)

∫

R2

Jν dμg = 2
∫

B1(0)

|Kg| dμg ≤
∫

B1(0)

|A|2 dμg < 8π − δ.

Then proceeding as in [9, Theorem 6.1] there exists a smooth v : R
2 → R with

−�v = ∗ν∗volS2 in R
2, lim

z→∞ v(z) = 0,
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and satisfying the estimates

‖v‖L∞(R2), ‖Dv‖L2(R2), ‖D2v‖L1(R2) ≤ C(δ)
∫

R2

|Dν|2 dμg ≤ C(δ)
∫

B1(0)

|A|2 dμg.

Observing that ∗ν∗volS2 = Kg on B1(0), this proves the proposition for n = 3 as above.

�

Remark We mention that (5.12) can be replaced along [9] Theorem 6.1 by∫

B1(0)

|Kg| dμg ≤ 4π − δ for n = 3,

∫
B1(0)

|Kg| dμg + 1
2

∫
B1(0)

|A0|2 dμg ≤ 4π − δ,∫
B1(0)

|A0|2 dμg < 4π,

}
for n = 4.


�

Appendix B: Convergence in W2,2

In this appendix, we prove a useful convergence proposition.

Proposition 6.1 Let fm : � → R
n be smooth immersions of a closed, orientable surface

� uniformly conformal to some smooth unit volume constant curvature metrics gpoin,m

and

f ∗
m geuc = e2um gpoin,m,

W( fm), ‖ um ‖L∞(�)≤ �

for some � < ∞.

Then for a subsequence there exist diffeomorphisms φm : � ≈−→ � such that replacing
fm by fm ◦ φm

fm → f weakly in W 2,2(�),weakly∗ in W 1,∞(�),
um → u weakly in W 1,2(�),weakly∗ in L∞(�), (6.1)

gpoin,m → gpoin smoothly,

f ∗geuc = e2u gpoin . (6.2)

If

π( f ∗
m geuc) → τ in T , (6.3)

then φm can be chosen with φm " id� and

π( f ∗geuc) = π(gpoin) = τ.

Proof By [9, Lemma 5.1] the conformal structures induced by gm := f ∗
m geuc respectively by

gpoin,m are compactly contained in moduli space, hence there exist diffeomorphisms

φm : � ≈−→ � such that for a subsequence

φ∗
m gpoin,m → gpoin smoothly
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Estimation of the conformal factor under bounded Willmore energy 1379

to a smooth unit volume constant curvature metric gpoin . After reparametrizing, we may
assume φm = id� . We get by elementary differential geometry and the Gauß–Bonnet
theorem

−�gm um + 2πχ(�)e−2um = Kgm . (6.4)

Therefore∫

�

|Dum |2gpoin,m
dμgpoin,m =

∫

�

|Dum |2gm
dμgm

= −
∫

�

�gm um · um dμgm =
∫

�

(
Kgm − 2πχ(�)e−2um

)
um dμgm

≤ C(�,�)

⎛
⎝

∫

�

1 dμgpoin,m +
∫

�

|Kgm | dμgm

⎞
⎠ ≤ C(�,�)

⎛
⎝1 +

∫

�

|A fm |2 dμ fm

⎞
⎠

≤ C(�,�)(1 + W( fm)) ≤ C(�,�),

as W( fm), |um | ≤ �, |K | ≤ |A|2/2 and the Gauß–Bonnet theorem. Therefore

‖ Dum ‖L2(�,gpoin,m )
≤ C(�,�),

and, as gpoin,m → gpoin , we get for a subsequence

um → u

⎧⎨
⎩

weakly in W 1,2(�),

weakly∗ in L∞(�),
and pointwise almost everywhere on �.

Next

�gpoin,m fm = e2um
−→
H fm on �

and, as |um | ≤ �,
∫

�

|e2um
−→
H fm |2 dμgpoin,m ≤ C(�)

∫

�

|−→H fm |2 dμ fm = C(�)W( fm) ≤ C(�),

and get by standard elliptic theory, see [5] Theorem 8.8, and gpoin,m → gpoin smoothly
that fm is bounded in W 2,2(�), hence after passing to a subsequence

fm → f weakly in W 2,2(�).

