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Abstract We explore the relation between self extensions of simple representations of
quantum affine algebras and the property of a simple representation being prime. We show
that every nontrivial simple representation has a nontrivial self extension. Conversely, we
prove that if a simple representation has a unique nontrivial self extension up to isomorphism,
then its Drinfeld polynomial is a power of the Drinfeld polynomial of a prime representation.
It turns out that, in the sl2-case, a simple module is prime if and only if it has a unique
nontrivial self extension up to isomorphism. It is tempting to conjecture that this is true in
general and we present a large class of prime representations satisfying this homological
property.
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1 Introduction

The study of finite-dimensional representations of quantum affine algebras has been an
active field of research for at least two decades. The abstract classification of the simple
representations was given in [12,13], and much of the subsequent work has focused on
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614 V. Chari et al.

understanding the structure of these representations. This has proved to be a difficult task and
a complete understanding outside the case of sl2 is still some distance away. A number of
important methods have been developed: for instance, the work of [22,23] on q-characters
has resulted in a deeper combinatorial understanding of these representations. The geometric
approach of H. Nakajima and the theory of crystal bases of M. Kashiwara have also been
very fruitful. Another powerful tool is the T-system [24,31,38], which was recently shown
[35] to extend beyond Kirillov–Reshetikhin modules to wider classes of representations. A
connection with the theory of cluster algebras has been established recently in [26,39].

The study of the structure of the irreducible representations can be reduced to the so called
prime ones, namely those simple representations which cannot be written as a tensor product
of two non-trivial simple representations. Clearly any finite-dimensional simple representa-
tion can be written as a tensor product of simple prime representations and one could then
focus on understanding the prime representations. This was the approach used in [12] for the
sl2-case, but generalizing this approach is very difficult. However, many examples of prime
representations are known in general, for example the Kirillov–Reshethikhin modules are
prime and, more generally, the minimal affinizations are also prime and other examples may
be found for instance in [26]. However, except in the sl2-case where the simple prime rep-
resentations are precisely the Kirillov–Reshetikhin modules (which are also the evaluation
modules), the classification of the prime representations is not known.

This paper is motivated by an effort to understand the simple prime representations via
homological properties. Thus, let F̂ be the category of finite-dimensional representations
of the quantum affine algebra and denote by V (π) the irreducible representation associated
to the Drinfeld polynomial π . We construct in a natural way a non-trivial self-extension of
any object V of F̂ which motivates the natural question of characterizing the simple objects
which satisfy

dim Ext1F̂ (V, V ) = 1. (1.1)

Our first result shows that any simple V satisfying (1.1) is of the form V (π s
0) for some s ≥ 1

where π0 is such that V (π0) is prime. Hence, if V (π0) is a real prime in the sense of [26],
then using [25] we see that V is a tensor power of V (π0).

In the case of sl2 we prove the stronger result that a simple object V satisfies (1.1) if and
only if V is prime. It is natural and now obviously interesting to ask if such a result remains true
for general g. Our next result provides partial evidence for this to be true. Namely, we prove
for a large family of simple prime representations including the minimal affinizations that
the space of self-extensions is one-dimensional. Our results go beyond minimal affinizations
and we prove that the representations S(β) defined in [26] have a one-dimensional space of
extensions as long as β is a positive root in which every simple root occurs with multiplicity
one. It is worth comparing the results of this paper with their non-quantum counter parts.
One can define in a similar way the notion of prime representations for the category of finite-
dimensional representations of an affine Lie algebra ĝ. It is known through the work of [9,29]
that if V, V ′ are irreducible finite-dimensional representations of ĝ, then

Ext1ĝ(V, V ′) ∼= Homg(g ⊗ V, V ′).

It is now easily seen that there exist examples of simple prime representations V such that
Ext1

ĝ
(V, V ) has dimension at least two. In Sect. 3, we give an example of a simple represen-

tation of the quantum affine algebra which has a one-dimensional space of self-extensions
but whose classical limit, although also prime and simple, has a two dimensional space of
self-extensions.
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Prime representations from a homological perspective 615

The paper is organized as follows. In Sect. 2 we recall the definition and some standard
results on quantum affine algebras. In Sect. 3 we review some results on finite-dimensional
representations of the quantum affine algebra and state the main results of the paper. In Sect. 4
we construct a self extension of any given module of the quantum affine algebra. We prove
that if the module is simple and finite-dimensional then the extension is nontrivial. We also
give the condition (mentioned earlier in the introduction) on the Drinfeld polynomials of a
simple representation which satisfy (1.1).

In Sect. 5 we first review results on local and global Weyl modules. We then study the
relationship between these modules and self extensions of simple representations. In partic-
ular, we compute the dimension of the space of self extensions of the local Weyl modules. In
Sect. 6 we prove that the space of self extensions of a simple module is a subspace of the self-
extensions of the corresponding Weyl module. This allows us to prove that a self-extension
of a simple module is “determined” by its top weight space and this plays a crucial role in
proving the remaining results of the paper. It allows us to study the relationship between self
extensions and tensor products of simple modules which in turn establishes the condition for
a simple representation to have a one-dimensional space of self-extensions. In Sect. 7 we
prove that, in the sl2 case, a simple module V satisfies (1.1) if and only if V is prime. The
last section is dedicated to the proof that a certain class of simple modules satisfy (1.1). Our
results show that this implies that these modules are prime. The latter fact that the modules
are prime can also be proved by other methods as well, see [26] for the modules of type S(β)

and [10] for remarks on minimal affinizations. Our goal here is really to provide evidence
towards the conjecture for general g, that V satisfies (1.1) iff V is prime.

2 Preliminaries

Throughout the paper C (resp. Z, Z+) denotes the set of complex numbers (resp. integers,
non-negative integers) and C× (resp. Z× ) is the set of non-zero complex numbers (resp.
non-zero integers).

2.1

Let I = {1, . . . , n} be the index set for the set of simple roots {αi : i ∈ I } of an irreducible
reduced root system R in a real vector space. Let R+ be the corresponding set of positive
roots. Fix a set of fundamental weights {ωi : i ∈ I } and let Q, P be the associated root and
weight lattice respectively and recall that Q ⊂ P . If R+ is the set of positive roots then we
let Q+ be the Z+-span of R+ and P+ the Z+-span of the fundamental weights.

We assume that the nodes of the Dynkin diagram are numbered as in [5] and we follow the
conventions of that labeling. Let Î = I ∪ {0} be the nodes of the corresponding (untwisted)
extended Dynkin diagram and denote by A = (ai, j )i, j∈I (resp. Â = (ai, j )i, j∈ Î ) the associated

Cartan (resp. untwisted affine Cartan) matrix. Finally, fix non-negative integers {di : i ∈ Î }
such that the matrix (di ai, j )i, j∈ Î is symmetric.

From now on, we fix q ∈ C× and assume that q is not a root of unity. For m ∈ Z, �, r ∈ Z+
and i ∈ Î , set qi = qdi and define,

[m]i = qm
i − q−m

i

qi − q−1
i

[0]i ! = 1, [�]i ! = [�]i [� − 1]i . . . [1]i ,

[
�

r

]
i
= [�]i !

[� − r ]i ![r ]i ! .

123



616 V. Chari et al.

2.2

Let Ûq (resp. Uq ) be the associative algebra over C with generators x±
i , k±1

i , i ∈ Î , (resp.

x±
i , k±1

i , i ∈ I ) satisfying the following defining relations: for i, j ∈ Î (resp. i, j ∈ I ), we
have

ki k
−1
i = 1, ki k j = k j ki ,

ki x±
j k−1

i = q
±ai, j
i x±

j ,

[
x+

i , x−
j

]
= δi j

ki − k−1
i

qi − q−1
i

1−ai j∑
m=0

(−1)m
[

1 − ai j

m

]
i
(x±

i )1−ai, j −m x±
j (x±

i )m = 0, i 	= j.

It is well-known that Ûq and Uq are Hopf algebras with counit, comultiplication, and antipode
given as follows: for i, j ∈ Î (resp. i, j ∈ I ),

ε(ki ) = 1, ε(x±
i ) = 0,

�(ki ) = ki ⊗ ki ,

�(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , �(x−

i ) = x−
i ⊗ k−1

i + 1 ⊗ x−
i ,

S(ki ) = k−1
i , S(x+

i ) = −k−1
i x+

i , S(x−
i ) = −x−

i ki .

It is known that Uq can be canonically identified with the subalgebra of Ûq generated by the
elements x±

i , ki , i ∈ I and that Uq is a Hopf subalgebra of Ûq . The algebra Ûq is naturally
Z-graded by requiring

grx±
i = 0, i ∈ I, grx±

0 = ±1.

2.3

The quantum loop algebra is the quotient of Ûq by the two sided ideal generated by

k0

∏
i∈I

kri
i − 1,

where ri ∈ Z+ is the coefficient of αi in the highest root of R+. This ideal both Z-graded and
a Hopf ideal and hence the quantum loop algebra also acquires a Z-grading and the structure
of a Hopf algebra.

From now on, we shall only be concerned with the quantum loop algebra and hence we
shall by abuse of notation write Ûq for the quantum loop algebra.

The algebra Ûq has an alternative presentation given in [2,20]. It is the algebra with
generators x±

i,r , hi,s, k±1
i , where i ∈ I, r ∈ Z, s ∈ Z×, and defining relations: for i, j ∈

I, r, � ∈ Z, s ∈ Z×,

ki k
−1
i = 1, ki k j = k j ki , ki h j,s = h j,ski , hi,r h j,s = h j,shi,s,[

hi,s, x±
j,r

]
= ±1

s

[
sai, j

]
qi

x±
j,r+s, ki x±

j,r k−1
i = q

±ai, j
i x±

j,r ,

x±
i,r x±

j,� − q
±ai, j
i x±

j,�x±
i,r = q

±ai, j
i x±

i,r−1x±
j,�+1 − x±

j,�+1x±
i,r−1,
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[
x+

i,r , x−
j,s

]
= δi j

φ+
i,r+s − φ−

i,r+s

qi − q−1
i

,

where φ±
i,∓m = 0, m > 0, and the elements φ±

i,±m, m ≥ 0, are defined by the following
equality of power series in u:

∑
m≥0

φ±
i,±mum = k±1

i exp

(
±(qi − q−1

i )
∑
s>0

hi,±sus

)
.

