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Abstract This paper is concerned with one-dimensional sums in classical affine types.
We prove a conjecture of Shimozono and Zabrocki (J Algebra 299:33–61, 2006) by show-
ing they all decompose in terms of one-dimensional sums related to affine type A provided
the rank of the root system considered is sufficiently large. As a consequence, any one-
dimensional sum associated to a classical affine root system with sufficiently large rank can
be regarded as a parabolic Lusztig q-analogue.
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1 Introduction

Consider λ and μ two partitions with at most n parts. Schur duality asserts that the
Kostka number Kλ,μ counts both the dimension of the weight space μ in the irreducible sln
representation V (λ) of highest weight λ and the multiplicity of V (λ) in the tensor product
Sμ1(V )⊗· · ·⊗Sμn (V ) of the symmetric powers of the vector representation. Using the Weyl
character formula, the Kostka numbers may be expressed in terms of the Kostant partition
function. The q-deformation of this partition function gives rise to the Kostka polynomi-
als. The Kostka polynomials are Kazhdan–Lusztig polynomials for the affine Weyl group
and thus their coefficients are nonnegative integers, being dimensions of stalks of intersec-
tion cohomology sheaves on Schubert varieties in the affine flag variety. They also admit a
nice combinatorial description in terms of the Lascoux-Schützenberger charge statistic on
semistandard tableaux.

The Kostka polynomials also appear in the representation theory of the quantum affine
algebra Uq(̂sln). This was established by Nakayashiki and Yamada [24] by relating the
charge statistic to the energy function, a fundamental grading defined on tensor products of
Kashiwara crystals associated to Kirillov-Reshetikhin modules. Their result can be regarded
as a quantum analogue of Schur duality. It is also worth mentioning that the energy function
naturally appears in solvable lattice models in statistical physics.

The aim of this paper is to establish a generalization of the connection observed in [24].
On the weight multiplicity side, we consider parabolic Lusztig q-analogues. These are poly-
nomials which quantize the branching coefficients given by the restriction of an irreducible
representation of a simple Lie algebra g0 to a Levi subalgebra. In the case that the Levi is the
Cartan subalgebra, these are Lusztig’s q-analogue of weight multiplicity, and in the further
special case that g0 = sln they are Kostka polynomials. We consider stable parabolic Lusztig
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One-dimensional sums in affine types 821

q-analogues, which are defined when g0 is of classical type and the weights λ and μ do not
involve spin weights and stay away from a certain hyperplane. The stable parabolic Lusztig
q-analogues have a well-defined large rank limit.

On the other side we consider tensor products of Kirillov-Reshetikhin modules, which
afford the action of the quantum enveloping algebra associated to an affine algebra g. Their
restriction to the canonical simple Lie subalgebra g0 has a natural grading by the energy
function, and taking isotypic components, we obtain polynomials called one-dimensional
sums. A stable one-dimensional sum is one in which g0 is of classical type and the tensor
factors do not involve spin weights. They are so named because they are stable in the large
rank limit.

Our key result is Theorem 10.1 (previously conjectured in [32]) giving the decomposition
of the one-dimensional sums for any classical affine type in terms of those of affine type A.
It then suffices to observe that this decomposition is the same as the decomposition of the
stable parabolic Lusztig q-analogues obtained in [18].

Let us give a more detailed description of our results. For an affine Lie algebra g with
classical subalgebra g0, there is a finite-dimensional U ′

q(g)-module with crystal graph given
by the tensor product of Kirillov-Reshetikhin (KR) crystals

B = Br1,s1 ⊗ · · · ⊗ Br p,sp . (1.1)

A KR crystal Br,s is indexed by a pair (r, s) ∈ I0 × Z>0 where I = {0, 1, . . . , n} is the
affine Dynkin node set and I j = I \ { j} for j ∈ I . The crystal graph B has a I0-equivariant
grading by the coenergy function DB : B → Z≥0. Given a dominant g0-weight λ, the one-
dimensional (1-d) sum Xλ,B(q) is the graded multiplicity of the irreducible highest weight
I0-crystal B(λ) in B.

Throughout the paper we shall assume that g belongs to one of the nonexceptional
families of affine root systems. Fix the sequence ((r1, s1), . . . , (rp, sp)) representing B and
the sequence (d1, d2, . . . , dn) such that λ = ∑

i∈I0
diωi where ωi is the i th fundamental

weight of g0. Throughout the paper r ∈ I0 is called a spin node if r = n when g0 = Bn, Cn

and r = n − 1, n when g0 = Dn . In order to take a large rank limit of the 1-d sum Xλ,B(q),
we assume that no spin weights appear: none of the ri are spin nodes, and di = 0 if i ∈ I0

is a spin node. A “spinless” sequence representing B makes sense for large rank, and the
sequence (d1, d2, . . . ) for λ also makes sense provided that we append zeros as necessary.
We associate with the dominant g0-weight λ the partition (also denoted λ) that has di columns
of height i for all i .