As f ∗
m geuc = e2um gpoin,m and |um | ≤ �, gpoin,m → gpoin , we see that ∇ fm is bounded in

L∞(�), hence ∇ fm → ∇ f is weakly∗ in L∞(�). By the above convergences

f ∗geuc = e2u gpoin .

If π( f ∗
m geuc) → τ in Teichmüller space, we may further assume that φm " id� and

τ ← π( f ∗
m geuc) = π(gpoin,m) → π(gpoin),

hence π( f ∗geuc) = π(gpoin) = τ , and the proposition is proved. 
�
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Remarks 1. Clearly (6.1) is equivalent to [10, (2.3) – (2.5)], (6.2) is [10, 2.6], and (6.3)
is [10, 2.2] with τ0 replaced by τ .

2. Convergence of the Willmore energy

W( fm) → W( f )

gives even strong convergence fm → f in W 2,2, see [10, Proposition 5.3].
3. If we add the assumption that gpoin,m → gpoin smoothly, the statement of the proposition

is true without diffeomorphisms φm , as it is immediately seen from the beginning of the
proof.


�

Appendix C: W2,2-immersions

Proposition 7.1 Let f : B1(0) ⊆ R
2 → R

n with uniformly positive definite pull-back
metric in the sense that

c0geuc ≤ g := f ∗geuc ≤ Cgeuc (7.1)

for some 0 < c0 ≤ C < ∞.
Then for μ f := f (μg)

# f −1(x) ≤ (2C/c0) θ
2∗ (μ f , x) for any x ∈ R

n, (7.2)

and if further f ∈ W 2,2(B1(0)), then

# f −1(x) ≤ θ2(μ f , x) for all x ∈ R
n . (7.3)

Proof We consider finitely many distinct p1, . . . , pN ∈ f −1(x) and see for 	 small that
B	(pk) ⊆ B1(0) are pairwise disjoint. By (7.1), we get li p f ≤ √

2C < ∞ and

μ f (BL	(x)) = μg
(

f −1(BL	(x))
) ≥ μg(∪N

i=1 B	(pi )) ≥ c0 Nπ	2,

hence

θ2∗ (μ f , x) = lim inf
	→0

μ f (B	(x))/(π	
2) ≥ c0 N/L2,

which is (7.2).
To proceed for f ∈ W 2,2, it suffices to consider θ2∗ (μ f , x) < ∞, in particular f −1(x) is

finite. We see for 	 small enough that x �∈ f (∂B	(pi )) and claim for μi := f (μgB	(pi ))

that

θ2(μi , x) ≥ 1. (7.4)

This implies

N ≤
N∑

i=1

θ2(μi , x) ≤ θ2(μ f , x),

and (7.3) follows.
To prove (7.4), we consider f (0) = 0 with lim inf |p|→1 | f (p)| ≥ r > 0. As f is

lipschitz, the image μ f = f (μg) = f (Jg0 f ·μg0) is an integral varifold, see [15, 15.7]. We
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prove that μ f has square integrable weak mean curvature in Br (0). For η ∈ C1
0(Br (0),Rn),

we see that η ◦ f has compact support in B1(0) and calculate the first variation

δμ f (η) =
∫

divμ f η dμ f =
∫

B1(0)

(divμ f η) ◦ f dμg,

where the divergence is given by

(divμ f η) ◦ f = gi j∂i f T ((Dη) ◦ f )∂ j f = gi j 〈∂i f, ∂ j (η ◦ f )〉.
We continue

δμ f (η) =
∫

B1(0)

gi j 〈∂i f, ∂ j (η ◦ f )〉√g dL2 = −
∫

B1(0)

∂ j (g
i j √g∂i f )(η ◦ f ) dL2

= −
∫

B1(0)

(�g f )(η ◦ f ) dμg = −
∫

B1(0)

−→
H f (η ◦ f ) dμg.

