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Abstract In this paper, we generalize Colding–Minicozzi’s recent results about codime-
nsion-1 self-shrinkers for the mean curvature flow to higher codimension. In particular, we
prove that the sphere b f Sn(

√
2n) is the only complete embedded connected F-stable self-

shrinker in Rn+k with H �= 0, polynomial volume growth, flat normal bundle and bounded
geometry. We also discuss some properties of symplectic self-shrinkers, proving that any
complete symplectic self-shrinker in R4 with polynomial volume growth and bounded second
fundamental form is a plane. As a corollary, we show that there is no finite time Type I
singularity for symplectic mean curvature flow, which has been proved by Chen–Li using
different method. We also study Lagrangian self-shrinkers and prove that for Lagrangian
mean curvature flow, the blow-up limit of the singularity may be not F-stable.
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1 Introduction

Let �n be an n-dimensional immersed submanifold of Rn+k . We say � is a self-shrinker for
the mean curvature flow, if it satisfies a quasi-linear elliptic system

H = −1

2
x⊥, (1.1)

where H is the mean curvature vector of � in Rn+k, x is the position vector, and w⊥ is the
normal part of a vector w in Rn+k .
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Self-shrinkers are special solutions for the mean curvature flow equation
(

∂

∂t
x
)⊥

= H, (1.2)

and what is more, they are very important singularities of the mean curvature flow.
In 1984, Huisken [15] proved that, if the initial hypersurface M0 in Rn+1 is strictly convex,

then along the mean curvature flow, the surface will be strictly convex at each time, and the
mean curvature flow will contract to a point at a finite time T . Moreover, the normalized
mean curvature flow will converge exponentially to a round sphere, the simplest example of
self-shrinker.

In 1990, Huisken [16] studied Type I singularities of the mean curvature flow, and using
a crucial monotonicity formula, he proved that any Type I singularity of the mean curvature
flow must be a self-shrinker. More precisely, if the mean curvature flow develops Type I
singularity at finite time T , then the rescaled mean curvature flow will converge smoothly
to a self-shrinker. In the same paper, Huisken gave a first classification theorem for the self-
shrinkers in hypersurface case, proving that the sphere is the only closed self-shrinker with
nonnegative mean curvature.

Later on, Huisken [17] classified complete self-shrinkers and proved that Sm × Rn−m are
the only smooth embedded hypersurfaces with nonnegative mean curvature H , polynomial
volume growth, bounded second fundamental form, and satisfying the self-shrinker equation
(1.1).

In 1994, Ilmanen [18] studied singularities of mean curvature flow of surfaces. Suppose
�t is a solution of mean curvature flow, t ∈ [0, T ). Define

�λ
t ≡ �

(y,T ),λ
t = λ−1(�λ−2t+T − y), t ∈

[
− T

λ2 , 0
)
. (1.3)

Ilmanen proved that: Any family of rescalings {Mλ
t }t∈[− T

λ2 ,0)
converges subsequentially to a

self-similar shrinking mean curvature flow {νt }t<0 in the sense of Radon measures for all t
and ν−1 satisfies the self-shrinker equation (1.1).

Recently, Colding and Minicozzi [8] studied generic singularities of generic mean cur-
vature flow of hypersurfaces and proved that shrinking spheres, cylinders and planes are
the only stable self-shrinkers. Let us first recall some notations and definitions. Given
x0 ∈ Rn+k, t0 > 0, define the functional Fx0,t0 by

Fx0,t0(�) = (4π t0)
− n

2

∫
�

e
− |x−x0 |2

4t0 dμ. (1.4)

We will observe (as in the hypersurface case) that � is a critical point of the functional Fx0,t0
precisely when it is a self-shrinker (Proposition 2.6). The entropy λ = λ(�) of � is then
defined to be the supremum of the Fx0,t0 functionals

λ = sup
x0,t0

Fx0,t0(�). (1.5)

It is easy to see that the critical points of λ are self-shrinkers for the mean curvature flow.
We will say that a self-shrinker is entropy-stable if it is a local minimum for the entropy
functional. The main results of [8] is as follows:

Theorem 1.1 (Theorem 0.12 of [8]) Suppose that �n ⊂ Rn+1 is a smooth complete embed-
ded self-shrinker without boundary and with polynomial volume growth.
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Self-shrinkers for the mean curvature flow in arbitrary codimension 995

(1) If � is not equal to Sm × Rn−m, then there is a graph �̃ over � of a function with
arbitrary small Cl norm (for any fixed l) so that λ(�̃) < λ(�).

(2) If � is not Sn and does not split off a line, then the function in (1) can be taken to have
compact support.

In particular, in either case, � cannot arise as a tangent flow to the mean curvature flow
starting from �̃.

Roughly speaking, the proof of Theorem 1.1 can be divided into three parts:

(A) Suppose � does not split off a line isometrically and it is entropy-stable, then it is
F-stable;

(B) F-stable implies mean convexity (i.e., H ≥ 0);
(C) Classify the mean convex self-shrinkers.

For (C), they proved that

Theorem 1.2 (Theorem 0.17 of [8]) Sm × Rn−m are the only smooth complete embedded
self-shrinkers without boundary, with polynomial volume growth, and H ≥ 0 in Rn+1.

Theorem 1.2 improves Huisken’s classification theorem [17] by removing the assumption
that “� has bounded second fundamental form”. It is easy from the self-shrinker equation
(1.1) to see that the factor Sm has radius

√
2m.

Then they classified all F-stable self-shrinkers in Rn+1:

Theorem 1.3 (Theorem 4.30 of [8]) Sn(
√

2n) is the only smooth embedded closed F-stable
hypersurface in Rn+1 for any n ≥ 2.

Theorem 1.4 (Theorem 4.31 of [8]) Rn is the only smooth complete embedded noncompact
F-stable hypersurface in Rn+1 without boundary and with polynomial volume growth.

The F-functional recalled above plays then a key role in Colding–Minicozzi’s classification
and one might wonder which kind of geometric functional it really is. A beautiful aspect of this
new approach is that F-stability is actually very closely related (in fact almost equivalent) to
the classical Volume-stability of an associated minimal submanifold via a simple and elegant
construction due to Smoczyk [24]. We will treat this relationship in a forthcoming note [4].

We have seen that self-shrinkers are important singularities for the mean curvature flow.
Although there are many works in the hypersurface case, there are only few results in higher
codimension. In 2005, Smoczyk [23] generalized Huisken’s result [17] to higher codimen-
sions and gave a classification theorem for self-shrinkers with parallel principle normal
ν := H

|H| :

Theorem 1.5 (Theorem 1.1 of [23]) Let �n ⊂ Rn+k, n ≥ 2, be a compact self-shrinker.
Then � is spherical if and only if H �= 0 and ∇⊥ν = 0.

Smoczyk also classified complete self-shrinkers with H �= 0, parallel principle normal and
bounded geometry (Theorem 1.3 of [23]).

Based on Smoczyk’s work, we prove the following classification of F-stable self-
shrinkers:

Main Theorem 1 Sn(
√

2n) is the only n-dimensional F-stable embedded closed self-
shrinker with H �= 0 and flat normal bundle in Rn+k .
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More generally, we have:

Main Theorem 2 Let �n ⊂ Rn+k be a complete embedded connected self-shrinker with
H �= 0, polynomial volume growth and flat normal bundle. Suppose further that � has
uniform bounded geometry and is F-stable. Then � must be Sn(

√
2n).

We can see that most of the results on high codimensional case are obtained under the
assumption “with flat normal bundle”. Indeed, it is an interesting question that “whether or
under which conditions the blow up flow of the mean curvature flow is normal flat”. In fact,
as we know [1], the type II blow-up flow of a curve shrinking flow for space curves is a planar
curve (thus normal flat).

Two important mean curvature flows with high codimension are the symplectic and the
Lagrangian mean curvature flows. In these cases we can prove:

Main Theorem 3 There does not exist any two-dimensional complete embedded symplectic
self-shrinker in R4 with flat normal bundle, bounded geometry and |H| �= 0.

Recently, Le–Sesum [19] gave a gap theorem for the self-shrinker which states that a complete
self-shrinker with polynomial volume growth and |A| < 1

2 must be a plane. Later, Cao and
Li [5] generalized their result to high codimensional case. (Note that, our definition of self-
shrinker is slightly different from their’s. In [19] and [5], the assumption is |A| ≤ 1, which
in our notation becomes |A| ≤ 1

2 .) Note also that all the following theorems do not need the
assumption “with flat normal bundle”.

For symplectic self-shrinkers, using the elliptic equation satisfied by the Kähler angle and
the self-adjoint property of the stability operator, we can obtain a stronger gap theorem:

Main Theorem 4 Suppose �2 is a complete symplectic self-shrinker with polynomial vol-
ume growth in R4. If |A|2 ≤ 1, then � must be a plane.

It is proved in [14] that a symplectic translating soliton for the symplectic mean curvature
flow with polynomial volume growth, flat normal bundle and bounded second fundamental
form must be minimal (thus a plane). We have similar result for symplectic self-shrinker.
Indeed, we can remove the “normal flat” assumption in this case.

Main Theorem 5 Suppose �2 is a complete symplectic self-shrinker in R4 with polynomial
volume growth and Kähler angle α. If |A|2 is bounded and cos α ≥ δ > 0, then � must be a
plane.

We can then give a direct proof of the following fact first proved by Chen and Li [6] by a
different approach.

Corollary 1.6 There is no finite time Type I singularity for the symplectic mean curvature
flow.

For the Lagrangian mean curvature flow, Chen and Li [7] and Wang [26] proved that there
is no finite time Type I singularity in the almost calibrated case. On the contrary, in 2007,
Groh et al. [11] constructed examples of monotone, equivariant Lagrangian mean curvature
flow which can develop Type-I singularity. The blow up flow converges to some equivariant
Lagrangian self-shrinkers classified by Anciaux [2]. Neves [21] also constructed Lagrangian
mean curvature flow with trivial Maslov class which develops singularity at finite time.

One can show that any equivariant Lagrangian self-shrinkers can never be F-stable. In
fact, motivated by Hamiltonian stability of minimal Lagrangian minimal surfaces [22], we
introduce Hamiltonian F-stability (see Appendix A) and prove that
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Main Theorem 6 Complete equivariant Lagrangian self-shrinkers are never Hamiltonian
F-stable. In particular, they are never F-stable in the usual sense.

As a corollary, we have

Corollary 1.7 The blow-up limit of the singularity of a Lagrangian mean curvature flow
may be not F-stable.

On the other hand, Wang [25] considered the graphic self-shrinker and gave a Bernstein
type theorem. Indeed, Ecker–Huisken [10] showed that a self-shrinker is a plane if it is an
entire graph with polynomial volume growth. Wang [25] can remove the assumption “with
polynomial volume growth”.

Recently, Zhang [27] also considered F-stability of self-shrinker solutions to the harmonic
map heat flow.
Added in proof After the submission of our paper, two preprints by Andrews et al. [3] and
Lee and Lue [20] appeared on arxiv with significant overlap with our results.

