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Abstract We consider a class of pseudodifferential operators, with crossed vector valued
symbols, defined on the product of two closed manifolds. We study the asymptotic expan-
sion of the counting function of positive selfadjoint operators in this class. Using a general
Theorem of Aramaki, we can determine the first term of the asymptotic expansion of the
counting function and, in a special case, we are able to find the second term. We give also
some examples, emphasizing connections with problems of analytic number theory, in par-
ticular with Dirichlet divisor function.
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0 Introduction

In [29] Rodino introduced bisingular operators: a class of pseudodifferential operators defined
on the product of two closed manifolds M1 × M2, related to the multiplicative property of
Atiyah–Singer index, see [2]. A simple example of an operator in this class is the tensorial
product A1 ⊗ A2, where A1, A2 are pseudodifferential operators on the closed manifolds
M1,M2. Another example, studied in [29], is the vector-tensor product A1 � A2. In [27], in
order to prove an index formula, Nicola and Rodino introduced classical, i.e. polyhomog-
eneous, bisingular operators and defined Wodzicki Residue for this class of operators. The
two authors defined the residue, via holomorphic families, as in [10,26]. For the index of
bisingular operators see also the work of Pilidi [28] and of Dudučava [6,7]. In [24], Melrose
and Rochon introduced pseudodifferential operators of product type, a class of operators
close to bisingular operators. Bisingular operators are an example of operators with vector
valued symbols; pseudodifferential operators of this type have been meticulously studied,
see, for example, Fedosov et al. [9] and the references therein.
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1366 U. Battisti

The aim of this paper is to analyze the asymptotic behavior of the counting function of
selfadjoint elliptic positive bisingular operators. Similarly to the case of SG-calculus [4] (see
e.g. [8,30] for more detail on SG-calculus), we use techniques related to complex powers of
operators, ζ -function and Tauberian Theorems. This strategy, in the setting of closed man-
ifolds, was first used by Guillemin [15] in order to get the so called soft proof of Weyl’s
formula.

Here, as in the case of SG-calculus, it turns out that the ζ -function can have poles of order
two. Thus, using a refinement of Tauberian Theorem due to Aramaki [1], the asymptotic
behavior of the counting function is determined. The presence of a pole of order two of the
ζ -function implies that the counting functions can have asymptotic terms of order λc log λ.
Such a behavior appears in various setting: manifolds with conical singularities [10], SG-cal-
culus on R

n [26], SG-calculus on manifolds with cylindrical ends [21]. See also Gramchev
et al. [11,12] on the asymptotic expansion of the counting function in the case of twisted
bi-Laplacian. Furthermore, in [25], Moroianu studied Weyl’s law on manifolds with cusps,
with an approach similar to the one used in this paper. In a special case, he showed that the
growth rate of the counting function is λc log λ.

We remark that it is not surprising that the ζ -function of a selfadjoint elliptic positive
bisingular operator can have poles of order 2. Indeed, let us consider two positive elliptic
pseudodifferential operators A, B defined on the closed manifolds M1,M2. From general
theory of complex powers of pseudodifferential operators on closed manifolds [31], we
know that the ζ -function of an operator P of this type is holomorphic for Re(z) < − n

m
(n = dim M,m order of P) and it can be extended as a meromorphic function to the whole
of C with poles of order 1. As we noticed at the beginning, the tensorial product A ⊗ B is a
bisingular operator on M1 × M2 and it is clearly positive and selfadjoint. One can prove the
following

ζ(A ⊗ B, z) = ζ(A, z)ζ(B, z). (1)

If one defines the ζ -function using the eigenvalues, equality (1) becomes more transparent.
To this end, let {λ j } j∈N and {μi }i∈N be the eigenvalues of A and B, respectively. Then the
eigenvalues of A ⊗ B turn out to be {λ jμi }i, j∈N2 . Therefore we have

ζ(A, z) =
∑

j∈N

λz
j , Re(z) < − n1

m A
;

ζ(B, z) =
∑

i∈N

μz
i , Re(z) < − n2

m B
;

ζ(A ⊗ B, z) =
∑

i, j∈N2

λz
jμ

z
i = ζ(A, z)ζ(B, z), Re(z) < − max

{
n1

m A
,

n2

m B

}
;

where n1 = dim M1, n2 = dim M2 and m A,m B are the orders of A and B. Then the
product structure of ζ(A ⊗ B, z) implies that it can have poles of order two. Let us now focus
on the special case n1

m A
= n2

m B
= z0:

ζ(A, z) = CA

(z + z0)
+ h A(z), Re(z) < −z0 + ε;

ζ(B, z) = CB

(z + z0)
+ h B(z), Re(z) < −z0 + ε; (2)

ζ(A ⊗ B, z) = CACB

(z + z0)2
+ h A(z)+ h B(z)

(z + z0)
+ h A(z)h B(z), Re(z) < −z0 + ε;
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Weyl asymptotics of bisingular operators 1367

where CA,CB are constants that depend just on the principal symbol of A, B, while h A, h B

are holomorphic functions which depend on the whole symbol of A, B. From (2), it is clear
that ζ(A ⊗ B, z) has a pole of order two. Moreover, we observe that the coefficient of the
pole of order one depends on the whole symbol of A and B. Finally, applying Aramaki’s
Theorem 3.1, from (2) one obtains

NA⊗B(λ) ∼ CACB

z0
λz0 log(λ)−

(
h A(−z0)− h B(−z0)

z0
+ CACB

z2
0

)
λz0 + O(λz0−δ), (3)

where δ > 0. Simple examples of operators A and B for which (3) holds are A=−�g + 1,
B = −�g′ +1, where�g,�g′ are the Laplace Beltrami operators associated to Riemanniann
structures of M1,M2 respectively. We will extend (3) to all positive bisingular elliptic oper-
ators, expressing the constants in the Weyl asymptotics in terms of the crossed vector-valued
symbols.

