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Abstract In this paper we will prove Hadamard-Stoker type theorems in the following
ambient spaces: M” x R, where M” is a 1/4—pinched manifold, and certain Killing sub-
mersions, e.g., Berger spheres and Heisenberg spaces. That is, under the condition that the
principal curvatures of an immersed hypersurface are greater than some non-negative con-
stant (depending on the ambient space), we prove that such a hypersurface is embedded and
we also study its topology.

1 Introduction

Hadamard proved a compact, strictly locally convex hypersurface immersed in R" is an
embedded sphere [10]. Stoker then generalized this to complete immersed strictly convex
hypersurfaces in R". they are embedded spheres or Rn_] [16]. Do Carmo and Warner [2]
extended Hadamard’s theorem to S" and H": such a compact hypersurface of S" is an
embedded Sn_l contained in a hemisphere of Sn, and an embedded sphere in H". Currier
extended Stoker’s theorem to H", assuming all the principal curvatures are at least one [4].
Alexander [1, Theorem 1] proved Hadamard’s theorem holds in any Hadamard manifold.
We consider convexity in other ambient spaces; distinct from the space forms. The
Hadamard—Stoker theorem was proved in H*xR:a complete immersed surface in H* xR
of positive extrinsic curvature, is an embedded sphere or plane [8]. Also, in [9], the
authors generalized the above result to Killing submersions over a strict Hadamard surface.
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1076 J. M. Espinar, H. Rosenberg

For related results about locally convex hypersurfaces in non-negatively curved manifolds
see [7], and [1] for locally convex hypersurfaces in non-positively curved manifolds.

In this paper we will prove Hadamard—Stoker type theorems in the following ambient
spaces:

o M" xR, where M" is a simply connected 1/4—pinched manifold. We will see that the
1/4—pinched assumption is necessary (see Remark 2.6).
e Certain Killing submersions, e.g., Berger spheres and Heisenberg spaces.

We begin Sect. 2 by studying the embeddedness of a family of strictly convex hypersurfaces
in 1/4-pinched simply connected manifolds M", i.e., M" is a compact n-manifold whose
sectional curvatures, Ky, are strictly positive. Also, if «1 and ¥~ denote the maximum and
minimum of the sectional curvatures of M" respectively, then, they verify « = /kt > 1/4.
Recall that, by Berger’s Theorem, such a 1/4—pinched manifold is either homemorphic to
a sphere or isometric to a symmetric space.

More precisely, we prove (cf. [14] for a related use of this idea):

Lemma 2.2 Let D" and M" be n-dimensional manifolds, assume M" is simply connected
and D" is compact with non-empty boundary X. Assume g(t) and h(t),0 <t < 1, are
continuous families of metrics on D" and M", respectively, and each h(t) is 1/4-pinched.
Let f; : (D", g(t)) — (M", h(t)) be isometric immersions, 0 <t < 1, continuous in t.
Suppose f;(X) := X(t) has positive principal curvatures for all t (w.r.t. the normal pointing
into D").
If fo is an embedding, then so is f; for all t.

The above lemmarelies deeply on Eschenburg’s injectivity radius estimate [ 7, Theorem C].
Eschenburg’s estimated the hessian of the distance function to a point. We refer the reader
to page 331 of the book by Petersen [12], for a discussion of this. Therefore, we can think
of Lemma 2.2 as an argument in the opposite direction, that is, we deduce an embedding
lemma from the injectivity radius estimate.

Using Lemma 2.2, we prove the following results in product spaces:

Theorem 2.4 Let & C M" x R be a locally strictly convex properly immersed connected
hypersurface, where M" is a 1/4-pinched simply connected manifold. Then X is properly
embedded and homeomorphic to the n-sphere or to R". In the latter case, S has either a top
end or a bottom end.

Also,

Theorem 2.8 Let ¥ € M" X S' be a complete immersed hypersurface whose principal
curvatures are greater than ¢ at each point of ¥. Assume also that M" is a 1/4-pinched
sphere, where k= and k™ denote the minimum and maximum of the sectional curvatures
of M", respectively. We normalize so that k™ = 1. If ¢ > 2, then ¥ is an embedded sphere.

And for surfaces, we obtain:

2 . L
Theorem 2.10 Let & C S” x R be a complete connected surface with constant positive

Lo . . . 2
extrinsic curvature. Then X is a rotational sphere in S~ x R.

We continue Sect. 3 considering strictly convex surfaces immersed in a Hadamard-Killing
submersion (this is defined in 3.3). We first establish the necessary tools we will use in the
proof of
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When strictly locally convex hypersurfaces are embedded 1077

Theorem 3.10 Let ¥ C M(k, t) be a complete connected immersed surface with ki (p) >
[T(p)| forall p € T, where M(k, t) is a Hadamard-Killing submersion. Then X is properly
embedded. Moreover, ¥ is homeomorphic to S2 or to R2. In the later case, when ¥ has no

point p at which N(p) is horizontal, ¥ is a Killing graph over a convex domain osz.

We remark that the above Theorem 3.10 gives a Hadamard-Stoker type theorem in
Heisenberg space.
Section 4 is devoted to convex surfaces immersed in a Berger sphere. Here, we prove

Theorem 4.2 Let ¥ C SZ («, ) be a complete connected immersed surface with |k; (p)| >

k—4r12
4t

forall p € ¥. Then, ¥ is embedded and homeomorphic to a sphere.