The following sections are organized as follows: In Sects. 2 and 3, we compute the first
variation and second variation formulas for F-functional, respectively; in Sect. 4, we consider
minimal submanifolds of spheres, proving that they are all self-shrinkers, which is known
to expert (for example, [23]); in Sect. 5, we prove Main Theorem 1 and Main Theorem 2;
and in Sects. 6 and 7, we prove the properties of symplectic self-shrinkers and Lagrangian
self-shrinkers, respectively.

2 The first variation formula

In this section, we will compute the first variation of the F-functional and recall some of the
results of [8].

Suppose the variation vector field is �′
0 = V, where V is a normal vector field. Set

x′
0 = y, t ′0 = h. Furthermore, suppose x0 = 0, t0 = 1, such that

F0,1(�0) = (4π)−
n
2

∫
�0

e− |x|2
4 dμ0. (2.1)

From the first variation formula for area [9], we know that

dμ′ = −〈�′
0, H〉dμ = −〈V, H〉dμ. (2.2)

Here, H is the mean curvature vector of �0. By direct computation, we have

∂

∂s
log

{
(4π ts)

− n
2 e− |x−xs |2

4ts

}
= ∂

∂s

{
−n

2
log 4π − n

2
log ts − |x − xs |2

4ts

}

= − n

2ts
t ′s − 〈x − xs, x′ − x′

s〉
2ts

+ |x − xs |2
4t2

s
t ′s

=
( |x − xs |2

4t2
s

− n

2ts

)
t ′s − 〈x − xs, V〉

2ts
+ 〈x − xs, x′

s〉
2ts

. (2.3)

Thus we have

∂

∂s

{
(4π ts)

− n
2 e− |x−xs |2

4ts

}

= (4π ts)
− n

2 e− |x−xs |2
4ts

{( |x − xs |2
4t2

s
− n

2ts

)
t ′s − 〈x − xs, V〉

2ts
+ 〈x − xs, x′

s〉
2ts

}
. (2.4)
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Therefore, we obtain the first variation formula:

F ′(�)= ∂

∂s
|s=0 Fxs ,ts (�s)= (4π)−

n
2

∫
�

{(|x|2
4

− n

2

)
h−
〈

x
2
, V
〉
+
〈

x
2
, y
〉
−
〈
V, H
〉}

e− |x|2
4 dμ

= (4π)−
n
2

∫
�

{
−
〈
V, H+ x⊥

2

〉
+
(|x|2

4
− n

2

)
h+ 1

2

〈
x, y
〉}

e− |x|2
4 dμ.

(2.5)

�0 is said to be a self-shrinker if

H + x⊥

2
= 0. (2.6)

Next, we will prove that a critical point of the functional is indeed a self-shrinker. To prove
this, we first prove some identities on the self-shrinker.

Following Colding–Minicozzi [8], we introduce the operator

Lv ≡ 	v − 1

2
〈x,∇v〉 = e

|x|2
4 div

(
e− |x|2

4 ∇v

)
. (2.7)

Now let us recall some properties of the operator L proved in [8]. It is easy to see that
Colding–Minicozzi’s proofs for these results can be generalized to high codimensional case
easily. So we will omit most of the proofs here.

Lemma 2.1 (Lemma 3.8 of [8]) If �n ⊂ Rn+k is a submanifold of Rn+k, u is a C1 function
with compact support, and v is a C2 function, then∫

�

u(Lv)e− |x|2
4 = −

∫
�

〈∇u,∇v〉e− |x|2
4 . (2.8)

Corollary 2.2 (Corollary 3.10 of [8]) Suppose �n ⊂ Rn+k is a complete submanifold with-
out boundary. If u and v are C2 functions with∫

�

(|u∇v| + |∇u||∇v| + |uLv|) e− |x|2
4 < ∞, (2.9)

then we get ∫
�

u(Lv)e− |x|2
4 = −

∫
�

〈∇u,∇v〉e− |x|2
4 . (2.10)

To keep short, we will say that a function u is “in the weighted W 2,2 space” if∫
�

(|u|2 + |∇u|2 + |Lu|2) e− |x|2
4 < ∞. (2.11)

By Corollary 2.2, if u and v are both in the weighted W 2,2 space, then we have∫
�

u(Lv)e− |x|2
4 =
∫
�

v(Lu)e− |x|2
4 . (2.12)
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Lemma 2.3 (Lemma 3.20 of [8]) If �n ⊂ Rn+k is a submanifold of Rn+k with H + x⊥
2 = 0,

then

Lxi = −1

2
xi , (2.13)

L|x|2 = 2n − |x|2. (2.14)

Here, xi is the i-th component of the position vector x, i.e., xi = 〈x, ∂i 〉.
Lemma 2.4 (Lemma 3.25 of [8]) If �n ⊂ Rn+k is a complete submanifold of Rn+k without

boundary, with polynomial volume growth, and H + x⊥
2 = 0, then∫

�

(|x|2 − 2n)e− |x|2
4 = 0 (2.15)

∫
�

xe− |x|2
4 = 0 =

∫
�

x|x|2e− |x|2
4 (2.16)

∫
�

(|x|4 − 2n(2n + 4) − 16|H|2)e− |x|2
4 = 0 (2.17)

Furthermore, if w is a constant vector in Rn+k , then∫
�

〈x, w〉2e− |x|2
4 = 2

∫
�

|wT |2e− |x|2
4 . (2.18)

Corollary 2.5 (Corollary 3.34 of [8]) If � is as in Lemma 2.4, then

∫
�

{( |x|2
4

− n

2

)2

− n

2

}
e− |x|2

4 = −
∫
�

|H|2e− |x|2
4 . (2.19)

Now we can conclude the main result in this section.

Proposition 2.6 � is a critical point of F0,1 if and only if H + x⊥
2 = 0.

Proof By the first variation formula (2.5), we see that � is a critical point of the functional
F0,1 if and only if

⎧⎪⎪⎨
⎪⎪⎩

H + x⊥
2 = 0, on �,∫

�

( |x|2
4 − n

2

)
e− |x|2

4 dμ = 0,

∫
�

xe− |x|2
4 dμ = 0,

which is equivalent to H + x⊥
2 = 0 by (2.15) and (2.16). ��

3 The second variation formula

In this section, we will compute the second variation of the functional F0,1. Following
Colding–Minicozzi [8], we will use square brackets [·] to denote weighted integrals

[ f ] =
∫
�

f e− |x|2
4 .
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We suppose

∂s |s=0�s = V, ∂s |s=0xs = y, ∂s |s=0ts = h,

∂ss |s=0�s = V′, ∂ss |s=0xs = y′, ∂ss |s=0ts = h′.

Then by (2.4) and (2.5), we have

F ′′ =
[(

−
〈
V, H + x⊥

2

〉
+
( |x|2

4
− n

2

)
h + 1

2
〈x, y〉
)2
]

+
[
−
〈
V′, H + x⊥

2

〉
+
( |x|2

4
− n

2

)
h′ + 1

2
〈x, y′〉
]

+
[
−
〈

V,

(
H + (x − xs)

⊥

2ts

)′〉
+
( |x − xs |2

4t2
s

− n

2ts

)′
h +
〈(

x − xs

2ts

)′
, y
〉]

. (3.1)

We compute the second variation at a critical point of F0,1, i.e., H + x⊥
2 = 0. Then using

Lemma 2.4, we have

F ′′ =
[(( |x|2

4
− n

2

)
h + 1

2
〈x, y〉
)2
]

− [〈V, H′〉] −
[〈

V,
((x − xs)

⊥)′

2ts
− (x − xs)

⊥

2t2
s

t ′s
〉]

+
[( 〈x − xs, x′ − x′

s〉
2t2

s
− |x − xs |2

2t3
s

t ′s + n

2t2
s

t ′s
)

h

]
+
[〈

x′ − x′
s

2ts
− x − xs

2t2
s

t ′s, y
〉]

=
[( |x|2

4
− n

2

)2

h2 + h

( |x|2
4

− n

2

)
〈x, y〉 + 1

4
〈x, y〉2

]

− [〈V, H′〉]− 1

2

[
〈V, ((x − xs)

⊥)′〉
]

+ 1

2

[
〈V, x⊥〉h

]

+
[(

1

2
〈x, V〉 − 1

2
〈x, y〉 − |x|2

2
h + n

2
h

)
h

]
+
[

1

2
〈V, y〉 − 1

2
〈y, y〉 − 1

2
〈x, y〉h
]

.

(3.2)

Note that by Lemma 2.4,

[
h

( |x|2
4

− n

2

)
〈x, y〉
]

= h

〈[ |x|2
4

x
]

, y
〉
− h

n

2
〈[x] , y〉 = 0.

Thus we have

F ′′ =
[( |x|2

4
− n

2

)2

h2 + 1

4
〈x, y〉2 − 〈V, H′〉 − 1

2
〈V, ((x − xs)

⊥)′〉

+ h〈x, V〉 − h〈x, y〉 + h2
(

n

2
− |x|2

2

)
+ 1

2
〈V, y〉 − 1

2
|y|2
]

=
[(( |x|2

4
− n

2

)2

− n

2

)
h2 + 1

4
〈x, y〉2 − 〈V, H′〉 − 1

2
〈V, ((x − xs)

⊥)′〉

+ h〈x, V〉 − h〈x, y〉 + 1

2
〈V, y〉 − 1

2
|y|2
]
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=
[
−h2|H|2 + 1

2
|yT |2 − 〈V, H′〉 − 1

2
〈V, ((x − xs)

⊥)′〉 + h〈x, V〉

− h〈x, y〉 + 1

2
〈V, y〉 − 1

2
|y|2
]

=
[
−〈V, H′〉 − 1

2
〈V, ((x − xs)

⊥)′〉 + h〈x, V〉 − h2|H|2 + 1

2
〈V, y〉 − 1

2
|y⊥|2
]

. (3.3)

Here, the second equality used (2.15), the third equality used (2.18) and Corollary 2.5, and
the fourth equality used (2.16).

From (3.3), we see that in order to compute the second variation of F0,1, it suffices to
compute H′ and ((x−xs)

⊥)′. The computation will use the variations of normal vector fields
and mean curvature vectors. The proofs are standard. For the purpose of completeness, we
give the proofs of them in the Appendix A. Assuming them, we will continue our computation.