The paper is organized as follows. In Sect. 1 we shortly recall basic properties of bisin-
gular operators; we refer the reader to [27,29] for more details. Section 2 is devoted to the
definition of complex powers of suitable bisingular operators; we introduce the ζ -function
in this setting and we study its meromorphic extension. The main result, concerning the
asymptotics of the counting function of selfadjoint elliptic positive bisingular operators, is
stated in Sect. 3. In Sect. 4, we show the connection with Dirichlet divisor problem, which
we reconsider from the point of view of Spectral Theory.

1 Bisingular operators

We start with the definitions of bisingular symbols and bisingular symbols with homoge-
neous principal symbol. In the following,�i always denotes a bounded open domain of R

ni .

Definition 1.1 We define Sm1,m2(�1,�2) as the set of C∞(�1 ×�2 ×R
n1 ×R

n2) functions
such that, for all multiindex αi , βi and for all compact subset Ki ⊆ �i , i = 1, 2, there exists
a positive constant Cα1,α2,β1,β2,K1,K2 so that

|∂α1
ξ1
∂
α2
ξ2
∂β1

x1
∂β2

x2
a(x1, x2, ξ1, ξ2)| ≤ Cα1,α2,β1,β2,K1,K2〈ξ1〉m1−|α1|〈ξ2〉m2−|α2|,

for all xi ∈ Ki , ξi ∈ R
ni , i = 1, 2. As usual, 〈ξ 〉 = (1 + |ξ |2) 1

2 .

S−∞,−∞(�1,�2) is the set of smoothing symbols. Following [29], we introduce the subclass
of bisingular operators with homogeneous principal symbol.

Definition 1.2 Let a ∈ Sm1,m2(�1,�2); a has a homogeneous principal symbol if

(i) there exists am1,·(x1, x2, ξ1, ξ2) ∈ Sm1,m2(�1,�2) such that

a(x1, x2, tξ1, ξ2) = tm1 a(x1, x2, ξ1, ξ2), ∀x1, x2, ξ2, ∀|ξ1| > 1, t > 0,

a − ψ1(ξ1)am1,· ∈ Sm1−1,m2(�1,�2), ψ1 cut-off function of the origin.

Moreover, am1,·(x1, x2, ξ1, D2) ∈ Lm2
cl (�2), so, being a classical symbol on �2, it

admits an asymptotic expansion w.r.t. the ξ2 variable.
(ii) there exists a·,m2(x1, x2, ξ1, ξ2) ∈ Sm1,m2(�1,�2) such that

a(x1, x2, ξ1, tξ2) = tm2 a(x1, x2, ξ1, ξ2), ∀x1, x2, ξ1, ∀|ξ2| > 1, t > 0,

a − ψ2(ξ2)a·,m2 ∈ Sm1,m2−1(�1,�2), ψ2 cut-off function of the origin.
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1368 U. Battisti

Moreover, a·,m2(x1, x2, D1, ξ2) ∈ Lm1
cl (�1), so, being a classical symbol on �1, it

admits an asymptotic expansion w.r.t. the ξ1 variable.
(iii) The symbols am1,· and a·,m2 have the same leading term, so there exists am1,m2 such

that

am1,· − ψ2(ξ2)am1,m2 ∈ Sm1,m2−1(�1,�2),

a·,m2 − ψ1(ξ1)am1,m2 ∈ Sm1−1,m2(�1,�2),

and

a − ψ1am1,· − ψ2a·,m2 + ψ1ψ2am1,m2 ∈ Sm1−1,m2−1(�1,�2).

The set of symbols with homogeneous principal symbol is denoted as Sm1,m2
pr (�1,�2). We

will shortly write that the principal symbol of a is {am1,·, a·,m2}.
We can observe a similarity, at least formal, between bisingular symbols with homogeneous
principal symbol and SG- classical symbols, see, e.g. [8,26].

We define bisingular operators via their left quantization. A linear operator A : C∞
c (�1 ×

�2) → C∞(�1 ×�2) is a bisingular operator if it can be written in the form

A(u)(x1, x2) = Op(a)(x1, x2)

= 1

(2π)n1+n2

∫

R
n1

∫

R
n2

eix1·ξ1+i x2·ξ2 a(x1, x2, ξ1, ξ2)û(ξ1, ξ2)dξ1dξ2.

If a ∈ Sm1,m2(�1,�2) or a ∈ Sm1,m2
pr (�1,�2), then we write A ∈ Lm1,m2(�1,�2) and

A ∈ Lm1,m2
pr (�1,�2) respectively. The above definition can be extended to the product of

closed manifolds; we refer to [29] for the details of the construction of global operators and
the corresponding calculus.

Definition 1.2 implies that, for every operator A ∈ Lm1,m2
pr (�1,�2), we can define func-

tions σm1 , σm2 , σm1,m2 such that

σ
m1
1 (A) : T ∗�1\{0} → Lm2

cl (�2)

(x1, ξ1) �→ am1,·(x1, x2, ξ1, D2),

σ
m2
2 (A) : T ∗�2\{0} → Lm1

cl (�1)

(x2, ξ2) �→ a·,m2(x1, x2, D1, ξ2), (4)

σm1,m2(A) : T ∗�1\{0} × T ∗�2\{0} → C

(x1, x2, ξ1, ξ2) �→ am1,m2(x1, x2, ξ1, ξ2).

