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Abstract We consider contact structures on simply-connected five-manifolds which arise
as circle bundles over simply-connected symplectic four-manifolds and show that invariants
from contact homology are related to the divisibility of the canonical class of the symplectic
structure. As an application we find new examples of inequivalent contact structures in the
same equivalence class of almost contact structures with non-zero first Chern class.
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1 Introduction

Suppose that (M, ω) is a symplectic manifold so that the symplectic form ω represents an
integral class [ω] in H2(M; R). We can consider the circle bundle X over M whose Euler class
is equal to the class [ω]. The Boothby–Wang construction [2] associates to each symplectic
manifold (M, ω)with an integral symplectic class a contact structure ξ on the manifold X . In
this article we are interested in the case where X is a simply-connected closed five-manifold.
In Sect. 4 we will show that in this case the four-manifold M also has to be simply-connected
and the Euler class [ω] is indivisible. In addition, it follows that the integral homology of X is
torsion free. By the classification of simply-connected closed five-manifolds due to Barden
[1] it is possible to determine the five-manifold X up to diffeomorphism: X is diffeomorphic
either to the connected sum

#(b2(M)− 1)S2 × S3
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720 M. J. D. Hamilton

or to

#(b2(M)− 2)S2 × S3#S2×̃S3,

depending on whether X is spin or non-spin. Here S2×̃S3 denotes the non-trivial S3-bundle
over S2. Moreover, the five-manifold X is spin if and only if M is spin or the mod 2 reduction
of the Euler class [ω] is equal to the second Stiefel–Whitney class of M. As a consequence
of this diffeomorphism classification one can construct Boothby–Wang contact structures
on the same simply-connected five-manifold X using different simply-connected symplectic
four-manifolds (M, ω) and (M ′, ω′). Up to the spin condition the four-manifolds only need
to have the same second Betti number.

In Sect. 3 we consider contact structures and almost contact structures on simply-connected
five-manifolds in general. In particular, we consider the notion of equivalence of these struc-
tures, i.e. when two such structures can be made identical by a sequence of deformations
and self-diffeomorphisms of the manifold. We will show that two almost contact structures
are equivalent on a simply-connected five-manifold if and only if their first Chern classes
have the same maximal divisibility. We call this divisibility the level of the (almost) con-
tact structure. Hence contact structures on the same level are equivalent as almost contact
structures.

Since symplectic four-manifolds exist in great number it is likely that many of the induced
Boothby–Wang contact structures on the same five-manifold X are not equivalent as contact
structures, even if they are equivalent as almost contact structures. In Sects. 6 and 7 we
will show that invariants derived from contact homology defined in [6] are related to the
divisibility of the canonical class of the symplectic structure on the simply-connected four-
manifold. This is summarized in the following main result:

Corollary 43 Let X be a closed simply-connected five-manifold which can be realized in two
different ways as a Boothby–Wang fibration over closed simply-connected symplectic four-
manifolds (M1, ω1) and (M2, ω2), whose symplectic forms represent integral and indivisible
classes:

Denote the associated Boothby–Wang contact structures on X by ξ1 and ξ2 and the canonical
classes of the symplectic structures by K1 and K2. Let d(ξi ) denote the divisibility of the first
Chern class of ξi and d(Ki ) the divisibility of Ki . Then:

• The almost contact structures underlying ξ1 and ξ2 are equivalent if and only if d(ξ1) =
d(ξ2).

Suppose that ξ1 and ξ2 are equivalent as contact structures.

• If d(ξ1) = d(ξ2) = 0, then d(K1) = d(K2).
• If d(ξ1) = d(ξ2) �= 0, then either both d(K1), d(K2) ≤ 3 or d(K1) = d(K2) ≥ 4.

Hence the existence of inequivalent contact structures on simply-connected five-manifolds
with torsion free homology is connected to the geography question of simply-connected four-
manifolds with divisible canonical class. As an application we find in Sect. 8 new examples
of inequivalent contact structures in the same equivalence class of almost contact structures
with non-zero first Chern class. To state a result we consider the following purely number
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Inequivalent contact structures 721

theoretic definition: Let d ≥ 4 be an integer. Consider the number of divisors greater or equal
to four of d . Then N (d) is this number plus one. If d is even, consider the number of odd
divisors greater or equal to four of d . Then N ′(d) is this number plus one. Using geography
results for symplectic homotopy elliptic surfaces we get:

Corollary 56 Let n ≥ 1 be an arbitrary integer.

(a) On every odd level d ≥ 5 the five-manifold #(12n − 4)S2 × S3#S2×̃S3 admits at least
N (d) inequivalent contact structures.

(b) On every even level d ≥ 4 the five-manifold #(24n − 3)S2 × S3 admits at least N (d)
inequivalent contact structures.

(c) On every even level d ≥ 4 the five-manifold #(24n − 15)S2 × S3 admits at least N ′(d)
inequivalent contact structures.

Hence as the level increases we get many inequivalent contact structures with non-zero
first Chern class. A related discussion has appeared in [22]. Inequivalent contact structures
on simply-connected five-manifolds with vanishing first Chern class have been found before
by van Koert in [15]. Also Ustilovsky [24] found infinitely many contact structures on the
sphere S5 and Bourgeois [3] on T 2 × S3 and T 5, both in the case of vanishing first Chern
class.

2 Classification of simply-connected five-manifolds

Throughout this article we use for a topological space Y the abbreviations H∗(Y ) and H∗(Y )
to denote the homology and cohomology groups of Y with Z-coefficients. Other coefficients
will be denoted explicitly.

In this section we recall the classification of simply-connected closed five-manifolds due
to Barden [1] and refer to this article for further details. Let X denote a smooth closed oriented
five-manifold. For each pair of elements η, ξ in the torsion subgroup Tor H2(X) there exists
a linking number b(η, ξ) in Q/Z. These numbers define a skew-symmetric non-degenerate
bilinear form

b : Tor H2(X)× Tor H2(X) −→ Q/Z,

called the linking form. Suppose that the five-manifold X is simply-connected. Then the first
integral homology group vanishes and the universal coefficient theorem implies that there
exists an isomorphism

H2(X; Z2) ∼= Hom(H2(X),Z2),

via evaluation of cohomology on homology classes. Hence we can think of the second
Stiefel–Whitney class w2(X) ∈ H2(X; Z2) as a homomorphism

w2(X) : H2(X) −→ Z2.

The following theorem is the classification theorem for simply-connected five-manifolds
and was proved by Barden [1, Theorem 2.2] using surgery theory:

Theorem 1 Let X, Y be simply-connected closed oriented five-manifolds. Suppose that
θ : H2(X) → H2(Y ) is an isomorphism preserving the linking forms on the torsion
subgroups and such that w2(Y ) ◦ θ = w2(X). Then there exists an orientation preserv-
ing diffeomorphism f : X → Y such that f∗ = θ .
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722 M. J. D. Hamilton

Since the linking number and the second Stiefel–Whitney class are homotopy invariants,
it follows in particular that simply-connected closed five-manifolds which are homotopy
equivalent are already diffeomorphic.

It is possible to give a complete list of building blocks of simply-connected five-manifolds
such that each simply-connected five-manifold is a connected sum of some of those building
blocks. In the following we are particularly interested in simply-connected five-manifolds X
whose integral homology is torsion free. By Poincaré duality and the universal coefficient
theorem the whole integral homology is torsion free if and only if the second homology
H2(X) is torsion free. Simply-connected five-manifolds satisfying this condition have a
simple structure, because they can be constructed using only two building blocks, which can
be described in the following way.

There exist up to isomorphism precisely two oriented S3-bundles over S2—the trivial
bundle S2 × S3 and a non-trivial bundle, denoted by S2×̃S3. The manifold S2×̃S3 can be
constructed as follows: Let B = S2×̃D3 denote the non-trivial D3-bundle over S2. Then the
boundary ∂B is the non-trivial S2-bundle over S2, hence diffeomorphic to CP

2#CP
2. Consider

a second copy B∗ of B with the opposite orientation. Then the oriented five-manifold S2×̃S3

is obtained by gluing together B and B∗ along their boundaries via the identity. In particular,
the manifold S2×̃S3 is non-spin, because a spin structure would induce a spin structure on
B and hence on ∂B, which is non-spin.