Finally, for i 	= j and given rm ∈ Z for 1 ≤ m ≤ 1 − ai, j , we have

∑
σ∈S1−ai, j

1−ai, j∑
m=0

(−1)m
[

1 − ai, j

m

]
i
x±

i,rσ(1)
. . . x±

i,rσ(m)
x±

j,s x±
i,rσ(m+1)

. . . x±
i,rσ(1−ai, j )

= 0,

where for any k ∈ Z+ we denote by Sk the symmetric group on k letters.
The Z-grading on Ûq is the same as the one given by setting:

grx±
i,r = r, grhi,s = s, grφ±

i,±m = ±m,

where i ∈ I, r, s ∈ Z, s 	= 0 and m ∈ Z+.

2.4

Let Û±
q be the subalgebra of Ûq generated by the elements {x±

i,r : i ∈ I, r ∈ Z}, Ûq(0) the

subalgebra generated by {k±1
i , hi,s : i ∈ I, s ∈ Z×}, and Û0

q the subalgebra of Ûq(0) gener-
ated by {hi,s : i ∈ I, s ∈ Z×}. Then we have an isomorphism of vector spaces,

Ûq = Û−
q Ûq(0)Û+

q . (2.1)

The algebra Ûq(0) (resp. Û0
q ) is also generated by the elements φ±

i,m, i ∈ I, m ∈ Z (resp.

m ∈ Z×). We shall also need a third set of generators �i,r , i ∈ I, r ∈ Z for Û0
q . These were

defined in [12] and are given by the following equality of power series,

∞∑
r=0

�i,±r ur = exp

(
−

∞∑
s=1

hi,±s

[s]i
us

)
. (2.2)

In particular, �i,0 = 1 for all i ∈ I and gr�i,r = r . We conclude the section with the
following result established in [2,3].

Lemma The algebra Û0
q is the polynomial algebra in the variables {hi,r : i ∈ I, r ∈ Z×}.

Analogous statements hold for the generators {φ±
i,m : i ∈ I, m ∈ Z×} and {�i,r : i ∈ I,

r ∈ Z×}. �

3 The main results

3.1

Let g be a simple Lie algebra with root system R+. Let h be the Cartan subalgebra and
U(g) the universal enveloping algebra of g. In this case we can regard Q and P as lattices
in the vector space dual of h. Any finite-dimensional representation of g is semi-simple. i.e.,
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618 V. Chari et al.

is isomorphic to a direct sum of irreducible representations. Further, the irreducible finite-
dimensional representations are indexed by P+. For μ ∈ P+, let V (μ) be an irreducible
module associated to μ. Then

V (μ) =
⊕
ν∈P

V (μ)ν, V (μ)ν = {v ∈ V (μ) : hv = ν(h)v, h ∈ h}.

3.2

A representation V of Ûq is said to be of type 1 if

V =
⊕
μ∈P

Vμ, Vμ = {v ∈ V : kiv = qμi
i v for all i ∈ Î }. (3.1)

where we write μ = ∑
i∈I μiωi . Set wt(V ) = {μ ∈ P : Vμ 	= 0}. Let F̂ be the category

of type 1 finite-dimensional representations of Ûq . Specifically, the objects of F̂ are type
1 representations of Ûq and the morphisms in the category are just Ûq -module maps. The
category F of finite-dimensional representations of Uq is defined similarly. Any Ûq -module
can be regarded by restriction as a module for Uq and we shall use this fact repeatedly
without mention. Since Ûq and Uq are Hopf algebras the categories F̂ and F contain the
trivial one-dimensional representation and are closed under taking tensor products and duals.

Definition We shall say that V ∈ ObF̂ is prime if either V is trivial or if there does not exist
nontrivial Vj ∈ ObF̂, j = 1, 2, with V ∼= V1 ⊗ V2. �

Clearly any V ∈ ObF̂ can be written as a tensor product of prime representations. Fol-
lowing [26] we shall say that a simple object V in F̂ is a real prime if V is prime and V ⊗2

is irreducible. It is known through the work of [25] that for a real prime V the object V ⊗r is
irreducible for all r ≥ 1. One can define prime objects in F in a similar way but this is not
interesting as we shall now see.

3.3

The following was proved in [33].

Proposition The category F is semisimple. Given any μ ∈ P+, the Uq -module V (μ) gen-
erated by an element vμ with relations:

x+
i vμ = 0, kivμ = qμi

i vμ, (x−
i )μi +1vμ = 0,

is a simple object of F . Further, any simple object in F is isomorphic to V (μ) for some
μ ∈ P+ and

dim V (μ)ν = dim V (μ)ν, ν ∈ P.

Moreover, given λ,μ, ν ∈ P+, we have

dim Homg(V (μ) ⊗ V (λ), V (ν)) = dim HomF (V (μ) ⊗ V (λ), V (ν)).

�
The following is now a consequence of the corresponding result for simple Lie algebras.

Corollary The representations V (μ), μ ∈ P+ are prime. �
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Prime representations from a homological perspective 619

3.4

Given any type 1 module V for Ûq , set

V + = {v ∈ V : x+
i,rv = 0 i ∈ I, r ∈ Z}, V +

λ = V + ∩ Vλ.

If v ∈ V +
λ , then it follows from (2.1) that wt Ûqv ⊂ λ − Q+. An element v ∈ V is said to

be an �-weight vector if it is a joint eigenvector for the hi,r , i ∈ I, r ∈ Z×. An �-weight
vector contained in V +

λ is called a highest-�-weight vector. Notice that this is equivalent to
requiring it to be a joint eigenvector for the φ±

i,m, i ∈ I, m ∈ Z. A Ûq -module V is said to be
highest-�-weight if it is generated by a highest-�-weight vector. The following is well-known
and easily proved.

Lemma Let V be a highest-�-weight Ûq -module. Then V has a unique irreducible quotient.
Any simple object in F̂ is highest-�-weight and in fact the space of highest-�-weight vectors
is one-dimensional. �

If V ∈ ObF̂ is a highest-�-weight module generated by a highest-�-weight element v

then there are constraints imposed on the eigenvalues of hi,r on v. We now explain these
constraints

3.5

Let u be an indeterminate, C[u] the algebra of polynomials in u with coefficients in C and
C(u) the field of quotients. Let P+ be the the multiplicative monoid consisting of all I -tuples
of the form π = (πi )i∈I where πi is a polynomial in C[u] with constant term 1. The I -tuple
consisting of the constant polynomial 1 is called the trivial element of P+.

The following was proved in [12,13].

Proposition Suppose that V ∈ ObF̂ is highest-�-weight with generator v ∈ V +
λ and assume

that φ±
i,mv = di,mv, i ∈ I, m ∈ Z. There exists an element π ∈ P+ such that,

∑
m≥0

d+
i,mum = q± deg πi

πi (q
−1
i u)

πi (qi u)
=

∑
m≥0

d−
i,−mu−m, λi = deg πi , (3.2)

in the sense that the left- and right-hand terms are the Laurent expansions of the middle term
about 0 and ∞, respectively. Equivalently, one has an equality of power series,

π±
i (u) = exp

(
−

∞∑
s=1

hi,±s(π)

[s]qi

us

)
=

∑
r≥0

�i,±r (π)ur , (3.3)

where π+
i (u) = πi (u) and π−

i (u) = udeg πi πi (u−1)/
(
udeg πi πi (u−1)

)
(0).

Conversely, given π ∈ P+ there exists a unique (up to isomorphism) irreducible highest-
�-weight object V (π) ∈ ObF̂ which is generated by a highest-�-weight vector v(π) with
�-weight given by (3.2). �
We remark that the trivial representation corresponds to taking the trivial n-tuple.

From now on, we shall use the convention that given � ∈ P+, the eigenvalue of φ±
i,m

on an �-weight vector with �-weight � is denoted φ±
i,m(� ), and hi,r (� ) and �i,r (� ) are

defined similarly.
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620 V. Chari et al.

3.6

The category F̂ unlike F is not semisimple and we shall be interested in understanding
extensions in the category. Our focus in this paper is the space of self extensions of the
simple objects of F̂ . The trivial object C satisfies Ext1F̂ (C, C) = 0. Since any V ∈ ObF̂
has a Jordan–Holder series, it follows that if all the Jordan–Holder factors of V ∈ ObF̂ are
trivial, then V is isomorphic to a direct sum of copies of the trivial representation. Our first
main result is:

Theorem 1 Let π ∈ P+ be non-trivial. We have,

(i) dim Ext1F̂ (V (π), V (π)) ≥ 1.

(ii) Suppose that dim Ext1F̂ (V (π), V (π)) = 1. Then there exists π0 ∈ P+ and s ∈ Z+ such
that V (π0) is prime and π = π s

0. In addition, there exists a partition s1 ≥ · · · ≥ sk > 0
of s such that V (π

sr
0 ) is prime for all 1 ≤ r ≤ k and

V (π) ∼= V (π
s1
0 ) ⊗ · · · ⊗ V (π

sk
0 ).

In particular if V (π0) is a real prime, this is equivalent to saying that V (π) is a tensor
power of V (π0).

(iii) Let π1,π2 ∈ P+ and assume that V (π1) ⊗ V (π2) is irreducible. We have

dim ExtF̂ (V (π1) ⊗ V (π2), V (π1) ⊗ V (π2)) ≥ dim ExtF̂ (V (π1), V (π1)).

(iv) If R is a root system of type A1 then dim ExtF̂ (V (π), V (π)) = 1 iff V (π) is prime.

Let F̂1 be the full subcategory of F̂ consisting of objects V satisfying the following:
if V (π) is a nontrivial Jordan–Holder factor of V then dim ExtF̂ (V (π), V (π)) = 1. The

category F̂1 is not closed under taking tensor products. However, we do have the following:

Corollary If V (π) ∈ ObF̂1 then all the prime factors of V (π) are also in F̂1.