It was observed in [32] that the 1-d sum has a large rank limit which we shall call a stable
1-d sum, and moreover, that they fall into only four distinct kinds, which are labeled by the
four partitions with at most two cells: ∅ (the empty partition), (1), (2), and (1, 1). We write

X
♦
λ,B(q) for the stable 1-d sum of kind ♦ ∈ {∅, (1), (2), (1, 1)}.
We now describe the kind ♦ associated to each nonexceptional affine family. Let P♦

denote the set of partitions whose diagrams can be tiled (without rotation) by the partition
diagram of ♦. Then P∅ is the singleton consisting of the empty partition, P(1) is the set
of all partitions, P(2) is the set of partitions with even row lengths, and P(1,1) is the set of
partitions with even column lengths. Let Pn denote the set of partitions with at most n parts.
Write P♦

n = P♦ ∩Pn . For (r, s) ∈ I0 ×Z>0 such that n is large with respect to r (n ≥ r + 2
suffices) define P♦

n (r, s) to be the set of partitions λ ∈ Pn such that the 180◦ rotation of
the complement of λ in the r × s rectangular partition (sr ), is in the set P♦. We say the
affine family of g is of kind ♦ if the KR crystal Br,s (for n large with respect to r ) has the
I0-decomposition
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822 C. Lecouvey et al.

Br,s ∼=
⊕

λ∈P♦
n (r,s)

B(λ) (1.2)

where B(λ) is the irreducible Uq(g0)-crystal of highest weight λ. All nonexceptional affine
families are of one of the four kinds [32], and note that the kind depends precisely on the
attachment of the affine Dynkin node 0 to the rest of the Dynkin diagram. We use the notation
of [11].

♦ g of kind ♦
∅ A(1)

n

(1) D(2)
n+1, A(2)

2n

(2) C (1)
n

(1, 1) B(1)
n , A(2)

2n−1, D(1)
n

(1.3)

The main purpose of this paper is to establish a conjecture of [32]. To state this conjecture,
we require some notation. The partition λ = (λ1, λ2, . . . , λn) (with λn−1 = λn = 0 to
avoid spin weights) encodes the dominant g0-weight

∑

i (λi − λi+1)ωi . For λ ∈ Z
n write

|λ| = ∑

i λi and |B| := ∑

i ri si for B as above. Finally, cν
λδ is the Littlewood–Richardson

coefficient [22].

Conjecture 1.1 [32] For ♦ ∈ {(1), (2), (1, 1)}

X
♦
λ,B(q) = q

|B|−|λ|
|♦|

∑

ν∈Pn

∑

δ∈P♦
n

cν
δλ X

∅

ν,B(q
2
|♦| ). (1.4)

Conjecture 1.1 gives a simple formula for all stable 1-d sums in terms of the type A(1)
n 1-d

sums, which are fairly well-understood [29,31]. In the case that B has tensor factors of the
form B1,s , Conjecture 1.1 was proved in [30] for ♦ ∈ {(1), (2)} and in [20] for ♦ = (1, 1).
This is much easier than the general case: for the KR crystals B1,s all computations can be
done explicitly.

The purpose of this paper is to prove Conjecture 1.1 in full generality (for arbitrary non-
spin KR tensor factors). This is achieved in Theorem 10.1. We choose specific affine root
systems g♦ for each ♦ ∈ {(1), (2), (1, 1)}. This choice, the classical subalgebra g

♦
0 , and the

affine Dynkin diagram X (g♦) are given below.

♦ g♦ g
♦
0 X (g♦)

(1) D(2)
n+1 Bn ◦��0 ◦1 ◦ ◦ ◦n−1 n��◦

(2) C (1)
n Cn ◦0 ��◦1 ◦2 ◦ ◦��n−1 n◦

(1, 1) D(1)
n Dn

◦0
������ ◦
◦2 ◦ ◦ n−2◦

n−1
������

n������
◦1

������ ◦

(1.5)

We shall call the three nonexceptional affine root systems g♦ reversible, since their affine
Dynkin diagrams admit the automorphism

σ(i) = n − i for 0 ≤ i ≤ n. (1.6)

Reversible root systems possess the following properties. There is an associated automor-
phism σ on KR crystals Br,s for r nonspin (Sect. 5.3). One then extends σ to tensor products
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One-dimensional sums in affine types 823

of KR crystals by applying it to each factor. This map has a remarkable property: it sends
all of the I0-highest weight vertices in any tensor product B of nonspin KR crystals, into the
subcrystal (called max(B)) of I0-components whose highest weights λ correspond to parti-
tions with the maximum number of boxes (Theorem 7.1). Surprisingly, one can compute the
precise change in the energy function (grading) under σ acting on I0-highest weight vertices
(Theorem 8.1). Finally, near the I0-highest weight vertices in max(B), the crystal B looks
like a similar tensor product BA of type A(1)

n−1 crystals and moreover the gradings coincide
(Theorem 9.7). Along the way we make use of some I0-crystal embeddings we call splitting
maps: row splitting Br,s → Br−1,s ⊗ B1,s (Sect. 6.1) and box splitting B1,s → (B1,1)⊗s

(Sect. 6.3). These embeddings exist for any nonexceptional g and nonspin r ∈ I0. When
applied to the first tensor factor in a tensor product of KR crystals, row splitting preserves
energy (Theorem 11.3) and box splitting preserves coenergy. We also employ a kind of row
splitting map in Sect. 4 which embeds the highest weight I0-crystals B(λ) of classical type,
into a tensor product of I0-crystals of the form B(sω1). This encoding, which we call the
row tableau realization, allows us to see the shadow (that is, the image under σ ) of the I0-
crystal decomposition of a KR crystal. For this purpose the well-known Kashiwara–
Nakashima tableau realization [15] of B(λ) is less illuminating.

2 Some classical multiplicity formulae

2.1 Notation on classical Lie groups

In the sequel G is one of the complex Lie groups GLn, Sp2n, SO2n+1, or SO2n . We follow
the convention of [17] to realize G as a subgroup of GL N and its Lie algebra g as a subalgebra
of glN where

N =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n when G = GLn,

2n when G = Sp2n,

2n + 1 when G = SO2n+1,

2n when G = SO2n .