It follows from the list of building blocks in Barden’s article [1] that S2×S3 and S2×̃S3 are
the only building blocks with torsion free second integral homology. Hence every simply-
connected five-manifold with torsion free homology decomposes as a connected sum of
several copies of these two manifolds. Moreover, one can show with Theorem 1 that there
exists a diffeomorphism

S2×̃S3#S2×̃S3 ∼= S2 × S3#S2×̃S3,

hence in every non-spin connected sum one S2×̃S3 summand suffices. This implies:

Proposition 2 Let X be a simply-connected closed oriented five-manifold with torsion free
homology. Then X is diffeomorphic to

(a) #b2(X)S2 × S3 if X is spin
(b) #(b2(X)− 1)S2 × S3#S2×̃S3 if X is non-spin.

Here we denote by #r S2 × S3 the connected sum

S2 × S3#S2 × S3# · · · #S2 × S3

of r copies of S2 × S3. The empty sum in (a) for b2(X) = 0 is the 5-sphere S5.

3 Contact structures on simply-connected five-manifolds

Let X2n+1 denote a connected oriented manifold of odd dimension. By definition, an almost
contact structure on X is a rank 2n-distribution ξ ⊂ T X together with a symplectic structure
σ on the vector bundle ξ → X . A (co-orientable) contact structure is an almost contact
structure such that the symplectic form σ on ξ is of the form (dα)|ξ , where α is a nowhere
vanishing 1-form on X that defines ξ in the sense that the kernel distribution kerα equals
ξ . Note that there is a slightly more general version of contact structures which are not co-
orientable so that the defining 1-form and hence the symplectic structure on the distribution
exists only locally on X . In the following we only consider co-orientable contact structures.
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Inequivalent contact structures 723

If (ξ, σ ) is an almost contact structure we can choose a complex structure on ξ compatible
with the symplectic form σ and hence define Chern classes ck(ξ) ∈ H2k(X). These classes
do not depend on the choice of compatible complex structure, because the space of complex
structures compatible with a given symplectic form is contractible. However, they depend on
the choice of symplectic structure. For a contact structure we can choose complex structures
compatible with the symplectic form (dα)|ξ for a defining 1-form α. Since any two defining
1-forms only differ by multiplication with a nowhere zero function on X , it follows that the
Chern classes ck(ξ) of a contact structure depend only on the contact distribution ξ , not on
the choice of contact form α.

The first Chern class of an almost contact structure ξ is related to the second Stiefel–
Whitney class of the manifold X in the following way:

Lemma 3 Let ξ be an almost contact structure on X. Then c1(ξ) ≡ w2(X)mod 2.

Proof By the Whitney sum formula for T X = ξ ⊕ R,

w2(X) = w2(ξ) ∪ w0(R) = w2(ξ).

Since ξ → X is a complex vector bundle, with complex structure compatible with σ , we
have w2(ξ) ≡ c1(ξ)mod 2. This implies the claim. ��

Suppose that ξt for t ∈ [0, 1] is a smooth family of contact structures on a closed manifold
X . We can choose a smooth family of 1-forms αt defining ξt . Using the Moser technique one
can prove that there exists a smooth familyψt of orientation preserving self-diffeomorphisms
of X withψ0 = IdX such thatψ∗αt = ftα0, for smooth functions ft on X [20]. This implies
the following theorem of Gray [10].

Theorem 4 Let ξt , with t ∈ [0, 1], be a smooth family of contact structures on a closed
manifold X. Then there exists an isotopy ψt , t ∈ [0, 1], of orientation preserving self-
diffeomorphisms of X such that ψ∗

t ξt = ξ0.

Because of this theorem we call contact structures ξ, ξ ′ which can be deformed into each
other by a smooth family of contact structures isotopic. We call almost contact structures
homotopic if they can be connected by a smooth family of almost contact structures. The
contact structures in an isotopy class or the almost contact structures in a homotopy class all
have the same Chern classes. We can also consider (almost) contact structures ξ, ξ ′ which
are permuted by an orientation-preserving self-diffeomorphism ψ of X , in the sense that
ψ∗ξ ′ = ξ .

Definition 5 We call almost contact structures and contact structures on an oriented manifold
X equivalent if they can be made identical by a combination of deformations (homotopies
and isotopies, respectively) and orientation preserving self-diffeomorphisms of X .

The existence question for almost contact structures on five-manifolds was settled by the
following theorem of Gray [10].

Theorem 6 Let X be a closed orientable five-manifold. Then X admits an almost contact
structure if and only if W3(X) = 0.

Here W3(X) ∈ H3(X) is the third integral Stiefel–Whitney class, defined as the image of
w2(X) under the Bockstein homomorphism.

The existence of contact structures on simply-connected five-manifolds was proved by
Geiges [7]. He also proved a classification theorem for almost contact structures on simply-
connected five-manifolds up to homotopy:
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724 M. J. D. Hamilton

Theorem 7 Let X be a simply-connected closed five-manifold.

(a) Every class in H2(X) that reduces mod 2 to w2(X) arises as the first Chern class of an
almost contact structure. Two almost contact structures ξ0, ξ1 are homotopic if and only
if c1(ξ0) = c1(ξ1).

(b) Every homotopy class of almost contact structures admits a contact structure.

A different proof for the existence of contact structures on simply-connected five-
manifolds can be found in [15,16]. The fact that two almost contact structures are homotopic
if they have the same first Chern class holds more generally for closed oriented five-manifolds
without two-torsion in H2(X). For a proof see [11, Theorem 8.18].

We want to prove the following theorem, which is a consequence of Barden’s classification
theorem.

Theorem 8 Suppose that X is a simply-connected closed oriented five-manifold. Let c, c′ ∈
H2(X) be classes with the same divisibility and whose mod 2 reduction is equal to w2(X).
Then there exists an orientation preserving self-diffeomorphism φ : X → X such that
φ∗c′ = c.

Note that H2(X) is torsion free by the universal coefficient theorem, because X is simply-
connected. By divisibility we mean the maximal (non-negative) divisibility as an element in
the free abelian group H2(X). The divisibility is zero if and only if the class is zero itself.
The proof of the theorem uses the following lemma.

Lemma 9 Let G be a finitely generated free abelian group of rank n. Suppose
α ∈ Hom(G,Z) is indivisible. Then there exists a basis e1, . . . , en of G such that α(e1) = 1
and α(ei ) = 0 for i > 1.

Proof The kernel of α is a free abelian subgroup of G of rank n −1. Let e2, . . . , en be a basis
of ker α. The image of α in Z is a subgroup, hence of the form mZ. Since α is indivisible
we have m = 1, so there exists an e1 ∈ G such that α(e1) = 1. The set e1, . . . , en is linearly
independent. They also span G, because if g ∈ G is some element then α(g − α(g)e1) = 0,
hence g = α(g)e1 + ∑

i≥2 λi ei . ��
We can now prove Theorem 8.

Proof By the universal coefficient theorem we have H2(X) ∼= Hom(H2(X),Z), since X is
simply-connected. Hence we can view c, c′ as homomorphisms on H2(X) with values in Z.
Let p : Z → Z2 denote mod 2 reduction. The assumption on c and c′ is equivalent to

w2(X) = p ◦ c = p ◦ c′,

as homomorphisms on H2(X) with values in Z2. Since c and c′ have the same divisibility
we can write

c = kα, c′ = kα′

with α, α′ ∈ Hom(H2(X),Z) indivisible. Let H2(X) = G ⊕Tor H2(X)with G free abelian.
Since c and c′ are homomorphisms to Z they vanish on Tor H2(X). By Lemma 9 there exist
bases e1, . . . , en and e′

1, . . . , e′
n of G such that

α(e1) = 1 = α′(e′
1), α(ek) = 0 = α′(e′

k) ∀k > 1.