Remark There is an important family of objects of F̂ known as local Weyl modules or
standard modules which are known to be generically irreducible. The reader is referred to
Sect. 5 of this paper where we determine the dimension of the space of self extensions of
these modules. In particular, if W is a local Weyl module then dim ExtF̂ (W, W ) = 1 if and
only if W is prime.

3.7

It is tempting to conjecture that part (iv) of Theorem 1 is true in general. The proof of (iv) uses
very special properties of the category F̂ in the case of A1 and these properties are known
to be false in general. However, there are various well known families of representations of
quantum affine algebras which have many nice properties (such as the Kirillov–Reshethikhin
modules and minimal affinizations) which are either known to be or easily proved to be prime
(see [10] for a discussion). The next main result of this paper shows that for many of these
families it is true that the space of self extensions is one-dimensional.

3.8

For π ∈ P+ set

supp π = {i ∈ I : πi 	= 1}.
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Prime representations from a homological perspective 621

Given i, j ∈ I , let [i, j] be the minimal connected subset of I containing i and j and let
(i, j) = [i, j]\{i, j}. We shall prove,

Theorem 2 Let π ∈ P+ and assume that,

(i) for i ∈ supp π there exists ai ∈ C× such that

πi = (1 − ai uqmi −1
i )(1 − ai uqmi −3

i ) · · · (1 − ai uq−mi +1
i ), deg πi = mi ,

(ii) for i, j ∈ supp π with (i, j) ∩ supp π = ∅, we have either

ai = a j q
ri, j ,

or, there exists k ∈ supp π with ( j, k) ∩ supp π = ∅ = (i, k) ∩ supp π and

a j = akqr j,k , ai = akqri,k ,

where ri, j = ±
(

di mi −
(

1
2

∑
k 	=�∈[i, j] dkak,�

)
+ d j m j

)
.

Then

dim ExtF̂ (V (π), V (π)) = 1.

Remark Observe that the second assumption in (ii) is only possible when R is of type D
or E . Notice that it follows from Theorem 1 that the simple representations satisfying the
conditions of Theorem 2 are prime.

3.9

We now make several remarks to explain the assumptions on π . The notion of minimal
affinizations was introduced in [6] and studied further in [14–16,34]. The first condition
on π requires that each component define a minimal affinization for the quantum affine
algebra associated to A1. The second condition requires that if we restrict our attention to
the connected subset Is of I whose intersection with supp π is {is, is+1}, then the Is-tuple
(πis , 1, . . . , 1, πis+1) defines a minimal affinization for the quantum affine algebra associated
to Is . For ease of exposition, we are being a bit careless here in the case of the root system
of type Dn but this is taken care of later in the paper.

3.10

As an example, if R+ is of type A3, then π = (1 − u, 1 − q3u, 1 − u) and π = (1 − u, 1 −
q3u, 1 − q6u) both satisfy the conditions of Theorem 2. The latter polynomial defines a
minimal affinization while the former does not.

3.11

In the special case when supp π = {i1}, the associated module is called a Kirillov–
Reshetikhin module and our result shows that the space of self extensions of this module is
one-dimensional.

3.12

We conclude this section by comparing the statement of Theorem 2 with known results for
the loop algebra of L(g). Let t be an indeterminate. Then,

L(g) = g ⊗ C[t, t−1], [x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m .

123



622 V. Chari et al.

Let F be the category of finite-dimensional representations of L(g). Then, the irreducible
representations are again given by n-tuples of polynomials π . The structure of the simple
representations is easily described in this case and, as a consequence, one also understand
the irreducible prime objects in this category. As an example, if we take g to be sl3, then one
knows that

V (1 − u, 1 − u) ∼=g V (ω1 + ω2),

and hence V (1 − u, 1 − u) is prime. It follows from the work of [9] and [29] that

dim ExtF (V (1 − u, 1 − u), V (1 − u, 1 − u)) = 2.

It can be shown that the classical limit (as q → 1) of the representation V (π), where
π = (1 − u, 1 − q3u), is the representation V (1 − u, 1 − u). Theorem 2 shows however that

dim ExtF̂ (V (π), V (π)) = 1 	= dim ExtF (V (1 − u, 1 − u), V (1 − u, 1 − u)).

4 Proof of Theorem 1: parts (i) and (ii)

4.1

Let wt : P+ → P+ be defined by

wt π =
∑
i∈I

(deg πi )ωi .

We shall say that V ∈ ObF̂ is a self extension of V (π), π ∈ P+ if V has a Jordan–Holder
series of length two with both constituents being isomorphic to V (π), or equivalently, if we
have a short exact sequence

0 → V (π)
ι−→ V

τ−→ V (π) → 0,

of objects of F̂ . We say that V is a trivial self extension if V ∼= V (π)⊕ V (π) and non-trivial
otherwise. Notice that

dim Vwtπ = 2.

and that ι(v(π)) is a highest-�-weight vector in Vwtπ . Suppose that V contains another
linearly independent vector v′ which is also highest �-weight. Then

dim(Ûqv′)wtπ = 1, and so ι(v(π)) /∈ Ûqv′.

Hence ι(V (π)) ∩ Ûqv′ = {0} which implies that Ûqv′ ∼= V (π) and that V is a trivial self
extension. Summarizing, we have proved,

Lemma Let V ∈ ObF̂ be a self extension of V (π). Then V is nontrivial if and only if
Vwtπ has a unique (up to scalars) highest-�-weight vector. Moreover, if V is nontrivial and
v ∈ Vwtπ is not an �-weight vector, then V = Ûqv. �
4.2

A self-extension V of V (π) defines an element [V ] of Ext1F̂ (V (π), V (π)). Moreover by
Lemma 4.1, we see that [V ] = 0 iff V is the trivial self extension.
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Lemma Let V, V ′ be self extensions of V (π) for some π ∈ P+. Then V and V ′ are
isomorphic as Ûq -modules iff there exists c ∈ C such that [V ] = c[V ′] as elements of
Ext1F̂ (V (π), V (π)).

Proof It is clear that if there exists c ∈ C with [V ] = c[V ′] as elements of Ext1F̂ (V (π), V (π))

then they must be isomorphic as Ûq -modules. For the converse let η : V → V ′ be an
isomorphism of Ûq -modules. Lemma 4.1 shows that V is a trivial self extension of V (π) iff
V ′ is also the trivial self-extension and in that case [V ] = [V ′] = 0. So assume that they are
both non-split i.e., the short exact sequences

0 → V (π)
ι−→ V

τ−→ V (π) → 0, 0 → V (π)
ι′−→ V ′ τ ′−→ V (π) → 0

are non-split. Then η(ι(v(π)) = aι′(v(π)), for some a ∈ C×. Since V (π) is irreducible, it
follows in fact that

η(ι(v)) = aι′(v), for all v ∈ V (π).

This means that the short exact sequence

0 → V (π)
η◦ι−→ V ′ τ ′−→ V (π) → 0, (4.1)

defines the same equivalence class as a−1[V ′]. Next, choose v ∈ V such that τ(v) = v(π).
Since V = Ûqv and τ ′(η(v)) = bv(π) for some b ∈ C× we get τ ′ ◦η = bτ , i.e., the sequence
defines the same equivalence class as b−1[V ]. Therefore, a[V ] = b[V ′] as required. �
4.3

Recall that Ûq is a Z-graded algebra and for r ∈ Z let Ûq [r ] be the r -th graded piece. Given
any V ∈ ObF̂ let E(V ) ∈ ObF̂ be defined by requiring

E(V ) = V ⊕ V,

as vector spaces and the action of Ûq given by extending linearly the assignment,

gr (v,w) = (grv, rgrv + grw), gr ∈ Ûq [r ], v, w ∈ V .

Clearly we have a short exact sequence of Ûq -modules

0 → V
ι−→ E(V )

τ−→ V → 0. (4.2)

The following proves part (i) of Theorem 1.

Proposition If π ∈ P+ is nontrivial, E(V (π)) is a nontrivial self extension of V (π).

Proof By Lemma 4.1 it suffices to prove that E(V (π))wtπ has a one-dimensional space of
highest-�-weight vectors. Clearly ι(v(π)) is a highest-�-weight vector, and for c1, c2 ∈ C,
we have,

φ±
i,m(c1v(π), c2v(π)) = (φ±

i,m(π)c1v(π), mφ±
i,m(π)c1v(π) + φ±

i,m(π)c2v(π)). (4.3)

Choosing i ∈ I and m ∈ Z, m > 0 with φi,m(π) 	= 0 we see that the right hand side of the
preceding equation is a multiple of (c1vπ , c2vπ ) iff c1 = 0 and the proposition is proved. �
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4.4

To prove (ii) of Theorem 1, we need the following result which can be found in [12]. In the
current formulation, it uses the formulae for the comultiplication given in [3,19].

Proposition Let V1, V2 ∈ ObF̂ . Let v1 and v2 satisfy

x+
i,rv1 = 0 = x+

i,rv2, i ∈ I, r ∈ Z.

Then,

�(x+
i,r )(v1 ⊗ v2) = 0,

�(hi,s)(v1 ⊗ v2) = (hi,sv1 ⊗ v2 + v1 ⊗ hi,sv2),

for all i ∈ I, r ∈ Z and s ∈ Z×. �
Corollary Let π j ∈ P+ for j = 1, 2 and let v = v(π1) ⊗ v(π2) ∈ V (π1) ⊗ V (π2). Then,
Ûqv is a highest-�-weight module with highest �-weight π1π2. In particular, it has V (π1π2)

as its unique irreducible quotient. �
4.5

Lemma Let π1,π2 ∈ P+ be such that V (π1)⊗ V (π2) is irreducible. If V is a (non-trivial)
self extension of V (π1), then V ⊗ V (π2) is a (non-trivial) self extension of V (π1)⊗ V (π2).