Moreover, we will see how to prove Theorem 3.10 in the particular case of Heisenberg
space, using the techniques developed in Sect. 4.

2 1/4-pinched manifolds

In this Section, we focus our attention on 1/4-pinched manifolds.

Definition 2.1 Let M" be a compact n-manifold whose sectional curvatures, K, are strictly
positive. Let k™ and x~ denote the maximum and minimum of the sectional curvatures on
M" respectively. Then, we say that M is 1/4-pinched if « = /k T > 1/4.

First, we establish a Lemma about embeddedness of a family of closed strictly convex
submanifolds in a 1 /4-pinched manifold, which will be the key result for applications in what
follows. This is of independent interest.

Lemma 2.2 Let D" and M" be n-dimensional manifolds, assume M™ is simply connected
and D" is compact with non-empty boundary ¥. Assume g(t) and h(t),0 <t < 1, are
continuous families of metrics on D" and M" respectively, and each h(t) is 1/4-pinched.
Let f; : (D", g(t)) — (M", h(t)) be isometric immersions, 0 <t < 1, continuous in t.
Suppose f;(X) := X(t) has positive principal curvatures for all t (w.r.t. the normal pointing
into D").
If fo is an embedding, then so is f; for all t.

Proof Since D" is compact, there exists § > 0 such that f; is an embedding for 0 <t < §.
It suffices to show f; is an embedding as well.

Suppose not, let x, y € D" be distinct points such that f5(x) = f5(y). If one of the points
{x, y} is not on X, then one can find open neighborhoods of x and y, Uy and Vy, such that
U, NV, =¢@and f5(U,) N fs(Vy) contains an open set of M". But then f; would not be an
embedding for t < &, t close to 8; a contradiction. Thus, both x and y are on X and fintpn
is an embedding.

Consider D" with the metric 2(8) = f§*(g(6)). Let B be a length-minimizing curve for
(D™, h(8)) joining x to y. By strict local convexity of X, 8 lies in the interior of D" except
at its endpoints, hence is a geodesic of 2(§). Set I = Length(B).

On the one hand, the injectivity radius of M"(§), inj (M"(8)), bounds / from below as
(see [7, Theorem C])

1/2 = inj (M"(8)) =

T
Vet (@)
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1078 J. M. Espinar, H. Rosenberg

On the other hand, the second-variation-of-length argument of Bonnet-Myers gives an
upper bound of [ as

b4
k(6

| <

]

Thus, joining the above inequalities, we obtain

:

+
5 < K((S’

=
—~

S
~

that is
k() -
kT (8 ~

which contradicts the 1/4-pinched assumption. This proves the Lemma.

1/4,

Remark 2.3 The above 1/4-pinched assumption is necessary as the next example shows. Let
C(l) be the right cylinder of height / and radius 1 endowed with a flat metric. Close it up
with two spherical caps S;,i = 1, 2, (one on the top and another on the bottom) of radius
1 endowed with its standard metric. Now, smooth the surface M2 = C U §; U S so that it
is almost flat on the cylinder and almost close to 1 on the spherical caps, and has positive
curvature.

Then, if / is large enough, it is not hard to see that we can consider a one parameter family
of strictly convex compact curves «/(#) that are embedded for 0 < ¢ < #p and they become
immersed for ¢ > #y. One only has to consider how a family of concentric circles in R?
becomes immersed on a cylinder as the radius increases.

2.1 Applications

First we consider strictly convex hypersurfaces %, i.e., all the principal curvatures of X are
positive for a choice of a unit normal to X, properly immersed in a product space M" x R,
where M" is a 1 /4-pinched simply connected manifold.

Theorem 2.4 Let ¥ C M" x R be a locally strictly convex properly immersed connected
hypersurface, where M" is a 1/4-pinched simply connected manifold. Then X is properly
embedded and homeomorphic to the n-sphere or to R". In the latter case, S has either a top
end or a bottom end.

First we define a top or bottom end. Let M" x IR be a product space and ¥ a hypersurface
in M" x R. Let R M™ x R — IR be the usual projection. We denote by & : & — R
the height function, that is, h := (JTR)‘E.

Definition 2.5 Let ¥ C M” x R be a complete hypersurface. We say that ¥ has a top
end E (resp. bottom end) if for any divergent sequence {p,} C E the height function goes
to 400 (resp. —00).

Proof of Theorem 2.4 Since X is locally strictly convex, the Gauss equation says that all the
sectional curvatures of ¥ at any point are positive. Thus, from Perelman’s Soul Theorem [11],
¥ is either compact or homeomorphic to R”. In the latter case, & has one topological
end E. M" is compact and X is properly immersed so £ must go up or down, otherwise
¥ N (M™ x {0}) would not be compact; so E is a top or bottom end.
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When strictly locally convex hypersurfaces are embedded 1079

In a product space the leaves M" x {¢} are totally geodesic, hence each connected com-
ponent of ¥ N (M" x {t}) is compact and strictly convex when the intersection is transverse.
Now, consider the foliation by horizontal hyperplanes given by P(t) := M" x {t} for
¢t € R. Since T is either compact or has a top or bottom end, up to an isometry, we can
assume that ¥ C M" x [0, +00) and P (0) is the horizontal hyperplane with a first contact
point g, with X. At this point g, since X is strictly convex, X lies on one side of P(0) and
it is (locally) a graph over a domain of M". Thus, there is € > 0 so that the hypersurfaces
C(t) :== P(t) N U are embedded strictly convex hypersurfaces in M" for 0 < ¢ < €, where
U is a neighborhood of ¢ in X containing the first contact point that can be expressed as a
graph. Perhaps, P(¢) N X has other components distinct from C(z) for 0 < t < €, but we
only care how C(¢) varies as t increases. We also denote by C(¢) the continuous variation of
the submanifolds P () N X when ¢ > €.

Then, it is easy to see that C(¢) either remains compact (non-empty) and embedded for
all 7 > 0, or there exists 7 such that C () are compact for all 0 < ¢ < 7, the component C (¢)
disappears for r > ¢ and C(7) is a point. C(¢) remains embedded by Lemma 2.2.

Thus, ¥ is either a properly embedded R" with a top end or ¥ is an embedded n-sphere.

O

Remark 2.6 Actually, the 1/4-pinched assumption is necessary. consider the surface
M? = C(l)US; US, given in Remark 2.3, with [ large enough so that a family of concentric
geodesiccircles S(r), 0 < r < rp,in IR? become immersed when we putthem on the cylinder.
Thatis, S(r) — point as r — 0 and S(rg) is immersed and strictly convex in C (/). Consider
the product space M2xRandlet T := U0<t<m (S@),HU U,_O<t<2r0 (SQrg—1),1). Then,
¥ is a strictly convex immersed surface in M? x R.

Moreover, for strictly convex surfaces, from the Bonnet and Gauss—Bonnet Theorems,
we get

Corollary 2.7 Let X be a complete connected surface immersed in M?* x R with extrinsic
curvature bounded below by a positive constant, where M? is a 1/4-pinched sphere. Then
Y is an embedded sphere.

Another application of Theorem 2.4 is the following

Theorem 2.8 Let ¥ C M" x S] be a complete immersed hypersurface whose principal
curvatures are greater than ¢ at each point of X. Assume also that M" is a 1/4-pinched
sphere. We normalize so that k™ = 1. If c > 2, then ¥ is an embedded sphere.

Proof First, since ¥ is complete and its principal curvatures are greater than a positive
constant, ¥ is compact by Bonnet’s Theorem.

Now, lift = to a compact hypersurface ¥ in the universal covering space of M” x S],
ie, X cM'xRisa compact hypersurface whose principal curvatures are greater than a
positive constant. Thus, from Theorem 2.4, . is an embedded sphere in M" x R.

Therefore, we can assume, up to an isometry, that S C M x [0, +00) and M" x {0}
has a first contact point p € =N M x {0}

g

Let D be the geodesic disk in M" centered at p of radius r := ST T E€> 0 small

enough to be chosen. Note that D is (topologically) a n-ball and S := 5 D is strictly convex
in M" with respect to the inward orientation. We claim that > C D x [0, +00).

SetC(¢) ;= SN(M" x {t}), ¢ > 0. Then, C(¢) is an embedded strictly convex n—sphere
for 0 < t < ty. For ¢ close to 0, C(¢) is contained in D. Assume there exists 7 € (0, fy) so
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1080 J. M. Espinar, H. Rosenberg

tha‘EC(t_) NS #@. Setqg € C(t)N S, thend(p, q) > r, where d(p, q) denotes the distance
in X.

Now, from the Gauss equation, the sectional curvatures K s of 3. are bounded below
by ¢?. So, the Bonnet Theorem bounds the diameter of 3 from above as

diam(f)) <m/c.
Thus,

—e=r <d(p.q) <diam(¥) < 7/c,

b4
2kt
but, since k™ = 1 and ¢ > 2, we can choose € small enough to contradict the above inequality.

Thus, £ C D x [0, +00).
Since £ ¢ D x R, we claim:

Claim 1 For any geodesic y C D joining two points in the boundary qo,q1 € S, if the
geodesic plane (note that it is not complete since y is not a complete geodesic) P :=y x R
and ¥ intersect transversally, then a 1= =SNPisa strictly convex embedded Jordan curve
in P. Moreover, o has geodesic curvature greater than c.

Proof of Claim 1 Assume PN 3 has two components (or more). Let C; and C denote such
components. Since 3 is an embedded sphere, C;,i = 1,2, is a strictly convex embedded
Jordan curve in P. Let p; € @1 and p> € Q27 be points in the convex domains determined
by C; and C; in P respectively. Let 8 € M" x R be the geodesic joining p; and p,
that is, B is nothing but the straight line in P joining pj and p, (recall they are in the same
vertical). Thus, g intersects C; and C; (note that P is totally geodesic and flat in M" x R),
which is a contradiction since ¥ is a strictly convex embedded n-sphere.

Now, « has geodesic curvature greater than ¢, since the principal curvatures of ¥ are
greater than ¢ and P is totally geodesic. This proves Claim 1. O

Now, we claim that H(i) = ¥ is embedded; here IT : M" x R — M" x Sl is the
covering map. Assume ¥ is not embedded, then, there exist two distinct points p, g € X
that project to the same point. Also, p and ¢ are contained in the same fiber in M" x R
and their distance (along the fiber) has to be an integer multiple of 1. Now, let y be a geo-
desic in D passing through p = ¢, where p and ¢ are the projections of p and ¢ into M"
respectively, so that P := y x IR is always transverse to ¥. Such a geodesic clearly exists.
To see this last assertion suppose ¥ x IR is tangent at some (finite) set of points to ¥ (note
that the intersection, if tangential, has to be points since ¥ is strictly locally convex and
y x R is totally geodesic). Therefore, at these tangential points, ¥ is locally a graph over
y x R. So, since the number of these pomt% is finite (X is s compact), we can consider another
geodesic y’ passing through p such that Y x R meets by transversally.

Let @ := % N P be the intersection curve, which is a simple Jordan curve in P with
geodesic curvature greater than ¢ > 2 (from Claim 1). As P is isometrically a strip in R?
since it is flat, « is contained in a circle of radius strictly less than 1/2 in P. But, note that
P, q € « and the distance from p to ¢ is (at least) one. This is a contradiction. Therefore, ¥
is embedded. This proves the result. O

Also, by using Theorem 2.4, one can give an alternative, and more geometric, proof of [8,

2 . . . Q2 .
Theorem 7.3] when M? = S”. First we shall recall the rotational surfaces in S~ x R with
constant extrinsic curvature (see [3]):
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When strictly locally convex hypersurfaces are embedded 1081

Proposition 2.9 Let 3 be a complete immersed sphere of revolution (about the vertical line
. 2 4 . . .
{1,0,0} x R)in S™ x R c R" with constant extrinsic curvature K, > 0, given by

Yk, (U, v) = (cosk(u), sink(u) cos v, sink(u) sinv, h(u))
where a(u) = (cosk(u), sink(u), 0, h(u)) is the generating curve of X. Then,

(i) X must be topologically a sphere and embedded.

(i) = staysinID x R, where ID denotes the open hemisphere ()_)‘S2 of center (1,0, 0).
(iii) the generating curve is given by

1 — 2
k(u) = cos™! exp (— 2Ku )
e

u
1 V1 —u?

W) = —— [ """ qusc
L e 1—u?
1 ,/exp (TF ) -1
where —1 < u < 1 and C is a real constant.
Also, D x {ho}, where
1 ; 1 2
=t [ e

1 exp(l}fz) —1

divides X into two (upper and lower) symmetric parts.

NOW, W€ Can announce:

2 . ..
Theorem 2.10 Let T C S™ x R be a complete connected surface with constant positive
Lo . . . 2
extrinsic curvature. Then ¥ is a rotational sphere in S” x R.

Proof From Theorem 2.4, ¥ is an embedded sphere. So, we can assume that ¥ C S* x
(0, +00). Do Alexandrov reflection w.r.t. P(t) = Sz x {t},t > 0. Then, since ¥ is an
embedded sphere, there exists fop > 0 so that ¥ is a bi-graph over S* x {to}. Up to an
isometry we can assume X is a bi-graph over S? x {0}.

Seta = X DSZ x {0}, this curve is a strictly convex simple Jordan curve, so, « is contained

in some open hemisphere @ of S* (see [2]). Let €2 be the compact domain bounded by «.
Since ¥ is a bi-graph over  and « is contained in an open hemisphere ), ¥ is contained in
ID x R. Thus, [3, Corollary 5.1] implies that ¥ is a rotational sphere. O

3 Hadamard-Killing submersions
In [9], the authors studied locally strictly convex surfaces immersed in a strict Hadamard-

Killing submersion. We begin this Section reviewing the basis properties of a Hadamard-
Killing submersion (see [9] for details).
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1082 J. M. Espinar, H. Rosenberg

3.1 On basic properties

Most of this part in contained in [9], but we need to introduce some concepts and properties
in order to make this paper self contained.

First, we start with Hadamard surfaces. For more details on Hadamard manifolds with
non positive sectional curvature see [6].

Let MI? be a Hadamard surface, that is, M?isa complete, simply connected surface with
Gaussian curvature k¥ < 0.

It is well known that given two points p, g € Mz, there exists a unique geodesic ypq
joining p and g. We say that two geodesics y, f in M are asymptotic if there exists a
constant C > 0 such thatd(y (), B(¢)) < C forall # > 0. To be asymptotic is an equivalence

relation on the oriented unit speed geodesics or on the set of unit vectors of M. We will
denote by y (+00) and y (—oo) the equivalence classes of the geodesic t — y(¢) as t goes to
plus infinity and minus infinity respectively. An equivalence class is called a point at infinity.

Mz(oo) denotes the set of all points at infinity for M2 and Mi = M2 U M2 (00).
The set Mi = M*uM? (00) admits a natural topology, called the cone topology, which
makes Mi homeomorphic to the closed 2-disk in R*.

2. . . .
When MI” is a Hadamard surface with sectional curvature bounded above by a negative
constant then any two asymptotic geodesics y, B satisfy that the distance between the two

CUTVES V|[t,400)» Bl[1,+00) 18 zero for any ¢ € R. For each point p € M? and x € Mz(oo),
there is a unique geodesic y), with initial condition y,,(0) = p and it is in the equivalence
class of x. For each point p € M we may identify M? (00) with the circle S! of unit vectors
in T,,MI2 by means of the bijection

G,:S' cT,M* > M(c0)

v —> lim t
t—+00 Vp,v( )

where y,, , is the geodesic with initial conditions y,, ,(0) = p and y’f,U(O) = v. In addition
the hypothesis on the sectional curvature (it is bounded above by a negative constant) yields
there is an unique geodesic joining two points of Mz(oo).

Givenaset Q C Mz, we denote by 05 €2 the set 32 N Mz(oo), where 92 is the bound-

. 2 . e
ary of  for the cone topology. We orient IM[” so that its boundary at infinity is oriented
counter-clockwise. 5
Let o be a complete oriented geodesic in M, then

doot = (@, ™)

where o~ = lim; . oo a(t) and @™ = lim,_, ;o (). Here ¢ is arc length along o.
We identify o with its boundary at infinity, writing &« = {a~, a™}. Here we assume the
curvature of M is bounded above by a negative constant.

Definition 3.1 Let 6; and 6> € Mz(oo), we define the oriented geodesic joining 6 and
02, 2 (61, 62), as the oriented geodesic from 6 € M2 (c0)to 0, € Mz(oo).

.. . . 2
Definition 3.2 Let o be a oriented complete geodesic in M[™. Let J be the standard counter-
. . . . 2
clockwise rotation operator. We call exterior set of « in M-, extyp (o), the connected com-
2 . . 2, .
ponent of M[“\« towards which Jo' points. The other connected component of M "\« is
L . 2 .
called the interior set of o in IV[” and denoted by intyp ().
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When strictly locally convex hypersurfaces are embedded 1083

We continue with Riemannian submersions. Let M be a 3-dimensional Riemannian
manifold so that it is a Riemannian submersion 7 : M — M2 over a surface (Mz, g) with
Gauss curvature «, and the fibers, i.e., the inverse image of a point at M? by , are the trajec-
tories of a unit Killing vector field £, and hence geodesics. Denote by (, ), V, A, Rand [, ]the
metric, Levi-Civita connection, exterior product, Riemann curvature tensor and Lie bracket
in M, respectively. Moreover, associated to £, we consider the operator J : X(M) — X(M)
given by

JX :=XANE XeXM).

Given X € X(M), X is vertical if it is always tangent to fibers, and horizontal if always
orthogonal to fibers. Moreover, if X € X (M), we denote by XV and X" the projections onto
the subspaces of vertical and horizontal vectors respectively.

One can see that, under these conditions, (see [9, Proposition 2.6]) there exists a function
7: M — R so that

Vxé =1t X AE, ey

and then, it is natural to introduce the following definition:

Definition 3.3 A Riemannian submersion over a Hadamard surface Mz, whose fibers are
the trajectories of a unit Killing vector field & will be called a Hadamard-Killing submersion

and denoted by M («k, t), where k is the Gauss curvature of M2 and 7 is given by (1).

Let ¥ C M(«, t) be an oriented immersed connected surface. We endow ¥ with the
induced metric (First Fundamental Form), (, )|z, in M(k, T), which we still denote by (, ).
Denote by V and R the Levi-Civita connection and the Riemann curvature tensor of X,
respectively, and S the shape operator, i.e., SX = —VxN for all X € X(X¥) where N is
the unit normal vector field along the surface. Then /7(X,Y) = (SX,Y) is the Second
Fundamental Form of X. Moreover, we denote by J the (oriented) rotation of angle /2 on
TX.

Setv = (N,&)and T =& — vN, i.e., v is the normal component of the vertical field &,
called the angle function, and T is the tangent component of the vertical field.

In order to establish our result, we shall introduce some definitions and properties about
some particular surfaces in M (k, 7).

Definition 3.4 We say that ¥ C M(«, ) is a vertical cylinder over « if ¥ := 7 Na),
where « is a curve on (Mz, g). If a is a geodesic, £ := 7~ () is called a vertical plane.

One can check that a vertical plane is minimal, isometric to R? and its principal curvature
are bounded, in absolute value, by |t(p)| at any point p € X (see [9, Proposition 2.10]).

We introduce a definition analogous to that given for complete geodesics in a Hadamard
surface since the notions of interior and exterior domains of a horizontal oriented geodesic
extend naturally to vertical planes.

Definition 3.5 Let M(k, t) be a Hadamard-Killing submersion. For a complete oriented

geodesic o in M~ we call, respectively, interior and exterior of the vertical plane P = 7~ ()
the sets

intauen(P) =" (inyp (@), extaqgen(P) =" (extyp (@)
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1084 J. M. Espinar, H. Rosenberg

Moreover, we will often use foliations by vertical planes of M (k, 7). We now make this
precise.

Definition 3.6 Let M (k, t) be a Hadamard-Killing submersion. Let P be a vertical plane

in M(k, t), and let B(¢) be an oriented horizontal geodesic in Mz, with ¢ arc length along
B, B(0) = pg € P, B'(0) orthogonal to P at py and B(t) € extpqq,r)(P) fort > 0. We
define the oriented foliation of vertical planes along 8, denoted by Pg(s), to be the vertical
planes orthogonal to B(¢) with P = Pg(0).

To finish, we will give the definition of a particular type of curve in a vertical plane.
To do so, we recall a few concepts about Killing graphs in a Killing submersion (see [13]).
Under the assumption that the fibers are complete geodesics of infinite length, it can
be shown (see also [15]) that such a fibration is topologically trivial, since the fibers are

homeomorphic to either IR or S'. Moreover, there always exists a global section
s M2 — M(k, 1),
so, considering the flow ¢, of £, a trivialization of the fibration is given by the diffeomorphism

M2 x R > Mk, 1)
(p, 1) — ¢ (s(p))

Definition 3.7 Let 7 : M(x,7) — M be a Killing submersion. Let Q C M? be a
domain. A Killing graph over €2 is a surface ¥ C M (k, t) which is the image of a section
5:Q — M(k, 1), with s € C%(Q) N C°(Q). We may also consider graphs, ¥ € M(k, 1),
without boundary.

Finally, we define:

Definition 3.8 Let P be a vertical plane in M (k, ) and y a complete embedded convex
curve in P. We say that « is an untilted curve in P if there exists a point p € « so that ¢, (p)
is contained in the convex body P bounded by « for all # > 0 (or ¢t < 0). Otherwise, we say
that « is tilted.

3.2 The result

First, note that if ¥ C Mk, t) is an immersed surface with positive extrinsic curvature, then

we can choose a globally defined unit normal vector field N so that the principal curvatures,

i.e., the eigenvalues of the shape operator, are positive. We denote them by k; fori = 1, 2.
We start with the following elementary result (see [9, Proposition 3.1]).

Proposition 3.9 Let ¥ C Mk, 1) be an immersed surface whose principal curvatures
satisfy ki(p) > |t(p)| for all p € X. Let P be a vertical plane. If ¥ and P intersect
transversally then each connected component C of £ N P is a strictly convex curve in P.

Now, we have the necessary tools for establishing our Theorem.

Theorem 3.10 Let ¥ C M(k, t) be a complete connected immersed surface with ki (p) >
[T(p)| forall p € , where M(k, t) is a Hadamard-Killing submersion. Then % is properly
embedded. Moreover, ¥ is homeomorphic to S? or to R2. In the later case, when ¥ has no

point p at which N(p) is horizontal, ¥ is a Killing graph over a convex domain of M.
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Proof Asin[9, Theorem 3.3], we distinguish two cases depending on the existence of a point
p in ¥ where N (p) is horizontal.

Case 1: Suppose there is no point p € X where N (p) is horizontal. Then, X is embedded
and homeomorphic to the plane. Moreover, it is a Killing graph over a convex domain in

M2
Proof of Case 1: 1t is the same as Case 1 in [9, Theorem 3.3].

Case 2: Suppose there is a point p € X so that N (p) is horizontal. Then, X is embedded
and homeomorphic to the sphere or to the plane.

Proof of Case 2 By assumption N is horizontal at p and so, the tangent plane T}, X is spanned
by {&(p), X(p)}, where X (p) is horizontal. Set p := n(p) and v := dm,(X(p)). Let

o be the complete geodesic in M2 with initial conditions «(0) = p and &’(0) = v.
Set P := m~'(a). Note that p € P N X and the principal curvatures of ¥ at p are
greater than the principal curvatures of P at p, thus X lies (locally around p) on one side
of P. Without loss of generality we can assume that N(p) points to extaq(c,7)(P) (see
Definition 3.2), therefore, X lies (locally around p) in exfaq(c,7)(P). Moreover, we para-
metrize the boundary at infinity by B : [0, 2] — M2 (00) so that B(0) =a—, B(m) = a™
and dscextaq(e, ) (P) = B([0, 7]). Also, from now on, we identify the points at infinity with
the points of the interval [0, 277].

Let Np be the unit normal vector field along P pointing into extrq(c,7)(P). Then, there exists
neighborhoods V C P and U C X so that

U = {exp,(f(@)Np(q)): g € V},

where f : V — IR is a smooth function and exp is the exponential map in M (k, 7).

Let Pg(t) be the foliation of vertical planes along B (see Definition 3.6). From
Proposition 3.9 and the fact that locally ¥ is (in exponential coordinates) a graph, there
is € > 0 such that the curves Pg(¢) N U are embedded strictly convex curves (in Pg(t)) for
0 <t < €. Perhaps, Pg(t) N X has other components distinct from C(¢) foreach0 <t < €,
but we only care how C(¢) varies as ¢ increases. We also denote by C(¢) the continuous
variation of the curves Pg(f) N X whent < €.

Here, we also distinguish two cases:

Case A: If C(t) remains compact for all t > 0, then ¥ is properly embedded and
homeomorphic to the sphere or to the plane.

Proof of Case A: The proof is as Case A in [9, Theorem 3.3].
Case B: If C(t) becomes non-compact, then X is a properly embedded plane.

Proof of Case B: First, note that Claims 1 and 2 in [9, Theorem 3.3] remain valid in this
context with the same proof, i.e.,

Claim 1 C(7) is tilted (see Definition 3.8).

Claim 2 94,7 (C (7)) is one point.
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Thus, at this point, and following the notation above, we have: Let Pg(t) be the foliation of
vertical planes along B, where P(0) is the vertical plane over which X is locally a graph
at p € X. Moreover, such a graphical part of X is contained in exfaq(c,-)(P). Note that
B(0) = 7(p) and B'(0) = dmp(N(p)).

Let y; be the complete geodesic in M? passing through B(¢) and orthogonal to g at
B(1). Set Pg(t) = '), v = {ytf, ytf}, we parametrize the boundary at infinity by B :
[0,27] — Mz(oo) so that B(0) = yf_, B(r) = V{+ and 8oointM(,(,r)(P/3(t_)) = B([0, ]).
Also, we already know that o = Up<;<; C(t) C X is connected and embedded. By
Claim 1, we may assume 9, C (1) = {y; }.

Sete > 0.Fix t. < 1, close enough to 7, so that 7 (C(t¢)) = y;. ([a, b]) for some a, b € R
(recall that C (¢¢) is compact).

Denote by I'c(0) the complete geodesic in M? passing through y;, (r¢) and making an
angle 6 with y;, at y;. (r¢),0 <0 < m.Fixre < a so that f)l C intpmx,7) (n_l (I}(Q))) for
all 0 < 6 < /2. We orient I'c (9) so that ['c(0)™ = y,_, i.e., so that I'¢ ()~ moves away
from y, as 6 increase from 0. Also, set (0, €) := 7~ (T (0)).

Now, C(t) is a connected component of £ N Q (0, €). Denote by C’(0, €) the continuous
variation of the curves ¥ N Q(H, €) when 6 increases. Recall that C(z.) = C’(0, €). Since
C(t¢) is a compact embedded curve in the vertical plane Q(0, €), there exists 6y > 0 so that
C’(0, €) remains compact and embedded in =N 0@, ¢)forall 0 <0 < 6y.

Now, we have the following two possibilities:

(a) There exists € > 0 so that C'(0,€) remains compact for all 0 satisfying
B~ (Te(0t) < B! (Te(®)T) < 27.

If this were the case, arguing as in Case B.1 in [9, Theorem 3.3], X is properly embedded
and homeomorphic to the plane.

(b) For all € > 0 there exists 0, so that C' (0., €) becomes non-compact.

We will show that (b) is not possible. Letting ¢ — 0, we get the existence of two distinct
points on the boundary at infinity n~ < n* so that ['c(6)~ — n~ and I'c(6:)T — 1™ as
€ — 0. Note that n~ = y. . Set n = {n~, nT} (see Definition 3.1).

Let T (s) be the foliation by vertical planes along a geodesic orthogonal to 1 so that
T(0) := 7~ (n). Take the orientation so that int o) (T (0)) = intrqe.r) (T~ ().

By construction, s C intpmc,7) (T (0)) where = PR, f)z, here flz is the union of all the
compact (embedded) components of C (6, €) associated to the continuous variation of C (z,).
Moreover, T (s) N % is either a compact embedded strictly convex curve, or a point or empty,
for all s < 0. Set C~‘(s) the continuous variation of £ N T (s). Thus, (:‘(O) = limg_,¢ é(s)
should be an open embedded strictly convex curve in 7'(0) so that dc7 (C(0)) = {n_, n+}.
But this is impossible by Claim 2. So, (b) is proved.

This completes the proof of Theorem 3.10. O

4 Berger spheres

For a discussion of Berger spheres, we refer the reader to [17]. We will recall here only
the necessary tools we will need, and for that, we follow [17]. A Berger sphere, denoted by

3 . . .
S g (k, T), is the usual three dimensional sphere

S3 = {(z, w) € (C2 : |z|2 + |w|2 = 1},
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endowed with the metric

4 472
(X, Y) ) = - ((X, Y)+ (— - 1) (X, V)(y, V)),

K

here (, ) denotes the standard round metric on S3, V. SS — S3 is given by V(z, w) :=
(iz,iw), and k¥ > 0 and t # 0 are constants.
The vertical Killing field is & := 4%V. Now, set Ej(z, w) := (—w, z) and E>(z, w) :=

(—iw, iz). Then, {E, E>, V} is an orthonormal basis of TS% (r, ) which satisfies |E;|* =
4/k,i =1,2,and |V|2 = 16r2//c. Moreover, the connection V associated to (, ) (c,) iS given
by:

Vi, E1 =0, Vi Ey = —V, VeV =4,

Ve, Ey =V, Vi, Ey =0, VeV =—%F, @)

VE = (42 1) B2, WE=— (Y~ 1) B, VvV =0

. . 3 .
First, we need to compute the principal curvatures of any equator of S~ as a submanifold

of Sé (k, 7). To do so, we only need to compute the principal curvatures of the one parameter
family of equators given by

¥ (x,y) = (cos x sin y, cos x cos y, sin x sin 6, sin x cos 6),

where 6 € [0, 7/2] is a constant. Any other equator is a rotation and/or a translation (w.r.t.
the Berger metric) of one in this family.

Proposition 4.1 Let ¢ : [0, 2] x [0, 2] — S; (k, T) be an equator given, for 6 € [0, ],
by

¥ (x,y) = (cos x sin y, cos x cos y, sin x sin 6, sin x cos 0).
Then, it is minimal, i.e., H = 0, and its extrinsic K, curvature is
472 (k — 4132 cost x
(k + 412 — (k — 412) cos 2x)2°

e =

In particular, its principal curvatures k; are bounded in absolute value by

k
ki < ‘(41_2—1)75

The proof of the above Proposition 4.1 will be given in Sect. 5. Now, we have:

Theorem 4.2 Let Y C SZ (x, T) be acomplete connected immersed surface so that |k; (p)| >
k—472
4t

forall p € ¥. Then, ¥ is embedded and homeomorphic to a sphere.

Proof First, note that X is orientable by the assumption on the principal curvatures. Since the
principal curvatures of the immersion are greater than or equal to those of any equator (see
Proposition 4.1), X is locally on one side of its tangent equator at each point (note that the
intersection can be more than one point, but, in any case, locally ¥ is on one side). Thus, if
we endow SS with the usual round metric, this means that X has principal curvatures greater
than or equal to zero at any point.

Claim1 If ¥ C Sz (k, T) is complete, then ¥ C (S3, (,)) is complete.
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Proof of Claim 1 To see this, we can easily check that, for X € %(83), we have

4 , |4r? 5
X, X)ery < — [ IX1? + | — =1/ (X, V)
K K
< |X|*,

where ||-|| denotes the norm w.r.t. (-, -), and

4 472
a2::f(1+ i—1').
K K

This proves Claim 1. O

Thatis, ¥ C <S3, (, )) is a complete oriented connected immersed surface whose prin-

cipal curvatures are non-negative at any point. Then, from [2, Theorem 1.1], X is embedded
and homeomorphic to a sphere. Moreover, X has to be contained in an open hemisphere. Note

that, from [2, Theorem 1.1], ¥ C (83, (, )) could be an equator, but our original surface

immersed in S g (K, T) is not (since both of its principal curvatures are non-negative).
This finishes the proof. O

4.1 A note on Heisenberg space

One can prove Theorem 3.10 in the particular case of Heisenberg space, by using the same
methods as in Theorem 4.2. Heisenberg space (see [5] for details), denoted by Nilz(7), is the

usual 3-dimensional Euclidean space ]RS endowed with the metric
gn i=dx> +dy* + (t(ydx — xdy) + dz)>,

where (x, y, z) are the standard coordinates in RS, and T # 0.
Then, it is not hard to see that the principal curvatures kiP ,i = 1,2, of any affine
plane P, as a submanifold of Nil3(7), verify

kF|l<z, i=12.

Thus, if ¥ is a complete immersed surface whose principal curvatures are greater than 7 at
any point, this implies that ¥ is locally on one side of its tangent affine plane at that point.

And so, itimplies that ¥ C (R3, 80), where g is the standard metric in ]R3, is locally strictly

convex. Moreover, one can also check that a complete surface in Nil3(7) is complete in R’.
Thus, Stoker’s Theorem [16] implies that X is properly embedded and homeomorphic to the
plane or to the sphere.

5 Proof of Proposition 4.1
Here, we include the proof of Proposition 4.1 for completeness. The proof is based on tedious

and straightforward computations.
First, we compute the orthogonal basis {E1, E3, V} along . It is easy to check that
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E1 = (—sin x sin 6, sin x cos 6, cos x sin y, — cos X cOS y),
E> = (—sin x cos €, —sin x sin 6, cos x cos y, cos x sin y),

V = (—cos xcos y, cos x sin y, —sin x cos 6, sin x sin 0)
Second, we compute the partial derivatives of the immersion, which are given by:

Yy = (—sin x sin y, —cos y sin x, cos x sin 6, cos 6 cos x),

Yy = (cos x cos y, —cos xsin y, 0, 0).
Now, we relate {1/, ¥} in terms of {E|, E2, V}, that is:
Yy = —cos(y + 0)E| +sin(y + 0)E»,
vy

1 1
-3 sin(2x) sin(y + 0)E| — 3 sin(2x) cos(y + 0)Ey — cos’x V.
From the above equations, it is easy to see that the unit normal vector field is given by
N = —«a (cos xsin(y +60)E1 + cos xcos(y +0)Er — 4’{—2 sin x V) ,
T

where

2k T2
o =
Kk + 412 — (k — 412) cos(2x)

The next step is to compute the covariant derivatives Vy, ¥, Vy, ¥y = Vy ¥y and
Vy, ¥y. To do so, we use (2) and the expressions of ¥, and v/, in terms of {Ey, E3, V}. So,
we get:

Vy ¥x =0
(21'2 — (/c — 21'2) cos(2x)) sin 6 sin(y + 0) E
4a !
(212 — (IC — 212) cos(Zx)) sin 6 cos(y + 0) E)
da

Vy by =

+

—|—L sin @ sin(2x)V
8a

(4r2 — (k= 4r2) cos(2x)) sin 6 sin(2x) cos(y + 6) e
8a !

(412 — (k — 47?) cos(2x)) sin 6 sin(2x) sin(y + 6) E
8a

Thus, the coefficients of the first, /, and second, I/, fundamental forms are given by:

4
TPy, Yx) = —

K
I(Yy, Wy) =0
472 2
](an 1//)5) = 72008 X
Ko
HI(Yy, ) =0
T (Yx, ¥y) = dor(c — 41%) cos® x

(Y, ) =0

V‘/fy 1'ny = -

2.
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by

From the above expressions, we obtain that H = 0 and the extrinsic curvature K, is given

at (k — 4r2)2 cos* x

122

Ke=—

Since H = 0 and the expression of the extrinsic curvature given above, we have

’

=)

where k;, i = 1,2, are the principal curvatures. This finishes the proof of Proposition 4.1.
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