Moreover, denoting by σ(P)(x, ξ) the principal symbol of a pseudodifferential operator
P on a closed manifold, the following compatibility relation holds

σ(σ
m1
1 (A)(x1, ξ1))(x2, ξ2) = σ(σ

m2
2 (A)(x2, ξ2))(x1, ξ1)

= σm1,m2(A)(x1, x2, ξ1, ξ2) = am1,m2(x1, x2, ξ1, ξ2). (5)

Remark 1 If we consider the product of closed manifolds M1 × M2, then the whole symbol
is a local object, in general. Nevertheless, similarly to the calculus on closed manifolds,
it is possible to give an invariant meaning to the functions (4) as functions defined on the
cotangent bundle, see [29].

As in the case of the calculus on closed manifolds, it is possible to define adapted Sobolev
spaces and then to prove some continuity results.
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Weyl asymptotics of bisingular operators 1369

Definition 1.3 Let M1,M2 be two closed manifolds. The Sobolev space Hm1,m2(M1 × M2)

is defined by

Hm1,m2(M1 × M2) = {u ∈ S ′(M1 × M2) | Op(〈ξ1〉m1〈ξ2〉m2)(u) ∈ L2(M1 × M2)}.
If u ∈ Hm1,m2(M1 × M2) then ‖u‖m1,m2 = ‖Op(〈ξ1〉m1〈ξ2〉m2)(u)‖2. Using the formalism

of tensor product, we can also write1

Hm1,m2(M1 × M2) = Hm1(M1)⊗̂π Hm2(M2).

Similarly to Sobolev spaces Hs(M), we have

(i) Hm1,m2(M1 × M2) ↪→ Hm′
1,m

′
2(M1 × M2) is a continuous immersion if mi ≥ m′

i , i =
1, 2.

(ii) Hm1,m2(M1 × M2) ↪→ Hm′
1,m

′
2(M1 × M2) is a compact immersion if mi > m′

i , i =
1, 2.

Proposition 1.1 A pseudodifferential operator A ∈ Lm1,m2(M1 × M2) can be extended to
a continuous operator

A : Hs,t (M1 × M2) → Hs−m1,t−m2(M1 × M2).

Furthermore, the norm of the operator can be estimated using the seminorms of the symbol.
It is also possible to prove the following proposition:

Proposition 1.2 Let A ∈ Lm1,m2(M1 × M2) be a bisingular operator; if mi ≤ 0 (i =
1, 2), then there exists N ∈ N such that ‖A‖0,0 ≤ sup | ∑i≤N pi (a(x1, x2, ξ1, ξ2))|, where
{pi (·)}i∈N are the seminorms of the Fréchet space Sm1,m2(M1,M2).

An operator A ∈ Lm1,m2(M1 × M2) is elliptic if am1,·, a·,m2 , am1,m2 , the three components
of its principal symbol, are invertible in their domain of definition. Explicitly:

Definition 1.4 Let A ∈ Lm1,m2
pr (M1 × M2); A is elliptic if

(i) σm1,m2(A)(v1, v2) �= 0 for all (v1, v2) ∈ T ∗M1\{0} × T ∗M2\{0};
(ii) σ

m1
1 (A)(v1) ∈ Lm2

cl (M2) is invertible for all v1 ∈ T ∗M1\{0};
(iii) σ

m2
2 (A)(v2) ∈ Lm1

cl (M1) is invertible for all v2 ∈ T ∗M2\{0};
where σm1,m2(A), σm1

1 (A), σm2
2 (A) are as in (4).

In [29], it is proved that, if A satisfies Definition 1.4, then A is a Fredholm operator. This
property is a corollary of the following theorem:

Theorem 1.1 Let A ∈ Lm1,m2
pr (M1 × M2) be elliptic; then there exists an operator B ∈

L−m1,−m2
pr (M1 × M2) such that

AB = Id +K1,

B A = Id +K2,

where Id is the identity map and K1, K2 are compact operators. Moreover, the symbol of B
is b = {σm1

1 (A)−1, σ
m2
2 (A)−1}.

The proof of Theorem 1.1 is an easy consequence of the global version of the following
lemma:

1 For definition of ⊗̂π see [33].
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1370 U. Battisti

Lemma 1.1 Let A ∈ Lm1,m2(�1 ×�2) and B ∈ Lm′
1,m

′
2(�1 ×�2), then

{(a ◦ b)m1+m′
1,·, (a ◦ b)·,m2+m′

2
} = {am1,· ◦ξ2 bm′

1,·, a·,m2 ◦ξ1 b·,m′
2
}

where

(a ◦ξ1 b)(x1, x2, D1, ξ2)(u) = a(x1, x2, D1, ξ2) ◦ b(x1, x2, D1, ξ2)(u) ∀u ∈ C∞
c (�1),

(a ◦ξ2 b)(x1, x2, ξ1, D2)(v) = a(x1, x2, ξ1, D2) ◦ b(x1, x2, ξ1, D2)(v) ∀v ∈ C∞
c (�2).

In first row the composition is in the space L∞(�1) of pseudodifferential operators on �1,
in second row, it is in the space L∞(�2).

2 Complex powers of bisingular operators

In this section we define complex powers of a subclass of elliptic bisingular operators. The
first step is to give a suitable definition �-elliptic operators w.r.t. a sector of the complex
plane �.

Definition 2.1 Let � be a sector of C; we say that a ∈ Sm1,m2
pr (M1,M2) is �-elliptic w.r.t.

� if there exists a positive constant R such that

(i)
(
σm1,m2(A)(v1, v2)− λ

)−1 ∈ S−m1,−m2(M1,M2),

for all |vi | > R, i = 1, 2, and for all λ ∈ �.

(ii) σ
m1
1 (A)(v1)− λ IdM2 ∈ Lm2

cl (M2),

is invertible for all |v1| > R and for all λ ∈ �.