With this convention the maximal torus TG of G and the Cartan subalgebra hG of g coincide
respectively with the subgroup and the subalgebra of diagonal matrices of G and g. Similarly
the Borel subgroup BG of G and the Borel subalgebra bG of g coincide respectively with the
subgroup and subalgebra of upper triangular matrices of G and g. There is an embedding
of Lie algebras gln → g that restricts to an embedding hGLn → hG of Cartan subalgebras
and of their real forms hR

GLn
→ hR

G . Via restriction, there is an isomorphism of the real form

of the weight lattice of g with that of gln . For any i ∈ {1, . . . , n}, let εi : hR

GLn
→ R be

the (i, i) matrix entry function. The functions {εi | i ∈ {1, . . . , n}} form a Z-basis of the
weight lattice of gln , which we identify with Z

n via
∑n

i=1 aiεi �→ (a1, a2, . . . , an). In this
way we may regard weights of g as elements in R

n . Let 	+
G and R+

G be the sets of sim-
ple and positive roots of G, respectively. As usual ρG is the half sum of the positive roots
of G. The set Pn is contained in the cone of dominant weights of G. Let V G(λ) be the finite
dimensional irreducible G-module of highest weight λ. Let WG be the Weyl group of G.
Then WGLn = Sn can be regarded as a subgroup of any WG for G = GLn, Sp2n, SO2n+1

or SO2n . Given λ ∈ Z
n (the weight lattice of GLn), let λ = (−λn, . . . ,−λ1) = −w

An−1
0 (λ)

where w
An−1
0 ∈ WGLn is the longest element and let Pn denote the image of Pn under λ �→ λ.
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824 C. Lecouvey et al.

Note that for λ ∈ Pn , the contragredient dual of the polynomial GLn-module V GLn (λ) is
isomorphic to V GLn (λ).

2.2 Decomposition of classical tensor product multiplicities

For G = Sp2n, SO2n+1, or SO2n,♦ ∈ {(1), (2), (1, 1)}, and ν ∈ Pn , define the G-module

W G♦ (ν) =
⊕

λ∈Pn

⊕

δ∈P♦
n

V G(λ)⊕cν
δλ .

The module W G♦ (ν) is defined specifically to have irreducible decomposition which mimics
the decomposition of KR modules of kind ♦ into their classical components.

Let η = (η1, . . . , ηp) be a p-tuple of positive integers summing to n. Consider λ ∈ Pn and
(μ(1), . . . , μ(p)) a p-tuple of partitions such that μ(k) ∈ Pηk for any k = 1, . . . , p. Define
the coefficients cλ

μ(1),...,μ(p) and K
λ,♦
μ(1),...,μ(p) by

V GLn (μ(1)) ⊗ · · · ⊗ V GLn (μ(p)) �
⊕

λ∈Pn

V GLn (λ)
⊕cλ

μ(1),...,μ(p) (2.1)

W G♦ (μ(1)) ⊗ · · · ⊗ W G♦ (μ(p)) �
⊕

λ∈Pn

V G(λ)
⊕Kλ,♦

μ(1),...,μ(p) . (2.2)

We have the following proposition obtained by specializing at q = 1 Theorem 4.4.2 in [18].
It shows that the coefficients K

λ,♦
μ(1),...,μ(p) do not depend on the Lie group G = Sp2n, SO2n+1

or SO2n .

Proposition 2.1 For n sufficiently large, we have

K
λ,♦
μ(1),...,μ(p) =

∑

ν∈Pn

∑

δ∈P♦
n

cν
λ,δ cλ

μ(1),...,μ(p) .

We also recall Littlewood’s formula [21] (see also [10]): Write ˜Pn for the set of pairs
(γ+, γ−) such that γ−and γ+ are partitions with respectively r+ and r− nonzero parts,
and r+ + r− ≤ n. We identify each (γ+, γ−) ∈ ˜Pn with the GLn-dominant weight
(γ+

1 , . . . , γ+
r+ , 0n−r+−r− ,−γ−

r− , . . . ,−γ−
1 ) ∈ Z

n and denote by V GLn (γ+, γ−) the cor-
responding GLn-module with highest weight (γ+, γ−). For all ν ∈ Pn and (γ+, γ−) ∈ ˜Pn

[↓G
GLn

V G(ν) : V GLn (γ+, γ−)] =
∑

δ∈P♦
n ,κ∈Pn

cκ
γ+,γ−cν

δ,κ (2.3)

where G = SO2n+1, Sp2n, SO2n corresponds to ♦ = (1), (2), (1, 1) respectively, ↓G
GLn

V is a G-module V restricted to GLn , and [W : V ] is the multiplicity of the irreducible
module V in W .

Remark 2.2 For λ,μ, ν ∈ Pn with n ≥ max(�(λ) + �(μ), �(ν)) + 2, if [V G(λ) ⊗ V G(μ) :
V G(ν)] > 0 then |ν| ≤ |λ| + |μ|, and if equality occurs then the multiplicity is the LR
coefficient cν

λμ. This can be easily deduced from the following formula due to King [12]

[V G(λ)⊗ V G(μ) : V G(ν)] =
∑

δ,ξ,η

cν
δ,ξ cλ

δ,ηcμ
ξ,η

which holds in particular under the assumption n ≥ max(�(λ) + �(μ), �(ν)) + 2. The
multiplicities are then independent of the group G considered.
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One-dimensional sums in affine types 825

3 Crystal generalities

3.1 Affine root systems

Let I = {0, 1, . . . , n} be the set of nodes of the affine Dynkin diagram X with generalized
Cartan matrix (ai j )i, j∈I , all associated with the affine Lie algebra g. We use the labeling of
affine Dynkin diagrams in [11]. Let (a0, . . . , an) and (a∨0 , . . . , a∨n ) be the unique sequences
of relatively prime positive integers such that

∑

j∈I

ai j a j = 0 for all i ∈ I (3.1)

∑

i∈I

a∨i ai j = 0 for all j ∈ I. (3.2)

Then

a∨0 =
{

2 for g = A(2)
2n

1 otherwise.
(3.3)

Let P be the affine weight lattice, P∗ = HomZ(P, Z), and 〈· , ·〉 : P∗ × P → Z the
evaluation pairing. By definition P has Z-basis denoted {δ/a0,�0,�1, . . . , �n} and P∗ has
dual Z-basis {d, α∨0 , α∨1 , . . . , α∨n }. In particular

〈α∨i , � j 〉 = χ(i = j) for i, j ∈ I. (3.4)

Here χ(P) = 1 if P is true and χ(P) = 0 otherwise. The �i are called affine fundamental
weights, δ is called the null root, d is called the degree derivation, and α∨i are the simple
coroots. Let P+ = {� ∈ P | 〈αi , �〉 ≥ 0 for all i ∈ I } be the set of dominant weights.
Define the elements α j ∈ P (the simple roots) by

α j = χ( j = 0) δ/a0 +
∑

i∈I

ai j�i for j ∈ I. (3.5)

One may check that

〈α∨i , α j 〉 = ai j for all i, j ∈ I (3.6)

δ =
∑

j∈I

a jα j (3.7)

and that {αi | i ∈ I } is a linearly independent set. The canonical central element c ∈ P∗ is
defined by

c =
∑

i∈I

a∨i α∨i . (3.8)

The level of a weight λ ∈ P is defined by

lev(λ) = 〈c , λ〉. (3.9)

By (3.3) and (3.4) we have

lev(�i ) = a∨i (3.10)

lev(�0) = 1. (3.11)
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826 C. Lecouvey et al.

Define the lattice P ′ = P/(Zδ/a0). For i ∈ I , write α′i for the image of αi under the natural
projection P → P ′. Then α′0 = −θ/a0. Since 〈α∨i , δ〉 = 0 for all i ∈ I, lev : P ′ → Z is
well-defined. Denote P0 = {λ ∈ P ′ | levλ = 0}.

Let g0 be the simple Lie algebra obtained from g by “omitting the 0 node”. Let P0 be
the weight lattice of g0. There is a natural projection P → P0 with kernel Z(δ/a0) ⊕ Z�0.
Let ωi = π(�i ) for i ∈ I (so that ω0 = 0 by convention). Then P0 = ⊕

i∈I0
Zωi . The

dual lattice P∗
0 = HomZ(P0, Z) has dual Z-basis denoted α∨i for i ∈ I0. There is a natural

inclusion P∗
0 → P∗ defined by α∨i �→ α∨i for i ∈ I0. There is a natural projection P ′ → P0

with section

P0 → P ′
(3.12)

ωi �→ �i − lev(�i )�0 = �i − a∨i �0 for i ∈ I0.

The image of this section is P0.
Let P+

0 = {λ ∈ P0 | 〈α∨i , λ〉 ≥ 0 for all i ∈ I0} be the dominant weights in P0. Let
Q0 = ⊕

i∈I0
Zαi be the sublattice of P0 given by the root lattice.

3.2 The extended affine Weyl group and Dynkin automorphisms

The affine Weyl group W is the subgroup of the group Aut(P) of linear automorphisms of
P generated by the maps

siλ = λ − 〈α∨i , α〉αi for λ ∈ P and i ∈ I.

The action of W on P∗ is defined by either of the equivalent formulae:

〈w · μ , w · λ〉 = 〈μ , λ〉 for w ∈ W, λ ∈ P, μ ∈ P∗

siμ = μ− 〈μ , αi 〉α∨i for μ ∈ P∗, i ∈ I.

We write W0 for the Weyl group of g0, which is the subgroup of W generated by si for i ∈ I0.
W0 acts on P0 and P∗

0 .
Let Aut(X) be the group of automorphisms of the affine Dynkin diagram X . Let τ ∈

Aut(X). By definition τ is a permutation of the Dynkin node set I of X such that there is a
bond of multiplicity m from i ∈ I to j ∈ I if and only if there is a bond of multiplicity m
from τ(i) to τ( j), for all i, j ∈ I . In particular,

aτ(i) = ai and (3.13)

a∨τ(i) = a∨i for i ∈ I (3.14)

aτ(i),τ ( j) = ai j for i, j ∈ I. (3.15)

τ ∈ Aut(X) induces τ ∈ Aut(P) by τ(δ/a0) = δ/a0 and τ(�i ) = �τ(i) for all i ∈ I . This
satisfies τ(αi ) = ατ(i) for all i ∈ I . τ ∈ Aut(X) also induces τ ∈ Aut(P∗) by

〈τ(μ) , τ (λ)〉 = 〈μ , λ〉 for all λ ∈ P and μ ∈ P∗. (3.16)

It satisfies τ(d) = d and τ(α∨i ) = α∨τ(i) for all i ∈ I . τ ∈ Aut(X) induces an automorphism
τ on W denoted w �→ wτ where sτ

i = sτ(i) for all i ∈ I .
Define the subset of special nodes I s ⊂ I to be the orbit of 0 ∈ I under Aut(X). Every

element of Aut(X) is determined by its action on I s . Let

θ =
∑

i∈I0

aiαi = δ − a0α0. (3.17)
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If g is untwisted then θ is the highest root of g0. Let M ⊂ P0 be the sublattice generated by
the W0-orbit of θ/a0:

M =
∑

w∈W0

Z w · (θ/a0). (3.18)

The semidirect product W0 � P0 acts on P ′ by

(wtλ) ·� = w(� + lev(�)λ) for w ∈ W0, λ ∈ P0, and � ∈ P ′ (3.19)

where λ is regarded as an element of P0 ⊂ P ′ via (3.12) and tλ is the translation
corresponding to λ. We have

W ∼= W0 � M

s0 �→ sθ t−θ/a0 . (3.20)

For each � ∈ Z the action of W0 � P0 on P ′ stabilizes the affine subspace ��0 + P0 ⊂ P ′ of
level � weights. Therefore for each � ∈ Z, the level � action is defined by the representation
π� : W0 � P0 → ̂Aut(P0) by affine linear automorphisms of P0, given by

π�(wtλ) · β = −��0 + wtλ(��0 + β)

= w(β + �λ) for w ∈ W0, λ, β ∈ P0. (3.21)

For r ∈ I0 define [9]

cr = max(1, ar/a∨r ). (3.22)

Remark 3.1 We have cr = 1 except that cr = 2 for g = B(1)
n with r = n, g = C (1)

n with
1 ≤ r ≤ n − 1, g = F (1)

4 with r ∈ {3, 4}, and cr = 3 if g = G(1)
2 with r = 2. In particular

ci = 1 for i ∈ I s .

Define the sublattices of P0 given by

M ′ =
⊕

i∈I0

Zciαi (3.23)

M̃ =
⊕

i∈I0

Zciωi . (3.24)

We have M̃ ⊃ M ⊃ M ′ with M = M ′ except for g = A(2)
2n where M ′ ⊂ M is a sublattice of

index 2. We define an injective group homomorphism

M̃/M ↪→ Aut(X) (3.25)

with image denoted 	. First, there is a bijection I s → M̃/M given by i �→ ciωi + M .
Subtraction by ciωi + M induces a permutation of M̃/M . The induced permutation of I s

under the above bijection, extends to τ i ∈ Aut(X). We define 	 = {τ i | i ∈ I s}; it is the
group of special automorphisms.

Define the extended affine Weyl group (in particular for twisted affine types) by

W̃ = W � 	 (3.26)

via τwτ−1 = wτ for τ ∈ 	 and w ∈ W . We have W̃ ∼= W0 � M̃ with

τ i = w
ωi
0 t−ci ωi for i ∈ I s, where (3.27)

wλ
0 ∈ W0 is the shortest element such that wλ

0 λ = w0λ. (3.28)
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Remark 3.2 In untwisted type one may identify M with the coroot lattice Q∨
0 and M̃ with

the coweight lattice P∨
0 , although these identifications may involve some uniform dilation.

Example 3.3

g A(1)
n B(1)

n C (1)
n D(1)

n A(2)
2n−1 A(2)

2n D(2)
n+1

I s {0, 1, . . . , n} {0, 1} {0, n} {0, 1, n − 1, n} {0, 1} {0} {0, n} (3.29)

For A(1)
n and i ∈ I s, τ i subtracts i mod n + 1.

For D(1)
n , in terms of permutations of I s , are defined as follows. τ 0 is the identity and

τ 1 = (0, 1)(n − 1, n). If n is odd, τ n−1 = (0, n, 1, n − 1) and τ n = (0, n − 1, 1, n) and if n
is even, τ n−1 = (0, n − 1)(1, n) and τ n = (0, n)(1, n − 1).

Note that M̃/M admits an involution given by negation. The corresponding affine Dynkin
involution is given as follows. Let w0 ∈ W0 be the longest element. The map α �→ −w0α is
an involution on the set of positive roots of g0 that sends sums to sums, and therefore restricts
to an involution on the set of simple roots. So there is an involutive automorphism of the
Dynkin diagram of g0 denoted i �→ i∗, defined by

− w0αi = αi∗ for i ∈ I0. (3.30)

This extends to an element denoted ∗ ∈ Aut(X) by defining 0∗ = 0. The induced
automorphism of P is given by

λ �→ −w0λ for λ ∈ P. (3.31)

In particular

− w0ωi = ωi∗ for i ∈ I0. (3.32)

By (3.13), (3.14), and (3.22), we see that

ci∗ = ci for i ∈ I. (3.33)

Therefore −w0ciωi = ci∗ωi∗ . Since w0ciωi + M = ciωi + M , we have ci∗ωi∗ + M =
−ciωi + M in the group M̃/M ∼= 	. It follows that for all i ∈ I s , negation in M̃/M
corresponds to the involution i �→ i∗ on I s , and that

τ i (0) = i∗

(w
ωi
0 )−1 = w

ωi∗
0 . (3.34)

Example 3.4 We have i∗ = i except in the following cases. For An−1 we have i∗ = n − i .
For Dn and n odd, (n − 1)∗ = n and n∗ = n − 1. For E6 i �→ i∗ is the unique nontrivial
automorphism.

3.3 Crystals

Let g be an affine Lie algebra. We consider the following categories of crystal graphs of
modules over a quantum affine algebra U ′

q(g): Ch(g), direct sums of affine highest weight
crystals, and C(g), tensor products of Kirillov–Reshetikhin (KR) crystals. For KR crystals
we refer to [3]. Let Ch(g0) be the category of direct sums of crystal graphs of highest weight
Uq(g0)-modules.

Let B be a crystal in one of the above categories. B is a graph with vertex set also denoted
B and directed edges labeled by the elements of the set K of Dynkin nodes of g. We call
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B a K -crystal. For K ′ ⊂ K write BK ′(b) for the K ′-connected component of b ∈ B,
that is, the connected component of the graph in which all directed edges are removed except
those labeled by K ′. For i ∈ K , each {i}-connected component is a finite directed path called
an i-string. Then for b ∈ B, fi (b) (resp. ei (b)) is the next (resp. previous) vertex on the
i-string of b if it exists, and is declared to be the special symbol 0 otherwise. Let ϕi (b) and
εi (b) denote the number of steps to the end (resp. start) of the i-string of b. For a sequence
a = (i1, . . . , i p) of indices in K define

ea(b) = ei1(ei2(· · · ei p (b) · · · ))
and fa(b) similarly.

For B ∈ C(g) or B ∈ Ch(g), let K = I and define the functions ϕ, ε : B → P ′ by

ϕ(b) =
∑

i∈I

ϕi (b)�i (3.35)

ε(b) =
∑

i∈I

εi (b)�i . (3.36)

For B ∈ Ch(g0) we have ϕ, ε : B → P0 with I replaced by I0 and �i replaced by ωi .
For B ∈ C(g) or B ∈ Ch(g) we define the weight function wt : B → P ′ by

wt(b) = ϕ(b) − ε(b). (3.37)

For B ∈ C(g) the values of wt lie in the level zero sublattice P0 ⊂ P ′. For B ∈ Ch(g0) we
have wt : B → P0 defined by (3.37).

For B ∈ C(g) or B ∈ Ch(g) we have

wt(ei (b)) = wt(b) + α′i for i ∈ I if ei (b) �= 0 (3.38)

wt( fi (b)) = wt(b) − α′i for i ∈ I if fi (b) �= 0. (3.39)

For B ∈ Ch(g0) the same conditions hold with α′i = αi and i ∈ I0.
For K ′ ⊂ K , the set of K ′-highest weight vertices in the K -crystal B is defined by

hwK ′(B) = {b ∈ B | ei (b) = 0 for all i ∈ K ′}.
Let hwK ′(b) denote the unique K ′-highest weight vertex in the K ′-component of b.

If λ is a K ′-dominant weight then define

hwλ
K ′(B) = {b ∈ hwK ′(B) | wtK ′(b) = λ} (3.40)

for the subset of hwK ′(B) of vertices of weight λ and B(λ) = BK ′(λ) for the irreducible
K ′-crystal of highest weight λ.

Let B1, B2 be K -crystals. Then B1⊗ B2 is a K -crystal via Kashiwara’s tensor convention

ei (b1 ⊗ b2) =
{

ei (b1) ⊗ b2 if ϕi (b1) ≥ εi (b2)

b1 ⊗ ei (b2) if ϕi (b1) < εi (b2).
(3.41)

Lemma 3.5 Let B1, B2 be K -crystals and b1, c1 ∈ B1 and b2, c2 ∈ B2 such that c1 ⊗ c2 ∈
hwK (B1 ⊗ B2) and b1 ⊗ b2 ∈ BK (c1 ⊗ c2). Then c1 ∈ hwK (B1) and b1 ∈ BK (c1).

Proof c1 ∈ hwK (B1) holds by (3.41). Let a = (i1, . . . , im) be a sequence of elements in K
such that ea(b1⊗b2) = c1⊗c2. By (3.41) there is a subsequence b of a such that eb(b1) = c1.

��
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3.4 KR crystal generalities

Let C = C(g) be the tensor category of tensor products of KR crystals Br,s . An I -crystal B
is regular if for all subsets K ⊂ I with |K | = 2, the K -components of B are isomorphic to
crystal graphs of Uq(gK )-crystals where gK is the subalgebra of g corresponding to K .

Theorem 3.6 Let g be of nonexceptional affine type.

1. [26] For every (r, s) ∈ I0 × Z>0, there is an irreducible U ′
q(g)-module W (r)

s with affine
crystal basis Br,s . In particular every B ∈ C is regular.

2. [3] The affine crystal structure on Br,s is determined.

Proposition 3.7 Let B1, B2 ∈ C.

(1) There is an I -crystal isomorphism R = RB1,B2 : B1 ⊗ B2 → B2 ⊗ B1 called the
combinatorial R-matrix. By uniqueness, for B ∈ C, RB,B is the identity on B ⊗ B.

(2) There is a unique map H = H B1,B2 : B1⊗B2 → Z, called coenergy function up to addi-
tive constant, such that H is constant on I0-components, and for b = b1⊗b2 ∈ B1⊗B2,

H(e0(b)) = H(b) +
⎧

⎨

⎩

−1 in case LL
0 in case LR or RL
1 in case RR

(3.42)

where in case LL, when e0 is applied to b1 ⊗ b2 and to RB1,B2(b1 ⊗ b2) = b′2 ⊗ b′1 as
in (3.41), it acts on the left factor both times, in case RR e0 acts on the right factor both
times, etc.

Proof Arguing as in [13] one may deduce these properties from the existence of the universal
R-matrix, the Yang–Baxter relation for R, and Theorem 3.6(1). ��

Let B be regular. An element b ∈ B is called an extremal vector of weight λ if wt(b) = λ

and there exist elements {bw}w∈W such that

• bw = b for w = e,

• if 〈α∨i , wλ〉 ≥ 0 then ei (bw) = 0 and f
〈α∨i ,wλ〉
i (bw) = bsi w ,

• if 〈α∨i , wλ〉 ≤ 0 then fi (bw) = 0 and e
−〈α∨i ,wλ〉
i (bw) = bsi w .

A finite regular crystal B with weights in P0 is called simple [1,23] if there exists λ ∈ P0

such that the weight of any extremal vector is contained in Wλ and B contains a unique
element of weight λ. Here W is the affine Weyl group, which acts on P0 ∼= P0 by the level
zero action.

Proposition 3.8 (1) Every B ∈ C is simple. In particular B contains a unique extremal
vector u(B) with wt(u(B)) ∈ P+

0 . Moreover u(Br,s) ∈ Br,s is the unique vector of
weight sωr and u(B1 ⊗ B2) = u(B1) ⊗ u(B2) for B1, B2 ∈ C.

(2) For every B ∈ C, B is I -connected.

Proof By [1] a simple crystal is connected and the tensor product of simple crystals is also
simple. In [23, Section 4.2] Naito and Sagaki proved that a finite regular crystal B with
coenergy function H B B is simple.1 The equality u(B1⊗ B2) = u(B1)⊗u(B2) follows from
the fact that the r.h.s is extremal. ��
1 Although they assume that B is realized as a fixed point crystal, their proof is valid under the given condition.
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Remark 3.9 (1) Proposition 3.8 implies that if there is an I -crystal isomorphism g : B →
B ′ for B, B ′ ∈ C, then it is unique: it must satisfy g(u(B)) = u(B ′) and the rest of its
values are determined since B is I -connected.

(2) For B1, B2 ∈ C we normalize the coenergy function H by H(u(B1 ⊗ B2)) = 0.

The level of B ∈ C is defined by

lev(B) = min
b∈B

lev(ϕ(b)) = min
b∈B

lev(ε(b)). (3.43)

The subset Bmin ⊂ B is defined by

Bmin = {b ∈ B | lev(ϕ(b)) = lev(B)}
= {b ∈ B | lev(ε(b)) = lev(B)}.

The crystal B is said to be perfect (in the sense of [23]; compare with [13]) if B is the
crystal graph of a U ′

q(g)-module, B is simple, and the maps ϕ and ε are bijections from Bmin

to the set of weights λ ∈ P ′ that are dominant and have lev(λ) = lev(B).

Theorem 3.10 [4] With cr as in (3.22),

(1) lev(Br,s) = � s
cr
�.

(2) Br,s is perfect if and only if s/cr ∈ Z.

Lemma 3.11 Let g be of nonexceptional affine type, (r, s) ∈ I0 × Z>0, � = lev(Br,s) and
j ∈ I s . Then there is a unique element u j (r, s) ∈ Br,s such that ε(u j (r, s)) = �� j . Moreover,
writing t−cr∗ωr∗ = wτ for w ∈ W and τ ∈ 	 with ∗ as in (3.30) we have

ϕ(u j (r, s))) =
⎧

⎨

⎩

��τ( j) if Br,s is perfect

(� − 1)�n + �n−r if g = C (1)
n , 1 ≤ r ≤ n − 1, j = n

(� − 1)�τ( j) +�r otherwise.
(3.44)

Proof Suppose first that Br,s is perfect. Then cr� = s and u j (r, s) is unique. Moreover the
value of ϕ(u) is verified by [4]. Explicitly:

(1) g = A(1)
n . u j (r, s) consists of s copies of the same column that consists of the elements

j + 1, j + 2, . . . , j + r (mod n + 1), sorted into increasing order.
(2) g = A(2)

2n . u0(r, s) = hwI0(B(0)).

(3) g = D(2)
n+1. Suppose r �∈ I s . u0(r, s) = hwI0(B(0)). For s = 2s′, un(r, s) ∈ B(sωr )

is the KN tableau with s′ columns (n − r + 1) · · · (n − 1)n and s′ columns nn − 1 · · ·
n − r + 1. For s = 2s′ + 1, un(r, s) ∈ B(sωr ) has, in addition to the columns for
un(r, 2s′), a middle column of height r is given by 0 · · · 0. For r = n ∈ I s, u0(n, s)
(resp. un(n, s)) is the unique element of B(sωn) of weight sωn (resp. −sωn).

(4) g = C (1)
n . For r �∈ I s , since cr = 2 and we are in the perfect case, s must be even (say

s = 2�), and u j (r, 2�) is given as for D(2)
n+1. For r = n ∈ I s , again u j (n, s) is given as

for D(2)
n+1.

(5) g ∈ {B(1)
n , D(1)

n , A(2)
2n−1}. Recall that for g = B(1)

n , r = nBr,s is perfect of level �

when s = 2�. First let r ∈ I0 not be a type D(1)
n spin node. u0(2i, s) = hwI0(B(0))

and u1(2i, s) ∈ B(�ω2) has �′ columns 12 and �′ columns 21 for � = 2�′, and in
addition a middle column 22 for � = 2�′ + 1. u0(2i + 1, s) = hwI0(B(�ω1)) and

u1(2i+1, s) ∈ B(�ω1) is the tableau 1̄�. D(1)
n has additional special nodes j ∈ {n−1, n}.

Suppose r is even. For s = 2s′, un(r, s) ∈ B(sωr ) has s′ columns (n−r+1) · · · (n−1)n
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and s′ columns nn − 1 · · · n − r + 1. For s = 2s′ + 1, un(r, s) has, in addition to the
columns for un(r, 2s′), a middle column given by nnnn · · ·. If r is odd, replace s′
columns (n − r + 1) · · · (n − 1)n with (n − r + 1) · · · (n − 1)n. un−1(r, s) ∈ B(sωr )

is given from un(r, s) above by interchanging n and n. Now let us set r = n for type
D(1)

n . u j (n, s) for j = 0, 1, n−1, n is given by the unique element of B(sωn) of weight
sωn, s(ωn−1−ω1), s((1−γ )ω1−ωn−1), s(γω1−ωn) where γ = 0, 1, γ ≡ n (mod 2).
If r = n − 1, we interchange ωn and ωn−1 in the above description.

We enumerate the nonperfect cases [4].

(1) g = B(1)
n , r = n and s = 2�− 1. For n even, u0(n, 2�− 1) = hwI0(ωn) and u1(n, 2�−

1) ∈ B(ωn) is defined by wt(u) = ωn − ω1. For n odd, u0(n, 2� − 1) = hwI0(B((� −
1)ω1 + ωn)). u1(n, 2�− 1) has a half-column consisting of 23 · · · (n − 1)n1̄ and �− 1
columns consisting of a single 1̄.

(2) g = C (1)
n for 1 ≤ r ≤ n−1 and s = 2�−1. u0(r, 2�−1) = hwI0(B(ωr )). un(r, 2�−1)

has � − 1 columns (n − r + 1) · · · (n − 1)n and � columns nn − 1 · · · n − r + 1. ��
By Lemma 3.11 we may define m(Br,s) = u0(r, s) ∈ Br,s or equivalently

ε(m(Br,s)) = lev(Br,s)�0. (3.45)

Similarly, there exists a unique element m′(Br,s) ∈ Br,s such that

ϕ(m′(Br,s)) = lev(Br,s)�0. (3.46)

Define

b(r, s, λ) = hwλ
I0

(Br,s) for λ ∈ P♦
n (r, s). (3.47)

Remark 3.12 Suppose ♦ �= ∅ and r ∈ I0 is not a spin node. By (1.2) the right hand side of
(3.47) is a singleton. We have

u(Br,s) = b(r, s, (sr )) (3.48)

m(Br,s) = b(r, s, λ♦min(r, s)) (3.49)

where λmin = λ
♦
min(r, s) ∈ P♦(r, s) is the partition with |λmin| minimum. Explicitly

λ
♦
min(r, s) =

⎧

⎨

⎩

(s) if r is odd and ♦ = (1, 1)

(1r ) if s is odd and ♦ = (2)

∅ otherwise.
(3.50)

3.5 Grading by intrinsic coenergy

Each B ∈ C has a canonical I0-equivariant grading by the intrinsic coenergy function D :
B → Z which is defined as follows.

(1) If B = Br,s is a KR crystal then define

DB(b) = H B,B(m′(B) ⊗ b)− H B,B(m′(B) ⊗ u(B)). (3.51)

(2) If B1, B2 ∈ C then

DB1⊗B2(b1 ⊗ b2) = DB1(b1) + DB2(b
′
2) + H B1,B2(b1 ⊗ b2) (3.52)

where RB1,B2(b1 ⊗ b2) = b′2 ⊗ b′1.
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The resulting grading satisfies

D(B1⊗B2)⊗B3 = DB1⊗(B2⊗B3)

for all B1, B2, B3 ∈ C [27]. For B1, . . . , Bp ∈ C one may prove by induction that

DB1⊗···⊗Bp (b) =
p

∑

i=1

DBi (b
(1)
i ) +

∑

1≤i< j≤p

H Bi ,B j (bi ⊗ b(i+1)
j ) (3.53)

where b = b1 ⊗ · · · ⊗ bp with bi ∈ Bi for 1 ≤ i ≤ p and b(k)
j is the kth tensor factor of the

element obtained from b by the composition of combinatorial R-matrices that swaps the j th
tensor factor to the kth position. We have

DB = DB′ ◦ g for any g : B ∼= B ′ with B, B ′ ∈ C. (3.54)

Lemma 3.13 Let B be a KR crystal of level �. Then

1. DB is constant on I0-components.
2. DB(e0(b)) = DB(b) + 1 if ε0(b) > �.
3. DB(u(B)) = 0.

Proof Follows immediately from (3.51), the properties of H B,B , and (3.41). ��
Lemma 3.14 Let B1, B2 ∈ C, and let b1 ∈ B1 and b2 ∈ B2 be such that e0(b1 ⊗ b2) �= 0
and let RB1,B2(b1 ⊗ b2) = b′2 ⊗ b′1. Assume that

D(e0(b1)) = D(b1)+ 1 if e0(b1) �= 0

D(e0(b
′
2)) = D(b′2)+ 1 if e0(b

′
2) �= 0.

Then D(e0(b1 ⊗ b2)) = D(b1 ⊗ b2) + 1.

Proof This follows from (3.52), computing the four cases of (3.42). ��
We shall prove the following explicit formula for DBr,s at the end of Sect. 5.3.

Proposition 3.15 For g nonexceptional of kind ♦ ∈ {(1), (2), (1, 1)} and (r, s) ∈ I0 × Z>0

with r nonspin, we have

DBr,s (b(r, s, λ)) = rs − |λ|
|♦| for all λ ∈ P♦

n (r, s). (3.55)

3.6 Affine highest weight crystals

Let B(�) be the crystal graph of the irreducible integrable highest weight module of
highest weight � ∈ P+. hwI (B(�)) is a singleton denoted u�. The enhanced weight func-
tion ̂wt : B(�) → P is defined by ̂wt(u�) = � and (3.38) and (3.39) except that α′i ