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Abstract In this paper we will prove Hadamard–Stoker type theorems in the following
ambient spaces: Mn × R, where Mn is a 1/4−pinched manifold, and certain Killing sub-
mersions, e.g., Berger spheres and Heisenberg spaces. That is, under the condition that the
principal curvatures of an immersed hypersurface are greater than some non-negative con-
stant (depending on the ambient space), we prove that such a hypersurface is embedded and
we also study its topology.

1 Introduction

Hadamard proved a compact, strictly locally convex hypersurface immersed in R
n

is an
embedded sphere [10]. Stoker then generalized this to complete immersed strictly convex

hypersurfaces in R
n
: they are embedded spheres or R

n−1
[16]. Do Carmo and Warner [2]

extended Hadamard’s theorem to S
n

and H
n
: such a compact hypersurface of S

n
is an

embedded S
n−1

contained in a hemisphere of S
n
, and an embedded sphere in H

n
. Currier

extended Stoker’s theorem to H
n
, assuming all the principal curvatures are at least one [4].

Alexander [1, Theorem 1] proved Hadamard’s theorem holds in any Hadamard manifold.
We consider convexity in other ambient spaces; distinct from the space forms. The

Hadamard–Stoker theorem was proved in H
2 ×R: a complete immersed surface in H

2 ×R

of positive extrinsic curvature, is an embedded sphere or plane [8]. Also, in [9], the
authors generalized the above result to Killing submersions over a strict Hadamard surface.
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1076 J. M. Espinar, H. Rosenberg

For related results about locally convex hypersurfaces in non-negatively curved manifolds
see [7], and [1] for locally convex hypersurfaces in non-positively curved manifolds.

In this paper we will prove Hadamard–Stoker type theorems in the following ambient
spaces:

• Mn × R, where Mn is a simply connected 1/4−pinched manifold. We will see that the
1/4−pinched assumption is necessary (see Remark 2.6).

• Certain Killing submersions, e.g., Berger spheres and Heisenberg spaces.

We begin Sect. 2 by studying the embeddedness of a family of strictly convex hypersurfaces
in 1/4-pinched simply connected manifolds Mn , i.e., Mn is a compact n-manifold whose
sectional curvatures, Ks , are strictly positive. Also, if κ+ and κ− denote the maximum and
minimum of the sectional curvatures of Mn respectively, then, they verify κ−/κ+ > 1/4.
Recall that, by Berger’s Theorem, such a 1/4−pinched manifold is either homemorphic to
a sphere or isometric to a symmetric space.

More precisely, we prove (cf. [14] for a related use of this idea):

Lemma 2.2 Let Dn and Mn be n-dimensional manifolds, assume Mn is simply connected
and Dn is compact with non-empty boundary �. Assume g(t) and h(t), 0 ≤ t ≤ 1, are
continuous families of metrics on Dn and Mn, respectively, and each h(t) is 1/4-pinched.

Let ft : (Dn, g(t)) → (Mn, h(t)) be isometric immersions, 0 ≤ t ≤ 1, continuous in t.
Suppose ft (�) := �(t) has positive principal curvatures for all t (w.r.t. the normal pointing
into Dn).

If f0 is an embedding, then so is ft for all t .

The above lemma relies deeply on Eschenburg’s injectivity radius estimate [7, Theorem C].
Eschenburg’s estimated the hessian of the distance function to a point. We refer the reader
to page 331 of the book by Petersen [12], for a discussion of this. Therefore, we can think
of Lemma 2.2 as an argument in the opposite direction, that is, we deduce an embedding
lemma from the injectivity radius estimate.

Using Lemma 2.2, we prove the following results in product spaces:

Theorem 2.4 Let � ⊂ Mn × R be a locally strictly convex properly immersed connected
hypersurface, where Mn is a 1/4-pinched simply connected manifold. Then � is properly
embedded and homeomorphic to the n-sphere or to R

n
. In the latter case,� has either a top

end or a bottom end.

Also,

Theorem 2.8 Let � ⊂ Mn × S
1

be a complete immersed hypersurface whose principal
curvatures are greater than c at each point of �. Assume also that Mn is a 1/4-pinched
sphere, where κ− and κ+ denote the minimum and maximum of the sectional curvatures
of Mn, respectively. We normalize so that κ+ = 1. If c > 2 , then � is an embedded sphere.

And for surfaces, we obtain:

Theorem 2.10 Let � ⊂ S
2 × R be a complete connected surface with constant positive

extrinsic curvature. Then � is a rotational sphere in S
2 × R.

We continue Sect. 3 considering strictly convex surfaces immersed in a Hadamard-Killing
submersion (this is defined in 3.3). We first establish the necessary tools we will use in the
proof of
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When strictly locally convex hypersurfaces are embedded 1077

Theorem 3.10 Let � ⊂ M(κ, τ ) be a complete connected immersed surface with ki (p) >
|τ(p)| for all p ∈ �, where M(κ, τ ) is a Hadamard-Killing submersion. Then� is properly
embedded. Moreover, � is homeomorphic to S

2 or to R
2. In the later case, when � has no

point p at which N (p) is horizontal, � is a Killing graph over a convex domain of M
2
.

We remark that the above Theorem 3.10 gives a Hadamard–Stoker type theorem in
Heisenberg space.

Section 4 is devoted to convex surfaces immersed in a Berger sphere. Here, we prove

Theorem 4.2 Let � ⊂ S
3
B(κ, τ ) be a complete connected immersed surface with |ki (p)| ≥

∣
∣
∣
κ−4τ 2

4τ

∣
∣
∣ for all p ∈ �. Then, � is embedded and homeomorphic to a sphere.

Moreover, we will see how to prove Theorem 3.10 in the particular case of Heisenberg
space, using the techniques developed in Sect. 4.