(iii) σ
m2
2 (A)(v2)− λ IdM1 ∈ Lm1

cl (M1),

is invertible for all |v2| > R and for all λ ∈ �.

In the following, in order to define the complex power of A, we assume that � is a sector of
the complex plane with vertex at the origin, that is

� = {z ∈ C | arg(z) ∈ [π − θ,−π + θ ]}.

�����������������

�������

����������

�

�

arg = π − θ

arg = −π + θ
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Weyl asymptotics of bisingular operators 1371

Lemma 2.1 Let a ∈ Sm1,m2(�1,�2) be �-elliptic. For all Ki ⊆ �i , i = 1, 2, there exist
c0 > 1 and a set

�ξ1,ξ2 :=
{

z ∈ C\� | 1

c0
〈ξ1〉m1〈ξ2〉m2 < |z| < c0〈ξ1〉m1〈ξ2〉m2

}
(6)

such that

spec(a(x1, x2, ξ1, ξ2)) = {λ ∈ C | a(x1, x2, ξ1, ξ2)− λ = 0} ⊆ �ξ1,ξ2 ,

∀ xi ∈ �i , ξi ∈ R
ni ;

moreover,

|(λ− am1,m2(x1, x2, ξ1, ξ2))
−1| ≤ C(|λ| + 〈ξ1〉m1〈ξ2〉m2)−1,

|(am1,· − λ Id�1)
−1| ≤ C(|λ| + 〈ξ1〉m1〈ξ2〉m2)−1,

|(a·,m2 − λ Id�2)
−1| ≤ C(|λ| + 〈ξ1〉m1〈ξ2〉m2)−1,

∀xi ∈ Ki , ξi ∈ R
ni , λ ∈ C\�ξ1,ξ2 , i = 1, 2,

where (am1,· − λ Id�1)
−1 stands for the symbol of the operator (am1,·(x1, x2, ξ1, D2) −

λ Id�1)
−1, and similarly for (a·,m2 − λ Id�2)

−1.

The proof of Lemma 2.1 is essentially the same of the one of Lemma 3.5 in [23].
Next, we prove that, if A is �-elliptic, then we can define a parametrix of (A − λ Id).

Actually, we prove that, for |λ| large enough, the resolvent (A − λ Id)−1 exists. Restricting
ourselves to differential operators, we could follow formally the idea of Shubin ([32], ch. II)
of parameter depending operators. For general pseudodifferential operators, it is well know
that this idea does not work, see [13].

Theorem 2.1 Let A ∈ Lm1,m2
pr (M1 × M2) be�-elliptic. Then there exists R ∈ R

+, such that
the resolvent (A − λ Id)−1 exists for λ ∈ �R = {λ ∈ � | |λ| ≥ R}. Moreover,

‖(A − λ Id)−1‖ = O(|λ|−1), λ ∈ �R .

Proof First, we look for an inverse of (A − λ Id) modulo compact operators, that is an
operator B(λ) such that:

(A − λ) ◦ B(λ) = Id +R1(λ), λR1(λ) ∈ L−1,−1(M1 × M2),

B(λ) ◦ (A − λ) = Id +R2(λ), λR2(λ) ∈ L−1,−1(M1 × M2),
(7)

uniformly w.r.t. λ ∈ �. In order to find such an operator, we make the principal symbol
explicit:

a − λ = psym(a)− λ+ c, c ∈ Sm1−1,m2−1(M1,M2),

where psym(a) = ψ1am1,· + ψ2a·,m2 − ψ1ψ2am1,m2 . As we have noticed in Theorem 1.1,
we can write the symbol of the inverse (modulo compact operators) of an elliptic operator.
In this case we need to be more careful because of the parameter λ. Following the same
construction as in Theorem 1.1, we obtain

b(λ) = {((σm1
1 (A)− λ IdM2)

−1, (σ
m2
2 (A)− λ IdM1)

−1}. (8)

The above definition (8) is consistent in view of the�-ellipticity and of the following relation

σ((σ
m1
1 (A)− λ IdM2)

−1(x1, ξ1))(x2, ξ2) = (am1,m2 − λ)−1(x1, x2, ξ1, ξ2),

σ ((σ
m2
2 (A)− λ IdM1)

−1(x2, ξ2))(x1, ξ1) = (am1,m2 − λ)−1(x1, x2, ξ1, ξ2).
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1372 U. Battisti

Using the rules of the calculus and Lemma 2.1, we can check that B(λ) satisfies conditions
(7). By parameter ellipticity, we get that R1(λ) and R2(λ) are compact operators for λ ∈ �,
namely

(A − λ Id) ◦ B(λ) = Id +R1(λ),

(A − λ Id) ◦ B(λ) = Id +R2(λ),
(9)

λR1(λ), λR2(λ) ∈ S−1,−1(M1 × M2) uniformly w.r.t. λ ∈ �. So B(λ) is a parametrix and
its symbol b(λ) has the following form

b(λ) = −(am1,m2(x1, x2, ξ1, ξ2)− λ)−1ψ1(ξ2)ψ2(ξ1)

+(am1,· − λ IdM2)
−1(x1, x2, ξ1, ξ2)ψ1(ξ1)

+(a·,m2 − λ IdM1)
−1(x1, x2, ξ1, ξ2)ψ2(ξ2),

where (am1,· − λ IdM2)
−1(x1, x2, ξ1, ξ2) is the value of the symbol of the operator

(am1,·(x1, x2, ξ1, D2) − λ IdM2)
−1 at (x2, ξ2), and similarly for (a·,m2 − λ IdM1)

−1.
Furthermore, denoting by r1(λ) the symbol of R1(λ), we easily obtain

r1(λ) = (a − psym(a)) ◦ b(λ)+ (psym(a) ◦ b(λ))− 1, (10)

hence r1(λ) ∈ S−1,−1(M1,M2) is the asymptotic sum of terms of the type

∂
α1
ξ1
∂
α2
ξ2

gDα1
x1

Dα2
x2

b(λ) g ∈ Sm1,m2(M1,M2).