Proof It is clear that V ⊗ V (π2) is a self extension of V (π1) ⊗ V (π2). Let v1, v2 be a basis
for Vwtπ 1

and assume that v2 is an �-weight vector. By Proposition 4.4 we have

hi,r (v1 ⊗ v(π2)) = hi,rv1 ⊗ v(π2) + v1 ⊗ hi,r (π2)v(π2).

Hence v1⊗v(π2) is an �-weight vector only if hi,r v1⊗v(π2) is a scalar multiple of v1⊗v(π2),
which implies that hi,rv1 is a scalar multiple of v1. This implies that Vwtπ has two linearly
independent �-weight vectors and hence V is trivial by Lemma 4.1. �
4.6

Proposition Let π1,π2 be nontrivial elements of P+ and assume that (π1)
r1 	= (π2)

r2

for all r1, r2 ∈ Z+. Then E(V (π1)) ⊗ V (π2) and V (π1) ⊗ E(V (π2)) are non-trivial and
non-isomorphic self extensions of V (π1) ⊗ V (π2).

Proof The fact that V (π1) ⊗ E(V (π2)) and V (π1) ⊗ E(V (π2))) are non-trivial self exten-
sions of V (π1)⊗ V (π2) was proved in Lemma 4.5. Suppose that η : E(V (π1))⊗ V (π2) →
V (π1) ⊗ E(V (π2)) is an isomorphism of Ûq -modules. Then η maps an �-weight vector in
(E(V (π1))⊗ V (π2))wtπ 1+wtπ 2

to an �-weight vector in (V (π1)⊗E(V (π2)))wtπ 1+wtπ 2

and hence we have,

η ((0, v(π1)) ⊗ v(π2)) = v(π1) ⊗ (0, dv(π2)) ,

for some d ∈ C. Moreover since η is an isomorphism, we may and do assume without loss
of generality that d = 1. Further, there also exist c1, c2 ∈ C such that

η ((v(π1), 0) ⊗ v(π2)) = v(π1) ⊗ (c1v(π2), c2v(π2)) .
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By Proposition 4.4 again we see that for all i ∈ I and r ∈ Z, r 	= 0, we have

η
(
hi,r ((v(π1), 0) ⊗ v(π2))

) = η
(
hi,r (π1) (v(π1), rv(π1)) ⊗ v(π2)

+hi,r (π2) (v(π1), 0) ⊗ v(π2)
)

= (
hi,r (π1) + hi,r (π2)

)
v(π1) ⊗ (c1v(π2), c2v(π2))

+rhi,r (π1)v(π1) ⊗ (0, v(π2))

while,

hi,r (v(π1) ⊗ (c1v(π2), c2v(π2))) = hi,r (π1)v(π1) ⊗ (c1v(π2), c2v(π2))

+hi,r (π2)v(π1) ⊗ (c1v(π2), c1rv(π2) + c2v(π2)).

Equating, we get

hi,r (π1) = c1hi,r (π2).

Writing π1 = (π1, . . . , πn) and π2 = (π ′
1, . . . , π

′
n), as

πi (u) =
k∏

s=1

(1 − asu)ps , π ′
i (u) =

�∏
s=1

(1 − bsu)ms ,

where as 	= ar similarly br 	= bs if r 	= s and ps > 0, ms > 0, we find by using (3.3) that
for all r > 0, we have

hi,r (π1)

[r ]i
= −1

r

k∑
s=1

psar
s ,

hi,r (π2)

[r ]i
= −1

r

�∑
s=1

msbr
s .

Hence we get

k∑
s=1

psar
s = c1

�∑
s=1

msbr
s , r ∈ Z×+.

If a1 	= br for all 1 ≤ r ≤ �, then we find by using the invertibility of the Vandermonde
matrix that p1 = 0 which is a contradiction. This means that we must have � = k and also
without loss of generality a j = b j for all 1 ≤ j ≤ �. This gives the equation,

�∑
s=1

(ps − c1ms)a
r
s = 0, r ∈ Z, r 	= 0.

In particular, this means that

ps = c1ms, 1 ≤ s ≤ �.

Hence c1 is positive and rational, say c1 = d
d

′
, for some d, d ′ ∈ Z+\{0},and so d ′ ps = dms

for all 1 ≤ s ≤ �. Since c1 is independent of i we have now proved that

πd
1 = πd ′

2 .

But this is a contradiction and hence η is not an isomorphism. �
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4.7

We can now prove part (ii) of Theorem 1. Observe first that if π1 and π2 are such that
π

r1
1 = π

r2
2 for some r1, r2 ∈ Z+, then there exists π0 such that π1 and π2 are powers of π0.

Suppose that V (π) is not a prime representation and write

V (π) = V (π1) ⊗ · · · ⊗ V (πk),

where π s is nontrivial and V (π s) is prime for 1 ≤ s ≤ k. Then by Proposition 4.6 there
exists π0 such that

π1 = πr
0, π2 · · · πk = π�

0,

(note V (π2) ⊗ · · · ⊗ V (πk) ∼= V (π2 · · · πk)) and hence π = πr+�
0 . Since

V (π1) ⊗ V (π2) ∼= V (π2) ⊗ V (π1),

we also get by Proposition 4.6 that

πm
2 = π

p
1 π

p
3 · · · π p

k ,

for some m, p ∈ Z+. This gives

π
m+p
2 = π p = π

p(�+r)
0 .

Hence π2 and π0, and so also π1 are powers of some π̃ . Repeating we find that there exists
π̃0 such that π s is a power of π̃0 for all 1 ≤ s ≤ k as required.

5 Local and global Weyl modules

To prove the remaining results of the paper we need to recall the definition of global and local
Weyl modules and summarize their important properties. We use the approach developed in
[8] for loop algebras.

5.1

Given λ ∈ P+ the global Weyl module W (λ) is the Ûq -module generated by a vector wλ

with the following defining relations,

kiwλ = qλi
i wλ, x+

i,rwλ = 0,

(x−
i,0)

λi +1wλ = 0,

for all i ∈ I and r ∈ Z. If λ 	= 0, then W (λ) is an infinite-dimensional type 1 module while
W (0) is the trivial module. Note that if π ∈ P+ is such that wtπ = λ and V ∈ ObF̂ is a
highest-�-weight module with �-weight π , then V is a quotient of W (λ). The global Weyl
module W (λ) was originally defined in [17] in a different way, but it is not hard to see by
using Proposition 4.3 of that paper that the two definitions are equivalent. It is also proved
in Proposition 4.5 of [17] that W (λ) is an integrable module: i.e the Chevalley generators
x±

i , i ∈ Î act locally nilpotently. Finally, we remark that it is proved in [37] that the global
Weyl module is isomorphic to the extremal weight modules defined by Kashiwara in [27].
The following is a very special case of the fact that W (λ) is integrable. For all i ∈ I , we have

λ − (λi + 1)αi /∈ wtW (λ). (5.1)

123



Prime representations from a homological perspective 627

5.2

Regard W (λ) as a right-module for Û0
q by setting (uwλ)hi,r = uhi,rwλ,where u ∈ Ûq and

i ∈ I, r ∈ Z, r 	= 0.
Set

Annλ = {x ∈ Û0
q : wλx = 0} = {x ∈ Û0

q : xwλ = 0},
and let Aλ be the quotient of Û0

q by the ideal Annλ. Then, W (λ) is a (Ûq , Aλ)-bimodule. For
all μ ∈ P the subspace W (λ)μ is a right Aλ-module. Moreover, W (λ)λ is obviously also a
left Aλ-module and we have an isomorphism of Aλ-bimodules

W (λ)λ ∼= Aλ.

The structure of the ring Aλ is known. Specifically regard Û0
q as the polynomial ring in the

variables �i,r , i ∈ I, r ∈ Z×. Then Aλ is the quotient obtained by setting

�i,r = 0, |r | ≥ λi + 1, �i,λi �i,−s − �i,λi −s = 0, (5.2)

for all i ∈ I and 0 ≤ s ≤ λi . In particular, if we let �̄i,r be the image of �i,r in Aλ, then

Aλ
∼=

⊗
i∈I

C[�̄i,1, . . . �̄i,λi , (�̄i,λi )
−1].

The following important result will be crucial for the paper. The result was established
when R is A1 in [18], and in general the result can be deduced from the work of [4,36]. There
are also other proofs of this result through the work of [11,17,21,40].

Theorem 3 The global Weyl module W (λ) is a free right module of finite rank for Aλ. �
5.3

Let mod-Aλ be the category of finitely generated left Aλ-modules and given an object M of
mod-Aλ set

WλM = W (λ) ⊗Aλ M.

Since W (λ)λ is an Aλ-bimodule, we have an isomorphism of left Aλ-modules,

(WλM)λ = W (λ)λ ⊗Aλ M ∼= M.

If V is any quotient of W (λ), then

uVλ = 0, u ∈ Annλ,

and hence the Û0
q action on Vλ descends to Aλ. It is simple to check (see [8, Proposition 3.6])

that V is a quotient of WλVλ.

5.4

Proposition The assignment

M → WλM, f → 1 ⊗ f,

defines an exact functor from the category mod-Aλ to F̂ . Moreover, M is an indecomposable
object of mod-Aλ iff WλM is indecomposable in F̂ .
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Proof The first statement is clear from Theorem 3. Suppose that

WλM = V ⊕ V ′,

as objects of F̂ . Then we have

(WλM)λ = Vλ ⊕ V ′
λ,

as Û0
q -modules. Since

Annλ(WλM)λ = 0

it follows that Vλ and V ′
λ are Aλ-modules and hence

M = Vλ ⊕ V ′
λ

as Aλ-modules. The converse implication is trivial and the proposition is established. �
5.5

Given π ∈ P+, let Cπ be the one-dimensional representation of Û0
q defined by taking the

quotient by the maximal ideal I(π) generated by the elements

{hi,r − hi,r (π) : i ∈ I, r ∈ Z×},
or equivalently by the elements

{�i,r − �i,r (π) : i ∈ I, r ∈ Z×}.
It is clear from (5.2) that Cπ is a Aλ-module. The local Weyl module W (π) is given by,

W (π) = WλCπ , w(π) = wλ ⊗ 1.

An alternative definition of W (π) is that it is the quotient of W (λ) obtained by imposing the
additional relations:

(hi,r − hi,r (π))wλ = 0, equivalently (�i,r − �i,r (π))wλ = 0, (5.3)

for all i ∈ I, r ∈ Z×. Clearly W (π) is a highest-�-weight module with �-weight π and W (π)

is universal with this property. In particular V (π) is a quotient of W (π). Moreover V (π) is
the quotient of W (π) by the maximal submodule not containing W (π)wtπ = Cw(π).

5.6

We now prove,

Proposition Let λ ∈ P+ and let V be any Ûq -module such that wtV ⊂ λ− Q+ and assume
that λ − (λi + 1)αi /∈ wtV . Then,

Ext1
Ûq

(W (λ), V ) = 0,

or equivalently, any short exact sequence

0 → V
ι−→ W

τ−→ W (λ) → 0

of Ûq -modules is split.
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Proof Observe that wt W ⊂ λ − Q+ and also that λ − (λi + 1)αi /∈ wtW . Hence if w ∈ Wλ

is such that τ(w) = wλ, we have

x+
i,rw = 0, (x−

i,0)
λi +1w = 0.

It follows there exists a Ûq -module map η : W (λ) → Ûqw with η(wλ) = w. The composite
map τ.η : W (λ) → W (λ) then satisfies τ.η(wλ) = wλ and hence is the identity map and the
Lemma is established. �
5.7

One can compute Extr
Ûq

(W (π), W (π)) for all π ∈ P+ using the Koszul complex for the

Aλ-module Cπ and using Theorem 3. Consider the the special case when r = 1 in which
case we have

dim Ext1Aλ
(Cπ , Cπ ) =

∑
i∈I

λi .

Proposition Let π ∈ P+ such that wt π = λ. Then

Ext1F̂ (W (π), W (π)) ∼= Ext1Aλ
(Cπ , Cπ ),

and hence

dim Ext1F̂ (W (π), W (π)) =
∑
i∈I

λi .

Proof Let η : W (λ) → W (π) be the map of Ûq -modules such that η(wλ) = w(π). Since
dim W (π)λ = 1, we have

dim HomÛq
(W (π), W (π)) = 1 = dim HomÛq

(W (λ), W (π)).

Applying HomF̂ (−, W (π)) to the short exact sequence 0 → ker η → W (λ) → W (π) → 0
and using Proposition 5.6 we get

HomF̂ (ker η, W (π)) ∼= Ext1F̂ (W (π), W (π)).

Indeed, Proposition 5.6 implies that we have an exact sequence

0 → HomF̂ (W (π), W (π) → HomF̂ (W (λ), W (π)) → HomF̂ (ker η, W (π))

→ Ext1F̂ (W (π), W (π)) → 0.

Since

dim HomF̂ (W (π), W (π)) = dim HomF̂ (W (λ), W (π)) = 1,

the claim follows.
It follows from (5.3) that ker η is generated as a Ûq -module by the elements

{hi,r − hi,r (π) : i ∈ I, r ∈ Z.} Since hi,r (π) is determined by the values of hi,s(π) for
1 ≤ s ≤ λi , we see that

dim Ext1
Ûq

(W (π), W (π)) = dim HomÛq
(ker η, W (π)) ≤

∑
i∈I

λi .

Finally, this bound must be achieved since Proposition 5.4 defines a map

Ext1Aλ
(Cπ , Cπ ) → Ext1F̂ (WλCπ , WλCπ )

which is injective since the functor exact. �
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5.8

The structure of the local Weyl modules is known through the work of [1,7,41]. To describe
the result, we recall the definition of fundamental �-weights. For i ∈ I and a ∈ C×, let
π i,a = (π1, . . . , πn) ∈ P+ be such that πi = 1 − au and π j = 1 otherwise.

Proposition Let π ∈ P+. Then there exists k ∈ Z+, is ∈ I, as ∈ C×, 1 ≤ s ≤ k, such that

W (π) ∼= V (π i1,a1) ⊗ · · · ⊗ V (π ik ,ak ).

Moreover W (π) is irreducible if ap/a� /∈ qZ for all 1 ≤ p, � ≤ s. �
In fact it was shown in [7] that W (π) is irreducible if ap = a� for all 1 ≤ p, � ≤ s.

Combining this with Proposition 5.7 we get, that

dim ExtF̂ (V (π), V (π)) = 1, π is generic �⇒ V (π) is prime. (5.4)

Here, by generic we mean π such that W (π) ∼= V (π). Notice however that a generic simple
module V (π) is most often not prime.

6 Proof of Theorem 1 (iii)

In addition to proving part (iii) of Theorem 1, we also prove some results on self-extensions
which are needed later in the paper and use the study of global and local Weyl modules.

6.1

Proposition Letπ ∈ P+ and let V be any self-extension of V (π). The restriction V → Vwtπ
induces an injective map of vector spaces

Ext1F̂ (V (π), V (π)) → Ext1Aλ
(Cπ , Cπ ) ∼= Ext1F̂ (W (π), W (π)).

Proof Let K (π) (resp. K̃ (π)) be the kernel of the map W (λ) → W (π) (resp. W (λ) →
V (π))). Clearly K (π) ⊂ K̃ (π) and moreover, since

W (π)wtπ ∼= V (π)wtπ ∼= Cπ ,

it follows that

K̃ (π)wtπ = K (π)wtπ , and HomF̂ (K̃ (π)/K (π), V (π)) = 0. (6.1)

Using Proposition 5.6 and the fact that

dim HomF̂ (W (π), W (π)) = dim HomF̂ (W (λ), W (π))

= dim HomF̂ (W (λ), V (π)) = dim HomF̂ (V (π), V (π)) = 1,

we see that

Ext1F̂ (W (π), W (π)) ∼= HomF̂ (K (π), W (π)), (6.2)

Ext1F̂ (V (π), V (π)) ∼= HomF̂ (K̃ (π), V (π)). (6.3)

Applying HomF̂ (−, V (π)) to the short exact sequence

0 → K (π) → K̃ (π) → K̃ (π)/K (π) → 0,
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and using (6.1) we get an inclusion,

HomF̂ (K̃ (π), V (π)) ↪→ HomF̂ (K (π), V (π)).

The Proposition now follows from (6.2), (6.3) and Proposition 5.7. �
6.2

We now determine the image of the inclusion given in Proposition 6.1. Equivalently, we
answer the following question: when does a self-extension of W (π) determine a self-
extension of V (π). It is convenient to introduce the following notation: given any Ûq -module
W with wtW ⊂ λ − Q+, let W λ be the unique maximal submodule of W such that

W λ ∩ Wλ = 0.

It is clear that W λ exists and is unique—one just takes the sum of all submodules U of W
such that Uλ = 0. Recall that

W (π)/W (π)λ ∼= V (π).

Lemma Let π ∈ P+ and assume that W is a (non-split) self extension of W (π),

0 → W (π)
ι−→ W

τ−→ W (π) → 0.

If τ(W wtπ ) = W (π)wtπ , there exists a (non-split) self-extension V of V (π) with

Vwtπ ∼=Aλ Wwtπ .

Proof Since ι(W (π)wtπ ) ⊂ W wtπ we see that the restrictions of ι and τ give a short exact
sequence

0 → W (π)wtπ ι−→ W wtπ τ−→ W (π)wtπ → 0.

Setting V = W/W wtπ it follows that V is a self-extension of V (π). �
6.3

Proposition Suppose that V is a nontrivial self-extension of V (π) and wtπ = λ. Then

V ∼= WλVλ/(WλVλ)
λ.

Proof If V is a non-trivial self extension, then it follows from Lemma 4.1 that there exists
v ∈ Vλ such that V = Ûqv. Since wt V ⊂ λ − Q+ we see that V is a quotient of W (λ) and
hence also of WλVλ. Since

dim Vλ = dim(WλVλ)λ = 2,

it follows that WλVλ/(WλVλ)
λ must be a quotient of V and hence is either isomorphic to V

or to V (π). But the latter is impossible since dim V (π)λ = 1 and the proof is complete. �
The following is now immediate.

Corollary Suppose that V and V ′ are self-extensions of V (π) and wtπ = λ. Then

V ∼=F̂ V ′ ⇐⇒ Vλ
∼=Aλ V ′

λ.
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6.4

The next proposition along with Lemma 4.2 proves part (iii) of Theorem 1.

Proposition Let V1 and V2 be nontrivial self extensions of V (π) for some π ∈ P+. Then
for all π1 ∈ P+ with V (π) ⊗ V (π1) irreducible, we have

V1 ⊗ V (π1) ∼= V2 ⊗ V (π1) ⇐⇒ V1 ∼= V2.

Proof Let η : V1 ⊗ V (π1) → V2 ⊗ V (π1) be an isomorphism of Ûq -modules. By Lemma
4.5 we know that Vj ⊗V (π1) is a nontrivial extension of V (π)⊗V (π1). Let ι j : V (π) → Vj

be the inclusion. Since ι1(v(π)) ⊗ v(π1) is a highest-�-weight vector in V1 ⊗ V (π1), we
may assume without loss of generality that

η(ι1(v(π)) ⊗ v(π1)) = ι2(v(π)) ⊗ v(π1).

Let v1 ∈ (V1)wtπ be linearly independent from ι1(v(π)). Writing

η(v1 ⊗ v(π1)) = v2 ⊗ v(π1), (6.4)

we see that v2 and ι2(v(π2)) are linearly independent elements of (V2)wtπ . Applying hi,r

to both side of (6.4), we get

η(hi,rv1 ⊗ v(π1)) = hi,rv2 ⊗ v(π1),

for all i ∈ I, r ∈ Z×. Writing

hi,rv j = hi,r (π)v j + c j
i,r ι j (v(π)),

we find now that c1
i,r = c2

i,r for all i ∈ I, r ∈ Z×. Hence the map v1 → v2, ι1(v(π)) →
ι2(v(π)) defines an isomorphism

(V1)wtπ ∼= (V2)wtπ

of Awtπ -modules. By Corollary 6.3 we see that this implies V1 ∼= V2 as Ûq -modules. The
converse statement is trivial and the proof is complete. �

7 Proof of Theorem 1 (iv)

Throughout this section we shall be concerned with R being of type A1. In this case, I = {1}
and for ease of notation, we denote the elements x±

i,r as just x±
r . Since we will not be using

the Chevalley generators in this section there should be no confusion. We also remark that
d1 = 1 and hence we just denote by [r ] the quantum number [r ]1. Finally, we identify P
with Z and Q with 2Z and denote the modules W (λ) by W (n) etc.