Let θ be the group automorphism of H2(X) given by θ(ek) = e′
k for all k ≥ 1 and which is

the identity on Tor H2(X). Then

(c′ ◦ θ)(ek) = c′(e′
k) = c(ek) ∀k ≥ 1.
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Inequivalent contact structures 725

Hence c′ ◦ θ = c on the free abelian subgroup G. This equality holds on all of H2(X)
because c and c′ vanish on the torsion subgroup. By the assumption above this implies
that w2(X) ◦ θ = w2(X). Moreover, since θ is the identity on Tor H2(X) it preserves the
linking form. By Theorem 1 the automorphism θ is induced by an orientation preserving
self-diffeomorphism φ : X → X such that φ∗ = θ . We have

c(λ) = c′(φ∗λ) = (φ∗c′)(λ), for all λ ∈ H2(X).

Hence φ∗c′ = c. ��
We get the following corollary for almost contact structures.

Corollary 10 Let X be a simply-connected closed oriented five-manifold. Then two almost
contact structures ξ0 and ξ1 on X are equivalent if and only if c1(ξ0) and c1(ξ1) have the
same divisibility in integral cohomology.

One direction is clear because homotopies do not change the Chern class and
self-diffeomorphisms of the manifold do not change the divisibility. The other direction
follows from Theorem 8 and the first part of Theorem 7.

Definition 11 For an almost contact structure ξ on a simply-connected five-manifold X we
denote by d(ξ) the divisibility of c1(ξ) as a class in the free abelian group H2(X).

We call d(ξ) the level of the almost contact structure ξ . By Corollary 10 almost contact
structures and hence contact structures on a simply-connected five-manifold X naturally
form a “spectrum” consisting of levels which are indexed by the divisibility of the first Chern
class. Two contact structures on X are equivalent as almost contact structures if and only
if they lie on the same level. By Lemma 3 simply-connected spin five-manifolds have only
even levels and non-spin five-manifolds only odd levels. In Sect. 7 we will use invariants
from contact homology to investigate the “fine-structure” of contact structures on each level
in this spectrum. For instance, van Koert [15] has shown that for many simply-connected
five-manifolds the lowest level, given by divisibility 0, contains infinitely many inequivalent
contact structures.

4 Topology of circle bundles

In this section we collect some results on the topology of circle bundles. In particular, we
determine which simply-connected closed five-manifolds can arise as circle bundles over
four-manifolds.

Let M be a closed connected oriented n-manifold. For a second integral cohomology class
c on M consider the map

〈c,−〉: H2(M) −→ Z,

given by evaluation.

Definition 12 We call the class c indivisible if 〈c,−〉 is surjective.

Clearly, if the class c is indivisible, then c cannot be written as c = ka, with k > 1 and
a ∈ H2(M). By Poincaré duality it follows that a class c ∈ H2(M) is indivisible if and only
if the map

c ∪: Hn−2(M) −→ Hn(M) ∼= Z

is surjective.
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726 M. J. D. Hamilton

Suppose that π : X → M is the total space of an oriented circle bundle over M with Euler
class e ∈ H2(M). For the following proofs we will need two results which are probably
well known but included here for completeness. The first result is related to the exact Gysin
sequence [21]:

. . .
π∗−→ Hk(X)

π∗−→ Hk−1(M)
∪e−→ Hk+1(M)

π∗−→ Hk+1(X)
π∗−→ . . .

The homomorphism π∗ is called integration along the fibre and can be characterized in the
following way.

Lemma 13 Integration along the fibre π∗ : Hk+1(X) → Hk(M) is Poincaré dual to the
map π∗ : Hn−k(X) → Hn−k(M) induced by the projection.

This follows because integration along the fibre is a so-called transfer or shriek map [4]. The
second result is related to the long exact homotopy sequence associated to the fibration

. . . −→ π2(M)
∂−→ π1(S

1) −→ π1(X)
π∗−→ π1(M) −→ 1.

Lemma 14 The map ∂ : π2(M) → π1(S1) ∼= Z in the long exact homotopy sequence for
fibre bundles is given by

π2(M)
h−→ H2(M)

〈e,−〉−→ Z

where h denotes the Hurewicz homomorphism.

This follows for example by considering the universal bunde E S1 → BS1.

Lemma 15 The Euler class e is indivisible if and only if π∗ : H1(X) → H1(M) is an
isomorphism. Both statements are equivalent to the fibre S1 ⊂ X being null-homologous.

Proof Consider the following part of the Gysin sequence:

. . . −→ Hn−2(M)
∪e−→ Hn(M) −→ Hn(X)

π∗−→ Hn−1(M) −→ 0.

This shows that e is indivisible if and only if π∗ : Hn(X) → Hn−1(M) is an isomorphism,
in other words

π∗ : H1(X) −→ H1(M)

is an isomorphism. The long exact homotopy sequence of the fibration S1 → X → M
induces by abelianization an exact sequence

H1(S
1) −→ H1(X) −→ H1(M) −→ 0.

Hence we see that e is indivisible if and only if the fibre S1 ⊂ X is null-homologous. ��
From the long exact homotopy sequence above we see that the fibre is null-homotopic

if and only if ∂ : π2(M) → π1(S1) is surjective. By Lemma 14 this happens if and only if
〈e,−〉 is surjective on spherical classes. Both statements are equivalent to

π∗ : π1(X) −→ π1(M)

being an isomorphism.
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Inequivalent contact structures 727

Lemma 16 X is simply-connected if and only if M is simply-connected and e is indivisible.

Proof If X is simply-connected the long exact homotopy sequence shows that π1(M) = 1
and ∂ : π2(M) → π1(S1) is surjective. Hence M is simply-connected and the surjectivity
of ∂ implies that e is indivisible. Conversely, suppose that M is simply-connected and e is
indivisible. Then the Hurewicz map h : π2(M) → H2(M) is an isomorphism and it follows
that ∂ is surjective. The long exact homotopy sequence then implies the exact sequence
1 → π1(X) → 1. Hence π1(X) = 1. ��

The next lemma follows from the Gysin sequence.

Lemma 17 Suppose the first Betti number of M vanishes, b1(M) = 0. Then the map
π∗ : H2(M) → H2(X) is surjective with kernel Ze.

Similarly we have:

Lemma 18 The image of the map π∗ : H2(X) → H2(M) is the kernel of 〈e,−〉. If H1(M) =
0, then this map is injective.

We now determine when the total space X is spin.

Lemma 19 The total space X is spin if and only ifw2(M) ≡ αe mod 2 for some α ∈ {0, 1},
i.e. if and only if M is spin or w2(M) ≡ e mod 2.

Proof We claim that the following relation holds:

w2(X) = π∗w2(M).

This follows because the tangent bundle of X is given by T X = π∗T M ⊕R and the Whitney
sum formula implies w2(T X) = w2(π

∗T M) ∪ w0(R) = π∗w2(T M). Hence X is spin if
and only if w2(M) is in the kernel of π∗. We consider the following part of the Z2-Gysin
sequence:

H0(M; Z2)
∪e−→ H2(M; Z2)

π∗−→ H2(X; Z2),

where e denotes the mod 2 reduction of e. Hence the kernel of π∗ is {0, e}. This implies the
claim. ��

We now specialize to the case where the dimension of M is equal to four.

Theorem 20 Let X be a simply-connected closed oriented five-manifold which is a circle
bundle over a closed oriented connected four-manifold M. Then M is simply-connected and
the Euler class e is indivisible. Moreover, the integral homology and cohomology of X are
torsion free and given by:

• H0(X) ∼= H5(X) ∼= Z

• H1(X) ∼= H4(X) ∼= 0
• H2(X) ∼= H3(X) ∼= Z

b2(M)−1.

Proof We only have to prove that the cohomology of X is torsion free and the formula for
H2(X). The cohomology groups H0(X), H1(X) and H5(X) are always torsion free for an
oriented five-manifold X . We have the following part of the Gysin sequence:

. . . −→ H3(M)
π∗−→ H3(X)

π∗−→ H2(M) −→ . . .
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728 M. J. D. Hamilton

By assumption H3(M) = 0. Therefore the homomorphism π∗ injects H3(X) into H2(M),
which is torsion free by the assumption that M is simply-connected and the universal coeffi-
cient theorem. Hence H3(X) is torsion free itself. It remains to consider H2(X) and H4(X).
By the universal coefficient theorem and Poincaré duality H2(X) is torsion free if and only
if H1(X) is torsion free, if and only if H4(X) is torsion free. Since H1(X) = 0, we see that
H2(X) and H4(X) are torsion free.

By Lemma 17 we have H2(X) ∼= H2(M)/Ze. The cohomology group H2(M) is torsion
free by the universal coefficient theorem. Since the class e is indivisible we have H2(M)/Ze ∼=
Z

b2(M)−1. This implies the formula for H2(X) ∼= H3(X). ��
With Proposition 2 we get the following corollary (this has also been proved in [5]).

Corollary 21 Let M be a simply-connected closed oriented four-manifold and X the circle
bundle over M with indivisible Euler class e. Then X is diffeomorphic to

(a) X = #(b2(M)− 1)S2 × S3 if X is spin
(b) X = #(b2(M)− 2)S2 × S3#S2×̃S3 if X is not spin.

The first case occurs if and only if M is spin or w2(M) ≡ e mod 2.

Since every closed oriented four-manifold is spinc and hence w2(M) is the mod 2 reduc-
tion of an (indivisible) integral class, it follows as a corollary that every closed simply-
connected four-manifold M is diffeomorphic to the quotient of a free and smooth S1-action
on #(b2(M)− 1)S2 × S3.

5 The Boothby–Wang construction

We want to construct circle bundles over symplectic manifolds M whose Euler class is
represented by the symplectic form. Since the Euler class is an element of the integral coho-
mology group H2(M), the symplectic form has to represent an integral cohomology class in
H2(M; R), i.e. it has to lie in the image of the natural homomorphism

H2(M) −→ H2(M; R)
∼=−→ H2

DR(M).

The existence of such a symplectic form is guaranteed by the following argument (this
argument is from [8, Observation 4.3]): Let (M, ω) be a closed symplectic manifold. For
every Riemannian metric on M there exists a small ε-ball Bε around the origin in the space
of harmonic 2-forms on M such that every element in ω+ Bε is symplectic. Since the set of
classes in H2(M; R) represented by these elements is open, there exists a symplectic form
which represents a rational cohomology class. By multiplication with a suitable rational
number we can find a symplectic form which represents an integral class. If we want, we can
choose the number such that the class is indivisible. Note also that all symplectic forms in
ω+ Bε can be connected to ω by a smooth path of symplectic forms. This implies that they
all have the same Chern classes as ω.

We fix the following data:

(a) A closed connected symplectic manifold (M2n, ω)with symplectic formω, representing
an integral cohomology class in H2(M; R).

(b) An integral lift [ω]Z ∈ H2(M) of [ω] ∈ H2
DR(M).

Let π : X → M be the principal circle bundle over M with Euler class e(X) = [ω]Z. By a
theorem of Kobayashi [14] we can choose a U (1)-connection A on X → M whose curvature
form F is equal to 2π

i ω. Then A is a 1-form on X with values in u(1) ∼= iR which is invariant
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Inequivalent contact structures 729

under the S1-action and there are the following relations, coming from the definition of a
connection on a principal bundle:

d A = π∗F

A(R) = 2π i.

Here R denotes the fundamental vector field generated by the action of the element 2π i ∈
u(1). An orbit of R, topologically a fibre of X , has period 1.

Proposition 22 Define the real valued 1-form λ = 1
2π i A on X. Then λ is a contact form on

X with

dλ = −π∗ω
λ(R) = 1.

Proof We have the relations

d A = −2π iπ∗ω
A(R) = 2π i.

This implies the corresponding relations for λ. The tangent bundle of X splits as T X ∼=
R ⊕ π∗T M , where the trivial R-summand is spanned by the vector field R. Fix a point of X
and choose a basis (R, v1, . . . , v2n) of its tangent space, where the vi form an oriented basis
of the kernel of λ. Then

λ ∧ (dλ)n(R, v1, . . . , v2n) = (dλ)n(v1, . . . , v2n)

= (−1)nωn(π∗v1, . . . , π∗v2n)

�= 0.

Hence λ ∧ (dλ)n is a volume form on X and λ is contact. ��
Remark 23 If we define the orientation on X via the splitting TX ∼= R ⊕ π∗TM , where the
trivial R-summand is oriented by R and TM by ω, then λ is a positive contact form if n is
even and negative otherwise. In particular, in the construction for a symplectic four-manifold
M we get a positive contact form.

Definition 24 The contact structure ξ on the closed oriented manifold X2n+1, defined by
the contact form λ above, is called the Boothby–Wang contact structure associated to the
symplectic manifold (M, ω). Since dλ(R) = 0, the Reeb vector field of λ is given by the
vector field R along the fibres.

For the original construction see [2].

Proposition 25 If λ′ is another contact form, defined by a different connection A′ as above,
then the associated contact structure ξ ′ is isotopic to ξ .

Proof The connection A′ is an S1-invariant 1-form on X with

d A′ = d A

A′(R) = A(R).

Hence A′ − A = π∗α for some closed 1-form α on M . Define At = A + π∗tα for t ∈ R.
Then At is a connection on X with curvature −2π iω for all t . Let λt = λ+π∗( 1

2π i tα). Then
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λt is a contact form on X for all t ∈ [0, 1] with λ0 = λ and λ1 = λ′. Therefore, ξ and ξ ′ are
isotopic through the contact structures defined by λt . ��

The Chern classes of ξ are given by the Chern classes associated to ω in the following
way.

Lemma 26 Let X → M be a Boothby–Wang fibration with contact structure ξ . Then ci (ξ) =
π∗ci (M, ω) for all i ≥ 0. The manifold X is spin if and only if

c1(M, ω) ≡ α[ω]Z mod 2,

for some α ∈ {0, 1}.
Proof Let J be a compatible almost complex structure for ω on M . Then there exists a
compatible complex structure J ′ for ξ on X such that π∗(T M, J ) ∼= (ξ, J ′) as complex
vector bundles. The naturality of characteristic classes proves the first claim. The second
claim follows from Lemma 19 and c1(M, ω) ≡ w2(M) mod 2. ��

6 The construction for symplectic four-manifolds

We fix the following data:

(a) A closed simply-connected symplectic four-manifold (M, ω) with symplectic form ω,
representing an integral cohomology class in H2(M; R), given by the argument at the
beginning of Sect. 5. Since H2(M) is torsion free by the universal coefficient theorem,
the class [ω] has a unique integral lift, denoted by [ω]Z ∈ H2(M). We sometimes denote
the integral lift also by [ω] or ω. We assume that [ω]Z is indivisible.

(b) Let π : X → M be the principal S1-bundle over M with Euler class e(X) = [ω]Z. Then
X is a closed simply-connected oriented five-manifold with torsion-free homology by
Theorem 20.

(c) Let λ be a Boothby–Wang contact form on X with associated contact structure ξ . By
Proposition 25, the contact structure ξ does not depend on λ up to isotopy.

By Corollary 21 the five-manifold X is diffeomorphic to

• #(b2(M)− 1)S2 × S3 if X is spin
• #(b2(M)− 2)S2 × S3#S2×̃S3 if X is not spin.

Hence the same abstract closed simply-connected five-manifold X with torsion free
homology can be realized in several different ways as a Boothby–Wang fibration over dif-
ferent simply-connected symplectic four-manifolds M and therefore admits many, possibly
non-equivalent, contact structures.

Definition 27 The canonical class of the symplectic structure ω is defined as

K = −c1(M, ω) ∈ H2(M).

We denote by d(K ) ≥ 0 the divisibility of K in the free abelian group H2(M). Similarly,
we define d(ξ) to be the divisibility of c1(ξ).

Note that X is spin if and only if d(ξ) is even by Lemma 3. With Corollary 10 we get:

Proposition 28 Suppose that (M ′, ω′) is another closed simply-connected symplectic four-
manifold with integral and indivisible symplectic form ω′. Denote the associated Boothby–
Wang total space by (X ′, ξ ′).
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Inequivalent contact structures 731

(a) The simply-connected five-manifolds X and X ′ are diffeomorphic if and only if b2(M) =
b2(M ′) and d(ξ) ≡ d(ξ ′) mod 2.

(b) If X and X ′ are diffeomorphic and d(ξ) = d(ξ ′), then ξ and ξ ′ are equivalent as almost
contact structures.

The divisibility d(ξ) can be calculated in the following way: By Lemma 17 the bundle
projection π defines an isomorphism

π∗ : H2(M)/Zω
∼=−→ H2(X),

and by Lemma 26 we have

π∗c1(M) = c1(ξ).

Let [c1(M)] denote the image of c1(M) in the quotient H2(M)/Zω, which is free abelian
since ω is indivisible. We will use π∗ to identify

H2(X) = H2(M)/Zω, and

c1(ξ) = [c1(M)].
Then d(ξ) is also the divisibility of the class [c1(M)]. If the second Betti number of M is
equal to 1, then H2(X) = 0 and d(ξ) = 0 trivially. For b2(M) > 1 we have:

Lemma 29 The divisibility d(ξ) is the maximal integer d such that

c1(M) = d R + γω

where γ is some integer and R ∈ H2(M) not a multiple of ω.

An important fact is the following:

Lemma 30 The integer d(ξ) is always a multiple of d(K ).

Proof We can write c1(M) = d(K )W where W is a class in H2(M). Then [c1(M)] =
d(K )[W ] in H2(M)/Zω. Since d(ξ) is the divisibility of [c1(M)], the integer d(ξ) has to be
a multiple of d(K ). ��

Hence the possible levels of Boothby–Wang contact structures are restricted to the
multiples of the divisibility of the canonical class.

7 Contact homology

In this section we consider invariants derived from symplectic field theory, introduced in
[6]. We only take into account the classical contact homology Hcont∗ (X, ξ)which is a graded
supercommutative algebra, defined using rational holomorphic curves with one positive punc-
ture and several negative punctures in the symplectization of the contact manifold. We use a
variant of this theory for the so-called Morse–Bott case, described in [3] and in [6, Section
2.9.2].

In general, the classical contact homology is the homology of a certain freely generated
graded supercommutative algebra A with a differential ∂ : A → A that satisfies a Leibniz
rule so that the homology becomes itself an algebra. The generators of A correspond to
periodic Reeb orbits of the contact form and the differential is associated to moduli spaces of
holomorphic curves in the symplectization of the contact manifold which are asymptotic to

123



732 M. J. D. Hamilton

these Reeb orbits. The degree of the generators is related to the Conley–Zehnder index of the
corresponding closed Reeb orbit. The algebra A is actually a family of algebras parametrized
by t ∈ H∗(X; R). Since each element of the family is preserved by the differential, we get
a family of contact homology algebras which can be specialized at any parameter t . The
homology algebra is an invariant of the contact structure that, up to isomorphism, does not
depend on the choice of contact form.

We now describe the setup in our situation. We are going to associate to each Boothby–
Wang fibrationπ : X → M as in the previous section a graded commutative algebraA(X,M).
Choose a basis B1, . . . , BN of H2(X) where N = b2(X) = b2(M)− 1 and let

An = π∗ Bn ∈ H2(M), 1 ≤ n ≤ N .

Note that

c1(Bn) = 〈c1(ξ), Bn〉 = 〈c1(M), An〉 = c1(An).

Choose a class A0 ∈ H2(M) such that

ω(A0) = 1.

This is possible, because ω was assumed indivisible. The classes A0, A1, . . . , AN form a
basis of H2(M) by Lemma 18. We consider variables

z = (z1, . . . , zN ), and

q = {qk,i }k∈N, 0≤i≤a,

where a = b2(M)+ 1 and N denotes the set of positive integers. They have degrees defined
by

deg(zn) = −2c1(Bn)

deg(qk,i ) = deg�i − 2 + 2c1(A0)k,

where deg�i is given by

deg�i =
⎧
⎨

⎩

0 if i = 0
2 if i = 1, . . . , b2(M)
4 if i = b2(M)+ 1.

In our situation the degree of all variables is even (hence the algebra we are going to define
is truly commutative, not only supercommutative).

Definition 31 We define the following algebras:

• L(X) = C[H2(X; Z)] = the graded commutative ring of Laurent polynomials in the
variables z with coefficients in C.

• A(X,M) =
⊕

d∈Z
Ad(X,M) = the graded commutative algebra of polynomials in the

variables q with coefficients in L(X). Here Ad(X,M) denotes the set of homogeneous
elements of degree d . The degree of a polynomial is calculated using the definitions
above.

A homomorphism φ of graded commutative algebras A,A′ over L(X)

φ : A =
⊕

d∈Z

Ad −→ A′ =
⊕

d∈Z

A′
d

is a homomorphism of rings which is the identity on L(X) and such that φ(Ad) ⊂ A′
d for all

d ∈ Z.
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Lemma 32 The following statements hold:

(a) Up to isomorphism, the ring L(X) does not depend on the choice of basis B1, . . . , BN

for H2(X).
(b) For fixed L(X), the algebra A(X,M) does not depend, up to isomorphism over L(X),

on the choice of the class A0 ∈ H2(M) as above.

Proof Let B1, . . . , B N be another basis of H2(X) and L(X) the associated ring, generated
by variables z. Then there exists a matrix

(βmn) ∈ GL(N ,Z),

with 1 ≤ m, n ≤ N , such that

Bm =
N∑

n=1

βmn Bn .

Define a homomorphism φ : L(X) → L(X) via

zm �→
N∏

n=1

zβmn
n ,

for all 1 ≤ m ≤ N . Then φ preserves degrees and is an isomorphism, since the matrix (βmn)

is invertible.
Let A0 be another element in H2(M) such that ω(A0) = 1 and A(X,M) the associated

algebra, generated by variables q. Then there exists a vector

(αn) ∈ Z
N ,

with 1 ≤ n ≤ N , such that

A0 = A0 +
N∑

n=1

αn An .

Define a homomorphism ψ : A(X,M) → A(X,M) via

qk,i �→ qk,i

N∏

n=1

z−kαn
n , k ∈ N, 0 ≤ i ≤ a,

and which is the identity on L(X). Then ψ preserves degrees and is invertible. ��
Definition 33 We choose a class A0 ∈ H2(M) with ω(A0) = 1 and denote c1(A0) by �.
Hence the degrees of the variables qk,i are equal to

deg(qk,i ) = deg�i − 2 + 2�k.

The integer � has the following properties.

Lemma 34 The following relations hold:

(a) Let c1(M) = d(ξ)R + γω for some class R ∈ H2(M) and integer γ ∈ Z as in Lemma
29. Then � ≡ γ mod d(ξ).
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(b) The greatest common divisor gcd(�, d(ξ)) is equal to d(K ). In particular, if d(ξ) = 0,
then � = d(K )1.

Proof Part (a) follows if we evaluate both sides on A0. To prove part (b), the integer d(K )
divides d(ξ) by Lemma 30 and it divides c1(M), hence also �. On the other hand, there
exists a homology class B ∈ H2(M) such that d(K ) = c1(M)(B). By part (a)

d(K ) = d(ξ)R(B)+ γω(B)

and γ ≡ � mod d(ξ). Hence there exist integers x, y ∈ Z such that d(K ) = xd(ξ) + y�.
This proves the claim. ��

We are interested in the algebra A(X,M) because of the following result, described in [6,
Proposition 2.9.1]:

Theorem 35 For a Boothby–Wang fibration X → M as above, the Morse–Bott contact
homology Hcont∗ (X, ξ) specialized at t = 0 is isomorphic to A(X,M).

If two Boothby–Wang contact structures ξ and ξ ′ on X are equivalent, then their contact
homologies are isomorphic. We now make the following assumptions:

(a) The simply-connected five-manifold X can be realized as the Boothby–Wang total space
over another closed simply-connected symplectic four-manifold (M ′, ω′), where ω′
represents an integral and indivisible class. This implies in particular that b2(M ′) =
b2(M) and both are equal to a − 1. Denote the canonical class of (M ′, ω′) by K ′ and
its divisibility by d(K ′)

(b) We assume that ξ and ξ ′ are contact structures on the same level and therefore both are
equivalent as almost contact structures. We set d = d(ξ ′) = d(ξ).

(c) Let A(X,M ′) denote the associated algebra over L(X), generated by variables {q ′
l, j },

with l ∈ N, 0 ≤ j ≤ a. We set �′ = c1(A′
0) for a class A′

0 with ω′(A′
0) = 1.

The following is the main theorem in this section:

Theorem 36 The algebras A(X,M) and A(X,M ′) are isomorphic over L(X) if and only if
one of the following three conditions is satisfied:

• d ≥ 1 and both d(K ), d(K ′) ≤ 3
• d = 0 and d(K ) = d(K ′)
• d ≥ 4 and d(K ) = d(K ′) ≥ 4.

This shows that the isomorphism type of the contact homology for Boothby–Wang contact
structures on the same level is strongly related to the divisibility of the canonical class of the
symplectic structure. The proof of this theorem is done in several steps.

Definition 37 Suppose that d ≥ 1. For 0 ≤ b < d denote by Qb the set of generators {qk,i }
with

deg(qk,i ) ≡ 2b mod 2d.

The set of all generators is the disjoint union of the sets Qb. Similarly denote by Q′
b the set

of generators {q ′
l, j } with

deg(q ′
l, j ) ≡ 2b mod 2d.

1 We use the convention that gcd(0, 0) = 0.
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The following lemma shows that there is a relation between the cardinality of the set Qb

of generators and the divisibility of the canonical class of the symplectic structure.

Lemma 38 Assume that d ≥ 1. Then the set Qb is infinite if d(K ) divides one of the integers
b − 1, b, b + 1 and empty otherwise.

Proof Suppose d(K ) = gcd(�, d) divides one of the integers b + ε, with ε ∈ {−1, 0, 1}.
Then the equation

b = −ε +�k + dα

has infinitely many solutions k ≥ 1 with α ∈ Z. Choose an integer 0 ≤ i ≤ a with
deg�i − 2 = −2ε. Then

deg(qk,i ) = −2ε + 2�k ≡ 2b mod 2d

for infinitely many k ≥ 1. Hence these qk,i are all in Qb.
Conversely, suppose that d(K ) does not divide any of the integers b + ε, with ε ∈

{−1, 0, 1}. Suppose that Qb contains an element ql, j . We have deg(ql, j ) = −2ε + 2�l
for some ε ∈ {−1, 0, 1}. By assumption,

deg(ql, j ) = −2ε + 2�l = 2b − 2dα,

for some α ∈ Z. This implies

b + ε = �l + dα.

This is impossible, since d(K ) divides the right side, but not the left side. ��
Example 39 Suppose that d ≥ 1. If d(K ) ∈ {1, 2, 3}, then Lemma 38 implies that Qb is
infinite for all b = 0, . . . , d − 1. If d(K ) ≥ 4 (and hence d ≥ 4 as well), then at least one of
the Qb is empty, e.g. Q2 is always empty in this case.

Lemma 38 implies the following relation between the cardinalities of the set of generators
Qb and Q′

b and the divisibilities of the canonical classes of the symplectic four-manifolds
M and M ′.

Lemma 40 Assume that d ≥ 4 and at least one of the numbers d(K ), d(K ′) is ≥ 4. Then
the following two statements are equivalent:

(a) There exists an integer 0 ≤ b < d such that Qb and Q′
b do not have the same cardinality

(i.e. one of them is empty and the other infinite).
(b) d(K ) �= d(K ′).

Proof Suppose that d(K ) = d(K ′). By Lemma 38, the sets Qb and Q′
b have the same

cardinality for all 0 ≤ b < d . Conversely, suppose that d(K ) �= d(K ′); without loss of
generality d(K ) < d(K ′). If d(K ) ∈ {1, 2, 3} let b = 2. Then Q2 is infinite, while Q′

2 is
empty (since d(K ′) ≥ 4 by assumption). If d(K ) ≥ 4 let b = d(K ) − 1 ≥ 3. Then d(K )
divides b + 1, but d(K ′) does not divide any of the integers b − 1, b, b + 1. Hence Qb is
infinite and Q′

b empty. ��
Using Lemma 40, we can prove the following.

Lemma 41 Suppose that either (i) d = 0 or (ii) d > 0 and at least one of the numbers
d(K ), d(K ′) is ≥ 4. If the algebras A(X,M) and A(X,M ′) are isomorphic, then d(K ) =
d(K ′).

This implies one direction of Theorem 36.
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Proof Suppose that d = 0 and that there is an isomorphism φ : A(X,M) → A(X,M ′).
Note that all elements in L(X) have degree zero. Depending on the sign of � we consider
the element of highest or lowest degree in A(X,M), and similarly in A(X,M ′). Since φ has
to preserve degree, this implies � = �′ and hence

d(K ) = gcd(�, 0) = � = �′ = gcd(�′, 0) = d(K ′).

Now assume that d > 0 and at least one of d(K ), d(K ′) is ≥ 4. By Lemma 30, the integer d
is at least 4. Suppose that d(K ) �= d(K ′) and there exists an isomorphism φ : A(X,M) →
A(X,M ′).

By Lemma 40, there exists an integer 0 ≤ b < d such that Qb and Q′
b have different

cardinality. Without loss of generality, we may assume that Qb is empty and Q′
b infinite

(otherwise we consider φ−1). Let q ′
r,s be a generator in Q′

b. Then q ′
r,s is a polynomial in the

images

{φ(qk,i )}k∈N,0≤i≤a,

with coefficients in L(X) and we can write

q ′
r,s = f (φ(qk1,i1), . . . , φ(qkv,iv )) ∈ L(X)[φ(qk1,i1), . . . , φ(qkv,iv )].

The images φ(qk,i ) are themselves polynomials in the variables {q ′
l, j } with coefficients in

L(X). Expressed as a polynomial in the variables {q ′
l, j }, at least one of the images φ(qkw,iw ),

1 ≤ w ≤ v, must contain a summand of the form αq ′
r,s with α ∈ L(X) non-zero. Since φ

preserves degrees, the element φ(qkw,iw ) is homogeneous of degree

deg(φ(qkw,iw )) = deg(αq ′
r,s) ≡ deg(q ′

r,s) ≡ 2b mod 2d.

This implies deg(qkw,iw ) ≡ 2b mod 2d , hence qkw,iw ∈ Qb. This is impossible, since Qb is
empty. ��

The other direction of Theorem 36 follows from the next lemma.

Lemma 42 Suppose that either (i) d(K ) = d(K ′) or (ii) both numbers d(K ), d(K ′) are
≤ 3 and d �= 0. Then the algebras A(X,M) and A(X,M ′) are isomorphic over L(X).

Proof We can choose a basis B1, . . . , BN of H2(X) such that

c1(B1) = d(ξ) = d

c1(Bn) = 0, for all 2 ≤ n ≤ N .

Choose elements A0 ∈ H2(M) and A′
0 ∈ H2(M ′) on which the symplectic forms evaluate

to one and set

� = c1(A0), �′ = c1(A
′
0).

We will use these bases to define the algebras A(X,M) and A(X,M ′). Suppose that d = 0
and d(K ) = d(K ′). Then

� = gcd(�, 0) = d(K )

�′ = gcd(�′, 0) = d(K ′).

This implies deg(qk,i ) = deg(q ′
k,i ) for all k ∈ N, 0 ≤ i ≤ a. Hence the map

qk,i �→ q ′
k,i , k ∈ N, 0 ≤ i ≤ a,

induces a degree preserving isomorphism φ : A(X,M) → A(X,M ′).
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Suppose d ≥ 1. Under our assumptions, the sets Qb and Q′
b have the same cardinality for

each 0 ≤ b < d , cf. Lemma 40 and Example 39. Hence there exists a bijection

ψ : N × {0, . . . , a} −→ N × {0, . . . , a}, (k, i) �→ ψ(k, i),

such that

deg(qk,i ) ≡ deg(q ′
ψ(k,i)) mod 2d.

Since z1 has degree −2d , there exists for each (k, i) ∈ N×{0, . . . , a} an integer α(k, i) ∈ Z,
such that

deg(qk,i ) = deg
(

z1
α(k,i)q ′

ψ(k,i)

)
.

The map

qk,i �→ z1
α(k,i)q ′

ψ(k,i), k ∈ N, 0 ≤ i ≤ a,

therefore induces a well-defined isomorphism φ : A(X,M) → A(X,M ′) over L(X), pre-
serving degrees. ��

Using Theorem 36 and Proposition 28 we get the following corollary. The part concerning
equivalent contact structures follows because equivalent contact structures have isomorphic
contact homologies.

Corollary 43 Let X be a closed simply-connected five-manifold which can be realized in two
different ways as a Boothby–Wang fibration over closed simply-connected symplectic four-
manifolds (M1, ω1) and (M2, ω2), whose symplectic forms represent integral and indivisible
classes:

Denote the associated Boothby–Wang contact structures on X by ξ1 and ξ2 and the canonical
classes of the symplectic structures by K1 and K2. Let d(ξi ) denote the divisibility of the first
Chern class of ξi and d(Ki ) the divisibility of Ki . Then:

• The almost contact structures underlying ξ1 and ξ2 are equivalent if and only if d(ξ1) =
d(ξ2).

Suppose that ξ1 and ξ2 are equivalent as contact structures.

• If d(ξ1) = d(ξ2) = 0, then d(K1) = d(K2).
• If d(ξ1) = d(ξ2) �= 0, then either both d(K1), d(K2) ≤ 3 or d(K1) = d(K2) ≥ 4.

8 Applications

In order to apply Corollary 43 it is useful to have as many contact structures on different
levels of X as possible. By Lemma 30, the level is always a multiple of the divisibility of the
canonical class. We first want to show that one can perturb a single symplectic form ω on
a given simply-connected four-manifold M without changing the canonical class K , so that

123



738 M. J. D. Hamilton

the induced Boothby–Wang contact structures realize all levels which are non-zero multiples
of the divisibility d(K ).

For the following lemma, recall that a symplectic four-manifold is called minimal if it
does not contain an embedded symplectic sphere S of self-intersection −1. If S is such a
sphere and K the canonical class, then the intersection number K · S is equal to −1 by the
adjunction formula. Hence if the divisibility d(K ) is at least two, then M is minimal.

Lemma 44 Let (M, ω) be a minimal closed symplectic four-manifold with b+
2 (M) > 1 and

canonical class K . Then every class in H2(M; R) of the form [ω] + t K for a real number
t ≥ 0 can be represented by a symplectic form.

Proof Note that the canonical class K is a Seiberg–Witten basic class. Since M is assumed
minimal, Proposition 3.3 and the argument in Corollary 3.4 in [13] show that K is represented
by a disjoint collection of embedded symplectic surfaces in M , all of which have non-negative
self-intersection. The inflation procedure [17,19], which can be done on each of the surfaces
separately and with the same parameter t ≥ 0, shows that [ω] + t K is represented by a
symplectic form on M . ��

We can now prove:

Theorem 45 Let M be a closed minimal simply-connected four-manifold such that b+
2 (M) >

1 and ω a symplectic form on M. Denote the canonical class of ω by K and let m ≥ 1 be
an arbitrary integer. Then there exists a symplectic form ω′ on M, deformation equivalent
to ω and representing an integral and indivisible class, such that the first Chern class of the
associated Boothby–Wang contact structure ξ ′ has divisibility d(ξ ′) = md(K ).

Proof Let k = d(K ). We can assume that ω is integral and choose a basis for H2(M; Z)

such that

K = k(1, 0, . . . , 0)

ω = (ω1, ω2, 0, . . . , 0).

By a deformation we can assume that ω is not parallel to K , hence ω2 �= 0. We can also
assume that ω1 is negative while ω2 is positive: Consider the change of basis vectors

(1, 0, 0, . . . , 0) �→ (1, 0, 0, . . . , 0)

(0, 1, 0, . . . , 0) �→ (q,±1, 0, . . . , 0),

where q is some integer. Then the expression of ω in the new basis is

(ω1 ∓ qω2,±ω2, 0, . . . , 0).

Hence if q is large enough, has the correct sign and the ± sign is chosen correctly, the claim
follows.

Suppose that σ ∈ H2(M; Z) is an indivisible class of the form

σ = (σ1, σ2, 0, . . . , 0)

which can be represented by a symplectic form, also denoted by σ , with canonical class K .
Let ζ denote the contact structure induced on the Boothby–Wang total space by σ . We claim
that the divisibility d(ζ ) is given by

d(ζ ) = k|σ2|.
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To prove this we write K = −c1(M) = r R + γ σ as in Lemma 29, where R is a class of
the form R = (R1, R2, 0..., 0). Then k − γ σ1 and γ σ2 are divisible by r . This implies that r
divides kσ2. Conversely note that by assumption σ1, σ2 are coprime. Let R1, R2 be integers
with

1 = σ2 R1 − σ1 R2

and define

γ = −k R2.

Then we can write

K = kσ2 R − k R2σ.

This proves the claim about d(ζ ).
Suppose that m ≥ 1. By multiplying the expression for ω with the positive number m

ω2
we

see that the (rational) class

(α,m, 0, . . . , 0), α = ω1
m
ω2
,

is represented by a symplectic form. Note that α < 0. By the inflation trick in Lemma 44
with parameter t = 1

k (1 − α) it follows that

ω′ = (α,m, 0, . . . , 0)+ (1 − α, 0, . . . , 0)

= (1,m, 0, . . . , 0)

is represented by a symplectic form ω′. The class ω′ is indivisible and has canonical class
K . Let ξ ′ denote the induced Boothby–Wang contact structure. By our calculation above we
have d(ξ ′) = mk. ��
Definition 46 For integers d ≥ 4 and r ≥ 2 consider the following set:

�(r, d) =
⎧
⎨

⎩
k ∈ N

∣
∣
∣
∣

k ≥ 1, k divides d and there exists a simply-connected minimal
symplectic four-manifold (M, ω) with b2(M) = r and b+

2 (M) > 1
whose canonical class K has divisibility d(K ) = k.

⎫
⎬

⎭

We define an integer Q(r, d) by counting the number of elements of �(r, d) as follows: If
there are integers k ∈ �(r, d) with k ≤ 3 we count only one of them and we count each
integer k ≥ 4 once.

Example 47 Suppose that for some integers r, d we have

�(r, d) = {1, 3, 4, 7, 12}.
Then Q(r, d) = 4. If we have

�(r, d) = {1, 2, 3, 6, 12, 19, 27},
then Q(r, d) = 5.

The numbers Q(r, d) are connected to the geography of simply-connected symplectic
four-manifolds with divisible canonical class. The following lemma relates knowledge about
the numbers Q(r, d) to the existence of inequivalent contact structures on simply-connected
five-manifolds. Here we make essential use of Corollary 43 and Theorem 45.

Lemma 48 Let d ≥ 4 and r ≥ 2 be integers. Suppose that either

123



740 M. J. D. Hamilton

• d is odd and X the simply-connected five-manifold #(r − 2)S2 × S3#S2×̃S3, or
• d is even and X the simply-connected five-manifold #(r − 1)S2 × S3.

In both cases, there exist at least Q(r, d) many inequivalent contact structures on the level
d on X.

Proof Recall that a spin (non-spin) simply-connected five-manifold has only even (odd)
levels. Suppose that d ≥ 4 is an integer and (M, ω) a simply-connected minimal symplectic
four-manifold with b2(M) = r and b+

2 (M) > 1 whose canonical class has divisibility
k = d(K ) dividing d . We can write d = mk. By Theorem 45 there exists a symplectic
structure ω′ on M that induces on the Boothby–Wang total space X with b2(X) = r − 1 a
contact structure with d(ξ) = d . Since the symplectic form ω′ is deformation equivalent to ω
the canonical class K remains unchanged. By Corollary 43 the contact structures on the same
non-zero level d on X coming from symplectic four-manifolds with different divisibilities
of their canonical classes, at most one divisibility less than 4, are pairwise inequivalent. ��

We have the following purely number theoretic definition.

Definition 49 Let d ≥ 4 be an integer. Consider the number of divisors greater or equal
to four of d . Then N (d) is this number plus one. If d is even, consider the number of odd
divisors greater or equal to four of d . Then N ′(d) is this number plus one.

Example 50 The different divisors of 60 are

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

Hence N (60) = 10 and N ′(60) = 3.

The following lemma gives a bound on the maximal number of inequivalent contact
structures that can be distinguished with our method. The proof uses some well-known
properties of four-manifolds that can be found for example in [9].

Lemma 51 Let d ≥ 4 and r ≥ 2 be integers. Then there are the following upper bounds for
Q(r, d).

(a) For any r we have Q(r, d) ≤ N (d).
(b) If d is even and r is not congruent to 2 mod 4, then Q(r, d) ≤ N ′(d).

Proof The first statement is clear by the definitions. For the second statement, suppose that
M is a simply-connected symplectic spin four-manifold. Note that b−

2 = b+
2 − σ , hence

b2(M) = 2b+
2 (M)−σ(M). Since M is spin, the signature σ(M) is divisible by 16 according

to Rohlin’s theorem. This implies that b2(M) is congruent to 2 mod 4, because b+
2 (M) is odd

for a simply-connected symplectic four-manifold. Hence if r is not congruent to 2 mod 4 then
there does not exist a simply-connected symplectic spin four-manifold M with second Betti
number r . Since the divisibility of the canonical class of a non-spin symplectic four-manifold
is odd, this implies that in case (b) all numbers in the set �(r, d) are odd. ��

To calculate some of the numbers Q(r, d) we can use the geography work in [12]. Recall
the following definition:

Definition 52 A homotopy elliptic surface M is a closed simply-connected four-manifold
homeomorphic to a relatively minimal simply-connected elliptic surface.
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Every relatively minimal simply-connected elliptic surface is diffeomorphic to a surface
of the form E(m)p,q with p and q coprime integers. Here E(m) denotes the (up to dif-
feomorphism unique) relatively minimal simply-connected elliptic surface without multiple
fibres and Euler characteristic equal to 12m and E(m)p,q is obtained by two logarithmic
transformations with indices p and q , see [9]. By definition, homotopy elliptic surfaces have
topological invariants

c2
1(M) = 0, χh(M) = m, b2(M) = 12m − 2, b+

2 (M) = 2m − 1,

for some integer m ≥ 1. There are many constructions of exotic homotopy elliptic surfaces
which are not diffeomorphic to elliptic surfaces. In [12, Theorem 15] we proved the following:

Theorem 53 Let m and k be positive integers. If m is odd, assume that k is odd also. Then
there exists a symplectic homotopy elliptic surface M with χh(M) = m whose canonical
class K has divisibility k.

Remark 54 We will only use this theorem for m ≥ 2. It follows from the construction that
these symplectic homotopy elliptic surfaces are minimal. This is clear if k ≥ 2 but holds
also if k = 1, because the manifolds are constructed using fibre sums and there is a way to
determine when such a manifold is minimal [23].

This implies the following proposition about some of the numbers Q(r, d):

Proposition 55 Let d ≥ 4 be an integer.

(a) If d is odd and n ≥ 2, then Q(12n − 2, d) = N (d).
(b) Suppose that d is even. If n ≥ 1 then Q(24n − 2, d) = N (d) and if n ≥ 2 then

Q(24n − 14, d) ≥ N ′(d).

Proof For part (a), let r = 12n −2 and suppose that d ≥ 4 is odd. To prove the claim we first
find for every divisor k ≥ 4 of the integer d a simply-connected symplectic four-manifold M
with b2 = r and b+

2 > 1 whose canonical class has divisibility equal to k: Since d is odd, the
integer k is odd as well. By Theorem 53 there exists a symplectic homotopy elliptic surface
M with b2 = r , b+

2 ≥ 3 and d(K ) = k. There also exists a minimal symplectic homotopy
elliptic surface with the same invariants and d(K ) = 1. This implies the claim.

To prove part (b), suppose that d ≥ 4 is even and let r = 24n − 2. Then for every divisor
k ≥ 4 of d there exists by Theorem 53 a symplectic homotopy elliptic surface M with b2 = r ,
b+

2 ≥ 3 and d(K ) = k. Suppose that r = 24n − 14 = 12(2n − 1)− 2. Then for every odd
divisor k ≥ 4 of d there exists by Theorem 53 a symplectic homotopy elliptic surface M with
b2 = r , b+

2 ≥ 3 and d(K ) = k. In both cases there exists a minimal symplectic homotopy
elliptic surface with the same invariants and d(K ) = 1. This proves the second claim. ��

As a corollary we get the following result about the existence of inequivalent contact
structures in the same equivalence class of almost contact structures:

Corollary 56 Let n ≥ 1 be an arbitrary integer.

(a) On every odd level d ≥ 5 the five-manifold #(12n − 4)S2 × S3#S2×̃S3 admits at least
N (d) inequivalent contact structures.

(b) On every even level d ≥ 4 the five-manifold #(24n − 3)S2 × S3 admits at least N (d)
inequivalent contact structures.

(c) On every even level d ≥ 4 the five-manifold #(24n − 15)S2 × S3 admits at least N ′(d)
inequivalent contact structures.
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Proof This follows from Proposition 55 and Lemma 48 in all cases except for the first and
last case with n = 1. In these cases we choose as M a Dolgachev surface E(1)p,q , where p
and q are coprime positive integers and b2(M) = 10 and b+

2 (M) = 1. The canonical class
of a Dolgachev surface is given by K = (pq − p − q) f where f is an indivisible class. For
every odd integer k we choose p = 2 and q = k + 2. It follows that we can realize all odd
numbers k as d(K ) for b2(M) = 10. Since the canonical class of these Dolgachev surfaces
is a positive multiple of the class represented by a symplectic torus of self-intersection zero,
given by one of the multiple fibres, the proofs of Lemma 44 and Theorem 45 also work in
this case even though b+

2 = 1. ��
Note that N (d) ≥ 2 for all d ≥ 4, hence in the first two cases we always get at least

two inequivalent contact structures. In a similar way we can use other geography results
from [12] to find more inequivalent contact structures on the same level on simply-connected
five-manifolds X of the form #r S2 × S3 and #r S2 × S3#S2×̃S3.

Remark 57 In [18] Lerman considered on M = S2 × S2 the symplectic forms

ωa,b = aω1 + bω2,

where ωi is the pull-back by the projection onto the i-th factor of the standard area form
with integral one on S2 and a > b ≥ 1 are coprime integers. Since the symplectic class is
indivisible and M is spin it follows that the Boothby–Wang total space X is diffeomorphic
to S2 × S3. The first Chern class of M is c1(M) = 2[ω1] + 2[ω2] for all a, b and the level of
the induced contact structure ξa,b on X is

d(ξa,b) = 2(a − b).

Hence if the difference a − b is fixed, we get contact structures on the same level. Lerman
asks if ξa′,b′ and ξa,b on the same level are equivalent as contact structures. Unfortunately,
we cannot answer this question with Corollary 43 because these contact structures all arise
from symplectic forms with d(K ) = 2.
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