Clearly (am1,m2(x1, x2, ξ1, ξ2) − λ)−1 = O(|λ|−1). By the theory of pseudodifferential
operators on closed manifolds, the same property holds for the symbols of the operators
(am1,·(x1, x2, ξ1, D2) − λ IdM2)

−1 and (a·,m2(x1, x2, D1, ξ2) − λ IdM1)
−1 and their deriv-

atives. Thus r1(λ) = O(|λ|−1), as a consequence of the calculus. By Proposition 1.2, this
implies ‖R1‖L2 = O(|λ|−1), and the same is true for the operator R2. So we can choose λ
large enough such that R1, R2 have norm less than 1. In this way, using Neumann series, we
prove that (A −λ Id) is one to one and onto, therefore invertible, by the Open Map Theorem.
Again, by Neumann series, we obtain B̃(λ) such that (9) is fulfilled with R̃1, R̃2 smoothing
and still with norm O(λ−1). Now notice that λ[B(λ)− B̃(λ)] ∈ S−m1−1,−m2−1 for all λ ∈ �.
Furthermore, if we multiply both equations in (7) by (A − λ Id)−1 we obtain

(A − λ Id)−1 = B̃(λ)+ B̃(λ)R1(λ)+ R2(λ)(λ− A)−1 R1(λ).

Hence ‖(A − λ Id)−1‖ = O(|λ|−1) and λ2[(A − λ)−1 − B̃(λ)] is a smoothing operator in
L−∞,−∞(M1 × M2), uniformly w.r.t. λ. ��

In order to define complex powers of an elliptic bisingular operator, we introduce some
natural assumptions.

Assumption 1 1. A ∈ Sm1,m2(M1,M2) is �-elliptic.
2. σ(A) ∩� = ∅ (in particular A is invertible).
3. A has homogeneous principal symbols.

Remark 2 If we consider a�-elliptic operator A ∈ Lm1,m2
pr (M1×M2)with mi > 0 (i = 1, 2),

then σ(A) is either discrete or the whole of C, because the resolvent is a compact operator
([32], Ch. I). Since by Theorem 2.1 we know that for large λ the resolvent is well defined,
it turns out that the spectrum σ(A) is discrete. Then, modulo a shift of the operator, we can
find a suitable sector such that Assumptions 1 is fulfilled.
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Definition 2.2 Let A be an operator fulfilling Assumptions 1. Then, we can define

Az := i

2π

∫

∂�+
ε

λz(A − λ Id)−1 dλ, Re(z) < 0, (11)

where �ε = � ∪ {z ∈ C | |z| ≤ ε}.
The Dunford integral in (11) is convergent because ‖(A − λ Id)−1‖ = O(|λ|−1) for λ large
enough. As usual, we next define

Az := Az−k ◦ Ak, Re(z − k) < 0.

Remark 3 In Assumptions 1 we require � ∩ σ(A) = ∅, therefore in particular the operator
must be invertible. It is possible to define complex powers of non invertible operator as well,
provided the origin is an isolated point of the spectrum, see, e.g., [5]. For example, one can
define the complex powers of A = −�⊗ −� on the torus S

1 × S
1, even if A has an infinite

dimensional kernel.

Theorem 2.2 If A ∈ Lm1,m2(M1,M2) satisfies Assumptions 1, then Az ∈ Lm1z,m2z(M1 ×
M2) and it has homogeneous principal symbol. Moreover, by Cauchy Theorem2

az
m1z,m2z = (am1,m2)

z,

az
m1z,· = (am1,·)z, (12)

az·,m2z = (a·,m2)
z .

Proof As a consequence of a general version of Fubini’s Theorem, denoting by az the symbol
of Az , we obtain

az = i

2π

∫

∂+�ε

λz(a − λ Id)−1) dλ, Re(z) < 0.

where (a − λ Id)−1 is the symbol of the operator (A − λ Id)−1. By Theorem 2.1, we know
that λ2[(A − λ Id)−1 − B(λ)] ∈ L−∞,−∞(M1 × M2) so, up to smoothing symbols, we have

az = i

2π

∫

∂+�ε

λz(b̃(λ)) dλ

= i

2π

∫

�ξ1,ξ2

λz(b̃(λ)) dλ, (13)

where �ξ1,ξ2 is as in Lemma 2.1 and the second equality in (13) follows by Cauchy integral
formula. Now, by Lemma 2.1 and by the explicit form of b̃(λ), we get Az ∈ Lm1z,m2z(M1 ×
M2). In order to show that Az has homogeneous principal symbol, we write

(b̃(λ)) = ψ1(σ
m1(A)− λ IdM2)

−1 + ψ2(σ
m2(A)− λ IdM1)

−1

−ψ1ψ2(σ
m1,m2(A)− λ)−1 + c(λ),

2 In Eq. (12) az
m1z,·, az·,m2z , az

m1z,m2z represent respectively σm1z
1 (Az), σ

m2z
2 (Az), σm1z,m2z(Az), while

(am1,·)z , (a·,m2 )
z are complex powers of the operators σm1

2 (A), σ
m2
2 (A) and (am1,m2 )

z is the complex
power of the function σm1,m2 (A).
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where λc(λ) ∈ S−m1−1,−m2−1(M1,M2),∀λ ∈ �. We split integral in (13) so that

az = i

2π

∫

∂+�ε

λzψ1(σ
m1(A)− λ IdM2)

−1 (14)

+ i

2π

∫

∂+�ε

λzψ2(σ
m2(A)− λ IdM1)

−1 dλ (15)

− i

2π

∫

∂+�ε

λzψ1ψ2(σ
m1,m2(A)− λ)−1 dλ (16)

+ i

2π

∫

∂+�ε

λzc(λ) dλ. (17)

The theorem follows from theory of complex powers on closed manifolds for the integrals
(14) and (15), and from Cauchy Theorem for integral (16). Finally, we notice that integral
(17) gives a symbol of order (m1z − 1,m2z − 1). ��
We now introduce the function ζ(A, z) of an elliptic operator that satisfies Assumptions 1.
The proof of the following property is similar to the case of compact manifolds (see [32],
ch. II).