7.1

Given m ∈ Z+ and a ∈ C×, set

π(m, a) = (1 − aqm−1u)(1 − aqm−3u) · · · (1 − aq−m+1u).

The representation V (π(m, a)) has the following explicit realization. It has a basis vm , . . . , v0

and the action of the generators x±
r is given by,

x+
r v j =

(
aq−m+2 j+2

)r [ j + 1]v j+1 x−
r v j =

(
aq−m+2 j

)r [m − j + 1]v j−1, (7.1)
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where 0 ≤ j ≤ m and we understand that v−1 = vm+1 = 0. The action of the remaining
generators is determined by these and we note for future use that for all r ∈ Z with r 	= 0,
we have

φ±±rvm = ±(q − q−1)(aqm)±r [m]vm, hrvm = ar [rm]
r

vm . (7.2)

Clearly V (π(m, a)) is irreducible for the subalgebra Uq and hence by Corollary 3.3 is a
prime object of F̂ . The following is a consequence of [12, Theorem 4.8].

Proposition Any prime simple object in F̂ is isomorphic to V (π(m, a)) for some m ∈
Z+, a ∈ C×. Moreover, for all s ∈ Z+, we have

V (π(m, a)s) ∼= V (π(m, a))⊗s .

�
7.2

The next proposition together with part (iii) of Theorem 1 and Proposition 7.1 establishes
part (iv) of Theorem 1.

Proposition Let m ∈ Z+, a ∈ C×. Then,

(i) dim Ext1F̂ (V (π(m, a)), V (π(m, a))) = 1,

(ii) dim Ext1F̂ (V (π(m, a))⊗2, V (π(m, a))⊗2) ≥ 2.

The rest of this section is devoted to proving the proposition.

Remark The space Ext1F̂ (V (π(m, a)), V (π)) with deg(π) < m was computed in [30, Propo-
sition 3.2.2].
Proposition 7.2 answers positively [30, Conjecture 3.3.2] and the comment following it.

7.3

Recall from Sect. 5 that the local Weyl module W (π(m, a)) is the module generated by an
element wm with relations:

x+
r wm = 0, hrwm = ar [rm]

r
wm , (x−

0 )m+1wm = 0.

Proposition Let m ∈ Z+, a ∈ C×.

(i) The module V (π(m, a)) is the quotient of W (π(m, a)) obtained by imposing the single
additional relation

(x−
1 − aqm x−

0 )wm = 0.

(ii) The module V (π(m, a))⊗2 is the quotient of W (π(m, a)2) obtained by imposing the
single additional relation

(x−
2 − 2aqm x−

1 + a2q2m x−
0 )w2m = 0.

Proof To prove (i), notice that the formulae given in Sect. 7.1 imply that the element vm ∈
V (π(m, a)) satisfies,

(x−
1 − aqm x−

0 )vm = 0,
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In particular, if

W = W (π(m, a))/Ûq(x−
1 − aqm x−

0 )wm,

then V (π(m, a)) is a quotient of W . Part (i) follows if we prove that dim W ≤ m +1. For this
we denote by w̄m the image of wm in W and observe that W is spanned by w̄m and elements
of the form x−

s1
· · · x−

sk
w̄m where 1 ≤ k ≤ m. Since

0 = [hr , x−
1 − aqm x−

0 ]w̄m = [2r ]
r

(x−
r+1 − aqm x−

r )w̄m,

we get that x−
r w̄m ∈ Cx−

0 w̄m for all r ∈ Z. This implies that W is spanned by elements of
the form x−

s1
· · · x−

sk−1
x−

0 w̄m where 1 ≤ k ≤ m. Suppose that we have proved that we may
take s2 = · · · = sk = 0. If s1 = ±1, then using the relation

x−
0 x−

±1 = q±2x−
±1x−

0

shows that x−
±1(x−

0 )k−1w̄m is a multiple of (x−
0 )kw̄m . An obvious induction on s using the

relation

x−
s x−

0 − q−2x−
0 x−

s = q−2x−
1 x−

s−1 − x−
s−1x−

1 ,

now proves that W is spanned by elements of the form (x−
0 )sw̄m, 1 ≤ s ≤ m and hence

dim W ≤ m + 1 as required.
The proof of part (ii) is very similar. We observe that we have the relation

(x−
2 − 2aqm x−

1 + a22q2m x−
0 )(vm ⊗ vm) = 0,

in V (π(m, a))⊗2. We set

W = W (π(m, a)2)/Ûq(x−
2 − 2aqm x−

1 + a22q2m x−
0 )w2m,

and let w̄2m be the image of w2m in W . We now prove exactly as before that W is spanned
by w̄2m and elements of the form (x−

1 )s(x−
0 )�w̄m with 1 ≤ s + � ≤ 2m. The spanning set

is now of cardinality bigger than (m + 1)2 if m > 1. To show that in fact we can choose a
suitable subset of cardinality at most (m + 1)2 we observe that

dim W2r = dim W−2r ,

and hence it is enough to determine a bound for dim W2r for 0 ≤ r ≤ m. This bound is easily
seen to be m − r + 1 and so we now have

dim W = 2 dim W2m + 2 dim W2m−2 + · · · + 2 dim W2 + dim W0

= 2(1 + 2 · · · + m) + (m + 1) = (m + 1)2.

This completes the proof of the Proposition. �
7.4

We now prove Proposition 7.2(i). Consider the canonical map from the global Weyl module
η : W (m) → V (π(m, a)) which sends wm → vm . We claim that ker η is generated by the
element v = (x−

1 − aqm x−
0 )wm . By Proposition 7.3(i) we see that v ∈ ker η. Moreover,

(q − q−1)x+
r v =

⎧⎪⎪⎨
⎪⎪⎩

(φ±
r+1 − aqmφ±

r )wm, r ∈ Z, r 	= 0,−1,

(φ+
1 − aqm(qm − q−m))wm, r = 0,

((qm − q−m) − aqmφ−
−1)wm, r = −1.
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An induction on r shows that

(φ±
r − (aqm)r (qm − q−m))wm ∈ Ûqv, r 	= 0.

Setting

W̃ = W (m)/Ûqv,

we see that the defining relations of W (π(m, a)) imply that W̃ is a quotient of W (π(m, a)).
It now follows from Proposition 7.3(i) that

W̃ ∼= V (π(m, a)),

and the claim is established.
By Proposition 5.6, Ext1F̂ (W (m), V (π(m, a)))=0. Thus, applying HomF̂ (−, V (π(m, a)))

to the short exact sequence

0 → ker η → W (m) → V (π(m, a)) → 0,

and noting also that HomF̂ (W (m), V (π(m, a))) ∼= HomF̂ (V (π(m, a)), V (π(m, a))), one
finds

dim Ext1F̂ (V (π(m, a)), V (π(m, a))) = dim HomF̂ (ker η, V (π(m, a))) ≤ 1.

By Proposition 4.3 we know E(V (π(m, a)) is a non-trivial self extension and hence part (i)
of Proposition 7.2 is proved.

7.5

The proof of part (ii) proceeds as follows. We construct an ideal of A2m of codimension
two and show that it can be used to define a non-trivial self-extension of W (π). We then
show that this self-extension satisfies the conditions of Lemma 6.2 and hence defines a non-
trivial self-extension V of V (π). Finally, we prove that this extension is not isomorphic to
E(V (π)). Proposition 4.2 implies that [V ] and [E(V (π))] are linearly independent elements
of Ext1F̂q

(V (π), V (π)) which proves (ii).

7.6

We recall for the reader’s convenience that

A2m = C[�̄1, �̄2, . . . , �̄2m, �̄−1
2m],

and that we have an algebra homomorphism Û0
q → A2m given by

�r →
⎧⎨
⎩

0, |r | ≥ 2m + 1,

�̄r , 0 < r ≤ 2m,

�̄2m+r �̄
−1
2m, −2m ≤ r ≤ 0.

Let I be the ideal in A2m generated by (�̄1 + 2a[m])2, and the elements:

[r + 2]�̄r+2 − (
qr+1�̄1 + 2aqm[r + 1]) �̄r+1 − a2[2m − r ]�̄r , 0 ≤ r ≤ 2m. (7.3)

Set π = π(m, a)2.
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Lemma The ideal I is of codimension two and we have a non-split short exact sequence of
A2m-modules,

0 → C(π) → A2m/I → C(π) → 0.

Proof We first prove that I ⊂ I(π) so that we have a surjective map A2m/I → C(π) → 0
of A2m-modules. Write π = ∑2m

s=0 dsus , and using the fact that

(1 − aq−mu)2π(qu) = (1 − aqmu)2π(q−1u), (7.4)

we see that (7.3) is identically satisfied if we replace �̄r by dr and hence I ⊂ I(π). Next,
note that after an obvious change of variables of the form

�̄r �→ Xr = �̄r + pr (�̄r−1, . . . , �̄1), r > 1, �̄1 = X1,

we have that I is generated by

(X1 + 2a[m])2, X2, . . . , X2m .

Hence the ideal generated by these elements in C[X1, . . . , X2m] = C[�̄1, . . . , �̄2m] is of
codimension two. Since �̄2m /∈ I (recall �̄2m /∈ I(π)) the conclusion does not change if
we localize at �2m and work with the ideal I. In particular we have proved that A2m/I is an
indecomposable module of dimension two and that we have a non-split short exact sequence

0 → (�̄1 + 2a[m])A2m/I → A2m/I → C(π) → 0,

of A2m-modules, or equivalently, we have a non-split short

0 → Cπ → A2m/I → Cπ → 0.

�
7.7

We now set,

W = W (2m) ⊗A2m A2m/I, w = w2m ⊗ 1,

and observe that by Theorem 3 there exists a non-split short exact sequence

0 → W (π)
ι−→ W

τ−→ W (π) → 0.

Recall that W 2m is the unique maximal submodule of W such that W2m ∩ W 2m = 0, and let

w̃ = (x−
2 − 2aqm x−

1 + a2q2m x−
0 )w.

Lemma We have

Ûqw̃ ⊂ W 2m,

and hence τ : W 2m → W (π)2m is surjective.
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Proof The subspace (Ûqw̃)2m is the Û0
q -submodule generated by the elements x+

r w̃, r ∈ Z
and hence it suffices to prove that x+

r w̃ = 0. This means we must prove that

0 = x+
r w̃ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ±
r+2 − 2aqmφ±

r+1 + a2q2mφ±
r )w, r 	= −2,−1, 0

(φ±
2 − 2aqmφ±

1 + a2q2m(q2m − q−2m))w, r = 0,

(φ±
1 − 2aqm(q2m − q−2m) + a2q2mφ±

r−1)w, r = −1,

((q2m − q−2m) − 2aqmφ±
−1 + a2q2mφ±

−2)w, r = −2.

(7.5)

Using the functional equation,

φ±(u) = �±(q∓1u)

�±(q±1u)
,

we see that (7.5) is equivalent to requiring,

(1 − aqmu)2�+(q−1u)w = (
(1 − aqmu)2 − a2(q2m − q−2m)u2

−(q − q−1)�1u
)
�+(qu)w, (7.6)

(u − aqm)2�−(q−1u)w = (
(u − aqm)2 + (q4m − 1)u2

+a2q2m(q − q−1)�−1u
)
�−(qu)w, (7.7)

(q2m�1 + 2a[2m]qm + a2�−1)w = 0. (7.8)

Since W is a quotient of W (2m) we have that Ann2mw = 0 and hence it suffices to prove
that the equations in (7.6), (7.7),(7.8) are satisfied in A2m . It is easily seen that (7.6) is exactly
(7.3). To see that the other two equations are satisfied, one recalls that we have the relation

�−2m�r = �−2m+r , 0 ≤ r ≤ 2m.

Then (7.8) follows by taking the case of r = 2m − 1 in (7.3), which gives

(q2m�1 + 2aqm[2m])�2m + a2�2m−1 = 0.

Multiplying through by �−1
2m gives the result. Equation (7.7) follows similarly by using the

cases when 0 ≤ r ≤ 2m − 2. �
7.8

As a consequence of the preceding Lemma and Lemma 6.2 we have a non-split short exact
sequence

0 → V (π) → W/W 2m → V (π) → 0.

The final step is to show that this extension is not isomorphic to E(V (π)). For this, we
observe that if η : W/W 2m → E(V (π)) is an isomorphism, then we must have η(w̄) =
(c1v(π), c2v(π)) for some c1 	= 0, where w̄ is the image of w in W/W 2m . Since

η(φ+
2 − 2aqmφ+

1 + a2q2m(q2m − q−2m))(v(π), 0) = (0, (2φ+
2 − 2aqmφ+

1 )v(π)) 	= 0,

and η(φ+
2 −2aqmφ+

1 +a2q2m(q2m −q−2m))w̄ = 0, we have a contradiction. This completes
the proof of Theorem 1 (iv).
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8 Proof of Theorem 2

In this section we prove Theorem 2. We begin by noting some additional consequences of
the results of the preceding sections.

8.1

Given a connected subset J of I let ÛJ
q be the subalgebra of Ûq generated by the elements

x±
i,r , hi,s, k±1

i , i ∈ J, r ∈ Z, s ∈ Z×. If RJ is the subset of the root system spanned by the

elements α j , j ∈ J , then ÛJ
q is the quantum loop algebra associated to RJ with parameter

qJ where qJ = qmin{dj:j∈J}. In the special case when J = {i} we write Ûi
q for the algebra ÛJ

q

and note that Ûi
q is the quantum loop algebra associated to A1 with parameter qi . Let P+

J be
the submonoid of P+ consisting of I -tuples π = (π1, . . . , πn) satisfying πi = 1 if i /∈ J . It
is also convenient to regard P+

J as a quotient of P+ via the map which sends

π = (πi )i∈I → π J = (π j ) j∈J .

The category F̂J is defined in the obvious way and the elements of P+
J index the isomorphism

classes of the simple objects of F̂J . The following is well known.

Lemma Let π ∈ P+. The ÛJ
q -submodule of V (π) generated by v(π) is isomorphic to

V (π J ). �
8.2

Proposition Let J be a connected subset of I . There exists a canonical map of vector spaces

Ext1F̂ (V (π), V (π)) → Ext1F̂J
(V (π J ), V (π J )), [V ] → [VJ ].

Moreover

[VJ ] = 0 ⇐⇒ (h j,r − h j,r (π))v = 0, v ∈ (VJ )wtπ , j ∈ J, r ∈ Z×.

Proof Let V be a non-trivial self extension of V (π). By Lemma 4.1 we may choose v ∈ Vwtπ
such that V = Ûqv. Setting VJ = ÛJ

q v, it is clear from Lemma 8.1 that VJ is a self-extension
of V (π J ). If V is the trivial extension, then we set VJ = V (π J ) ⊕ V (π J ). It is now easily
checked that [V ] → [VJ ] is well defined map of vector spaces. The second statement of the
proposition is immediate from Lemma 4.1. �

The following is immediate.

Corollary Let π ∈ P+ and let J1, . . . , Jm be a family of disjoint connected subsets of I
such that I = J1 ∪ · · · ∪ Jm. We have an injective map of vector spaces,

Ext1F̂ (V (π), V (π)) →
m⊕

s=1

Ext1F̂Js
(V (π Js ), V (π Js )).

In particular,

dim Ext1F̂ (V (π), V (π)) ≤
n∑

i=1

dim Ext1F̂ i (V (π {i}), V (π {i})).

�
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Proof The only statement that requires explanation is that the map

Ext1F̂ (V (π), V (π)) →
m⊕

s=1

Ext1F̂Js
(V (π Js ), V (π Js )),

is injective. Let V be a non-trivial extension of V (π) and recall that we may choose v ∈ Vwtπ
with V = Ûqv. Moreover there exist i ∈ I and r ∈ Z× such that hi,rv /∈ Cv. Choose
1 ≤ s ≤ m such that i ∈ Js . Then VJS is a non-trivial extension of ÛJ

q and hence

Ext1F̂Js
(V (π Js ), V (π Js )) 	= 0,

as required. �
8.3

For π ∈ P+, set

supp π = {i ∈ I : πi 	= 1}.
Together with Proposition 7.2 we have now established the following.

Proposition Let π = (π1, . . . , πn) ∈ P+ be such that

πi = (1 − qmi −1
i ai u)(1 − qmi −3

i ai u) · · · (1 − q−mi +1
i ai u),

for some mi ∈ Z+ and ai ∈ C×, 1 ≤ i ≤ n. Then

dim Ext1F̂ (V (π), V (π)) ≤ |supp π |.
In particular the space of self extensions of the Kirillov–Reshethikhin modules is one-
dimensional. �
8.4

We shall prove the following proposition in the rest of the section.

Proposition Suppose that π = (π1, . . . , πn) ∈ P+ is such that supp π = {1, n} and that

πi = (1 − qmi −1
i ci u)(1 − qmi −3

i ci u) · · · (1 − q−mi +1
i ci u) i = 1, n,

and c1, cn ∈ C×. If

c1

cn
= q±N , N = d1m1 − 1

2

∑
i 	= j∈[1,n]

di ai, j + dnmn

then

dim Ext1F̂ (V (π), V (π)) = 1.

8.5

Assuming Proposition 8.4 the proof of the theorem is completed as follows. Given π ∈ P+,
let Adeg πi be the subalgebra of Awtπ generated by the elements {�i,r : 1 ≤ r ≤ λi } and
�−1

i,r . It is clear that

Aλ
∼=

⊗
i∈I

Adeg πi ,
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where λ = ∑
i∈I deg πiωi . Moreover if J is any connected subdiagram of I , and λJ =∑

j∈J deg π jω j , then

AλJ
∼=

⊗
j∈J

Adeg π j .

Suppose that V is a non-split self extension of V (π) so that

0 → V (π)
ι−→ V

τ−→ V (π) → 0.

We shall prove that V ∼= E(V (π)). We first prove that: if 0 	= v ∈ Vλ is such that for some
i ∈ supp π we have

hi,rv = hi,r (π)v, r ∈ Z×,

then v = aι(v(π)) for some a ∈ C×. For this, suppose that i = is ∈ supp π and consider
J = [is, is+1] or J ′ = [is−1, is]. If v 	= aι(v(π)), then E(V (π J )) and VJ are non-isomorphic
extensions of V (π). It follows from Proposition 8.4 that [VJ ] = 0 and hence (VJ )λJ is an
eigenspace for the action of his+1,r as well. A similar argument works for J ′ and hence we
find that Vλ is an eigenspace for hi,r for all i ∈ I, r ∈ Z× contradicting Lemma 4.1.

To prove that V ∼= E(V (π)) we must prove that Vλ
∼= E(V (π))λ as Aλ-modules. For

this, note that as modules for Adeg πi1
we may assume that there exists a basis v1, v2 of Vλ

such that v1 �→ (v(π), 0), v2 �→ (0, v(π)) is an isomorphism. Suppose that this is not
an isomorphism of Adegπ i2

-modules. Then Vλ and E(V (π))λ are not isomorphic as AJ -
modules where J = [i1, i2] which then implies that VJ and E(V (π J )) are not isomorphic as
ÛJ

q -modules. Since both extensions are non-trivial this contradicts Proposition 8.4. Iterating
the argument gives the result that Vλ

∼= E(V (π))λ as Aλ-modules and the proof of Theorem
2 is complete once we establish Proposition 8.4.

8.6

Notice that when π is as in Proposition 8.4, then [1, n] is not of type D or E . We assume
from now that ai, j 	= 0 only if i = j ± 1 and also without loss of generality that,

cn = c1q N , N = d1m1 − 1

2

∑
i 	= j∈[1,n]

di ai, j + dnmn = d1m1 + dnmn −
n−1∑
i=1

di ai,i+1.

For 0 ≤ i ≤ n, define elements wi ∈ V (π) recursively, by

w0 = v(π), wi = x−
i,0wi−1. (8.1)

Proposition For 0 ≤ i ≤ n − 1, we have an isomorphism of Ûi
q -modules

Ûi+1
q wi ∼=

⎧⎨
⎩

V (π(m1, c1)), i = 0,

V (π(−ai+1,i , ci+1)), 1 ≤ i ≤ n − 2,

V (π(mn − an,n−1, cnq
an,n−1
n )), i = n − 1.

(8.2)

where c2 = c1qm1
1 and ci = ci−1q

−ai−1,i−2
i−1 for 2 < i < n.

Proof To prove the proposition we see from Proposition 7.3 that we must show the following:

(i) x+
i+1,rwi = 0,
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(ii)

h1,rw0 = [rm1]1

r
cr

1w0, hn,rwn−1 =q
ran,n−1
n

[r(mn − an,n−1)]n

r
cr

nwn−1 (8.3)

hi,rwi−1 = −[rai,i−1]i

r
cr

i wi−1, 1 < i < n, (8.4)

(iii)

(x−
1,1 − c1qm1

1 x−
1,0)w0 = 0, (x−

n,1 − cnqmn
n x−

n,0)wn−1 = 0, (8.5)

(x−
j,1 − c j q

−a j, j−1
j x−

j,0)w j−1 = 0, 1 < j < n. (8.6)

Part (i) is trivial. We prove (ii) and (iii) simultaneously by an induction on i . Notice that
induction begins at i = 1 by Lemma 4.1 and Proposition 7.3. Suppose that we have proved
(ii) for 1 < i ≤ n and (iii) for 1 < i − 1 < n. We prove (iii) for i < n by showing that

x+
j,r (x−

i,1 − ci q
−ai,i−1
i x−

i,0)wi−1 = 0, j ∈ I, r ∈ Z+. (8.7)

For this, writing wtπ = m1ω1 + mnωn , we have

x−
j,rw0 = 0, j 	= 1, n, r ∈ Z. (8.8)

We claim that

x+
j,rwi = 0, j 	= i, (i, j) 	= (n, n − 1), r ∈ Z×. (8.9)

Since [x+
j,r , x−

k,0] = 0 if j 	= k, it is clear that the claim is true if j > i . If j < i , then we see
that

x+
j,rwi = x−

i,0 · · · x−
j+1,0

(
φ±

j,r

q − q−1

)
x−

j−1,0 · · · x−
1,0w.

It is easily seen from the defining relations of Ûq that

[x−
j+1,0, φ

±
j,r ] ∈

∑
s∈Z

Û−
q x−

j+1,s, [x−
j+1,s, x−

�,0] = 0, � < j + 1,

and (8.9) follows now by using (8.8). It is now clear that (8.7) follows from (8.9) for i 	=
j, j −1. For i = j it holds from (8.4) and (7.2). If i = j −1, then we use the same argument
as the one given for establishing (8.9) to see that

x+
j−1,r (x−

j,1 − c j q
−a j, j−1
j x−

j,0)w j−1 ∈ Ûq(x−
j,1 − c j q

−a j, j−1
j x−

j,0)w0 = 0.

This completes the proof of (iii) with i < n. For i = n one proves using similar arguments
that

x+
j,r (x−

n,1 − cnqmn
n x−

n,0)wn−1 = 0, j ∈ I, r ∈ Z+. (8.10)

We omit the details.
It remains to prove that (ii) holds for i + 1 ≤ n. If i + 1 < n, then we use

h j+1,rw j = −[ra j+1, j ] j+1

r
x−

j,rw j−1 = −[ra j+1, j ] j+1

r
(c j q

−a j, j−1
j )rw j , 1 ≤ j < n − 1,
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while if i + 1 = n

hn,rwn−1 =
(

−[ran,n−1]n

r
x−

n−1,r + x−
n−1,0hn,r

)
wn−2

=
(

−[ran,n−1]n

r
(cn−1q

−an−1,n−2
n−1 )r + [rmn]n

r
cr

n

)
wn−1

=
(

−[ran,n−1]n

r
(cnq

an,n−1
n q−mn

n )r + [rmn]n

r
cr

n

)
wn−1

as required. �
8.7

Suppose that V is a nontrivial self-extension of V (π):

0 → V (π)
ι→ V

τ→ V (π) → 0.

To prove Proposition 8.4 we must show that we have an isomorphism of Ûq -modules

V ∼= E(V (π)).

It is enough by Corollary 6.3 to prove that

Vwtπ ∼= E(V (π))wtπ ,

as modules for Awtπ and in fact it is enough to prove that they are isomorphic as Û0
q -modules.

The proposition is a consequence of the following Lemma. Once the Lemma is proved it is
clear that the map E(V (π))wtπ → Vπ sending (v(π), 0) → w̃0 is an isomorphism of
Û0

q -modules.

Lemma There exists a basis w̃0, w0 of Vwtπ such that

hi,r w̃0 = hi,r (π)(w̃0 + rw0), hi,rw0 = hi,r (π)w0, i ∈ I, r ∈ Z×.

8.8

We shall use the following remark repeatedly in the proof of the Lemma. It is a special case
of results proved elsewhere in this paper, we formulate it here in the precise form that it is
used in the proof of the Lemma.

Remark Suppose that π ∈ P+ is such that dim Ext1F̂ (V (π), V (π)) = 1 and let V be any
self-extension of V (π). Suppose that ṽ, v is a basis of Vwtπ such that (hi,r − hi,r (π))v = 0
for all i ∈ I and r ∈ Z×. Then, there exists z ∈ C× such that

hi,r ṽ = hi,r (π)(ṽ + zrv).

Moreover, this implies that, if V = V1 ⊕ V2 is a decomposition of V as a direct sum of
Uq -submodules isomorphic to V (π) with v ∈ V1 and ṽ ∈ V2, the projection of x−

i,r ṽ onto V1

is r zx−
i,rv. Finally, V is nontrivial iff and only if z 	= 0.
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8.9

Proof of Lemma 7.7 Let w̃0 be such that τ(w̃0) = v(π) and set w0 = ι(v(π)). If j 	= 1, n,
then Û j

qw̃0 is the trivial representation of Û j
q . If j = 1, n, then by Proposition 8.2 and the

results of Sect. 7 we know that either

Û j
q w̃0 ∼= V (π(m j , c j )),

or

Û j
qw̃0 ∼= E(V (π(m j , c j ))).

In any case, since ι(v(π)) is a joint eigenvector for hi,r , i ∈ I, r ∈ Z×, it follows from
Sect. 8.8 that there exists z1, zn ∈ C× such that

h j,r w̃0 = h j,r (π)(w̃0 + r z jw0), x−
j,r w̃0 = (c j q

m j
j )r x−

j,0(w̃0 + r z jw0), j = 1, n.

Our goal is to prove that we must have z1 = zn . Since V is non-split this means that we can
assume z1 = zn = 1 which would establish the Lemma.

For 1 ≤ i ≤ n, define elements

w̃i = x−
i,0w̃i−1, wi = x−

i,0wi−1.

We now prove by induction on 1 ≤ i < n that

h1,r w̃0 = [rm1]1

r
cr

1(w̃0 + r z1w0),

hi,r w̃i−1 = −[rai,i−1]i

r
cr

i (w̃i−1 + r z1wi−1), 1 < i < n.

For i = 1 this follows from the above, so induction starts. Suppose we have proved the above
for 1 ≤ i < n − 1. In particular, if i > 1, it follows by applying Sect. 8.8 to Ûi

qwi−1 that,

x−
i,r w̃i−1 = (ci q

−ai,i−1
i )r (w̃i + r z1wi ) = cr

i+1(w̃i + r z1wi ).

The inductive step is completed by using the preceding equation and noting that

hi+1,r w̃i = hi+1,r x−
i,0w̃i−1 = −[rai+1,i ]i+1

r
x−

i,r w̃i−1.

Now observe that Ûn
q -submodule generated by w̃n−1 + Ûn

qwn−1 is a self extension of

V (π(mn − an,n−1, cnq
an,n−1
n )). Hence, it follows from Sect. 8.8 that

hn,r w̃n−1 = (cnq
an,n−1
n )r [r(mn − an,n−1)]n

r
(w̃n−1 + z′rwn−1) for some z′ ∈ C.

(8.11)

Further, since [hn,r , x−
i,s] = 0 if i 	= n, n − 1, we see that

hn,r w̃i = cr
n
[rmn]n

r
(w̃i + znrwi ) for all i < n − 1. (8.12)
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This implies

hn,r w̃n−1 = (−[ran,n−1]n

r
x−

n−1,r + x−
n−1,0hn,r )w̃n−2

= (−[ran,n−1]n

r
(cn−1q

−an−1,n−2
n−1 )r )(w̃n−1 + r z1wn−1)

+[rmn]n

r
cr

n(w̃n−1 + r znwn−1)

= (cnq
an,n−1
n )r [r(mn − an,n−1)]n

r
w̃n−1

+r(−z1
[ran,n−1]n

r
(cnq

an,n−1
n q−mn

n )r + zn
[rmn]n

r
cr

n)wn−1.

Comparing this with (8.11) we get

− z1[ran,n−1]n(q
r(an,n−1−mn)
n )r + zn[rmn]n = z′qran,n−1

n [r(mn − an,n−1)]n (8.13)

for all r ∈ Z. It follows that z1 = zn = z′. �
Acknowledgments We thank the referee for their careful reading of the paper and for drawing our attention
to [30]. In that paper, the author studies extensions of irreducible modules for the quantum loop algebra
associated to sl2. In particular, Proposition 7.2 of our paper answers positively the Conjecture 3.3.2 in [30]
and also addresses the comments following it.
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