2 1/4-pinched manifolds

In this Section, we focus our attention on 1/4-pinched manifolds.

Definition 2.1 Let Mn be a compact n-manifold whose sectional curvatures, Ks , are strictly
positive. Let κ+ and κ− denote the maximum and minimum of the sectional curvatures on
Mn respectively. Then, we say that M is 1/4-pinched if κ−/κ+ > 1/4.

First, we establish a Lemma about embeddedness of a family of closed strictly convex
submanifolds in a 1/4-pinched manifold, which will be the key result for applications in what
follows. This is of independent interest.

Lemma 2.2 Let Dn and Mn be n-dimensional manifolds, assume Mn is simply connected
and Dn is compact with non-empty boundary �. Assume g(t) and h(t), 0 ≤ t ≤ 1, are
continuous families of metrics on Dn and Mn respectively, and each h(t) is 1/4-pinched.

Let ft : (Dn, g(t)) → (Mn, h(t)) be isometric immersions, 0 ≤ t ≤ 1, continuous in t.
Suppose ft (�) := �(t) has positive principal curvatures for all t (w.r.t. the normal pointing
into Dn).

If f0 is an embedding, then so is ft for all t .

Proof Since Dn is compact, there exists δ > 0 such that ft is an embedding for 0 ≤ t < δ.
It suffices to show fδ is an embedding as well.

Suppose not, let x, y ∈ Dn be distinct points such that fδ(x) = fδ(y). If one of the points
{x, y} is not on �, then one can find open neighborhoods of x and y,Ux and Vy , such that
Ux ∩ Vy = ∅ and fδ(Ux )∩ fδ(Vy) contains an open set of Mn . But then ft would not be an
embedding for t < δ, t close to δ; a contradiction. Thus, both x and y are on � and fδ|intDn

is an embedding.
Consider Dn with the metric h(δ) = f ∗

δ (g(δ)). Let β be a length-minimizing curve for
(Dn, h(δ)) joining x to y. By strict local convexity of �,β lies in the interior of Dn except
at its endpoints, hence is a geodesic of h(δ). Set l = Length(β).

On the one hand, the injectivity radius of Mn(δ), inj (Mn(δ)), bounds l from below as
(see [7, Theorem C])

l/2 ≥ inj
(Mn(δ)

) ≥ π
√

κ+(δ)
.
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1078 J. M. Espinar, H. Rosenberg

On the other hand, the second-variation-of-length argument of Bonnet–Myers gives an
upper bound of l as

l ≤ π
√

κ−(δ)
.

Thus, joining the above inequalities, we obtain

2 ≤
√

κ+(δ)
√

κ−(δ)
,

that is

κ−(δ)
κ+(δ)

≤ 1/4,

which contradicts the 1/4-pinched assumption. This proves the Lemma.

Remark 2.3 The above 1/4-pinched assumption is necessary as the next example shows. Let
C(l) be the right cylinder of height l and radius 1 endowed with a flat metric. Close it up
with two spherical caps Si , i = 1, 2, (one on the top and another on the bottom) of radius
1 endowed with its standard metric. Now, smooth the surface M2 = C ∪ S1 ∪ S2 so that it
is almost flat on the cylinder and almost close to 1 on the spherical caps, and has positive
curvature.

Then, if l is large enough, it is not hard to see that we can consider a one parameter family
of strictly convex compact curves α(t) that are embedded for 0 < t < t0 and they become

immersed for t > t0. One only has to consider how a family of concentric circles in R
2

becomes immersed on a cylinder as the radius increases.

2.1 Applications

First we consider strictly convex hypersurfaces �, i.e., all the principal curvatures of � are
positive for a choice of a unit normal to �, properly immersed in a product space Mn × R,
where Mn is a 1/4-pinched simply connected manifold.

Theorem 2.4 Let � ⊂ Mn × R be a locally strictly convex properly immersed connected
hypersurface, where Mn is a 1/4-pinched simply connected manifold. Then � is properly
embedded and homeomorphic to the n-sphere or to R

n
. In the latter case,� has either a top

end or a bottom end.

First we define a top or bottom end. Let Mn ×R be a product space and� a hypersurface
in Mn × R. Let πR : Mn × R → R be the usual projection. We denote by h : � → R

the height function, that is, h := (

πR

)

|� .

Definition 2.5 Let � ⊂ Mn × R be a complete hypersurface. We say that � has a top
end E (resp. bottom end) if for any divergent sequence {pn} ⊂ E the height function goes
to +∞ (resp. −∞).

Proof of Theorem 2.4 Since� is locally strictly convex, the Gauss equation says that all the
sectional curvatures of� at any point are positive. Thus, from Perelman’s Soul Theorem [11],
� is either compact or homeomorphic to R

n
. In the latter case, � has one topological

end E . Mn is compact and � is properly immersed so E must go up or down, otherwise
� ∩ (Mn × {0}) would not be compact; so E is a top or bottom end.
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When strictly locally convex hypersurfaces are embedded 1079

In a product space the leaves Mn × {t} are totally geodesic, hence each connected com-
ponent of�∩ (Mn ×{t}) is compact and strictly convex when the intersection is transverse.
Now, consider the foliation by horizontal hyperplanes given by P(t) := Mn × {t} for
t ∈ R. Since � is either compact or has a top or bottom end, up to an isometry, we can
assume that � ⊂ Mn × [0,+∞) and P(0) is the horizontal hyperplane with a first contact
point q , with �. At this point q , since � is strictly convex, � lies on one side of P(0) and
it is (locally) a graph over a domain of Mn . Thus, there is ε > 0 so that the hypersurfaces
C(t) := P(t) ∩ U are embedded strictly convex hypersurfaces in Mn for 0 < t < ε, where
U is a neighborhood of q in � containing the first contact point that can be expressed as a
graph. Perhaps, P(t) ∩ � has other components distinct from C(t) for 0 < t < ε, but we
only care how C(t) varies as t increases. We also denote by C(t) the continuous variation of
the submanifolds P(t) ∩� when t > ε.