Proposition 2.1 Let A ∈ Lm1,m2(M1 × M2),mi > 0, i = 1, 2, be a selfadjoint operator
satisfying Assumptions 1. Then we have

Az(u) =
∑

i∈N

λz
j ( fi , u),

where {λ j } j∈N is the spectrum of A, and { f j } j∈N are the corresponding orthonormal eigen-
functions. We define

ζ(A, z) :=
∑

j∈N

λz
j , Re(z) < min

{
− n1

m1
,− n2

m2

}
.

The definition of ζ(A, z) in the general case is the following:

Definition 2.3 Let A ∈ Lm1,m2(M1 × M2) be an operator satisfying Assumptions 1 then

ζ(A, z) :=
∫

M1×M2

K Az (x1, x2, x1, x2)dx1dx2, Re(z)m1 < −n1,Re(z)m2 < −n2,

where K Az is the kernel of Az . The integral is well defined if Re(z)m1 < −n1 and Re(z)m2 <

−n2 since, in this case, Az is trace class.

Theorem 2.3 K Az (x1, x2, y1, y2) is a smooth function outside the diagonal. Furthermore,
K Az (x1, x2, x1, x2) restricted to the diagonal can be extended as a meromorphic function
on the half plane {z ∈ C | Re(z) < min{− n1

m1
,− n2

m2
} + ε} with, at most, poles at the point

zpole = min{− n1
m1
,− n2

m2
}. The pole can be of order two if n1

m1
= n2

m2
, otherwise it is a simple

pole.

Proof By definition, the kernel of Az has the form

K Az (x1, x2, x1, x2) = 1

(2π)n1+n2

∫

R
n1

∫

R
n2

az(x1, x2, ξ1, ξ2)dξ1dξ2. (18)
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First, let us consider the case n1
m1
> n2

m2
. Then, if Re(z) < − n1

m1
, Az ∈ Lm1z,m2z(M1 × M2) ⊆

L−n1−ε,−n2−ε(M1 × M2); hence it is trace class and the integral of the kernel is finite. We
can write az = az

m1z,· + az
r , az

r ∈ Sm1z−1,m2z(M1,M2) and we have then

K Az (x, x) = 1

(2π)n1+n2

∫

R
n2

∫

|ξ1|≥1

(
az

m1z,· + az
r,·

)
dξ1dξ2

+ 1

(2π)n1+n2

∫

R
n2

∫

|ξ1|≤1

(
az

m1z,· + az
r,·

)
dξ1dξ2. (19)

The second integral in (19) is an holomorphic function for Re(z) ≤ − n1
m1

+ ε since we
integrate w.r.t. the ξ1 variable on a compact set. The same conclusion holds for the integral
of az

r,· on the set {(ξ1, ξ2) | |ξ1| ≥ 1, ξ2 ∈ R
n2} because it has order (m1z − 1,m2z). In order

to analyze the integral of az
m1,·, we switch to polar coordinates and we obtain

∫

R
n2

∫

|ξ1|≥1

az
m1z,·dξ1dξ2 = − 1

m1z + n1

∫

R
n2

∫

S
n1−1

am1z,·dθ1dξ2. (20)

Clearly (20) can be extended as a meromorphic function on {z ∈ C | Re(z) < − n1
m1

+ ε},
and, moreover, by (12), we get

lim
z→− n1

m1

(
z + n1

m1

)
K Az (x1, x2) = − 1

(2π)n1+n2 m1

∫

R
n2

∫

S
n1−1

a
− n1

m1
m1,· dθ1dξ2.

The case n1
m1
< n2

m2
is equivalent, by exchanging m1 and m2.

The case n1
m1

= n2
m2

is a bit more delicate, since we have to analyze the whole principal
symbol. First we write

K Az (x, x) = 1

(2π)n1+n2

∫

R
n1

∫

R
n2

(az
m1z,· + az·,m2z − az

m1z,m2z)

+(az − az
m1z,· − az·,m2z + az

m1z,m2z)dξ1dξ2. (21)

The definition of principal symbol implies that the second term in (21) belongs to
Sm1z−1,m2z−1(M1,M2), hence the second integral is well defined for Re(z) < − n1

m1
+ ε

and holomorphic for Re(z) < − n1
m1

+ ε. Now we have to analyze the integral of the principal
symbol. Splitting R

n1 × R
n2 into the following four regions

{(ξ1, ξ2) | |ξ1| < τ, |ξ2| < τ }, {(ξ2, ξ2) | |ξ1| ≤ τ, |ξ2| ≥ τ },
{(ξ1, ξ2) | |ξ1| ≥ τ, |ξ2| ≤ τ }, {(ξ2, ξ2) | |ξ1| > τ, |ξ2| > τ },

one gets
∫

R
n1

∫

R
n2

(
az

m1z,· + az·,m2z − az
m1z,m2z

)
dξ1dξ2

= τ (m1+m2)z+n1+n2

(m1z + n1)(m2z + n2)