By Lemma 8.4, we have

− 〈V, H′〉 = −〈V βeβ, (	V α + V βhβ
i j h

α
i j )eα〉

= −V α(	V α + V βhβ
i j h

α
i j ). (3.4)

By Lemma 8.2 and the fact that x0 = 0, we compute

− 1

2
〈V, ((x − xs)

⊥)′〉 = −1

2
〈V, (〈x − xs, eα〉eα)′〉

= −1

2
〈V, 〈x′ − x′

s, eα〉eα〉 − 1

2
〈V, 〈x − xs, e′

α〉eα〉

−1

2
〈V, 〈x − xs, eα〉e′

α〉

= −1

2
〈V, 〈V − y, eα〉eα〉

−1

2
〈V, eα〉〈x,−∇V α − V β〈∇̄ei eβ, eα〉ei + bβ

αeβ〉

−1

2
〈x, eα〉〈V, bβ

αeβ〉

= −1

2
〈V, V − y⊥〉 + 1

2
V α〈x,∇V α〉 + 1

2
V αV β〈∇̄ei eβ, eα〉〈x, ei 〉

−1

2
V αbβ

α 〈x, eβ〉 − 1

2
V βbβ

α 〈x, eα〉. (3.5)

Note that

V αV β〈∇̄ei eβ, eα〉 = V β V α〈∇̄ei eα, eβ〉 = −V αV β〈∇̄ei eβ, eα〉,

thus

V αV β〈∇̄ei eβ, eα〉 = 0.

On the other hand,

−1

2
V αbβ

α 〈x, eβ〉 = −1

2
V βbα

β〈x, eα〉 = 1

2
V βbβ

α 〈x, eα〉.
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Hence, we obtain that

− 1

2
〈V, ((x − xs)

⊥)′〉 = −1

2
〈V, V − y⊥〉 + 1

2
V α〈x,∇V α〉

= −1

2
|V|2 + 1

2
〈V, y〉 + 1

2
V α〈x,∇V α〉. (3.6)

Putting (3.4) and (3.6) into (3.3), we obtain

F ′′ =
[
−V α(	V α + V βhβ

i j h
α
i j ) − 1

2
|V|2 + 1

2
〈V, y〉 + 1

2
V α〈x,∇V α〉

+h〈x, V〉 − h2|H|2 + 1

2
〈V, y〉 − 1

2
|y⊥|2
]

=
[
−V α

(
	V α+V βhβ

i j h
α
i j −

1

2
〈x,∇V α〉+ 1

2
V α

)
+〈V, y〉−h2|H|2+h〈x, V〉− 1

2
|y⊥|2
]
.

(3.7)

Recall that the self-shrinker equation is given by

H = −1

2
x⊥,

thus we have the second variation formula:

F ′′ =
[
−〈V, LV〉 + 〈V, y〉 − h2|H|2 − 2h〈H, V〉 − 1

2
|y⊥|2
]

. (3.8)

Here L is an operator from N� to N� defined by

L(V αeα) ≡
(

	V α + V βhβ
i j h

α
i j − 1

2
〈x,∇V α〉 + 1

2
V α

)
eα. (3.9)

When k = 1, i.e., � is a hypersurface in Rn+1, the above operator reduces to be

L(v) ≡ 	v + |A|2v − 1

2
〈x,∇v〉 + 1

2
v. (3.10)

This is just the operator defined by Colding–Minicozz [8].

Definition 3.1 We say that a self-shrinker � is F-stable if for every normal variation V ,
there exist variations of x0 and t0 that make F ′′ ≥ 0.

4 Minimal submanifolds in spheres

In this section, we will show that any minimal submanifold of the sphere is a self-shrinker
for the mean curvature flow.

In the following, we will first give a generalized definition of self-shrinker.

Definition 4.1 We say a manifold �n ⊂ Rn+k is a self-shrinker if it is a time t = − 1
2λ

slice
of a self-shrinking mean curvature flow that disappears at (0,0), i.e., of a mean curvature flow
satisfying

�t = √−2λt�− 1
2λ

. (4.1)

Here, λ is a positive constant.
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Self-shrinkers for the mean curvature flow in arbitrary codimension 1003

It is easy to show that a self-shrinker defined in Definition 4.1 is equivalent to

H = −λx⊥, (4.2)

where x is the position vector of � in Rn+k .

Theorem 4.1 A complete submanifold �n ⊂ Sn+k−1(r) ⊂ Rn+k is a minimal submanifold
of Sn+k−1(r) if and only if it is a self-shrinker in Rn+k for λ = n

r2 , where λ is the constant
in Definition 4.1.

Proof We choose a local orthonormal frame {eA}n+k
A=1 in Rn+k such that {ei }n

i=1 are tangent to
�, {eα}n+k−1

α=n+1 are in the normal bundle of � in Sn+k−1(r), and en+k is normal to Sn+k−1(r).

We denote by ∇̃ and ∇̄ the Levi-Civita connections on Sn+k−1(r) and Rn+k , respectively,
and H̃ and H̄ the mean curvature vector of � in Sn+k−1(r) and Rn+k , respectively. Then we
have

H̄ =
n∑

i=1

n+k−1∑
α=n+1

〈∇̄ei ei , eα〉eα +
n∑

i=1

〈∇̄ei ei , en+k〉en+k

=
n∑

i=1

n+k−1∑
α=n+1

〈∇̃ei ei , eα〉eα +
n∑

i=1

〈∇̄ei ei , en+k〉en+k

= H̃ +
〈

n∑
i=1

∇̄ei ei , en+k

〉
en+k . (4.3)

Thus, � is minimal in Sn+k−1, i.e., H̃ = 0, if and only if

H̄ =
〈

n∑
i=1

∇̄ei ei , en+k

〉
en+k . (4.4)

As {e1, . . . , en+k−1} is an orthonormal frame of Sn+k−1(r), and that en+k is normal to
Sn+k−1(r), we know that for each i

− 〈∇̄ei ei , en+k〉 =
〈
ei , ∇̄ei

(
1

r
x
)〉

=
〈
ei ,

1

r
ei

〉
= 1

r
. (4.5)

Here, we have used the fact that ∇̄Vx = V for each vector V. Putting (4.5) into (4.4) and
using the fact that en+k = x

r , we know that (4.4) is equivalent to

H̄ = −n

r
en+k = − n

r2 x = − n

r2 x⊥. (4.6)

Comparing (4.2) and (4.6) yields the conclusion with λ = n
r2 . ��

5 Classification results

In this section, we will prove the classification results.

Proof of Main Theorem 1 First note that, by Colding–Minicozzi’s result (Theorem 4.23 and
(11.10) of [8]), we know that the sphere is F-stable.

It is known that (for example, Remark 1.2 of [23]) normal flat implies parallel principle
normal. By our assumptions and Theorem 1.5, we know that �n is a minimal submanifold of
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1004 C. Arezzo, J. Sun

Sn+k−1 ⊂ Rn+k . By Theorem 4.1 and the fact that λ = 1
2 in our case, we know that Sn+k−1

is a sphere of radius
√

2n.
We choose a local orthonormal frame {eA}n+k

A=1 such that e1, . . . , en are tangential to
�, en+1, . . . , en+k are in the normal bundle, and en+k is normal to the sphere. We denote Ã
and A the second fundamental form of � in Sn+k−1 and Rn+k , respectively. Similarly, we
denote ∇̃ and ∇̄ the Levi-Civita connection of Sn+k−1 and Rn+k , respectively. Then we have
for each n + 1 ≤ α ≤ n + k − 1

hα
i j = −〈∇̄ei e j , eα〉 = −〈∇̃ei e j , eα〉 = h̃α

i j ,

and

hn+k
i j = −〈∇̄ei e j , en+k〉 = 〈e j , ∇̄ei en+k〉 =

〈
e j , ∇̄ei

(
x√
2n

)〉
= 1√

2n
〈ei , e j 〉 = 1√

2n
δi j .

Thus we know that

Hα =
n∑

i=1

hα
i i =

n∑
i=1

h̃α
i i = H̃α = 0,

and

Hn+k =
n∑

i=1

hn+k
ii =

n∑
i=1

1√
2n

=
√

n

2
.

Therefore, the mean curvature vector is given by

H = −
n+k−1∑
α=n+1

Hαen+1 − Hn+ken+k = −
√

n

2
en+k = −1

2
x. (5.1)

This is just the equation for self-shrinker.
Fix n +1 ≤ α ≤ n + k −1. We choose a normal vector field V such that locally it is given

by eα , i.e., V β = δαβ for n + 1 ≤ β ≤ n + k − 1 and V n+k ≡ 0. Then by the definition of
the stability operator (3.9), we have

(LV)α = 	V α + V βhβ
i j h

α
i j − 1

2
〈x,∇V α〉 + 1

2
V α

=
∑
i, j

(hα
i j )

2 + 1

2
=
∑
i, j

(h̃α
i j )

2 + 1

2
= |Ãα|2 + 1

2
.

Here, Ã
α = hα

i jω
i ⊗ ω j is the component of the second fundamental form Ã. For n + 1 ≤

β ≤ n + k − 1 and β �= α,

(LV)β = 	V β + V γ hγ

i j h
β
i j − 1

2
〈x,∇V β〉 + 1

2
V β

=
∑
i, j

hα
i j h

β
i j ,

and

(LV)n+k = 	V n+k + V γ hγ

i j h
n+k
i j − 1

2
〈x,∇V n+k〉 + 1

2
V n+k

=
∑
i, j

hα
i j h

n+k
i j = 1√

2n

∑
i

hα
i i = 1√

2n
Hα = 0.
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From this, we see that LV = (|Ãα|2 + 1
2 )V +∑n+1≤β≤n+k−1,β �=α(

∑
i, j hα

i j h
β
i j )eβ . Putting

this into the second variation formula (3.8) and noting that 〈V, eβ〉 = 0 for n + 1 ≤ β ≤
n + k − 1, β �= α and 〈V, H〉 = 0, we obtain

F ′′(�) =
[
−〈V, LV〉 + 〈V, y〉 − h2|H|2 − 2h〈H, V〉 − 1

2
|y⊥|2
]

=
[
−〈V, (|Ãα|2 + 1

2
)V〉 + 〈V, y〉 − h2|H|2 − 1

2
|y⊥|2
]

=
[
−|Ãα|2|V|2 − 1

2
|V − y⊥|2 − h2|H|2

]
.

We claim that Ã
α ≡ 0. Indeed, suppose it does not hold, then for this V and any h ∈ R, y ∈

Rn+2

F ′′(�) ≤
[
−|Ãα|2|V|2

]
< 0.

This contradicts the fact that � is F-stable. Thus the claim holds.
As the above argument holds for any n + 1 ≤ α ≤ n + k − 1, we know that �n must be

a totaly geodesic submanifold of Sn+k−1, thus it must be Sn . By the self-shrinker equation,
we know that it must be of radius

√
2n. This finishes the proof of the theorem. ��

Proof of Main Theorem 2 By Theorem 1.3 of [23], � must belong to one of the following
classes:

�n = 
 × Rn−1, �n = �̃r × Rn−r .

Here, 
 is one of the homothetically shrinking curves in R2 found by Abresh and Langer
and �̃r is a complete minimal submanifold of the sphere Sk+r−1(

√
2r) ⊂ Rk+r , where 0 <

r = rank(Aν) ≤ n denotes the rank of the principle second fundamental form Aν = 〈ν, A〉.
In the first case, we know that the only embedded one found by Abresh-Langer is the

circle. Thus in this case � is S1 × Rn−1 in Rn+1. But Colding–Minicozzi has shown in
Section 11 of [8] that the cylinder is not F-stable. Thus this case is impossible in our case.

In the second case, for each 0 < r ≤ n, �̃ is a minimal submanifold of Sr+k−1(
√

2r). It is
easy to see that (for example, the proof of Theorem 0.12 of [8]), �̃ is F-stable if � is so. But
in the proof of Main Theorem 1, we have proved that the only F-stable one is just Sr (

√
2r).

Thus � must be Sr (
√

2r) × Rn−r . As above, Colding–Minicozzi has shown in Section 11
of [8] that Sr (

√
2r) × Rn−r is not F-stable for all 1 < r < n.

Combining the above two cases, we see that � must be Sn(
√

2n). This proves the
theorem. ��

6 Symplectic self-shrinkers

In this section, we prove the properties of symplectic self-shrinkers and apply them to show
that there is no finite time Type I singularity for the symplectic mean curvature flow. Before
that, we first fix some notations and recall some basic facts on symplectic mean curvature
flow.

Suppose M is a Kähler-Einstein surface. Let � be a smooth surface in M , and ω, 〈·, ·〉 be
the Kähler form and the Kähler metric on M respectively. The Kähler angle α of � in M is
defined by

ω|� = cos αdμ�
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1006 C. Arezzo, J. Sun

where dμ� is the area element of the induced metric from 〈·, ·〉. We call � a symplectic
surface if cos α > 0, a Lagrangian surface if cos α = 0, a holomor phic curve if cos α = 1.

Assume that � is a symplectic surface and we consider the immersions

F0 : � −→ M

of smooth surface � in M . Suppose that � evolves along the mean curvature in M , then there
is a one-parameter family Ft = F(·, t) of immersions which satisfy the mean curvature flow
equation: {

d
dt F(x, t) = H(x, t)

F(x, 0) = F0(x).

Here H(x, t) is the mean curvature vector of �t = Ft (�) at F(x, t) in M .
Recall that [5] the Kähler angle α of � in M satisfies the parabolic equation:(

∂

∂t
− 	

)
cos α = |∇ J |2 cos α + R sin2 α cos α,

where J is the complex structure of R4 and in local orthonormal frame |∇ J |2 = |h2
1i +h1

2i |2+
|h2

2i − h1
1i |2 which depends only on the orientation of � and does not depend on the choice

of the frame. If the initial surface is symplectic, i.e. cos α(·, 0) has a positive lower bound,
then by applying the parabolic maximum principle to this evolution equation, one concludes
that cos α remains positive as long as the mean curvature flow has a smooth solution. In this
case, the mean curvature flow is called symplectic mean curvature flow.

A two dimensional self-shrinker in R4 is called symplectic self-shrinker if it is a symplectic
surface in R4.

Next we derive the elliptic equation satisfied by the Kähler angle on a symplectic self-
shrinker.

Lemma 6.1 On a symplectic self-shrinker �2 in R4, we have

	 cos α − 1

2
〈x,∇ cos α〉 = −|∇ J |2 cos α. (6.1)

Proof We may choose a local orthonormal frame {e1, e2, e3, e4} on R4 along � such that
e1, e2 are tangent to �, e3, e4 are in the normal bundle of �., and the Kähler form ω takes
the form

ω = cos αu1 ∧ u2 + cos αu3 ∧ u4 + sin αu1 ∧ u3 − sin αu2 ∧ u4, (6.2)

where {u1, u2, u3, u4} is the dual of {e1, e2, e3, e4}. Then along �, the complex structure on
R4 takes the form

J =

⎛
⎜⎜⎝

0 cos α sin α 0
− cos α 0 0 − sin α

− sin α 0 0 cos α

0 sin α − cos α 0

⎞
⎟⎟⎠ . (6.3)

The Kähler angle is given by

cos α = ω(e1, e2) = 〈e1 ∧ e2, ω〉. (6.4)

For the sake of simplicity, we can assume that the covariant derivative of the orthonormal
frame satisfy (at a fixed point p ∈ �)

∇ei e j = 0. (6.5)
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Self-shrinkers for the mean curvature flow in arbitrary codimension 1007

In the following we will compute at the point p. Recall that on a symplectic surface � in R4,
the Kähler angle satisfies (Proposition 3.3 of [12])

	 cos α = −|∇ J |2 cos α − sin α(H4
,1 + H3

,2), (6.6)

where

Hβ
,i = −〈∇̄N

ei
H, eβ〉 = 〈∇̄N

ei
(Hγ eγ ), eβ〉. (6.7)

Note that there is a different sign in the above formula from [12] because in our notation
H = −Hαeα . Now, we suppose further that � is a self-shrinker, i.e.,

H = −1

2
x⊥, (6.8)

which is equivalent to

Hβ = 1

2
〈x, eβ〉, β = 3, 4. (6.9)

Then by (6.7), we have

Hβ
,i = 〈∇̄N

ei
(Hγ eγ ), eβ〉 = 〈(∇̄ei Hγ )eγ + Hγ ∇̄ei eγ , eβ〉

= 1

2
∇̄ei 〈x, eβ〉 + Hγ 〈∇̄ei eγ , eβ〉

= 1

2
〈∇̄ei x, eβ〉 + 1

2
〈x, ∇̄ei eβ〉 + Hγ 〈∇̄ei eγ , eβ〉

= 1

2
〈ei , eβ〉 + 1

2
〈x, 〈∇̄ei eβ, e j 〉e j + 〈∇̄ei eβ, eγ 〉eγ 〉 + Hγ 〈∇̄ei eγ , eβ〉

= 1

2
〈x, e j 〉〈∇̄ei eβ, e j 〉 + 1

2
〈x, eγ 〉〈∇̄ei eβ, eγ 〉 + Hγ 〈∇̄ei eγ , vβ〉

= 1

2
hβ

i j 〈x, e j 〉 + Hγ 〈∇̄ei eβ, eγ 〉 + Hγ 〈∇̄ei eγ , eβ〉

= 1

2
hβ

i j 〈x, e j 〉 + Hγ ∇̄ei 〈eβ, eγ 〉

= 1

2
hβ

i j 〈x, e j 〉. (6.10)

Putting (6.10) into (6.6), we obtain

	 cos α = −|∇ J |2 cos α − 1

2
sin α
{

h4
1 j 〈x, e j 〉 + h3

2 j 〈x, e j 〉
}

= −|∇ J |2 cos α − 1

2
sin α
{
(h4

11 + h3
21)〈x, e1〉 + (h4

12 + h3
22)〈x, e2〉

}
. (6.11)

On the other hand, by (6.3), (6.4) and (6.5), we have

∇e1 cos α = ∇̄e1 cos α = ω(∇̄e1 e1, e2) + ω(e1, ∇̄e1 e2)

= ω(−hβ
11eβ, e2) + ω(e1,−hβ

12eβ)

= −(h4
11 + h3

12) sin α (6.12)
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and

∇e2 cos α = ∇̄e2 cos α = ω(∇̄e2 e1, e2) + ω(e1, ∇̄e2 e2)

= ω(−hβ
21eβ, e2) + ω(e1,−hβ

22eβ)

= −(h4
21 + h3

22) sin α. (6.13)

Plugging (6.12) and (6.13) into (6.11), we obtain

	 cos α = −|∇ J |2 cos α + 1

2
∇e1 cos α〈x, e1〉 + 1

2
∇e2 cos α〈x, e2〉

= −|∇ J |2 cos α + 1

2
〈x,∇e1 cos αe1 + ∇e2 cos αe2〉

= −|∇ J |2 cos α + 1

2
〈x,∇ cos α〉,

i.e,

	 cos α − 1

2
〈x,∇ cos α〉 = −|∇ J |2 cos α. (6.14)

��

As a corollary, we have

Corollary 6.2 Every complete symplectic self-shrinker must be noncompact.

Proof Suppose � is a closed symplectic self-shrinker in R4. As cos α > 0, we know from
(6.1) that

	 cos α − 1

2
〈x,∇ cos α〉 ≤ 0. (6.15)

By the strong maximum principle, cos α must be a positive constant. Then (6.1) implies that
|∇ J | ≡ 0 on �. Thus � is a holomorphic curve in R4. In particular, it must be a minimal
surface in R4. But every minimal surface in R4 is noncompact. This is a contradiction. ��

Next, we proceed to prove the Main Theorem 4. As before, we define the operator L by (2.7).
Then (6.1) becomes

L cos α = −|∇ J |2 cos α. (6.16)

Before proving the Main Theorems, we first give one identity satisfied by the mean curvature
vector on a self-shrinkers in any dimension and codimension. This generalizes Theorem 5.2
of [8]. (In Appendix B, we give another two geometric identities satisfied on a self-shrinker
in arbitrary codimension which are not needed in this paper.)

Suppose �n ⊂ Rn+k is a self-shrinker. We choose a frame {eA}n+k
A=1 on Rn+k along �

such that {ei }n
i=1 are tangent to � and {eα}n+p

α=n+1 are in the normal bundle. We will compute
pointwise. So we will always choose the frame {ei }n

i=1 such that ∇̄T
ei

e j (p) = 0, i.e., at
p, ∇̄ei e j = −hα

i j eα .
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Lemma 6.3 Let L be defined by (3.9), then we have

LH = H. (6.17)

Proof By definition, we only need to prove that

(LH)α = Hα. (6.18)

As H = −Hαeα , it suffices to show that

	Hα + Hβhβ
i j h

α
i j − 1

2
〈x,∇ Hα〉 + 1

2
Hα = Hα. (6.19)

Recall the self-shrinker equation:

−Hαeα = H = −1

2
x⊥ = −1

2
〈x, eα〉eα.

Thus we have

2Hα = 〈x, eα〉. (6.20)

Applying (6.20) gives (at the fixed point p)

Hα
,i = 〈∇̄N

ei
(Hγ eγ ), eα〉 = ei (Hγ )〈eγ , eα〉 + Hγ 〈∇̄N

ei
eγ , eα〉

= ∇̄ei Hα + 1

2
〈x, eγ 〉〈∇̄N

ei
eγ , eα〉

= 1

2
∇̄ei 〈x, eα〉 − 1

2
〈x, eγ 〉〈eγ , ∇̄N

ei
eα〉

= 1

2
〈∇̄ei x, eα〉 + 1

2
〈x, ∇̄ei eα〉 − 1

2
〈x, ∇̄N

ei
eα〉

= 1

2
〈ei , eα〉 + 1

2
〈x, hα

i j e j 〉 = 1

2
hα

i j 〈x, e j 〉. (6.21)

Here, we have used the fact that ∇̄ei x = ei . Next, we compute the second covariant derivative
at p. By (6.20) and (6.21) and our choice of the frame:

Hα
,ik = 〈∇̄N

ek
∇̄N

ei
(Hγ eγ ), eα〉 = 〈∇̄N

ek
(Hγ

,i eγ ), eα〉
= ek(Hγ

,i )〈eγ , eα〉 + Hγ

,i 〈∇̄N
ek

eγ , eα〉
= ek(Hα

,i ) + 1

2
hγ

i j 〈x, e j 〉〈∇̄N
ek

eγ , eα〉

= 1

2
ek(h

α
i j )〈x, e j 〉 + 1

2
hα

i j ∇̄ek 〈x, e j 〉 + 1

2
hγ

i j 〈x, e j 〉〈∇̄N
ek

eγ , eα〉

= 1

2

(
ek(h

α
i j ) + hγ

i j 〈∇̄N
ek

eγ , eα〉
)

〈x, e j 〉 + 1

2
hα

ik − 1

2
hα

i j h
β
k j 〈x, eβ〉. (6.22)

By the definition of covariant derivative of the second fundamental form (Section 7 of [26])
and the choice of frame, we have at p

hα
i j,k = 〈(∇̄ek A)(ei , e j ), eα〉

= 〈∇̄N
ek

(A(ei , e j )) − A((∇̄ek ei )
T , e j ) − A(ei , (∇̄ek e j )

T ), eα〉
= 〈∇̄N

ek
(hγ

i j eγ ), eα〉 = ek(h
α
i j ) + hγ

i j 〈∇̄N
ek

eγ , eα〉. (6.23)
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Therefore, we have by Codazzi equation

Hα
,ik = 1

2
hα

ik, j 〈x, e j 〉 + 1

2
hα

ik − 1

2
hα

i j h
β
k j 〈x, eβ〉. (6.24)

Taking trace of (6.22) and using (6.20), we obtain

	Hα = 1

2
Hα

, j 〈x, e j 〉 + 1

2
Hα − 1

2
hα

i j h
β
i j 〈x, eβ〉 = 1

2
〈x,∇ Hα〉 + 1

2
Hα − Hβhα

i j h
β
i j ,

(6.25)

which is just (6.19). This proves the lemma. ��
Next, we assume that the self-shrinker �n has flat normal bundle in Rn+k . From Lemma 6.3,
we can easily obtain that

L|H|2 = −2Hβ Hγ hβ
i j h

γ

i j + |H|2 + 2|∇H|2. (6.26)

Now, we can prove the Main Theorems.

Proof of Main Theorem 4 By (6.26), we have

L|H|2 ≥ −2|A|2|H|2 + |H|2 + 2|∇H|2. (6.27)

As � is normal flat, we know that

|∇ J |2 = |A|2. (6.28)

Choosing u = |H|2 and v = cos α in (2.12) and using (6.16) and (6.27), we have

[− cos α|A|2|H|2]=[|H|2L cos α]=[cos αL|H|2]≥[cos α(1−2|A|2)|H|2+2 cos α|∇H|2],
(6.29)

from which we can obtain that

[cos α(1 − |A|2)|H|2 + 2 cos α|∇H|2] ≤ 0. (6.30)

If |A|2 < 1, then H ≡ 0. From the self-shrinker equation (6.8), we know that � is a plane.
If |A|2 ≡ 1, then we have |∇H| ≡ 0. Similar to the argument of Theorem 1.1 in [5], we

know that � is a sphere S2(2) or a cylinder S1(
√

2) × R1. By Corollary 6.2, � cannot be a
sphere.

Claim The cylinder S1(
√

2) × R1 is not symplectic with respect to any complex structure
of R4.

Proof of the Claim First, we suppose the cylinder is embedded in R4 in the standard way.
Namely, it is given by

F0 : S1 × R1 → R4

F0(u, v) = (
√

2 cos u,
√

2 sin u, v, 0). (6.31)

Then

(F0)u = √
2(− sin u, cos u, 0, 0), (F0)v = (0, 0, 1, 0).

We can choose an orthonormal frame by

e1 = (− sin u, cos u, 0, 0), e2 = (0, 0, 1, 0).
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We will prove that the embedding is not symplectic with respect to any complex structure on
R4. It is well know that the space of orientation preserving complex structure in R4 is given
by

J =

⎧⎪⎪⎨
⎪⎪⎩

J ∈ SO(4) : J =

⎛
⎜⎜⎝

0 x y z
−x 0 −z y
−y z 0 −x
−z −y x 0

⎞
⎟⎟⎠ or J =

⎛
⎜⎜⎝

0 x y z
−x 0 z −y
−y −z 0 x
−z y −x 0

⎞
⎟⎟⎠, x2 + y2 + z2 =1.

⎫⎪⎪⎬
⎪⎪⎭

Now, we take any J ∈ J , if J takes the first form then it is easy to check that

Je2 = (y,−z, 0, x).

Therefore,

cos αJ,F0 = ω(e1, e2) = 〈Je1, e2〉 = −〈e1, Je2〉 = y sin u + z cos u,

which obvious has zeroes. Therefore, F0 cannot be symplectic with respect to such complex
structures.

It J takes the second form then it is easy to check that

Je2 = (y, z, 0,−x).

Therefore,

cos αJ,F0 = ω(e1, e2) = 〈Je1, e2〉 = −〈e1, Je2〉 = y sin u − z cos u,

which also obvious has zeroes. Therefore, F0 can also not be symplectic with respect to such
complex structures. Thus, we have proved that F0 cannot be symplectic with respect to any
complex structure in R4.

Now, suppose we embed the cylinder in any way F : S1 × R1 → R4 and we choose any
complex structure J ∈ J . Then we know that the differences between F and F0 are just one
translation and one rotation in R4. By an elementary computation, we can see that

cos αJ,F = cos αJ ′,F0 , (6.32)

where J ′ is another complex structure in J . By the above argument for F0, we know that
cos αJ,F must have zeroes. By definition, F is not symplectic with respect to the complex
structure J in R4.

As F and J are arbitrary, this proves the claim.
By the previous argument and the claim, we must have that � is a hyperplane in R4. ��
Next, we prove the Main Theorem 3.

Proof of Main Theorem 3 By Corollary 6.2, we know that any symplectic self-shrinker in
R4 must be complete noncompact. Suppose �2 is a complete self-shrinker in R4 with flat
normal bundle, bounded geometry and |H| �= 0, then by Theorem 1.3 of [23], we know that
� must be one of the following:

(i) 
 × R1, where 
 is one of the self-shrinking curves classified by Abresch and Langer;
(ii) �̃1 × R1, where �̃1 is a minimal submanifold of S2;

(iii) �̃2, where �̃2 is a minimal submanifold of S3.

It is known that the only embedded one obtained by Abresch and Langer is only S1. Thus in
the first case, � = S1 × R1. In the second case, as it is easy to see that any (1-dimensional)
minimal submanifold of S2 is totally geodesic in S2, which is also S1. Thus in the second
case, � is also S1 × R1. In the proof of the Main Theorem 4, we have proved that S1 × R1 is
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1012 C. Arezzo, J. Sun

not symplectic. On the other hand, as we said as above, by Corollary 6.2, the closed surface
�̃2 can also not be symplectic. Therefore, all of the three cases above cannot be symplectic.
This proves the theorem. ��
Now we can prove the Main Theorem 5.

Proof of Main Theorem 5 By (6.16), we have

L 1

cos α
= −L cos α

cos2 α
+ 2 cos α

∣∣∣∣∇ 1

cos α

∣∣∣∣
2

= |∇ J |2
cos α

+ 2 cos α

∣∣∣∣∇ 1

cos α

∣∣∣∣
2

. (6.33)

As |A|2 ≤ C for some C by our assumption, we see that

|∇α|2 ≤ |∇ J |2 ≤ 2|A|2 ≤ 2C.

Here, we used that fact that on a symplectic surface, |∇α|2 ≤ |∇ J |2 (see [12]). Therefore,

1 ≤ 1

cos α
≤ 1

δ
,

∣∣∣∣∇ 1

cos α

∣∣∣∣
2

= sin2 α

cos2 α
|∇α|2 ≤ 2C

δ2 ,

∣∣∣∣L 1

cos α

∣∣∣∣
2

=
∣∣∣∣∣
|∇ J |2
cos α

+ 2 cos α

∣∣∣∣∇ 1

cos α

∣∣∣∣
2
∣∣∣∣∣
2

≤
(

2C

δ
+ 4C

δ2

)2

.

By our assumption on the volume growth and Corollary 2.2, we know from (6.33) that

−
[∣∣∣∣∇ 1

cos α

∣∣∣∣
2
]

=
[

1

cos α
L 1

cos α

]
=
[

|∇ J |2
cos2 α

+ 2

∣∣∣∣∇ 1

cos α

∣∣∣∣
2
]

,

which is equivalent to [
|∇ J |2
cos2 α

+ 3

∣∣∣∣∇ 1

cos α

∣∣∣∣
2
]

= 0.

Therefore, we have that

∇ J ≡ 0 and cos α = const.

In particular, � is minimal. By the self-shrinker equation (6.8), we know that � must be a
plane. ��
Finally, we prove that there is no finite time Type I singularity for the symplectic mean
curvature flow. This follows from the standard monotonicity formula and the Main Theorem
5. For the purpose of completeness, we give the proof here. First we recall the following
modified monotonicity formula obtained firstly by Huisken [16].

Let H(X, X0, t, t0) be the backward heat kernel on R4. Define

ρ(X, t) = 4π(t0 − t)H(X, X0, t, t0) = 1

4π(t0 − t)
exp −|X − X0|2

4(t0 − t)
,

for t < t0. Choose one cut-off function φ ∈ C∞
0 (B2r (X0)) with φ ≡ 1 in Br (X0), where

X0 ∈ M, 0 < 2r < iM . Choose a normal coordinates in B2r (X0) and express F using the
coordinates (F1, . . . , F4) as a submanifold in R4. We define

�(X0, t0, t) =
∫
�t

φ(F)ρ(F, t)dμt .
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Then we have

Proposition 6.4 (Proposition 4.2 of [6]) Let M4 be a Riemannian manifold. Then there are
positive constants c1 and c2 depending only on M, F0 and r which is the constant in the
definition of φ such that along the mean curvature flow, we have

∂

∂t

(
ec1

√
t0−t�(X0, t0, t)

)
≤ −ec1

√
t0−t
∫
Mt

φρ(F, t)

∣∣∣∣H + (F − X0)
⊥

2(t0 − t)

∣∣∣∣
2

dμt

+c2ec1
√

t0−t . (6.34)

Definition 6.1 ([16]) We say that the mean curvature flow develops Type I singularity at
T > 0, if

lim sup
t→T

(T − t) max
Mt

|A|2 ≤ C,

for some positive constant C. Otherwise, we say the mean curvature flow develops Type II
singularity.

Using the evolution equation for the second fundamental form, we can easily see that

Lemma 6.5 (Lemma 4.6 of [6]) Let U (t) ≡ max�t |A|2. If the mean curvature flow blows up
at T > 0, there is a positive constant c depending only on M4, such that if 0 < T − t < π

16
√

c
,

the function U (t) satisfies

U (t) ≥ 1

4
√

2(T − t)
. (6.35)

Proof of Corollary 1.6 Our proof is based on the blow up argument of the mean curvature
flow, which is similar to that of the main theorem of [6]. Suppose that the mean curvature
flow develops Type I singularity at a finite time T . Assume that

λ2
k = |A|2(xk, tk) = max

t≤tk
|A|2 → ∞, as k → ∞.

Since � is closed, we may assume that xk → p ∈ � and tk → T as k → ∞. As the
singularity is of Type I, we know that for 0 < tk < tl < T ,

|F(p, tk) − F(p, tl)| ≤
tl∫

tk

|∂ F

∂t
| =

tl∫
tk

|H|dt ≤ C
√

tl − tk → 0,

as k, l → ∞. Therefore, we know that F(p, T ) exists.
Now, we choose a local coordinate on M4 such that F(p, T ) = 0. Then we rescale the

mean curvature flow as follows:

Fk(x, s) = λk(F(x, tk + λ−2
k s) − F(p, tk)), s ∈ [−λ2

k tk, 0].
Denote by �k

s the scaled surface Fk(·, s) and take

gk
i j = λ2

k gi j , (gk)i j = λ−2
k gi j .

We have

∂ Fk

∂s
= Hk,

|Ak |2 = λ−2
k |A|2.
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1014 C. Arezzo, J. Sun

Thus, we get that

|Ak | ≤ 1, |Ak |(xk, 0) = 1.

By Arzela-Ascoli theorem there is a subsequence of Fk which we also denote by Fk , such
that Fk → F∞ as k → ∞ in any ball BR(0) ⊂ R4, and F∞ satisfies

∂ F∞
∂s

= H∞,

with

|A∞|(p, 0) = 1.

In other words, �k
s → �∞

s in C2(BR(0)×[−R, 0]) for any R > 0 and any ball BR(0) ⊂ R4.
We call �∞

s the blow up flow at 0.
For any R > 0, we choose a cut-off function φR ∈ C∞

0 (B2R(0)) with φR ≡ 1 in BR(0),
where Bρ(0) is the metric ball centered at 0 with radius ρ in R4. It is easy to see that

∫

�k
s

φR(Fk)
1

0 − s
exp

(
−|Fk + λk F(p, tk)|2

4(0 − s)

)
dμk

s

=
∫

�
tk +λ

−2
k s

φ(F)
1

tk − (tk + λ−2
k s)

exp

(
− |F(x, tk + λ−2

k s)|2
4(tk − (tk + λ−2

k s))

)
dμs,

where φ is the function defined ni the definition of �. Notice that tk + λ−2
k s → T for any

fixed s. By Proposition 6.4,

∂

∂t

(
ec1

√
T −t�(X0, T, t)

)
≤ c2ec1

√
T −t ,

and it then follows that limt→T ec1
√

T −t� exists. This implies that, for any fixed s1 and s2

with −∞ < s1 < s2 < 0, we have

ec1

√
tk−(tk+λ−2

k s2)
∫

�k
s2

φR
1

(0 − s2)
n
2

exp

(
−|Fk + λk F(p, tk)|2

4(0 − s2)

)
dμk

s2

−ec1

√
tk−(tk+λ−2

k s1)
∫

�k
s1

φR
1

(0 − s1)
n
2

exp

(
−|Fk + λk F(p, tk)|2

4(0 − s1)

)
dμk

s1

→ 0 as k → ∞.

Integrating (6.34) from s1 to s2, we obtain

−ec1

√
−λ−2

k s2

∫

�k
s2

φR
1

(0 − s2)
n
2

exp

(
−|Fk + λk F(p, tk)|2

4(0 − s2)

)
dμk

s2

+ec1

√
−λ−2

k s1

∫

�k
s1

φR
1

(0 − s1)
n
2

exp

(
−|Fk + λk F(p, tk)|2

4(0 − s1)

)
dμk

s1

123
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≥
s2∫

s1

ec1

√
−λ−2

k s
∫

�k
s

φRρ(Fk, t)

∣∣∣∣Hk + (Fk + λk F(p, tk))⊥

2(0 − s)

∣∣∣∣
2

dμk
s ds

−c2λ
−2
k (s2 − s1)e

c1λ
−1
k

√−s1 . (6.36)

Since the singularity is of Type I, we know that

|F(p, tk)| ≤
T∫

tk

|∂ F

∂t
| =

T∫
tk

|H|dt ≤ C
√

T − tk ≤ C

λk
.

Without loss of generality, we can assume that λk F(p, tk) → Q as k → ∞. Letting k → ∞
in (6.36) we know that �∞

s satisfies

H∞(s) + (F∞ + Q)⊥

2(0 − s)
= 0, s ∈ (−∞, 0].

This means that �s∞ is generated by a self-shrinker, which we denote by �̂. As the Kähler
angle is scaling invariant, we know from the evolution equation of the Kähler angle and
the maximum principle that cos α ≥ δ for some δ > 0 on �̂. On the other hand, by the
monotonicity formula, it is easy to see that the blow up limit must have polynomial volume
growth (see Lemma 2.9 and Corollary 2.13 of [8]). Therefore, �̂ is a complete symplectic
self-shrinker in R4 with polynomial volume growth, bounded second fundamental form and
cos α ≥ δ > 0. By the Main Theorem 5, it must be a plane. Thus each �s∞ must be a plane.
But this contradicts the fact that |A∞|(p, 0) = 1. ��
Remark 6.6 Chen and Li [6] proved Corollary 1.6 by finding a new monotonicity formula
for symplectic mean curvature flow. Applying the new monotonicity formula, they can show
that the blow up limit must be a plane. Here, we first use the classical monotonicity formula
to show that the blow up limit must be a symplectic self-shrinker. Then we prove that it must
be a plane.

7 Equivariant Lagrangian self-shrinkers

In this section, we study the properties of equivariant Lagrangian self-shrinkers. Some of our
notations and backgrounds follow from [11].

Assume

z : I → C∗

z(φ) := u(φ) + iv(φ)

is some smooth regular curve in C∗ = C\{0}. The equivariant Lagrangian immersion L =
F(I × Sn−1) is of the following form:

F : I × Sn−1 → Cn

F(φ, x̃) := (u(φ)G(x̃), v(φ)G(x̃)),

where we assume that the complex structure J is acting on Cn by

J (x1, . . . , xn, y1, . . . , yn) := (−y1, . . . ,−yn, x1, . . . , xn)
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1016 C. Arezzo, J. Sun

and that G : Sn−1 → Rn is the standard embedding of the sphere of radius 1 in Rn . We
will denote the coordinate on I by φ and local coordinates on Sn−1 by x1, · · · , xn−1. Latin
indices i, j, k, · · · will be in the range between 1 and n − 1, whereas greek indices α, β, · · ·
are taken between 0 and n − 1. In particular, we define coordinates yα on I × Sn−1 by
y0 := φ, yi := xi for all i ∈ {1, · · · , n − 1}. Doubled indices will be summed according to
the Einstein convention.

We want to compute the induced metric and the second fundamental form. To this end,
let us denote any partial derivative of u, v with respect to φ by prime, and in addition we set
Gi := ∂G

∂xi and Gi j = ∂G
∂xi ∂x j . With this notation, we have

F0 = (u′G, v′G), Fi = (uGi , vGi ),

ν0 = J F0 = (−v′G, u′G), νi = J Fi = (−vGi , uGi ),

F00 = (u′′G, v′′G), F0i = (u′Gi , v
′Gi ), Fi j = (uGi j , vGi j ).

The induced metric gαβ and the second fundamental form hαβγ on L are given by gαβ =
〈Fα, Fβ〉 and hαβγ = 〈να, Fβγ 〉. (Note that for Lagrangian submanifold, we have the full
symmetries for the three indices α, β and γ , i.e., hαβγ = hβγα = hγαβ .) The standard metric
on Sn−1will be denoted by σi j . Thus

g00 = (u′)2 + (v′)2, g0i = 0, gi j = (u2 + v2)σi j (7.1)

and

h000 = u′v′′ − v′u′′, h00i = 0, h0i j = (uv′ − vu′)σi j , hi jk = 0. (7.2)

For the mean curvature Hα = gβγ hαβγ , we have

H0 = (n − 1)
uv′ − vu′

u2 + v2 + u′v′′ − v′u′′

(u′)2 + (v′)2 , (7.3)

Hi = 0. (7.4)

In particular, the mean curvature vector is given by

H = gαβ Hανβ = g00 H0ν0. (7.5)

It is known that [2,11] L is a self-shrinker, i.e. H = − 1
2 F⊥ if and only if

k + (n − 1)
〈z, ν〉
|z|2 = 1

2
〈z, ν〉. (7.6)

Here, ν denotes the outward pointing unit normal along the curve γ := z(I ), and k is the
curvature of γ . Using the above notation, we have

ν = −J

(
z′

|z′|
)

.

This implies that

ν = 1√
(u′)2 + (v′)2

(
v′

−u′
)

and

〈z, ν〉 = uv′ − vu′√
(u′)2 + (v′)2

. (7.7)
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The curvature k of the curve γ is determined by

k = − 1

|z′|2 〈z′′, ν〉 = u′v′′ − v′u′′

((u′)2 + (v′)2)
3
2

. (7.8)

Recall that F-stability is defined in Definition 3.1. It is not hard to see that every equivari-
ant Lagrangian self-shrinker is not F-stable in the sense of Definition 3.1 (see the proof
below). Motivated by Oh’s study of minimal Lagrangian submanifold in Käler manifold
[22], we introduce the concept of Hamiltonian F-stability. Let us first recall the definition of
Hamiltonian variation.

Definition 7.1 ([22]) Let L be a Lagrangian submanifold and V be a vector field along L .
V is call a Lagrangian (resp. Hamiltonian) variation if it satisfies that the one form on L

i∗(V�ω)

is closed (resp. exact).

Lemma 7.1 (Lemma 2.3 of [22]) A normal variation V on L is Hamiltonian if and only if

V = J · ∇ f

where f is a function on L and ∇ is the gradient on L with respect to the induced metric.

We can define Hamiltonian F-stability as follows:

Definition 7.2 We say that a Lagrangian self-shrinker L is HamiltonianF-stable if for
every Hamiltonian variation V , there exist variations of x0 and t0 that make F ′′ ≥ 0.

Now we can prove the Main Theorem 6.

Proof of Main Theorem 6 Recall that the second variation of the F-functional is given by
(3.8), where the stability operator L is defined by (3.9). Note that (3.9) is given using ortho-
normal basis for the tangent bundle and the normal bundle. Using the frame we are chosen
as above, we can easily see that for V = gαβ Vανβ , we have

L(gαβ Vανβ) = gαβ

(
	Vα + gγ δgrs gtu Vγ hαr t hδsu − 1

2
〈x,∇Vα〉 + 1

2
Vα

)
νβ. (7.9)

As before, we denote by

L = 	 − 1

2
〈x,∇(·)〉.

As V = gαβ Vανβ , we have

〈LV, V〉 = gαβ

(
	Vα + gγ δgrs gtu Vγ hαr t hδsu − 1

2
〈x,∇Vα〉 + 1

2
Vα

)
Vβ

= gαβ(LVα)Vβ + gαβ gγ δgrs gtu Vβ Vγ hαr t hδsu + 1

2
|V|2.

123



1018 C. Arezzo, J. Sun

Therefore, by (3.8),

F ′′ =
[
−gαβ(LVα)Vβ − 1

2
|V|2 − gαβ gγ δgrs gtu Vβ Vγ hαr t hδsu

+〈V, y〉 − h2|H|2 − 2h〈H, V〉 − 1

2
|y⊥|2
]

=
[

gαβ〈∇Vα,∇Vβ〉L − 1

2
|V − y⊥|2 − gαβ gγ δgrs gtu Vβ Vγ hαr t hδsu

−h2|H|2 − 2h〈H, V〉] .

=
∫
L

{
gαβ〈∇Vα,∇Vβ〉L − 1

2
|V − y⊥|2 − gαβ gγ δgrs gtu Vβ Vγ hαr t hδsu

−h2|H|2 − 2h〈H, V〉} e− |x|2
4 dμ. (7.10)

Note that we have (7.5), thus

〈H, V〉 = gαβ HαVβ = g00 H0V0 = H0V0

(u′)2 + (v′)2 ,

and

|H|2 = 〈H, H〉 = (H0)
2

(u′)2 + (v′)2 ,

Therefore,

− h2|H|2 − 2h〈H, V〉 = −h2(H0)
2 + 2h H0V0

(u′)2 + (v′)2 = − (h H0 + V0)
2

(u′)2 + (v′)2 + (V0)
2

(u′)2 + (v′)2 .

(7.11)

Using (7.1) and (7.2), we can compute directly that

gαβ gγ δgrs gtu Vβ Vγ hαr t hδsu =
(

(u′v′′ − v′u′′)2

((u′)2 + (v′)2)4 + (uv′ − vu′)2

((u′)2 + (v′)2)2(u2 + v2)2

)
(V0)

2

+ 2(uv′ − vu′)2

((u′)2 + (v′)2)(u2 + v2)3 σ i j Vi Vj . (7.12)

By definition, we also have

|x|2 = u2 + v2 (7.13)

Putting (7.11), (7.12) and (7.13) into (7.10) gives

F ′′ =
∫
L

{
gαβ gξη ∂Vα

∂yξ

∂Vβ

∂yη
− 1

2
|V−y⊥|2− (h H0+V0)

2

(u′)2+(v′2
− 2(uv′−vu′)2

((u′)2+(v′)2)(u2+v2)3 σ i j Vi Vj

+
(

1

(u′)2+(v′)2 − (u′v′′−v′u′)2

((u′)2+(v′)2)4 − (uv′−vu′)2

((u′)2+(v′)2)2(u2+v2)2

)
(V0)

2
}

e− u2+v2
4 dμ.

(7.14)
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It is easy from (7.14) to see that L is not F-stable in the usual sense. In fact, if we choose
locally

Vα =
{

1, α = 1;
0, α �= 1,

then F ′′ < 0 for this choice of V no matter what h and y are.
In order to show that L is not Hamiltonian F-stable, we need to find a Hamiltonian

variation V such that F ′′ < 0 for any choice of h and y. Now, we take any Hamiltonian
variation V. By Lemma 7.1, we know that there exists a smooth function f on L such that

V = J∇ f = J

(
gαβ ∂ f

∂yα
Fβ

)
= gαβ ∂ f

∂yα
νβ.

Therefore,

Vα = ∂ f

∂yα
,

i.e.,

V0 = ∂ f

∂φ
, Vi = ∂ f

∂xi
.

Now we choose f to be a function in L such that it is independent of φ. (In other word, it is
a function on Sn−1.) Then V0 = 0. With this choice of V, we see from (7.14) that

F ′′ =
∫
L

{
gi j gkl ∂Vi

∂xk

∂Vj

∂xl
− 2(uv′ − vu′)2

((u′)2 + (v′)2)(u2 + v2)3 σ i j Vi Vj

−1

2
|V − y⊥|2 − h2(H0)

2

(u′)2 + (v′)2

}
e− u2+v2

4 dμ

=
∫
L

{
(u2 + v2)−2σ i jσ kl ∂Vi

∂xk

∂Vj

∂xl
− 2(uv′ − vu′)2

((u′)2 + (v′)2)(u2 + v2)3 σ i j Vi Vj

−1

2
|V − y⊥|2 − h2(H0)

2

(u′)2 + (v′)2

}
e− u2+v2

4 dμ

=
∫
L

{
(u2 + v2)−2σ i j 〈∇Sn−1 Vi ,∇Sn−1 Vj 〉 − 2(uv′ − vu′)2

((u′)2 + (v′)2)(u2 + v2)3 |V|2
Sn−1

−1

2
|V − y⊥|2 − h2(H0)

2

(u′)2 + (v′)2

}
e− u2+v2

4 dμ

=
∫
L

{
(u2 + v2)−2|∇2

Sn−1 f |2
Sn−1 − 2(uv′ − vu′)2

((u′)2 + (v′)2)(u2 + v2)3 |∇Sn−1 f |2
Sn−1

−1

2
|V − y⊥|2 − h2(H0)

2

(u′)2 + (v′)2

}
e− u2+v2

4 dμ. (7.15)

By (7.1), we have that

dμ =
√

det (gαβ)dy = ((u′)2 + (v′)2)
1
2 (u2 + v2)

n−1
2

√
det (σi j )dφd x̃

= ((u′)2 + (v′)2)
1
2 (u2 + v2)

n−1
2 dφdσ, (7.16)
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where dσ is the standard volume form on Sn−1. Therefore, we have

F ′′ =
∫
I

((u′)2 + (v′)2)
1
2 (u2 + v2)

n−5
2 e− u2+v2

4 dφ

∫

Sn−1

|∇2
Sn−1 f |2

Sn−1 dσ

−2
∫
I

(uv′ − vu′)2(u2 + v2)
n−7

2

((u′)2 + (v′)2)
1
2

e− u2+v2
4 dφ

∫

Sn−1

|∇Sn−1 f |2
Sn−1 dσ

−
∫

I×Sn−1

{
1

2
|V−y⊥|2+ h2(H0)

2

(u′)2+(v′)2

}
((u′)2+(v′)2)

1
2 (u2 + v2)

n−1
2 e− u2+v2

4 dφdσ.

(7.17)

Claim ∫
I

(uv′ − vu′)2(u2 + v2)
n−7

2

((u′)2 + (v′)2)
1
2

e− u2+v2
4 dφ > 0.

Proof of the Claim Suppose the integration is 0, then we must have that

uv′ − vu′ ≡ 0.

From (7.7), we have

〈z, ν〉 ≡ 0.

Then by the self-shrinker equation (7.6), we have

k ≡ 0,

which combining (7.8) yields

u′v′′ − v′u′′ ≡ 0.

Therefore, by (7.3), we have

H0 ≡ 0,

which in turn implies by (7.5) that

H ≡ 0.

Therefore, L is a minimal self-shrinker, which must be a plane passing through the origin.
But from our construction of L , we see that L does not contain the origin. This contradiction
proves the claim.

Now, we continue our proof. We will further choose a special f . Recall the Bochner
formula on

	|∇ f |2 = 2|∇2 f |2 + 2〈∇ f,∇	 f 〉 + 2Ric(∇ f,∇ f ).

For Sn−1, the Ricci curvature is n − 1. Therefore, the above formula becomes

	Sn−1 |∇Sn−1 f |2 = 2|∇2
Sn−1 f |2 + 2〈∇Sn−1 f,∇Sn−1	Sn−1 f 〉 + 2(n − 1)|∇Sn−1 f |2. (7.18)

It is well known that the first positive eigenvalue for Sn−1 is n − 1. We take f1 to be the
eigenfunction with eigenvalue n − 1, i.e.

	Sn−1 f1 = −(n − 1) f1.
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By (7.18), we have

	Sn−1 |∇Sn−1 f1|2 = 2|∇2
Sn−1 f1|2.

Therefore, ∫

Sn−1

|∇2
Sn−1 f1|2Sn−1 dσ = 0. (7.19)

Of course, f1 is not a constant. Therefore, for this choice of f1 and V = J∇ f1, the second
variation formula (7.17) becomes

F ′′ = −2
∫
I

(uv′ − vu′)2(u2 + v2)
n−7

2

((u′)2 + (v′)2)
1
2

e− u2+v2
4 dφ

∫

Sn−1

|∇Sn−1 f1|2Sn−1 dσ

−
∫

I×Sn−1

{
1

2
|V − y⊥|2 + h2(H0)

2

(u′)2 + (v′)2

}
((u′)2 + (v′)2)

1
2 (u2 + v2)

n−1
2 e− u2+v2

4 dφdσ

≤ −2
∫
I

(uv′ − vu′)2(u2 + v2)
n−7

2

((u′2 + (v′)2)
1
2

e− u2+v2
4 dφ

∫

Sn−1

|∇Sn−1 f1|2Sn−1 dσ

< 0.

In other word, we proved that there is a Hamiltonian variation V, such that for this variation,
F ′′ < 0 for any choice of h and y. From Definition 7.2, we see that L is not Hamiltonian
F-stable. ��
Proof of Corollary 1.7 By Theorem 1.15 (ii) of [11], starting from some equivariant
Lagrangian immersion in Cn , the mean curvature flow will develop Type-I singularity and
the the rescaled flow will converge to some closed equivariant Lagrangian self-shrinker L̃∞.
By the Main Theorem 6, L̃∞ is not F-stable. ��
Acknowledgments We wish to thank Professor Jiayu Li for interesting and helpful discussions.

Appendix A

In this appendix, we will prove the variations of normal vector field and mean curvature we
need in Sect. 3. The proof is standard. When the variation vector V is the mean curvature
vector H, they are proved in [12]. We will follow the computations in [12].

We begin with fixing our notation. In a normal coordinate around some point in �, the
induced metric on � is given by

gi j = 〈∂i F, ∂ j F〉, (8.1)

where ∂i (i = 1, . . . , n) are the partial derivatives with respect to the local coordinate. Here,
〈·, ·〉 is the inner product of Rn+k .

We choose a local field of orthonormal frames e1, · · · , en, en+1, · · · , en+k of Rn+k along
�s such that e1, . . . , en are tangent vectors of �s and en+1, . . . , en+k are in the normal bundle
over �s . From now on, we will agree on the following index ranges:

1 ≤ i, j, k, l ≤ n, n + 1 ≤ α, β, γ ≤ n + k, 1 ≤ A, B, C ≤ n + k.
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1022 C. Arezzo, J. Sun

We can write

A = Aαeα, H = −Hαeα.

Let Aα = (hα
i j ), where (hα

i j ) is a matrix. By the Weingarten equation, we have

hα
i j = 〈∇̄ei eα, e j 〉 = −〈eα, ∇̄ei e j 〉 = hα

j i ,

where ∇̄ is the Levi-Civita connection on Rn+k . Furthermore,

Hα = gi j hα
i j = hα

i i .

Suppose the variation vector filed is V = V αeα , i.e.,

F(·, s) : � → Rn+k

satisfies

∂ F

∂s
= V.

Then we have

Lemma 8.1 The induced metric satisfies

∂

∂s
gi j = 2V αhα

i j , (8.2)

and

∂

∂s
gi j = −2V αhα

i j . (8.3)

Proof We prove it at a fixed point. We have

∂

∂s
gi j = ∇̄V〈∂i F, ∂ j F〉 = 〈∇̄V∂i F, e j 〉 + 〈ei , ∇̄V∂ j F〉

= 〈∇̄ei V, e j 〉 + 〈ei , ∇̄e j V〉
= 〈∇̄ei (V αeα), e j 〉 + 〈ei , ∇̄e j (V αeα)〉
= V α〈∇̄ei eα, e j 〉 + V α〈ei , ∇̄e j eα〉
= 2V αhα

i j .

Here we have used the fact that

∇̄V∂i F = ∂2

∂s∂xi
F = ∇̄∂i F V.

As at the fixed point p, gi j (p) = δi j , we know that

∂

∂s
gi j = −2V αhα

i j .

��
Lemma 8.2 Denote 〈 ∂

∂s eα, eβ〉 = 〈∇̄Veα, eβ〉 = bβ
α , then bβ

α = −bα
β , and we have

∂

∂s
eα = −∇V α − V β〈∇̄ei eβ, eα〉ei + bβ

αeβ . (8.4)

Here, ∇V α is the covariant differential for the induced metric on �s .
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Proof We have

∂

∂s
eα = 〈 ∂

∂s
eα, ei 〉ei + 〈 ∂

∂s
eα, eβ〉eβ

= 〈∇̄Veα, ei 〉ei + bβ
αeβ

= −〈eα, ∇̄V∂i F〉ei + bβ
αeβ

= −〈eα, ∇̄ei V〉ei + bβ
αeβ

= −〈eα, ∇̄ei (V βeβ)〉ei + bβ
αeβ

= −〈eα, (∇̄ei V β)eβ + V β ∇̄ei eβ〉ei + bβ
αeβ

= −(∇̄ei V α)ei − V β〈∇̄ei eβ, eα〉ei + bβ
αeβ

= −∇V α − V β〈∇̄ei eβ, eα〉ei + bβ
αeβ .

��
Lemma 8.3 The second fundamental form satisfies

∂

∂s
hα

i j = −V α
, j i + V βhα

ikhβ
jk + hβ

i j 〈eβ, ∇̄Veα〉. (8.5)

Here, V α
, j i denotes the second covariant derivative for the connection on the normal bundle.

Proof We compute at a fixed point p ∈ �. We can choose a frame ei so that ∇̄T
ei

e j (p) = 0,

i.e., at p, ∇̄ei e j = −hβ
i j eβ . From

hα
i j = −〈∇̄ei e j , eα〉,

and the fact that Rn+k is flat, we have

∂

∂s
hα

i j = −〈∇̄V∇̄ei e j , eα〉 − 〈∇̄ei e j , ∇̄Veα〉
= −〈∇̄ei ∇̄Ve j , eα〉 − 〈∇̄[V,ei ]e j , eα〉 − 〈∇̄ei e j , ∇̄Veα〉
= −〈∇̄ei ∇̄e j V, eα〉 − 〈−hβ

i j eβ, ∇̄Veα〉
= −〈∇̄ei (∇̄T

e j
V + ∇̄⊥

e j
V), eα〉 + 〈hβ

i j eβ, ∇̄Veα〉
= −〈∇̄ei (∇̄T

e j
V), eα〉 − 〈∇̄⊥

ei
∇̄⊥

e j
V, eα〉 + 〈hβ

i j eβ, ∇̄Veα〉
= 〈∇̄T

e j
V, ∇̄ei eα〉 − 〈V β

, j i eβ, eα〉 + 〈hβ
i j eβ, ∇̄Veα〉

= 〈∇̄T
e j

(V βeβ), hα
ikek〉 − V β

, j i 〈eβ, eα〉 + 〈hβ
i j eβ, ∇̄Veα〉

= −V α
, j i + V β〈hβ

jl el , hα
ikek〉 + 〈hβ

i j eβ, ∇̄Veα〉
= −V α

, j i + V βhα
ikhβ

jk + hβ
i j 〈eβ, ∇̄Veα〉.

��
Lemma 8.4 The mean curvature vector satisfies

∂

∂s
H = (	V α + V βhβ

i j h
α
i j )eα + Hα∇V α + HαV β〈∇̄ei eβ, eα〉ei . (8.6)
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Proof By Lemma 8.1 and Lemma 8.3, we have

∂

∂s
Hα = ∂

∂s

(
gi j hα

i j

)
=
(

∂

∂s
gi j
)

hα
i j + gi j ∂

∂s
hα

i j

= −2V βhβ
i j h

α
i j + (−	V α + V βhβ

i j h
α
i j + Hβ〈eβ, ∇̄Veα〉)

= −	V α − V βhβ
i j h

α
i j + Hβ〈eβ, ∇̄Veα〉. (8.7)

Combining with Lemma 8.2, we obtain

∂

∂s
H = ∂

∂s

(−Hαeα

) = −
(

∂

∂s
Hα

)
eα − Hα ∂

∂s
eα

=
(
	V α + V βhβ

i j h
α
i j − Hβ〈eβ, ∇̄Veα〉

)
eα

+Hα∇V α + HαV β〈∇̄ei eβ, eα〉ei − Hαbβ
αeβ .

Note that

−Hβ〈eβ, ∇̄Veα〉eα = −Hβbβ
αeα = −Hαbα

βeβ = Hαbβ
αeβ .

Thus we have

∂

∂s
H = (	V α + V βhβ

i j h
α
i j )eα + Hα∇V α + HαV β〈∇̄ei eβ, eα〉ei .

��

Appendix B

In this appendix, we will give another two geometric identities satisfied on self-shrinkers with
arbitrary dimension and codimension. These results generalized Theorem 5.2 and Lemma
10.8 of [8].

Suppose �n ⊂ Rn+k is a self-shrinker. We choose a frame {eA}n+k
A=1 on Rn+k along �

such that {ei }n
i=1 are tangent to � and {eα}n+p

α=n+1 are in the normal bundle. We will compute
pointwise. So we will always choose the frame {ei }n

i=1 such that ∇̄T
ei

e j (p) = 0, i.e., at
p, ∇̄ei e j = −hα

i j eα .

Lemma 9.1 Let L be defined by (3.9). Suppose w ∈ Rn+k is a fixed vector. Then on a
self-shrinker �n in Rn+k , we have

Lw⊥ = 1

2
w⊥. (9.1)

Proof By definition,

w⊥ = 〈w, eα〉eα ≡ f αeα,

where

f α = 〈w, eα〉. (9.2)
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Then computing at p using the above chosen frame, we have

f α
,i = 〈∇̄N

ei
( f γ eγ ), eα〉 = ei ( f γ )〈eγ , eα〉 + f γ 〈∇̄N

ei
eγ , eα〉

= ∇̄ei f α + 〈w, eγ 〉〈∇̄N
ei

eγ , eα〉
= ∇̄ei 〈w, eα〉 − 〈w, eγ 〉〈eγ , ∇̄N

ei
eα〉

= 〈w, ∇̄ei eα〉 − 〈w, ∇̄N
ei

eα〉 = hα
i j 〈w, e j 〉 (9.3)

and

f α
,ik = 〈∇̄N

ek
∇̄N

ei
( f γ eγ ), eα〉 = 〈∇̄N

ek
( f γ

,i eγ ), eα〉
= ek( f γ

,i )〈eγ , eα〉 + f γ

,i 〈∇̄N
ek

eγ , eα〉
= ek( f α

,i ) + hγ

i j 〈w, e j 〉〈∇̄N
ek

eγ , eα〉
= ek(h

α
i j )〈w, e j 〉 + hα

i j ∇̄ek 〈w, e j 〉 + hγ

i j 〈w, e j 〉〈∇̄N
ek

eγ , eα〉
=
(

ek(h
α
i j ) + hγ

i j 〈∇̄N
ek

eγ , eα〉
)

〈w, e j 〉 − hα
i j 〈w, ∇̄ek e j 〉

= hα
ik, j 〈w, e j 〉 − hα

i j h
β
k j 〈w, eβ〉. (9.4)

Here, we have used (6.23) and Codazzi equation. Taking trace of (9.4) and using (9.2), we
obtain

	 f α = Hα
, j 〈w, e j 〉 − hα

i j h
β
i j 〈w, eβ〉 = 〈w,∇ Hα〉 − f βhα

i j h
β
i j . (9.5)

By (6.21) and (9.3), we have

〈w,∇ Hα〉 = Hα
,i 〈w, ei 〉 = 1

2
hα

i j 〈x, e j 〉〈w, ei 〉 = 1

2
f α
, j 〈x, e j 〉 = 1

2
〈x,∇ f α〉. (9.6)

Putting (9.6) into (9.5), we obtain

	 f α + f βhα
i j h

β
i j − 1

2
〈x,∇ f α〉 + 1

2
f α = 1

2
f α. (9.7)

By definition of the operator L , this is equivalent to (9.1). ��
The following result needs “flat normal bundle” assumption on the self-shrinker.

Lemma 9.2 If we extend the operator L to tensors, then on a self-shrinker �n in Rn+k with
flat normal bundle, we have

LA = A. (9.8)

Proof We will show that

(LA)αi j = hα
i j . (9.9)

In general, we have the following Simons’ equality for the second fundamental form [12,26]:

	hα
i j = ∇i∇ j Hα + Hβhβ

il h
α
l j − hβ

ikhβ
kl h

α
l j + 2hβ

ikhα
kl h

β
l j − hβ

i j h
β
kl h

α
kl − hα

ikhβ
kl h

β
l j . (9.10)
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Combining with (9.1), we have

(LA)αi j = 	hα
i j + hβ

i j h
β
kl h

α
kl − 1

2
〈x,∇hα

i j 〉 + 1

2
hα

i j

= 1

2

(
hα

i j,k〈x, ek〉 + hα
i j − hα

jkhβ
ki 〈x, eβ〉

)
+ Hβhβ

il h
α
l j

−hβ
ikhβ

kl h
α
l j + 2hβ

ikhα
kl h

β
l j − hβ

i j h
β
kl h

α
kl − hα

ikhβ
kl h

β
l j

+hβ
i j h

β
kl h

α
kl − 1

2
〈x,∇hα

i j 〉 + 1

2
hα

i j

= hα
i j + 2hβ

ikhα
kl h

β
l j − hβ

ikhβ
kl h

α
l j − hα

ikhβ
kl h

β
l j . (9.11)

By Ricci equation,

2hβ
ikhα

kl h
β
l j − hβ

ikhβ
kl h

α
l j − hα

ikhβ
kl h

β
l j = hβ

ik(h
α
kl h

β
l j − hβ

kl h
α
l j ) + (hβ

ikhα
kl − hα

ikhβ
kl)h

β
l j

= hβ
ik Rαβk j + Rβαil h

β
l j = 0.

The last equality follows from our assumption that the normal curvature is zero. Thus we
obtain (9.9) from (9.11), This proves the lemma. ��
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