Therefore μ f has weak mean curvature in Br (0) given by

−→
H μ f =

∑
p∈ f −1

−→
H f (p) ∈ L2(μ f ). (7.5)

Then from [8, A.10], we get θ2(μ f , x) ≥ 1 for any x ∈ spt μ f ∩ Br (0) . As f (0) = 0,
we get from (7.2) that θ2∗ (μ f , 0) > 0, in particular 0 ∈ spt μ f , and (7.4) follows. 
�

Proposition 7.2 Let f ∈ W 2,2(�,Rn) for some closed surface � with uniformly positive
definite pull-back metric in the sense that

c0g0 ≤ g := f ∗geuc ≤ Cg0 (7.6)

for some smooth metric g0 on � and 0 < c0 ≤ C < ∞.
Then

μ f := f (μg) = # f −1 · H2 f (�) = # f −1 · H2spt μ f ,

spt μ f = f (�). (7.7)

Moreover μ f is an integral varifold with square integrable weak mean curvature and

W(μ f ) = W( f ),

# f −1(x) ≤ θ2(μ f , x) ≤ W( f )/(4π) for all x ∈ R
n . (7.8)

If W( f ) < 8π , then f is injective, in particular

f : � ≈−→ spt μ f = f (�)

is a homeomorphism and

μ f = H2spt μ f = H2 f (�).

If moreover f is uniformly conformal to a smooth metric g0 on �, that is f ∗geuc =
e2u g0 with u ∈ L∞(�), then f is a bi-lipschitz homeomorphism.
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Proof Again as f is lipschitz from (7.6), we see that the image μ f = f (μg) = f (Jg0 f ·
μg0) is an integral varifold and

μ f = # f −1 · H2 f (�), (7.9)

see [15, 15.7]. Clearly spt μ f ⊆ f (�), as f (�) is compact, hence closed. On the other
hand by (7.2), we get θ2∗ (μ f ) > 0 on f (�), hence spt μ f = f (�), and (7.7) follows.

As η ◦ f has compact support in � for any η ∈ C1
0(R

n,Rn), we see as in (7.5) that μ f

has weak mean curvature given by

−→
H μ f =

∑
p∈ f −1

−→
H f (p) ∈ L2(μ f )

and

W(μ f ) = 1

4

∫
|−→H μ f |2 dμ f = 1

4

∫

�

|−→H f |2 dμg = W( f ) < ∞,

which gives the first part in (7.8). Then from [8, A.17], we get θ2(μ f ) ≤ W(μ f )/(4π), and
the second part follows from (7.3).

If W( f ) < 8π , we see that # f −1 ≤ 1, hence f is injective and by (7.7)

μ f = H2spt μ f = H2 f (�).

As obviusly f : � → spt μ f = f (�) is surjective, we get that f is bijective, and, as f
is continuous and � is compact, we see that f is a homeomorphism.

Finally we assume f to be uniformly conformal. We already know that f is lipschitz,
and it remains to prove that its inverse is lipschitz. We will use [12, Lemma 4.2.8]. If f −1

is not lipschitz, we have pk, qk ∈ � with

| f (pk)− f (qk)| < d�,g0(pk, qk)/k. (7.10)

We get for a subsequence pk → p, qk → q in �, and, as diamg0� is finite, f (p) = f (q),
hence p = q , as f is injective. Introducing local conformal coordinates for g0 around p,
we get an open neighbourhood U (p) of p and ϕ : B1(0) ∼= U (p) with ϕ(0) = p, ϕ∗g0 =
e2vgeuc, v ∈ L∞(B1(0)). Then

( f ◦ ϕ)∗geuc = ϕ∗(e2u g0) = e2(v+u◦ϕ)geuc.

and f0 := f ◦ ϕ : B1(0) → R
n is conformal and f0 ∈ W 2,2

loc (B1(0)). Then for M :=‖
v ‖L∞(B1(0)) + ‖ u ‖L∞(�)< ∞, we can choose 0 < 	 < 1 with

∫

B	(0)

|D2 f0|2 dL2 < c0e−2M ,

where c0 = (π tanh π)/2 is given in [12, Lemma 4.2.8]. For k large, a square with vertices
ϕ−1(pk), ϕ

−1(qk) is contained in B	(0), and we get from [12, Lemma 4.2.8]

d�,g0(pk, qk) ≤ eM d�, f ∗geuc (pk , qk) ≤ √
2eM | f (pk)− f (qk)|,

which contradicts (7.10), and the proposition is proved. 
�
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