∫

S
n1−1

∫

S
n2−1

az
m1z,m2zdθ1dθ2

− τm1z+n1

(m1z + n1)

∫

|ξ2|≤τ

∫

S
n1−1

az
m1z,·dθ1dξ2
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− τm2z+n2

(m2z + n2)

∫

|ξ1|≤τ

∫

S
n2−1

az·,m2zdθ1dξ1

− τm1z+n1

(m1z + n1)

∫

|ξ2|>τ

∫

S
n1−1

(
az

m1z,· − az
m1z,m2z

)
dθ1dξ1

− τm2z+n2

(m2z + n2)

∫

|ξ1|>τ

∫

S
n2−1

(
az·,m2z − az

m1z,m2z

)
dθ1dξ1

+h(z), (22)

where h(z) is an holomorphic function for Re(z) ≤ zpole + ε. The evaluation of the integrals
in (22) are similar to Proposition 3.3 in [26], and Theorem 2.2 in [4]. This concludes the
proof. ��
Since M1,M2 are closed manifolds, Theorem 2.3 implies the following:

Corollary 2.1 Let A ∈ Lm1,m2(M1 × M2) be an operator satisfying Assumptions 1; then
ζ(A, z) is holomorphic for Re(z) < min{− n1

m1
,− n2

m2
} and can be extended as a meromorphic

function on the half plane Re(z) < min{− n1
m1
,− n2

m2
} + ε. Moreover, the Laurent coefficients

of ζ(A, z) at z = zpole = min{− n1
m1
,− n2

m2
} are

lim
z→− n1

m1

(
z + n1

m1

)
ζ(A, z) = − 1

(2π)n1+n2 m1

∫∫

M1×M2

∫

R
n2

∫

S
n1−1

a
− n1

m1
m1,· dθ1dξ2, (23)

if n1
m1
> n2

m2
.

lim
z→− n2

m2

(
z + n2

m2

)
ζ(A, z) = − 1

(2π)n1+n2 m2

∫∫

M1×M2

∫

R
n1

∫

S
n2−1

a
− n2

m2·,m2 dθ2dξ1, (24)

if n2
m2
> n1

m1
.

res2(A) = lim
z→−l

(z + l)2ζ(A, z)

= 1

(2π)n1+n2(m1m2)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθdθ ′, (25)

lim
z→−l

(z + l)
(
ζ(A, z)− res2(A)

(z + l)2
) = −T R1,2(A)+ T Rθ (A), (26)

where

T R1,2(A)

:= 1

(2π)n1+n2
lim
τ→∞

⎛

⎜⎝
1

m1

∫∫

M1×M2

∫

|ξ2|≤τ

∫

S
n1−1

(am1,·)−l − res2(A) log τ

⎞

⎟⎠

+ 1

(2π)n1+n2
lim
τ→∞

⎛

⎜⎝
1

m2

∫∫

M1×M2

∫

|ξ1|≤τ

∫

S
n2−1

(a·,m2)
−l − res2(A) log τ

⎞

⎟⎠ (27)
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and

T Rθ (A) := 1

(2π)n1+n2(m1m2)

∫

M1×M2

∫

S
n1−1

∫

S
n2−1

a−l
m1,m2

log am1,m2 dθ1dθ2, (28)

if n1
m1

= n2
m2

= l.

In (27), (am1,·)l and (a·,m2)
l are the symbols of the complex powers of the operators

am1,·(x1, x2, ξ1, D2) and a·,m2(x1, x2, D1, ξ2). In order to obtain the terms in (26), (27),
(28), we notice that the constant τ in (22) is arbitrary and the Laurent coefficients clearly do
not change if we change the partition of R

n1 × R
n2 , therefore we can let τ tend to infinity. In

this way both the fourth and fifth integral in (22) vanish, due to the continuity of the integral
w.r.t. the domain of integration. The evaluation is similar to the proof of Theorem 2.9 in [4]
and of Proposition 3.3 in [26].

3 Weyl’s formula for bisingular operators

In this section we study Weyl’s formula for positive selfadjoint bisingular operators that sat-
isfy Assumptions 1. In the sequel we use the following Theorem, proved by Aramaki [1]:

Theorem 3.1 Let P be a positive selfadjoint operator satisfying Assumptions 1. If ζ(P, z)
has the first left pole at the point −z0 and3

ζ(P, z)+
p∑

j=1

A j

( j − 1)!
(

d

dz

) j−1 1

z + z0
,

extends to an holomorphic function on the half plane {z ∈ C | Re(z) < −z0 + ε}, then,
setting

NP (λ) =
∑

t∈σ(P), t≤λ
1,

we have

NP (λ) ∼
p∑

j=1

A j

( j − 1)!
(

d

ds

) j−1 (
λs

s

)
|s=z0 + O(λz0−δ), λ → ∞,

for a certain δ > 0.

Theorem 3.2 Let A ∈ Lm1,m2(M1 × M2) be a positive selfadjoint bisingular satisfying
Assumptions 1, then

NA(λ) ∼

⎧
⎪⎪⎨

⎪⎪⎩

C1λ
l log(λ)+ C ′

1λ
l + O(λl−δ1) for n1

m1
= n2

m2
= l

C2λ
n2
m2 + O(λ

n2
m2

−δ2) for n2
m2
> n1

m1

C3λ
n1
m1 + O(λ

n2
m2

−δ2) for n2
m2
< n1

m1

, λ → ∞, (29)

for certain δi > 0, i = 1, 2, 3. The constants C1,C ′
1,C2,C3 depend only on the principal

symbol of A.