Then, it is easy to see that C(t) either remains compact (non-empty) and embedded for
all t > 0, or there exists t̄ such that C(t) are compact for all 0 < t < t̄ , the component C(t)
disappears for t > t̄ and C(t̄) is a point. C(t) remains embedded by Lemma 2.2.

Thus, � is either a properly embedded R
n

with a top end or � is an embedded n-sphere.
�

Remark 2.6 Actually, the 1/4-pinched assumption is necessary. consider the surface
M2 = C(l)∪ S1 ∪ S2 given in Remark 2.3, with l large enough so that a family of concentric

geodesic circles S(r), 0 < r < r0, inR
2

become immersed when we put them on the cylinder.
That is, S(r) → point as r → 0 and S(r0) is immersed and strictly convex in C(l). Consider
the product space M2 ×R and let� := ⋃

0≤t≤r0
(S(t), t)∪⋃

r0≤t≤2r0
(S(2r0 − t), t). Then,

� is a strictly convex immersed surface in M2 × R.

Moreover, for strictly convex surfaces, from the Bonnet and Gauss–Bonnet Theorems,
we get

Corollary 2.7 Let � be a complete connected surface immersed in M2 × R with extrinsic
curvature bounded below by a positive constant, where M2 is a 1/4-pinched sphere. Then
� is an embedded sphere.

Another application of Theorem 2.4 is the following

Theorem 2.8 Let � ⊂ Mn × S
1

be a complete immersed hypersurface whose principal
curvatures are greater than c at each point of �. Assume also that Mn is a 1/4-pinched
sphere. We normalize so that κ+ = 1. If c > 2 , then � is an embedded sphere.

Proof First, since � is complete and its principal curvatures are greater than a positive
constant, � is compact by Bonnet’s Theorem.

Now, lift � to a compact hypersurface �̃ in the universal covering space of Mn × S
1
,

i.e., �̃ ⊂ Mn × R is a compact hypersurface whose principal curvatures are greater than a
positive constant. Thus, from Theorem 2.4, �̃ is an embedded sphere in Mn × R.

Therefore, we can assume, up to an isometry, that �̃ ⊂ Mn × [0,+∞) and Mn × {0}
has a first contact point p ∈ �̃ ∩ Mn × {0}.

Let D be the geodesic disk in Mn centered at p of radius r := π

2
√
κ+ − ε, ε > 0 small

enough to be chosen. Note that D is (topologically) a n-ball and S := ∂D is strictly convex
in Mn with respect to the inward orientation. We claim that �̃ ⊂ D × [0,+∞).

Set C(t) := �̃∩(Mn × {t}) , t > 0. Then, C(t) is an embedded strictly convex n−sphere
for 0 < t < t0. For t close to 0,C(t) is contained in D. Assume there exists t̄ ∈ (0, t0) so
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1080 J. M. Espinar, H. Rosenberg

that C(t̄) ∩ S �= ∅. Set q ∈ C(t̄) ∩ S, then d(p, q) ≥ r , where d(p, q) denotes the distance
in �̃.

Now, from the Gauss equation, the sectional curvatures K̃s of �̃ are bounded below
by c2. So, the Bonnet Theorem bounds the diameter of �̃ from above as

diam(�̃) < π/c.

Thus,

π

2
√
κ+ − ε = r ≤ d(p, q) ≤ diam(�̃) < π/c,

but, since κ+ = 1 and c > 2, we can choose ε small enough to contradict the above inequality.
Thus, �̃ ⊂ D × [0,+∞).

Since �̃ ⊂ D × R, we claim:

Claim 1 For any geodesic γ ⊂ D joining two points in the boundary q0, q1 ∈ S, if the
geodesic plane (note that it is not complete since γ is not a complete geodesic) P := γ ×R

and �̃ intersect transversally, then α := �̃ ∩ P is a strictly convex embedded Jordan curve
in P. Moreover, α has geodesic curvature greater than c.

Proof of Claim 1 Assume P ∩ �̃ has two components (or more). Let C1 and C2 denote such
components. Since �̃ is an embedded sphere, Ci , i = 1, 2, is a strictly convex embedded
Jordan curve in P . Let p1 ∈ �1 and p2 ∈ �2 be points in the convex domains determined
by C1 and C2 in P respectively. Let β ⊂ Mn × R be the geodesic joining p1 and p2,
that is, β is nothing but the straight line in P joining p1 and p2 (recall they are in the same
vertical). Thus, β intersects C1 and C2 (note that P is totally geodesic and flat in Mn × R),
which is a contradiction since �̃ is a strictly convex embedded n-sphere.

Now, α has geodesic curvature greater than c, since the principal curvatures of �̃ are
greater than c and P is totally geodesic. This proves Claim 1. �

Now, we claim that (�̃) = � is embedded; here  : Mn × R → Mn × S
1

is the
covering map. Assume � is not embedded, then, there exist two distinct points p, q ∈ �̃

that project to the same point. Also, p and q are contained in the same fiber in Mn × R

and their distance (along the fiber) has to be an integer multiple of 1. Now, let γ be a geo-
desic in D passing through p̃ = q̃ , where p̃ and q̃ are the projections of p and q into Mn

respectively, so that P := γ × R is always transverse to �̃. Such a geodesic clearly exists.
To see this last assertion suppose γ × R is tangent at some (finite) set of points to �̃ (note
that the intersection, if tangential, has to be points since �̃ is strictly locally convex and
γ × R is totally geodesic). Therefore, at these tangential points, �̃ is locally a graph over
γ ×R. So, since the number of these points is finite (�̃ is compact), we can consider another
geodesic γ ′ passing through p such that γ ′ × R meets �̃ transversally.

Let α := �̃ ∩ P be the intersection curve, which is a simple Jordan curve in P with

geodesic curvature greater than c > 2 (from Claim 1). As P is isometrically a strip in R
2

since it is flat, α is contained in a circle of radius strictly less than 1/2 in P . But, note that
p, q ∈ α and the distance from p to q is (at least) one. This is a contradiction. Therefore, �
is embedded. This proves the result. �

Also, by using Theorem 2.4, one can give an alternative, and more geometric, proof of [8,

Theorem 7.3] when M2 = S
2
. First we shall recall the rotational surfaces in S

2 × R with
constant extrinsic curvature (see [3]):
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When strictly locally convex hypersurfaces are embedded 1081

Proposition 2.9 Let� be a complete immersed sphere of revolution (about the vertical line

{1, 0, 0} × R) in S
2 × R ⊂ R

4
with constant extrinsic curvature Ke > 0, given by

ψKe (u, v) = (cos k(u), sin k(u) cos v, sin k(u) sin v, h(u))

where α(u) = (cos k(u), sin k(u), 0, h(u)) is the generating curve of �. Then,

(i) � must be topologically a sphere and embedded.

(ii) � stays in D × R, where D denotes the open hemisphere of S
2

of center (1, 0, 0).
(iii) the generating curve is given by

k(u) = cos−1 exp

(

−1 − u2

2Ke

)

h(u) = − 1

Ke

u∫

1

√
1 − u2

√

exp
(

1−u2

Ke

)

− 1

du + C

where −1 ≤ u ≤ 1 and C is a real constant.

Also, D × {h0}, where

h0 = 1

Ke

0∫

−1

√
1 − u2

√

exp
(

1−u2

Ke

)

− 1

du + C,

divides � into two (upper and lower) symmetric parts.

Now, we can announce:

Theorem 2.10 Let � ⊂ S
2 × R be a complete connected surface with constant positive

extrinsic curvature. Then � is a rotational sphere in S
2 × R.

Proof From Theorem 2.4, � is an embedded sphere. So, we can assume that � ⊂ S
2 ×

(0,+∞). Do Alexandrov reflection w.r.t. P(t) = S
2 × {t} , t > 0. Then, since � is an

embedded sphere, there exists t0 > 0 so that � is a bi-graph over S
2 × {t0}. Up to an

isometry we can assume � is a bi-graph over S
2 × {0}.

Set α = �∩S
2×{0}, this curve is a strictly convex simple Jordan curve, so, α is contained

in some open hemisphere D of S
2

(see [2]). Let � be the compact domain bounded by α.
Since� is a bi-graph over� and α is contained in an open hemisphere D, � is contained in
D × R. Thus, [3, Corollary 5.1] implies that � is a rotational sphere. �

3 Hadamard-Killing submersions

In [9], the authors studied locally strictly convex surfaces immersed in a strict Hadamard-
Killing submersion. We begin this Section reviewing the basis properties of a Hadamard-
Killing submersion (see [9] for details).
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1082 J. M. Espinar, H. Rosenberg

3.1 On basic properties

Most of this part in contained in [9], but we need to introduce some concepts and properties
in order to make this paper self contained.

First, we start with Hadamard surfaces. For more details on Hadamard manifolds with
non positive sectional curvature see [6].

Let M
2

be a Hadamard surface, that is, M
2

is a complete, simply connected surface with
Gaussian curvature κ ≤ 0.

It is well known that given two points p, q ∈ M
2
, there exists a unique geodesic γpq

joining p and q . We say that two geodesics γ, β in M
2

are asymptotic if there exists a
constant C > 0 such that d(γ (t), β(t))≤ C for all t > 0. To be asymptotic is an equivalence

relation on the oriented unit speed geodesics or on the set of unit vectors of M
2
. We will

denote by γ (+∞) and γ (−∞) the equivalence classes of the geodesic t → γ (t) as t goes to
plus infinity and minus infinity respectively. An equivalence class is called a point at infinity.

M
2
(∞) denotes the set of all points at infinity for M

2
and M

2
∗ = M

2 ∪ M
2
(∞).

The set M
2
∗ = M

2 ∪M
2
(∞) admits a natural topology, called the cone topology, which

makes M
2
∗ homeomorphic to the closed 2-disk in R

2
.

When M
2

is a Hadamard surface with sectional curvature bounded above by a negative
constant then any two asymptotic geodesics γ, β satisfy that the distance between the two

curves γ|[t,+∞), β|[t,+∞) is zero for any t ∈ R. For each point p ∈ M
2

and x ∈ M
2
(∞),

there is a unique geodesic γpx with initial condition γpx (0) = p and it is in the equivalence

class of x . For each point p ∈ M
2

we may identify M
2
(∞)with the circle S

1 of unit vectors

in TpM
2

by means of the bijection

G p : S1 ⊂ TpM
2 → M

2
(∞)

v �−→ lim
t→+∞ γp,v(t)

where γp,v is the geodesic with initial conditions γp,v(0) = p and γ ′
p,v(0) = v. In addition

the hypothesis on the sectional curvature (it is bounded above by a negative constant) yields

there is an unique geodesic joining two points of M
2
(∞).

Given a set � ⊆ M
2
, we denote by ∂∞� the set ∂� ∩ M

2
(∞), where ∂� is the bound-

ary of � for the cone topology. We orient M
2

so that its boundary at infinity is oriented
counter-clockwise.

Let α be a complete oriented geodesic in M
2
, then

∂∞α = {α−, α+}
where α− = limt→−∞ α(t) and α+ = limt→+∞ α(t). Here t is arc length along α.
We identify α with its boundary at infinity, writing α = {α−, α+}. Here we assume the
curvature of M is bounded above by a negative constant.

