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Abstract Let X be a Hausdorff topological vector space, X∗ its topological dual and Z a
subset of X∗. In this paper, we establish some results concerning the σ(X, Z)-approximate
fixed point property for bounded, closed convex subsets C of X . Three major situations are
studied. First, when Z is separable in the strong topology. Second, when X is a metrizable
locally convex space and Z = X∗, and third when X is not necessarily metrizable but admits
a metrizable locally convex topology compatible with the duality. Our approach focuses
on establishing the Fréchet–Urysohn property for certain sets with regarding the σ(X, Z)-
topology. The support tools include the Brouwer’s fixed point theorem and an analogous
version of the classical Rosenthal’s �1-theorem for �1-sequences in metrizable case. The
results are novel and generalize previous work obtained by the authors in Banach spaces.
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1272 C. S. Barroso et al.

1 Introduction

Let X be a Hausdorff topological vector space (HTVS) and C a bounded, closed convex subset
of X . In this paper, we address the problem whether every continuous mapping f : C → C
has in some sense an approximate fixed point sequence, that is, a sequence (xn)n such that
(xn − f (xn))n converges to zero as n goes to infinity. This problem has been investigated
by several authors, and very often there have been a number of works using results along
this line to address various problems arising in several branches of mathematics. We would
like to address the reader to [8,24] and references therein where metric approximate fixed
point results are used for solving important problems in game theory, including approximate
Nash equilibrium in games. The study of this problem in the general framework of HTVS
is closely related to Almost-Fixed Point Theory which was apparently started by Walt [27],
van de Vel [26], Hazewinkel and van de Vel [12], and Idzik [13,14]. Nevertheless, our great-
est motivation comes from some studies done in the setting of normed and Banach spaces,
which is the subject matter of the present paper and brings out the necessity of considering
weaker topologies ensuring the sequential approximation of fixed points where no stronger
convergence can be expected. For example, when X is a normed space with norm ‖ · ‖, Lin-
Sternfeld [20] proved that if C is not totally bounded then there exists a Lipschitz mapping
f from C into itself such that infC ‖x − f (x)‖ > 0. In particular, if X is Banach and C is
noncompact then such a mapping can always be constructed. It is natural then to look for
weak-approximating fixed point sequences instead strong one. When X is a Banach space,
a nonexistence result was reported by Domínguez Benavides, Japón Pineda and Prus in [5].
They proved that every closed convex subset of a Banach space which is not weakly com-
pact contains a closed convex subset K which fails certain kind of approximation of fixed
points for continuous affine self-mappings (more precisely, there is a continuous affine map
T : K → K such that inf{lim inf ‖y − T n x‖ : x, y ∈ K } > 0). In [21, Lemma 1] Moloney
and Weng proved that if X is a Hilbert space and C is a closed ball, then every demicontinuous
mapping f : C → C admits a weak approximated fixed point sequence, that is, a sequence
{xn} ⊂ C such that (xn − f (xn))n converges weakly to zero. This result was used in the
proof of a fixed point theorem for demicontinuous pseudocontractions self-mapping closed,
bounded, convex subsets of Hilbert spaces. Motivated by these results, Barroso [3] started
the study of the weak-approximate fixed point property (weak-AFPP) in Banach and abstract
spaces. Let X∗ denote the topological dual of X .

Definition 1.1 Given a subspace Z of X∗, we say that C has the σ(X, Z)-AFPP if for
every continuous mapping f from C into itself, there exists a sequence (xn)n in C so that
(x∗(xn − f (xn)))n converges to zero for all x∗ ∈ Z . Similarly, we say that X has the
σ(X, Z)-AFPP if every bounded, closed convex subset of X has the property.

Remark 1 When Z = X∗ we simply write weak-AFPP instead writing σ(X, X∗)-AFPP. In a
similar way, we can also define the σ(X∗, Z)-AFPP for some subset Z of X .

The main result in [3, Theorem 3.1] concerning this topic in Banach spaces can be stated
as: Every weakly compact convex subset of a Banach space has the weak-AFPP for norm-
continuous maps. We should mention at this point that the weak-AFPP features a close
relation with some geometric aspects of Banach spaces. For instance, by [20] we can con-
clude that X will not have the weak-AFPP if it contains an isomorphic copy of �1. In fact, by
Rosenthal’s �1-theorem every Schur space fails to have this property. In contrast, subsequent
to [3], it was proved by Barroso and Lin [4, Theorem 2.2] that every Asplund space has the
weak-AFPP. Even though the class of Asplund spaces encompass a huge variety of spaces
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On the approximate fixed point property in abstract spaces 1273

including reflexive spaces [25], spaces with separable dual [2], C(K )-spaces with K scattered
and many other (see e.g. Namioka-Phelps [22] for more details on this subject), in [4] it was
posed the question of whether a Banach space not containing �1 isomorphically should have
the weak-AFPP. Very recently, Kalenda [18] solved this question using a powerful theorem
of Bourgain, Fremlin and Talagrand [7, Theorem 3F], so that a complete characterization of
weak-AFPP is obtained: a Banach space has the weak-AFPP if and only if it contains no iso-
morphic copy of �1. This provides a quite interesting result that contrasts with many previous
studies concerning the fixed point property (FPP) where, at least for nonexpansive maps, no
characterization of FPP or weak-FPP seems to be known (cf. [6] and references therein).

The aim of this paper is to continue the study begun in [3,4] which naturally leads to a
number of related questions which are interesting on their own. We hope that the present study
will shed some light on the issue of whether one can get a characterization of weak-AFPP for
HTVS like that for Banach spaces. To put things into some perspective, we should mention
that all our results here are either new, more general or sharper than similar ones. Next, we
give an outline of the paper: it is divided into three sections. In Sect. 2, we initially set up the
basic framework for our results throughout the paper. Next, we establish our first main result
(Theorem 2.1). It generalizes the main result of [4] for HTVS with separable strong dual,
sets not necessarily closed and not necessarily continuous maps. As a byproduct, we get an
easy proof of a fixed point result due to Ky Fan (see Corollary 2.2). In Proposition 2.3, we
indicate some circumstances where Theorem 2.1 can be applied. Moreover, two illustrative
examples concerning the σ(X∗, X)-AFPP are included. In Sect. 3, we study the weak-AFPP
for the case when X is a metrizable locally convex space (LCS). The idea is to adapt in an
accurate way the ingredients used in [18] to this context. Firstly, we introduce the notion
of �1-sequences in topological vector spaces which reduces to that of isomorphic copies of
�1 in case of Banach spaces (see Definition 3.1). After, we shall use a characterization of
�1-sequences (see Proposition 3.2) to show that the heredity of the weak-AFPP for subsets
of C it is equivalent to C do not contain �1-sequences (see Theorem 3.3). The proof of this
fact relies essentially on two fundamental results in metrizable LCS. The first one is a slight
generalization of the classical Rosenthal’s �1-theorem to the setting of metrizable LCS (see
Theorem 3.5). The second one is the Fréchet–Urysohn property of the space (C − C, w),
where w denotes the weak-topology of X , (see Lemma 3.6). This was previously established
by Kalenda [18] in the Banach spaces setting. As a direct consequence, the weak-AFPP is
proved for metrizable LCS without �1-sequences (see Corollary 3.4). In the final section,
we establish the weak-AFPP for certain non-metrizable LCS. Firstly, we give an example
(see Example 4.2) to illustrate that the assumption of metrizability cannot be dropped in the
statement of Theorem 3.5. We then prove a result in the spirit of Theorem 3.3 by assuming
the existence of metrizable locally convex topologies on Hausdorff LCS compatible with
the duality (see Theorem 4.3). As a byproduct, we obtain another characterization of the
Fréchet–Urysohn property in LCS (see Proposition 4.4). With this result in hands, we are
able to get an improvement of Theorem 2.4 of [18]. We then finish the paper with some
remarks and some new questions concerning the weak-AFPP in non-metrizable spaces.

2 On the σ(X, Z)-approximate fixed point property in HTVS

Let X be a HTVS with topology τ , and let C be a bounded, closed convex subset of X . Let
us recall that a nonempty subset A of X is called bounded if for each zero-neighborhood
U in X , there exists a positive real number r such that A ⊂ rU . Our first main result is
the following theorem which is a generalization of [4, Lemma 2.1]. Its proof is a simplified
version of that given in [4]. In [4] the authors used paracompactness of metric spaces and
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1274 C. S. Barroso et al.

Brouwer’s fixed point theorem. The present proof avoids paracompactness. This allows the
theorem to be very general—it works for nonempty bounded convex sets in HTVSs with no
more assumptions. Furthermore, we mention that the second part of its statement yields a
generalization of [4, Theorem 2.2] proved in Proposition 2.3 below.

Theorem 2.1 Let (X, τ ) be a HTVS, Z a subspace of its topological dual X∗, and let C be
a nonempty bounded convex subset of X. Assume that f : C → C is a mapping which is
τ -to-σ(X, Z) sequentially continuous. Then the following hold:

(i) 0 ∈ {x − f (x) : x ∈ C}σ(X,Z)

(ii) If, moreover, Z is separable in the strong topology (i.e., the topology of uniform con-
vergence on τ -bounded subsets of X), then there is a sequence (zn) in C such that
zn − f (zn) converge to 0 in the topology σ(X, Z).

Proof (i) By the definition of the topology σ(X, Z) it is enough to prove the following:
Given x∗

1 , . . . , x∗
n ∈ Z and ε > 0, there is x ∈ C such that |x∗

i (x − f (x))| < ε for
i = 1, . . . , n.

So, let us fix x∗
1 , . . . , x∗

n ∈ Z and ε > 0. Equip the space R
n with the max-norm

‖ · ‖∞ and define the mapping � : C → R
n by �(x) = (x∗

i (x))n
i=1. It is clear that � is

a continuous linear mapping. Since C is bounded in X, C is bounded as well and hence
the set �(C) is bounded in R

n . It follows that �(C) is totally bounded. Consider the set
U = (−ε/2, ε/2)n ⊂ R

n . (It is an open ball with respect to the max-norm.) Next choose a
finite set A ⊂ �(C) so that {U+q : q ∈ A} is an open cover of�(C) (note that�(C) ⊂ �(C)

as � is continuous). For each q ∈ A fix some yq ∈ C with �(yq) = q . Set L = {yq : q ∈ A}
and K = coL. Then K is a finite-dimensional compact convex subset of C . Now for each
x ∈ K , fix zx ∈ L such that �( f (x)) ∈ �(zx ) + U . Then

|x∗
i (zx − f (x))| < ε/2, x ∈ K , i = 1, . . . , n.

Moreover, the restriction f |K is τ -to-σ(X, Z) continuous as K is metrizable. Further, � is
σ(X, Z)-continuous, hence the composed mapping � ◦ f |K is τ -continuous. Therefore we
can, for each x ∈ K , choose a τ -open neighborhood Ux of x (relatively in K ) such that for
any y ∈ Ux ,

|x∗
i ( f (y) − f (x))| < ε/2, i = 1, . . . , n.

It follows that {Ux : x ∈ K } is an open covering of K . Since K is compact, there are
x1, . . . , xm ∈ K such that {Uxi : i = 1, . . . , m} is a cover of K . Fix a partition of unity
{φi : i = 1, . . . , m} on K dominated by {Uxi : i = 1, . . . , m}. Then the mapping F : K → K
given by

F(y) =
m∑

i=1

φi (y)zxi , y ∈ K ,

is continuous. By Brouwer’s fixed point theorem, it has a fixed point z ∈ K . If φi (z) 	= 0,
then z ∈ Uxi and hence

|x∗
j ( f (z) − f (xi ))| < ε/2, j = 1, . . . , n.
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This in turn implies that

|x∗
j (z − f (z))| =

∣∣∣∣∣

m∑

i=1

φi (z)x∗
j (zxi − f (z))

∣∣∣∣∣

≤
m∑

i=1

φi (z)
(∣∣∣x∗

j (zxi − f (xi ))

∣∣∣ +
∣∣∣x∗

j ( f (xi ) − f (z))
∣∣∣
)

< ε,

for j = 1, . . . , n. This completes the proof.

(ii) Let {x∗
i } be a strongly dense sequence in Z . By the assertion (i) we can find for any

n ∈ N a point zn in C so that

∣∣x∗
i (zn − f (zn))

∣∣ <
1

n
,

for all i = 1, . . . , n. Then for all integer i ≥ 1, |x∗
i (zn − f (zn))| → 0 as n → ∞.

The denseness of {x∗
i } in the strong topology on Z implies zn − f (zn) → 0 with

regarding the topology σ(X, Z). This completes the proof.

�
As an immediate consequence we get an easy proof of a well-known result of Fan

(see [11]).

Corollary 2.2 Let X be a HTVS such that its topological dual X∗ separates the points of X.
(This is satisfied, for example, if X is locally convex.) Let C ⊂ X be a nonempty compact
convex set. Then each continuous mapping f : C → C has a fixed point.

Proof Set A = {x − f (x) : x ∈ C}. Then A is compact as the image of C by a continuous
map x �→ x − f (x). So, A is also weakly compact. Since X∗ separates points of X , the weak
topology is Hausdorff and hence A is weakly closed. By the previous theorem 0 belongs to
the weak closure of A, hence 0 ∈ A, i.e., f has a fixed point. �
Remark 2 We refer the reader to [15] for other comments on Ky Fan’s theorem.

In the following proposition we collect some situations in which the assertion (ii) of
Theorem 2.1 can be applied.

Proposition 2.3 Let X be a normed space. Then the following statements hold true:

(i) Assume that the completion of X is an Asplund space. Let τ be a locally convex
topology on X compatible with the duality. Then (X, τ ) has the weak-AFPP.

(ii) If (X∗, w∗) is ℵ0-monolithic (i.e., each separable subset of (X∗, w∗) has countable
network), then (X∗, ‖ · ‖) has the σ(X∗, X)-AFPP.

Proof Let us first make the following easy observation: if X is a HTVS, C ⊂ X a nonempty
closed convex bounded set and f : C → C a continuous mapping, then there is a nonempty
separable closed convex set D ⊂ C with f (D) ⊂ D. Indeed, take any x0 ∈ C and set
D0 = {x0}. For n ∈ N define by induction Dn = co(Dn−1 ∪ f (Dn−1)). Finally, set

D =
∞⋃

n=0

Dn .

Then D has the required property. Now let us proceed to the proof itself:
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1276 C. S. Barroso et al.

(i) Let C ⊂ X be a nonempty bounded closed convex set and f : C → C be a
τ -continuous mapping. Let D ⊂ C be nonempty τ -separable closed convex set with
f (D) ⊂ D. Then D is clearly norm-separable. Indeed, let S ⊂ D be a countable
τ -dense set. Denote by S′ the norm-closed convex hull of S. Then S′ is norm-separable.
Moreover, as it is a closed convex set, it is also weakly closed by a consequence
of Hahn–Banach separation theorem. Hence it is τ -closed as well, so in particular
D ⊂ S′. It follows that D is norm-separable. Therefore the closed linear span of D is
norm-separable as well. So, we can without loss of generality suppose that X is sepa-
rable. By our assumption X∗ is separable, we can thus conclude by Theorem 2.1(ii).

(ii) It is enough to show that each nonempty separable closed convex bounded subset of
X∗ has the σ(X∗, X)-AFPP. Let C ⊂ X∗ be such a set. Set Y = C⊥ and denote by
Z the quotient space X/Y . Denote by q the canonical quotient map q : X → Z .
The adjoint map q∗ : Z∗ → X∗ is an isometric injection which is, moreover, weak*-
to-weak* homeomorphism. The image q∗(Z∗) is equal to Y ⊥ = (C⊥)⊥, which is
(by the bipolar theorem) the weak* closed linear span of C . It follows that q∗(Z∗) is
weak*-separable, hence the weak* topology of Z∗ has countable network. Therefore
the dual ball (BZ∗ , w∗) is metrizable, thus Z is separable. By Theorem 2.1(ii) we
get that Z∗ has the σ(Z∗, Z)-AFPP. As q∗ is both an isometry and weak*-to-weak*
homeomorphism, we get that C has the σ(X∗, X)-AFPP.

�

We conclude this section with two instructive examples.

Example 2.4 Let X be a Banach space. Then X∗ has the σ(X∗, X)-AFPP in the following
cases:

• X is separable.
• X is weakly compactly generated. In particular, X = c0(�) for any set � or X = L1(μ)

for a σ -finite measure μ.
• X is weakly Lindelöf determined.

Remark 3 We recall that a Banach space X is called weakly compactly generated if there is a
weakly compact subset K ⊂ X whose linear span is dense in X . Basic properties of this class
of Banach spaces can be found for example in [10, Sect. 1.2]. Further, X is weakly Lindelöf
determined provided there is M ⊂ X with dense linear span such that for each x∗ ∈ X∗
there are only countably many x ∈ M with x∗(x) 	= 0. We refer also the reader for example
to [17] for complements on these notions.

Remark 4 Any separable space is weakly compactly generated and any weakly compactly
generated space is weakly Lindelöf determined (see, e.g., [10, Theorem 1.2.5]). On the other
hand, if X is weakly Lindelöf determined, then (X∗, w∗) is ℵ0-monolithic. Indeed, it is
an easy consequence of the definitions that any bounded separable subset of (X∗, w∗) is
metrizable. Therefore, the previous example can be proved.

Example 2.5 • If X = c0, then X∗ = �1 has the σ(X∗, X)-AFPP, but does not have the
weak AFPP.

• If X = �∞, then X∗ does not have the σ(X∗, X)-AFPP.
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Proof As c0 is separable, by the previous example c∗
0 has the σ(X, X∗)-AFPP. Further, �1

does not have the weak-AFPP (see, e.g., Theorem 3.3 below).
The space X = �∞ is a Grothendieck space, i.e., the weak and weak* convergences

of sequences in X∗ coincide. So, if X∗ had σ(X∗, X)-AFPP, then it would have also the
weak-AFPP. But it is not the case as X∗ contains an isometric copy of �1. �

3 The weak-AFPP in metrizable LCS and �1-sequences

As we have already mentioned, Theorem 2.1 and Proposition 2.3 yield a generalization of the
main result of [4]. Another strengthening of this result is given in [18], where it is proved, in
particular, that a Banach space has the weak-AFPP if and only if it contains no copy of �1. The
key point in the proof in [18] is the verification of the Fréchet–Urysohn property for certain
sets with respect to the weak topology. Recall that a topological space S is called Fréchet–
Urysohn if the closures of subsets of S are described using sequences, i.e. if whenever A ⊂ S
and x ∈ S is such that x ∈ A, then a sequence {xn} in A can be achieved so that xn → x . In
view of the results of the previous section it is therefore natural to ask whether the results of
[18] can be generalized to the context of LCS. The aim of this section is to show that, indeed,
the same results can be proved for metrizable LCS by similar methods.

We briefly recall that the Rosenthal �1-theorem and a powerful theorem of Bourgain,
Fremlin and Talagrand [7, Theorem 3F] were the two striking tools used in [18] for get-
ting the Fréchet–Urysohn property of the weak closure of the set C − C with regarding the
weak topology inherited from X . We also observe that there is a generalization of Rosenthal’s
theorem to Fréchet spaces which, it seems, has been firstly obtained by Díaz in [9, Lemma 3].
Thus the starting point for proving promised generalizations is to understand what it means
for a sequence in a LCS be equivalent to the unit basis of �1. To clarify it let us first fix some
notation. We denote by �0

1 the subspace of �1 formed by elements with only finitely many
nonzero coordinates. Then the following definition is natural.

Definition 3.1 Let X be a topological vector space and (xn) a sequence in X . We say that
(xn) is an �1-sequence if the mapping T0 : �0

1 → X defined by

T0((ai )
∞
i=1) =

∞∑

i=1

ai xi , (ai ) ∈ �0
1 (1)

is an isomorphism of �0
1 onto T0(�

0
1).

It is clear that any �1-sequence is automatically bounded. In normed spaces this definition
coincides with the standard one which is witnessed by the following well-known proposition:

Proposition 3.1 Let (X, ‖ · ‖) be a normed space and (xn) ⊂ X a bounded sequence.
The following are equivalent:

(i) There is constant M > 0 such that ‖ ∑n
i=1 ai xi‖ ≥ M

∑n
i=1 |ai |, for any n ∈ N and

any choice of a1, . . . , an ∈ R.
(ii) (xn) is an �1-sequence.

If X is complete, then these conditions are equivalent to the following:

(iii) The mapping T : �1 → X defined by T ((ai )) = ∑
i ai xi is a well defined isomorphism

of �1 onto its image in X.
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1278 C. S. Barroso et al.

Remark 5 Observe that if X is not complete, then in general (iii) needs not follow from (ii).
Indeed, X = �0

1 contains an �1-sequence but does not contain a copy of �1.

For LCSs we have an analogous result. We recall that a LCS X is said to be sequentially
complete if each Cauchy sequence in X converges (cf. [19, page 210]).

Proposition 3.2 Let X be a LCS and (xn) a bounded sequence in X. The following are
equivalent:

(i) There is a continuous seminorm p on X such that

p

(
n∑

i=1

ai xi

)
≥

n∑

i=1

|ai |, n ∈ N, a1, . . . , an ∈ R.

(ii) (xn) is an �1-sequence.

If X is sequentially complete, then these conditions are equivalent to the following:

(iii) The mapping T : �1 → X defined by T ((ai )) = ∑
i ai xi is a well defined isomorphism

of �1 onto its image in X.

Proof Let T0 : �0
1 → X be defined by (1). As (xn) is bounded and X is locally convex, it is

easy to check that T0 is continuous.
Further, if (i) holds, then T0 is clearly one-to-one and T −1

0 is continuous. This proves
(i)⇒(ii).

Conversely, suppose that (ii) holds. Set

U = T0
({

x ∈ �0
1 : ‖x‖�1 < 1

})
.

As T0 is an isomorphism, U is an absolutely convex open subset of T0(�
0
1). We can find V ,

an absolutely convex neighborhood of 0 in X such that V ∩ T0(�
0
1) ⊂ U . Let p be the

Minkowski functional of V . Then p is a continuous seminorm witnessing that (i) holds. This
proves (ii)⇒(i).

Now suppose that X is sequentially complete. As T0 is continuous and linear, it is uni-
formly continuous and hence it maps Cauchy sequences to Cauchy sequences. In particular,
the mapping T0 can be uniquely extended to a continuous linear mapping T : �1 → X . This
is obviously the mapping described in (iii). As �0

1 is dense in �1, we get (ii)⇔(iii). �

Now we are able to formulate the following theorem, which is a generalization of [18,
Theorem 1.2] to the context of metrizable LCSs.

Theorem 3.3 Let X be a metrizable LCS and C ⊂ X a nonempty closed convex bounded
subset of X. The following assertions are equivalent.

1. Each nonempty closed convex subset of C has the weak-AFPP.
2. C contains no �1-sequence.

As an immediate consequence we get the following corollary.

Corollary 3.4 Let X be a metrizable LCS not containing any �1-sequence. Then X has the
weak-AFPP.
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Proof of the implication (1)⇒(2) of Theorem 3.3 Let us suppose by contradiction that (2)
does not hold. Fix an �1-sequence (xn) in C , and denote by D the closed convex hull and by
Y the closed linear span of the set {xn : n ∈ N}. Let T0 : �0

1 → X be defined by (1). By our
assumption T0 is an isomorphism of �0

1 onto T0(�
0
1). Denote by S0 its inverse. Then S0 is an iso-

morphism of T0(�
0
1) onto �0

1. In particular, S0 maps Cauchy sequences to Cauchy sequences.

Thus S0 can be uniquely extended to a continuous linear mapping S : T0(�
0
1) → �1. Note

that T0(�
0
1) = Y and that S is an isomorphism of Y onto S(Y ) ⊂ �1. As S is linear, it is also

a weak-to-weak homeomorphism.
We claim that the set D does not have the weak-AFPP. Suppose on the contrary that it

has the weak-AFPP. Then S(D) has the weak-AFPP as well. But then, by Schur’s theorem,
S(D) has the AFPP. By [20, Theorem 1.1] we get that S(D) is totally bounded. But it cannot
be the case as S(D) contains the canonical basis of �1. This completes the proof. �

To prove the converse implication we need some more results. The following theorem is a
variant of Rosenthal’s�1-theorem. Its proof is a slight refinement of the proof of [9, Lemma 3].

Theorem 3.5 Let X be a metrizable LCS. Then each bounded sequence in X contains either
a weakly Cauchy subsequence or a subsequence which is an �1-sequence.

Proof Let (‖ · ‖n) be a sequence of seminorms generating the topology of X . Without of loss
of generality we may assume that ‖x‖n ≤ ‖x‖n+1 for all n and x ∈ X (cf. [19, page 205]).
Let Un = {x : ‖x‖n < 1} and let Bn = U 0

n be the polar of Un . Assume that (xk) is a bounded
sequence in X such that no its subsequence is an �1-sequence. For n = 0, 1, 2, . . . we con-
struct a sequence (xn

k ) inductively as follows. Set x0
k = xk for all k ∈ N. Assume that for a

given n ∈ N the sequence (xn−1
k ) has been defined. By Rosenthal’s theorem [23, Theorem 1]

one of the following possibilities takes place (elements of X are viewed as functions on Bn):

(i) (xn−1
k ) has a subsequence which is equivalent to the �1-basis on Bn .

(ii) (xn−1
k ) has a subsequence which pointwise converges on Bn .

Let us show that the case (i) cannot occur. Indeed, suppose that (i) holds. Let (yk) be the
respective subsequence. The equivalence to the �1 basis on Bn means that there is some
C > 0 such that

∥∥∥∥∥

k∑

i=1

ai yi

∥∥∥∥∥
n

≥ C
k∑

i=1

|ai |

for each k ∈ N and each choice a1, . . . , ak ∈ R. By Proposition 3.2 (yk) is an �1-sequence
in X , which is a contradiction.

Thus the possibility (ii) takes place. Denote by (xn
k ) the respective subsequence. This

completes the inductive construction.
Take the diagonal sequence (xk

k ). It is a subsequence of (xk) which pointwise converges
on Bn for each n ∈ N. Moreover, if x∗ ∈ X∗ is arbitrary, then there is n and c > 0 such
that cx∗ ∈ Bn . In particular, the linear span of the union of all B ′

ns is the whole dual X∗. It
follows that the sequence (xk

k ) is weakly Cauchy. The proof is complete. �
We continue by the following lemma which generalizes [18, Proposition 2.3].

Lemma 3.6 Let X be a metrizable LCS and C ⊂ X a separable bounded set containing no
�1-sequence. Then the weak closure of the set C−C = {x−y : x, y ∈ C} is Fréchet–Urysohn
with regarding the weak topology.
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Proof As the closed linear span of C is separable, we can without loss of generality suppose
that X is separable. Let (‖ · ‖n), Un and Bn (n ∈ N) be as in the proof of Theorem 3.5. Notice
that Bn is a metrizable weak∗ compact subset of X∗. Moreover, the linear span of the union
of all B ′

ns is the whole dual X∗ (see the end of the proof of Theorem 3.5). Let now P be
the topological sum of the spaces (Bn, w∗), n ∈ N. Then P is a Polish space. Denote by
G : P → X∗ the canonical mapping of P onto the union of all B ′

ns. Then G is continuous
from P to (X∗, w∗). Define a mapping H : X → R

P by the formula H(x)(p) = G(p)(x).
Then H is a homeomorphism of (X, w) onto H(X) equipped with the pointwise convergence
topology. Moreover, the functions from H(X) are continuous on P .

Let A = H(C − C). We claim that each sequence from A has a pointwise convergent
subsequence. To show that it is enough to observe that each sequence in C − C has weakly
Cauchy subsequence. Indeed, let (zn) be a sequence in C − C . Then zn = xn − yn for some
xn, yn ∈ C . As C contains no �1-sequence, by Theorem 3.5 we get a weakly Cauchy subse-
quence (xnk ) of (xk). Applying Theorem 3.5 once more we get a weakly Cauchy subsequence
(ynkl

) of (ynk ). Then (znkl
) is a weakly Cauchy subsequence of (zn).

Thus A is relatively countably compact in B1(P), which is the space of all Baire-one
functions on P equipped with the topology of pointwise convergence. By the Theorem 3F
of [7], the closure of A in B1(P) is compact and Fréchet–Urysohn. In particular, the weak
closure of C − C in X is Fréchet–Urysohn in the weak topology. The proof is complete.

�
The implication (2) ⇒ (1) of Theorem 3.3 follows immediately from the following

proposition.

Proposition 3.7 Let (X, τ ) be a metrizable LCS, C ⊂ X a nonempty convex bounded set
which does not contains any �1-sequence and f : C → C a τ -to-weak continuous mapping.
Then there is a sequence (xn) in C such that xn − f (xn) weakly converge to 0.

Proof First let us find a nonempty separable convex D ⊂ C with f (D) ⊂ D. To do that fix
x0 ∈ C and set D0 = {x0}. Suppose that Dn ⊂ C is a nonempty separable convex set. Then
f (Dn) is a weakly separable subset of C . As weakly separable sets are separable, we can find
Sn ⊂ f (Dn) a countable τ -dense set. As τ is metrizable and Sn ⊂ C , there is a countable set
Tn ⊂ C with Sn ⊂ Tn . Set Dn+1 = co(Dn ∪ Tn). Then Dn+1 is a separable convex subset
of C containing Dn . Finally, set D = ⋃∞

n=0 Dn . Then D is a nonempty convex separable
subset of C and, moreover,

f (D) =
∞⋃

n=0

f (Dn) ⊂
∞⋃

n=0

Sn ⊂
∞⋃

n=0

Tn ⊂
∞⋃

n=0

Dn+1 ⊂ D.

From Theorem 2.1 we get 0 ∈ {x − f (x) : x ∈ D}w , where w = σ(X, X∗). Thus, according
to Lemma 3.6, there exists a sequence (xn) in D so that xn − f (xn) → 0 in the weak topology.
This proves the result. �

4 Weak-AFPP in non-metrizable LCS

In the previous section we have proved that the results of [18] can be extended to the frame-
work of metrizable LCS. But if we compare these results to the completely abstract results of
Sect. 2, it is natural to ask whether the metrizability assumption is necessary. Let us remark
that this assumption was really used several times. In the proof of the implication (1) ⇒ (2)

of Theorem 3.3 we used the Fréchet–Urysohn property of the topology of X to extend the
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mapping S0 to S. In the proof of the converse implication we used metrizability twice by
assuming that the topology is generated by a sequence of seminorms—once in the proof of
Theorem 3.5 and once in the proof of the implication itself.

In the proof of the implication (1) ⇒ (2) of Theorem 3.3 the metrizability assumption
can be avoided by noticing that S0 maps Cauchy nets to Cauchy nets. That the metrizability
is essential for the converse implication and for Rosenthal’s theorem it witnessed by the
following example.

Before stating the example we will prove the following lemma which we will use in
the proof of the Example 4.2 and Theorem 4.3 below. We think that this lemma should be
essentially well known, but we do not know any reference. So, we give a proof.

Lemma 4.1 Let � be an arbitrary set. Then the norm and weak topologies coincide on the
positive cone of �1(�).

Proof Denote by C the positive cone of �1(�). Since the weak topology is weaker than the
norm one, it is enough to prove that the identity of (C, w) onto (C, ‖ · ‖) is continuous.

Let x ∈ C and ε > 0 be arbitrary. Fix a nonempty finite set F ⊂ � such that
∑

γ∈F

x(γ ) > ‖x‖ − ε

4
.

Set

U =
{

y ∈ C : |y(γ ) − x(γ )| <
ε

4|F | for γ ∈ F

}
,

V =
⎧
⎨

⎩y ∈ C :
∑

γ∈�\F

y(γ ) −
∑

γ∈�\F

x(γ ) <
ε

4

⎫
⎬

⎭ .

Then both U and V are weak neighborhoods of x in C (recall that the dual of �1(�) is
represented by �∞(�), hence so is U ∩ V . Moreover, if y ∈ U ∩ V , then

‖y − x‖ =
∑

γ∈F

|y(γ ) − x(γ )| +
∑

γ∈�\F

|y(γ ) − x(γ )| <
ε

4
+

∑

γ∈�\F

(y(γ ) + x(γ ))

= ε

4
+

∑

γ∈�\F

(y(γ ) − x(γ )) + 2
∑

γ∈�\F

x(γ ) <
ε

4
+ ε

4
+ 2 · ε

4
= ε.

This shows that the identity is weak-to-norm continuous at x . The proof is completed. �
Example 4.2 Let X = (�1, w). Let (en) denote the canonical basic sequence.

(i) The sequence (en) contains neither a weakly Cauchy subsequence nor a subsequence
which is an �1-sequence.

(ii) X contains no �1-sequence but does not have the weak-AFPP.

Proof Let us show first that X contains no �1-sequence. Suppose that (xn) is an �1-sequence
in X . Denote by Y its linear span. By the definition of an �1-sequence we get that Y is
isomorphic to (�0

1, ‖ · ‖), hence it is metrizable. On the other hand, by the definition of X
we get that Y is equipped with its weak topology which is not metrizable as Y has infinite
dimension.

Further, the sequence (en) contains no weakly Cauchy subsequence in (�1, ‖ · ‖). As
weakly Cauchy sequences in (�1, ‖ · ‖) and in (�1, w) coincide, we get that (en) contains no
weakly Cauchy subsequence in X . Thus the proof of (i) is completed.
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To complete the proof of (ii) it remains to show that X does not have the weak-AFPP. Let
C be the closed convex hull of {en : n ∈ N}. As C is contained in the positive cone of �1,
the norm and weak topologies coincide on C (by Lemma 4.1). Thus C has the weak-AFPP
in X if and only if it has the weak-AFPP in (�1, ‖ · ‖). But it does not have the weak-AFPP
in (�1, ‖ · ‖) as it contains an �1-sequence when considered in the norm topology. �

Nonetheless, for certain non-metrizable LCS we have the following analogue of
Theorem 3.3.

Theorem 4.3 Let (X, τ ) be a Hausdorff LCS such that there is a metrizable locally convex
topology on X compatible with the duality. Let C be a nonempty closed convex bounded
subset of X. The following assertions are equivalent.

1. Each nonempty closed convex subset of C has the weak-AFPP.
2. Each sequence in C has a weakly Cauchy subsequence.

Proof Let ρ be a metrizable locally convex topology on X compatible with the duality. As
any metrizable locally convex topology is Mackey (see [19, page 263]), we get σ(X, X∗) ⊂
τ ⊂ ρ.

(2)⇒(1) Let D ⊂ C be a nonempty closed convex subset of C and f : D → D be a
continuous mapping. It is easy to find a nonempty τ -separable closed convex set D′ ⊂ D
with f (D′) ⊂ D′ (see the proof of Proposition 2.3). By Theorem 2.1 we get that 0 belongs
to the weak closure of {x − f (x) : x ∈ D′}.

Further, as D′ is τ -separable, it is also ρ-separable. By Theorem 3.5 D′ contains no
�1-sequence in (X, ρ), hence by Lemma 3.6 the weak closure of D′ − D′ is Fréchet–Urysohn
in the weak topology, hence there is a sequence (xn) in D′ such that xn − f (xn) weakly con-
verge to 0.

(1)⇒(2) Suppose that (2) does not hold, i.e. that there is a sequence in C having no weakly
Cauchy subsequence. By Theorem 3.5 there is a sequence (xn) in C which is an �1-sequence
in (X, ρ). Let D be the closed convex hull of {xn : n ∈ N} and Y be the closed linear span
of D. We note that it does not matter whether we consider closed convex hulls and closed
linear spans with respect to the topology τ, ρ or σ(X, X∗) as all these topologies have the
same dual.

By the proof of the implication (1)⇒(2) of Theorem 3.3 there is a linear mapping
T : Y → �1 which is an isomorphism of (Y, ρ) onto T (Y ) and, moreover, (D, ρ) does not
have the weak-AFPP. We claim that (D, τ ) does not have the weak-AFPP either. This will
be done if we show that the topologies ρ and τ coincide on D.

To do that we recall that T is a ρ-to-norm isomorphism and weak-to-weak homeomor-
phism of Y onto T (Y ) and, moreover, T (D) is contained in the positive cone of �1. It follows
from Lemma 4.1 that on the positive cone of �1 the norm and weak topologies coincide. It
follows that ρ and σ(X, X∗) coincide on D. As σ(X, X∗) ⊂ τ ⊂ ρ, the proof is complete.

�
As a byproduct we obtain the following characterization of the Fréchet–Urysohn property

in LCSs.

Proposition 4.4 Let (X, τ ) be a Hausdorff LCS such that there is a metrizable locally convex
topology on X compatible with the duality. The following assertions are equivalent.

(i) Any bounded subset of X is Fréchet–Urysohn in the weak topology.
(ii) Any bounded sequence in X has a weakly Cauchy subsequence.
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If, moreover, τ itself is metrizable, then these assertions are equivalent also to the follow-
ing one:

(iii) X contains no �1-sequence.

Proof Let ρ be a metrizable locally convex topology compatible with the duality. By The-
orem 3.5 (X, ρ) contains no �1-sequence if and only if (X, ρ) satisfies the condition (ii).
Further, the validity of (ii) for (X, ρ) is equivalent to its validity for (X, τ ). It follows that (ii)
holds if and only if (X, ρ) contains no �1-sequence. In particular, if ρ = τ , we get (ii)⇔(iii).

(ii)⇒(i) Suppose that (ii) holds. Let A be a bounded subset of (X, τ ) and let x ∈ X belong
to the weak closure of A. We need to find a sequence in A weakly converging to x .

We first prove it under the additional assumption that A is separable. Then A is bounded
and separable in (X, ρ) as well. As (X, ρ) contains no �1-sequence, by Lemma 3.6 we get
that the weak closure of A− A is Fréchet–Urysohn in the weak topology. Hence, in particular,
there is a sequence in A weakly converging to x .

To prove the general case it is enough to show that there is a countable set C ⊂ A
such that x belongs to the weak closure of C . In other words, it is enough to show that the
weak topology on X has countable tightness. To prove that observe that (X, σ (X, X∗)) is
canonically homeomorphic to a subspace of C p(X∗, σ (X∗, X)), which is the space of all
continuous functions on the space (X∗, σ (X∗, X)) equipped with the topology of pointwise
convergence. Further notice that (X∗, σ (X∗, X)) is σ -compact—this follows by the metriz-
ability of ρ as X∗ = ⋃

m,n∈N
m Bn using the notation from the proof of Theorem 3.5. Finally,

as any finite power of a σ -compact space is again σ -compact and hence Lindelöf, we can
conclude by Arkhangel’skii–Pytkeev theorem [1, Theorem II.1.1].

(i)⇒(ii) Suppose that (ii) does not hold. Then there is a sequence (xn) in X which is an
�1-sequence in (X, ρ). Let T0 : �0

1 → X be defined as in (1). Let S denote the unit sphere
in �0

1. Then 0 is in the weak closure of S (as �0
1 is an infinite dimensional normed space) but

it is not the weak limit of any sequence from S (by Schur’s theorem). Thus, 0 is in the weak
closure of T0(S) without being the weak limit of any sequence from T0(S). Thus T0(S)∪{0}
is a bounded set which is not Fréchet–Urysohn in the weak topology. �

As a consequence we get the following improvement of [18, Theorem 2.4].

Corollary 4.5 Let X be a Banach space. The following assertions are equivalent.

1. X contains no isomorphic copy of �1.
2. The closed unit ball BX is Fréchet–Urysohn in the weak topology.
3. There is a sequence (Fn)∞n=1 of weakly closed sets which are Fréchet–Urysohn in the

weak topology such that X = ⋃∞
n=1 Fn.

Proof The equivalence (1)⇔(2) follows from Proposition 4.4. The implication (2)⇒(3) is
trivial. The implication (3)⇒(1) follows from [18, Theorem 2.4] (or, alternatively, (3)⇒(2)
follows from the Baire category theorem as in [18, Theorem 2.4]). �

Let us remark that the implication (ii)⇒(i) of Proposition 4.4 does not hold for gen-
eral LCS. Indeed, there are Banach spaces X such that the dual unit ball BX∗ is weak*
sequentially compact, but it is not Fréchet–Urysohn in the weak* topology. In particular,
the dual unit ball is weak* sequentially compact whenever X is Asplund (this follows for
example from [10, Theorem 2.1.2]), in particular if X = C(K ) with K scattered (see, e.g.,
[10, Theorem 1.1.4]). On the other hand, K is canonically homeomorphic to a subset of
(BC(K )∗ , w∗), so it is enough to observe that there are scattered compact spaces which are
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not Fréchet–Urysohn. As a concrete example we can take K = [0, ω1], the ordinal interval
equipped with the order topology (ω1 is the first uncountable ordinal).

However the following problems seem to be open.

Problems Let X be a Hausdorff LCS.

• Is it true that each bounded sequence in X has a weakly Cauchy subsequence if and only
if each bounded separable subset is Fréchet–Urysohn in the weak topology?

• Is it true that X has the weak-AFPP if and only if each bounded sequence in X has a
weakly Cauchy subsequence?

As we have seen, both questions have positive answer if X admits a metrizable locally
convex topology compatible with the duality. We do not know what happens without this
assumption. We conjecture that at least the first question has negative answer. A candidate for
a counterexample could be the space (X∗, w∗) where X is one of the Johnsonn–Lindenstrauss
spaces constructed in [16].

Acknowledgments The authors are grateful to the referee for the valuable suggestions which helped to
improve the final version of this paper.
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