3 The Aramaki’s Theorem actually requires another assumption on the decay of�(z)ζ(P, z) on vertical strips.
In this case such condition is fulfilled, in view of the relationship between ζ -function, heat trace and gamma
function, see [14,22].
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Proof We use Aramaki’s Theorem 3.2, which gives the asymptotic of NA(λ) knowing the
first left pole of the zeta function. As a simple application we get (29) with

C1 = 1

(2π)n1+n2(n1 m2)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2

= 1

(2π)n1+n2(n2 m1)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2;

C ′
1 = T R1,2(A)− T Rθ (A)

l
− 1

n1n2

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2; (30)

C2 = 1

(2π)n1+n2 n2

∫∫

M1×M2

∫

R
n1

∫

S
n2−1

(a·,m2)
− m2

n2 dθ2dξ1;

C3 = 1

(2π)n1+n2 n1

∫∫

M1×M2

∫

R
n2

∫

S
n1−1

(am1,·)
− n1

m1 dθ1dξ2.

��

Remark 4 In this paper we are focused just on bisingular operators with homogeneous prin-
cipal symbol, since our aim is the study of the corresponding Weyl’s formulae. We do not
introduce classical bisingular operators and we do not investigate the relationship between
the poles of the ζ -function and Wodzicki Residue defined in [27]. Nevertheless, extending the
results of Sect. 2 to classical bisingular operators, one can prove that, for a classical elliptic
bisingular operator A ∈ Lm1,m2(M1 × M2) that admits complex powers,

Wres(A) := m1m2 lim
z→1

(z − 1)2ζ(A, z),

where Wres(A) is the bisingular Wodzicki residue defined by Nicola and Rodino in [27].

4 Examples

First we consider the operator A = −� ⊗ −� on the torus S
1 × S

1. We clearly have
σ(A) = {n2m2}(n,m)∈N2 . Hence the spectrum is countable and consists only of eigenvalues.
The eigenvalue {0} has an infinite dimensional eigenspace, while all other eigenspaces have
dimension four. Therefore we get

NA(λ) =
∑

0<n2 m2≤λ
4. (31)

Let us define the function d(h) : N → N so that d(h) is equal to the number of ways we
can write h = m · n, with m, n natural positive numbers or, equivalently, it is equal to the
number of divisors of h. This function is often called Dirichlet divisor function. By a simple
computation, we obtain

NA(λ
2) = 4 D(λ) = 4

∑

n≤λ
d(n). (32)
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Noticing that ζ(A) = 4ζR(2z)ζR(2z), where ζR(z) is Riemann zeta-function, we can easily
find the coefficients of the asymptotic expansion and we have

D(λ) ∼ λ log(λ)+ (2γ − 1)λ+ O(λ1−δ), λ → ∞, (33)

where

γ := lim
τ→∞

[ [τ ]∑

i=1

1

i
− log τ

]
(34)

is the well known Euler–Mascheroni constant. The asymptotic expansion (33) is well known
(see [18] for an overview on Dirichlet divisor problem; see also [19,20]). It is still an open

question to understand the behavior of remainder. In [16], Hardy proved that O(λ
1
4 ) is a lower

bound for the third term. The best approximation, found by Huxley in [17], is O(λc(log λ)d),
where

c := 131

416
∼ 0, 3149038462 d := 18627

8320
+ 1 ∼ 3, 238822115.

The conjecture is that the remainder is O(λ
1
4 ).

It is nevertheless interesting to investigate the link between Dirichlet divisor function and
the above results on the spectral properties of a suitable operators. Let us notice that in (31)
we have a slight abuse of notation, since N (λ)was only defined for positive operators. In this
case A = −�⊗−� is non-negative, but has a non trivial kernel. In other words we actually
consider

NA := NA◦(Id −Pker A)

where Pker A is the projection on the kernel of A. This definition is compatible with the
definition of complex powers of non invertible operators in [5]. The variant of our theory to
such a setting, which is possible, will be not detailed here. Rather, let us now consider the
operator Ac := (−� + c) ⊗ (−� + c), c > 0, defined on the torus S

1 × S
1. Clearly, Ac

satisfies Assumptions 1; thus we can apply Theorem 3.2. It is easy to see that the eigenvalues
of Ac are {(n2 + c)(m2 + c)}(n,m)∈N2 , each one with multiplicity four. Hence

N (Ac; λ2) = 4 �{ real numbers of the form (n2 + c)(m2 + c) |
(n2 + c)(m2 + c) ≤ λ, n,m ∈ N} = 4 Dc(λ).

By Theorem 2.2, we know that σ−1,−1(A
− 1

2
c ) = (σ 2,2(Ac))

− 1
2 so the constant C1 in (30)

can be easily evaluated

C1 = 1

2

1

(2π)2
(2π)2 4 = 2. (35)

Since in this case we know the eigenvalue of the operator, T R(Ac) turns into

T R1,2(Ac) = 2 lim
τ→∞

⎡

⎣
[τ ]∑

i=−[τ ]

1

(c + i2)
1
2

− 2 log τ

⎤

⎦

= 4 lim
τ→∞

[ [τ ]∑

i=0

1

(c + i2)
1
2

− log τ

]
= 4γc. (36)
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We have named this constant γc because of the link with the usual constant of Euler–
Mascheroni γ in (34). Notice that, letting c tend to 0, γc goes to +∞; while, if c tends
to infinity, γc goes to −∞. Finally, we obtain

Dc(λ) = 1

4
N (Ac; λ2)

∼ λ log(λ)+ (2γc − 1)λ+ O(λ1−δ), λ → ∞. (37)

We refer to [3] for some numerical experiments on Dc(λ). The results of the experiments are
consistent with the asymptotics found using our theory.

Our spectral approach to Dirichlet Divisor function suggests that others Weyl’s formula
techniques (e.g. Fourier Integral Operator) could be useful to attack the Dirichlet Divisor
conjecture.
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