Definition 3.1 Let θ1 and θ2 ∈ M
2
(∞), we define the oriented geodesic joining θ1 and

θ2, α(θ1, θ2), as the oriented geodesic from θ1 ∈ M
2
(∞) to θ2 ∈ M

2
(∞).

Definition 3.2 Let α be a oriented complete geodesic in M
2
. Let J be the standard counter-

clockwise rotation operator. We call exterior set of α in M
2
, extM2(α), the connected com-

ponent of M
2\α towards which Jα′ points. The other connected component of M

2\α is

called the interior set of α in M
2

and denoted by intM2(α).
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When strictly locally convex hypersurfaces are embedded 1083

We continue with Riemannian submersions. Let M be a 3-dimensional Riemannian
manifold so that it is a Riemannian submersion π : M → M

2
over a surface (M

2
, g) with

Gauss curvature κ , and the fibers, i.e., the inverse image of a point at M
2

by π , are the trajec-
tories of a unit Killing vector field ξ , and hence geodesics. Denote by 〈, 〉,∇,∧, R̄ and [, ] the
metric, Levi-Civita connection, exterior product, Riemann curvature tensor and Lie bracket
in M, respectively. Moreover, associated to ξ , we consider the operator J : X(M) → X(M)

given by

J X := X ∧ ξ, X ∈ X(M).

Given X ∈ X(M), X is vertical if it is always tangent to fibers, and horizontal if always
orthogonal to fibers. Moreover, if X ∈ X(M), we denote by Xv and Xh the projections onto
the subspaces of vertical and horizontal vectors respectively.

One can see that, under these conditions, (see [9, Proposition 2.6]) there exists a function
τ : M → R so that

∇X ξ = τ X ∧ ξ, (1)

and then, it is natural to introduce the following definition:

Definition 3.3 A Riemannian submersion over a Hadamard surface M
2
, whose fibers are

the trajectories of a unit Killing vector field ξ will be called a Hadamard-Killing submersion

and denoted by M(κ, τ ), where κ is the Gauss curvature of M
2

and τ is given by (1).

Let � ⊂ M(κ, τ ) be an oriented immersed connected surface. We endow � with the
induced metric (First Fundamental Form), 〈, 〉|� , in M(κ, τ ), which we still denote by 〈, 〉.
Denote by ∇ and R the Levi-Civita connection and the Riemann curvature tensor of �,
respectively, and S the shape operator, i.e., SX = −∇X N for all X ∈ X(�) where N is
the unit normal vector field along the surface. Then I I (X, Y ) = 〈SX, Y 〉 is the Second
Fundamental Form of �. Moreover, we denote by J the (oriented) rotation of angle π/2 on
T�.

Set ν = 〈N , ξ 〉 and T = ξ − νN , i.e., ν is the normal component of the vertical field ξ ,
called the angle function, and T is the tangent component of the vertical field.

In order to establish our result, we shall introduce some definitions and properties about
some particular surfaces in M(κ, τ ).

Definition 3.4 We say that � ⊂ M(κ, τ ) is a vertical cylinder over α if � := π−1(α),

where α is a curve on (M
2
, g). If α is a geodesic, � := π−1(α) is called a vertical plane.

One can check that a vertical plane is minimal, isometric to R
2

and its principal curvature
are bounded, in absolute value, by |τ(p)| at any point p ∈ � (see [9, Proposition 2.10]).

We introduce a definition analogous to that given for complete geodesics in a Hadamard
surface since the notions of interior and exterior domains of a horizontal oriented geodesic
extend naturally to vertical planes.

Definition 3.5 Let M(κ, τ ) be a Hadamard-Killing submersion. For a complete oriented

geodesicα in M
2

we call, respectively, interior and exterior of the vertical plane P = π−1(α)

the sets

intM(κ,τ )(P) = π−1 (

intM2(α)
)

, extM(κ,τ )(P) = π−1 (

extM2(α)
)
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1084 J. M. Espinar, H. Rosenberg

Moreover, we will often use foliations by vertical planes of M(κ, τ ). We now make this
precise.

Definition 3.6 Let M(κ, τ ) be a Hadamard-Killing submersion. Let P be a vertical plane

in M(κ, τ ), and let β(t) be an oriented horizontal geodesic in M
2
, with t arc length along

β, β(0) = p0 ∈ P, β ′(0) orthogonal to P at p0 and β(t) ∈ extM(κ,τ )(P) for t > 0. We
define the oriented foliation of vertical planes along β, denoted by Pβ(t), to be the vertical
planes orthogonal to β(t) with P = Pβ(0).

To finish, we will give the definition of a particular type of curve in a vertical plane.
To do so, we recall a few concepts about Killing graphs in a Killing submersion (see [13]).

Under the assumption that the fibers are complete geodesics of infinite length, it can
be shown (see also [15]) that such a fibration is topologically trivial, since the fibers are

homeomorphic to either R or S
1
. Moreover, there always exists a global section

s : M2 → M(κ, τ ),

so, considering the flowφt of ξ , a trivialization of the fibration is given by the diffeomorphism

M
2 × R → M(κ, τ )

(p, t) � φt (s(p))

Definition 3.7 Let π : M(κ, τ ) → M
2

be a Killing submersion. Let � ⊂ M
2

be a
domain. A Killing graph over � is a surface � ⊂ M(κ, τ ) which is the image of a section
s : � → M(κ, τ ), with s ∈ C2(�) ∩ C0(�). We may also consider graphs, � ⊂ M(κ, τ ),
without boundary.

Finally, we define:

Definition 3.8 Let P be a vertical plane in M(κ, τ ) and γ a complete embedded convex
curve in P . We say that α is an untilted curve in P if there exists a point p ∈ α so that φt (p)
is contained in the convex body P bounded by α for all t > 0 (or t < 0). Otherwise, we say
that α is tilted.

3.2 The result

First, note that if� ⊂ M(κ, τ ) is an immersed surface with positive extrinsic curvature, then
we can choose a globally defined unit normal vector field N so that the principal curvatures,
i.e., the eigenvalues of the shape operator, are positive. We denote them by ki for i = 1, 2.

We start with the following elementary result (see [9, Proposition 3.1]).

Proposition 3.9 Let � ⊂ M(κ, τ ) be an immersed surface whose principal curvatures
satisfy ki (p) > |τ(p)| for all p ∈ �. Let P be a vertical plane. If � and P intersect
transversally then each connected component C of � ∩ P is a strictly convex curve in P.

Now, we have the necessary tools for establishing our Theorem.

Theorem 3.10 Let � ⊂ M(κ, τ ) be a complete connected immersed surface with ki (p) >
|τ(p)| for all p ∈ �, where M(κ, τ ) is a Hadamard-Killing submersion. Then� is properly
embedded. Moreover, � is homeomorphic to S

2 or to R
2. In the later case, when � has no

point p at which N (p) is horizontal, � is a Killing graph over a convex domain of M
2
.
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Proof As in [9, Theorem 3.3], we distinguish two cases depending on the existence of a point
p in � where N (p) is horizontal.

Case 1: Suppose there is no point p ∈ � where N (p) is horizontal. Then,� is embedded
and homeomorphic to the plane. Moreover, it is a Killing graph over a convex domain in

M
2
.

Proof of Case 1: It is the same as Case 1 in [9, Theorem 3.3].

Case 2: Suppose there is a point p ∈ � so that N (p) is horizontal. Then, � is embedded
and homeomorphic to the sphere or to the plane.

Proof of Case 2 By assumption N is horizontal at p and so, the tangent plane Tp� is spanned
by {ξ(p), X (p)}, where X (p) is horizontal. Set p̄ := π(p) and v := dπp(X (p)). Let

α be the complete geodesic in M
2

with initial conditions α(0) = p̄ and α′(0) = v.
Set P := π−1(α). Note that p ∈ P ∩ � and the principal curvatures of � at p are
greater than the principal curvatures of P at p, thus � lies (locally around p) on one side
of P . Without loss of generality we can assume that N (p) points to extM(κ,τ )(P) (see
Definition 3.2), therefore, � lies (locally around p) in extM(κ,τ )(P). Moreover, we para-

metrize the boundary at infinity by B : [0, 2π ] → M
2
(∞) so that B(0) = α−, B(π) = α+

and ∂∞extM(κ,τ )(P) = B([0, π ]). Also, from now on, we identify the points at infinity with
the points of the interval [0, 2π ].

Let NP be the unit normal vector field along P pointing into extM(κ,τ )(P). Then, there exists
neighborhoods V ⊂ P and U ⊂ � so that

U := {

expq( f (q)NP (q)) : q ∈ V
}

,

where f : V → R is a smooth function and exp is the exponential map in M(κ, τ ).
Let Pβ(t) be the foliation of vertical planes along β (see Definition 3.6). From

Proposition 3.9 and the fact that locally � is (in exponential coordinates) a graph, there
is ε > 0 such that the curves Pβ(t) ∩ U are embedded strictly convex curves (in Pβ(t)) for
0 < t < ε. Perhaps, Pβ(t)∩� has other components distinct from C(t) for each 0 < t < ε,
but we only care how C(t) varies as t increases. We also denote by C(t) the continuous
variation of the curves Pβ(t) ∩� when t < ε.

Here, we also distinguish two cases:

Case A: If C(t) remains compact for all t > 0, then � is properly embedded and
homeomorphic to the sphere or to the plane.

Proof of Case A: The proof is as Case A in [9, Theorem 3.3].

Case B: If C(t) becomes non-compact, then � is a properly embedded plane.

Proof of Case B: First, note that Claims 1 and 2 in [9, Theorem 3.3] remain valid in this
context with the same proof, i.e.,

Claim 1 C(t̄) is tilted (see Definition 3.8).

Claim 2 ∂∞π(C(t̄)) is one point.
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1086 J. M. Espinar, H. Rosenberg

Thus, at this point, and following the notation above, we have: Let Pβ(t) be the foliation of
vertical planes along β, where P(0) is the vertical plane over which � is locally a graph
at p ∈ �. Moreover, such a graphical part of � is contained in extM(κ,τ )(P). Note that
β(0) = π(p) and β ′(0) = dπp(N (p)).

Let γt be the complete geodesic in M
2

passing through β(t) and orthogonal to β at
β(t). Set Pβ(t̄) = π−1(γt̄ ), γt̄ = {

γ−
t̄ , γ

+
t̄

}

, we parametrize the boundary at infinity by B :
[0, 2π] → M

2
(∞) so that B(0) = γ−

t̄ , B(π) = γ+
t̄ and ∂∞intM(κ,τ )(Pβ(t̄)) = B([0, π]).

Also, we already know that �̃1 := ⋃

0≤t≤t̄ C(t) ⊂ � is connected and embedded. By
Claim 1, we may assume ∂∞C(t̄) = {

γ−
t̄

}

.
Set ε > 0. Fix tε < t̄ , close enough to t̄ , so that π(C(tε)) = γtε ([a, b]) for some a, b ∈ R

(recall that C(tε) is compact).

Denote by �ε(θ) the complete geodesic in M
2

passing through γtε (rε) and making an
angle θ with γtε at γtε (rε), 0 ≤ θ ≤ π . Fix rε < a so that �̃1 ⊂ intM(κ,τ )

(

π−1 (�ε(θ))
)

for
all 0 < θ ≤ π/2. We orient �ε(θ) so that �ε(0)− = γ−

tε , i.e., so that �ε(θ)− moves away
from γ−

tε as θ increase from 0. Also, set Q(θ, ε) := π−1 (�ε(θ)).
Now, C(tε) is a connected component of� ∩ Q(θ, ε). Denote by C ′(θ, ε) the continuous

variation of the curves � ∩ Q(θ, ε) when θ increases. Recall that C(tε) = C ′(0, ε). Since
C(tε) is a compact embedded curve in the vertical plane Q(0, ε), there exists θ0 > 0 so that
C ′(θ, ε) remains compact and embedded in �̃ ∩ Q(θ, ε) for all 0 < θ < θ0.

Now, we have the following two possibilities:

(a) There exists ε > 0 so that C ′(θ, ε) remains compact for all θ satisfying
B−1

(

�ε(0)+
)

< B−1
(

�ε(θ)
+)

< 2π .
If this were the case, arguing as in Case B.1 in [9, Theorem 3.3],� is properly embedded
and homeomorphic to the plane.
(b) For all ε > 0 there exists θε so that C ′(θε, ε) becomes non-compact.

We will show that (b) is not possible. Letting ε → 0, we get the existence of two distinct
points on the boundary at infinity η− < η+ so that �ε(θε)− → η− and �ε(θε)+ → η+ as
ε → 0. Note that η− = γ−

t̄ . Set η = {

η−, η+}

(see Definition 3.1).
Let T (s) be the foliation by vertical planes along a geodesic orthogonal to η so that

T (0) := π−1(η). Take the orientation so that intM(κ,τ )(T (0)) = intM(κ,τ )(π
−1(η)).

By construction, �̃ ⊂ intM(κ,τ )(T (0))where �̃ = �1∪�̃2, here �̃2 is the union of all the
compact (embedded) components of C(θ, ε) associated to the continuous variation of C(tε).
Moreover, T (s)∩ �̃ is either a compact embedded strictly convex curve, or a point or empty,
for all s < 0. Set C̃(s) the continuous variation of �̃ ∩ T (s). Thus, C̃(0) = lims→0 C̃(s)
should be an open embedded strictly convex curve in T (0) so that ∂∞π(C(0)) = {

η−, η+}

.
But this is impossible by Claim 2. So, (b) is proved.

This completes the proof of Theorem 3.10. �

4 Berger spheres

For a discussion of Berger spheres, we refer the reader to [17]. We will recall here only
the necessary tools we will need, and for that, we follow [17]. A Berger sphere, denoted by

S
3
B(κ, τ ), is the usual three dimensional sphere

S
3 :=

{

(z, w) ∈ C
2 : |z|2 + |w|2 = 1

}

,
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endowed with the metric

〈X, Y 〉(κ,τ ) := 4

κ

(

〈X, Y 〉 +
(

4τ 2

κ
− 1

)

〈X, V 〉〈Y, V 〉
)

,

here 〈, 〉 denotes the standard round metric on S
3
, V : S

3 → S
3

is given by V (z, w) :=
(i z, iw), and κ > 0 and τ �= 0 are constants.

The vertical Killing field is ξ := κ
4τ 2 V . Now, set E1(z, w) := (−w, z) and E2(z, w) :=

(−iw, i z). Then, {E1, E2, V } is an orthonormal basis of TS
3
B(κ, τ ) which satisfies |Ei |2 =

4/κ, i = 1, 2, and |V |2 = 16τ 2/κ . Moreover, the connection ∇ associated to 〈, 〉(κ,τ ) is given
by:

∇E1 E1 = 0, ∇E1 E2 = −V, ∇E1 V = 4τ 2

κ
E2

∇E2 E1 = V, ∇E2 E2 = 0, ∇E1 V = − 4τ 2

κ
E1

∇V E1 =
(

4τ 2

κ
− 1

)

E2, ∇V E2 = −
(

4τ 2

κ
− 1

)

E1, ∇V V = 0

(2)

First, we need to compute the principal curvatures of any equator of S
3

as a submanifold

of S
3
B(κ, τ ). To do so, we only need to compute the principal curvatures of the one parameter

family of equators given by

ψ(x, y) = (cos x sin y, cos x cos y, sin x sin θ, sin x cos θ),

where θ ∈ [0, π/2] is a constant. Any other equator is a rotation and/or a translation (w.r.t.
the Berger metric) of one in this family.

Proposition 4.1 Let ψ : [0, 2π ]× [0, 2π ] → S
3
B(κ, τ ) be an equator given, for θ ∈ [0, π],

by

ψ(x, y) = (cos x sin y, cos x cos y, sin x sin θ, sin x cos θ).

Then, it is minimal, i.e., H = 0, and its extrinsic Ke curvature is

Ke := − 4τ 2(κ − 4τ 2)2 cos4 x

(κ + 4τ 2 − (κ − 4τ 2) cos 2x)2
.

In particular, its principal curvatures ki are bounded in absolute value by

|ki | ≤
∣
∣
∣
∣

(
k

4τ 2 − 1

)

τ

∣
∣
∣
∣
.

The proof of the above Proposition 4.1 will be given in Sect. 5. Now, we have:

Theorem 4.2 Let� ⊂ S
3
B(κ, τ )be a complete connected immersed surface so that |ki (p)| ≥

∣
∣
∣
κ−4τ 2

4τ

∣
∣
∣ for all p ∈ �. Then, � is embedded and homeomorphic to a sphere.

Proof First, note that� is orientable by the assumption on the principal curvatures. Since the
principal curvatures of the immersion are greater than or equal to those of any equator (see
Proposition 4.1), � is locally on one side of its tangent equator at each point (note that the
intersection can be more than one point, but, in any case, locally � is on one side). Thus, if

we endow S
3

with the usual round metric, this means that� has principal curvatures greater
than or equal to zero at any point.

Claim 1 If � ⊂ S
3
B(κ, τ ) is complete, then � ⊂ (S

3
, 〈, 〉) is complete.

123



1088 J. M. Espinar, H. Rosenberg

Proof of Claim 1 To see this, we can easily check that, for X ∈ X(S
3
), we have

〈X, X〉(κ,τ ) ≤ 4

κ

(

‖X‖2 +
∣
∣
∣
∣

4τ 2

κ
− 1

∣
∣
∣
∣
〈X, V 〉2

)

≤ a2 ‖X‖2 ,

where ‖·‖ denotes the norm w.r.t. 〈·, ·〉, and

a2 := 4

κ

(

1 +
∣
∣
∣
∣

4τ 2

κ
− 1

∣
∣
∣
∣

)

.

This proves Claim 1. �
That is, � ⊂

(

S
3
, 〈, 〉

)

is a complete oriented connected immersed surface whose prin-

cipal curvatures are non-negative at any point. Then, from [2, Theorem 1.1], � is embedded
and homeomorphic to a sphere. Moreover,� has to be contained in an open hemisphere. Note

that, from [2, Theorem 1.1], � ⊂
(

S
3
, 〈, 〉

)

could be an equator, but our original surface

immersed in S
3
B(κ, τ ) is not (since both of its principal curvatures are non-negative).

This finishes the proof. �
4.1 A note on Heisenberg space

One can prove Theorem 3.10 in the particular case of Heisenberg space, by using the same
methods as in Theorem 4.2. Heisenberg space (see [5] for details), denoted by Nil3(τ ), is the

usual 3-dimensional Euclidean space R
3

endowed with the metric

gN := dx2 + dy2 + (τ (y dx − x dy)+ dz)2,

where (x, y, z) are the standard coordinates in R
3
, and τ �= 0.

Then, it is not hard to see that the principal curvatures k P
i , i = 1, 2, of any affine

plane P , as a submanifold of Nil3(τ ), verify

|k P
i | ≤ τ, i = 1, 2.

Thus, if � is a complete immersed surface whose principal curvatures are greater than τ at
any point, this implies that � is locally on one side of its tangent affine plane at that point.

And so, it implies that� ⊂ (R
3
, g0), where g0 is the standard metric in R

3
, is locally strictly

convex. Moreover, one can also check that a complete surface in Nil3(τ ) is complete in R
3
.

Thus, Stoker’s Theorem [16] implies that� is properly embedded and homeomorphic to the
plane or to the sphere.

5 Proof of Proposition 4.1

Here, we include the proof of Proposition 4.1 for completeness. The proof is based on tedious
and straightforward computations.

First, we compute the orthogonal basis {E1, E2, V } along ψ . It is easy to check that
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E1 = (− sin x sin θ, sin x cos θ, cos x sin y,− cos x cos y),

E2 = (− sin x cos θ,− sin x sin θ, cos x cos y, cos x sin y),

V = (− cos x cos y, cos x sin y,− sin x cos θ, sin x sin θ)

Second, we compute the partial derivatives of the immersion, which are given by:

ψx = (− sin x sin y,− cos y sin x, cos x sin θ, cos θ cos x),

ψy = (cos x cos y,− cos x sin y, 0, 0).

Now, we relate
{

ψx , ψy
}

in terms of {E1, E2, V }, that is:

ψx = − cos(y + θ)E1 + sin(y + θ)E2,

ψy = −1

2
sin(2x) sin(y + θ)E1 − 1

2
sin(2x) cos(y + θ)E2 − cos2 x V .

From the above equations, it is easy to see that the unit normal vector field is given by

N = −α
(

cos x sin(y + θ)E1 + cos x cos(y + θ)E2 − κ

4τ 2 sin x V
)

,

where

α =
√

2κτ 2

κ + 4τ 2 − (κ − 4τ 2) cos(2x)

The next step is to compute the covariant derivatives ∇ψxψx ,∇ψxψy = ∇ψyψx and
∇ψyψy . To do so, we use (2) and the expressions of ψx and ψy in terms of {E1, E2, V }. So,
we get:

∇ψxψx = 0

∇ψxψy =
(

2τ 2 − (

κ − 2τ 2
)

cos(2x)
)

sin θ sin(y + θ)

4α
E1

+
(

2τ 2 − (

κ − 2τ 2
)

cos(2x)
)

sin θ cos(y + θ)

4α
E2

+ κ

8α
sin θ sin(2x)V

∇ψyψy = −
(

4τ 2 − (

κ − 4τ 2
)

cos(2x)
)

sin θ sin(2x) cos(y + θ)

8α
E1

+
(

4τ 2 − (

κ − 4τ 2
)

cos(2x)
)

sin θ sin(2x) sin(y + θ)

8α
E2.

Thus, the coefficients of the first, I , and second, I I , fundamental forms are given by:

I (ψx , ψx ) = 4

κ

I (ψx , ψy) = 0

I (ψx , ψx ) = 4τ 2

κα2 cos2 x

I I (ψx , ψx ) = 0

I I (ψx , ψy) = 4α(κ − 4τ 2) cos3 x

I I (ψx , ψx ) = 0
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From the above expressions, we obtain that H = 0 and the extrinsic curvature Ke is given
by

Ke = −α
4
(

κ − 4τ 2
)2

cos4 x

τ 2κ2 .

Since H = 0 and the expression of the extrinsic curvature given above, we have

|ki | ≤
∣
∣
∣

( κ

4τ 2 − 1
)

τ

∣
∣
∣ ,

where ki , i = 1, 2, are the principal curvatures. This finishes the proof of Proposition 4.1.
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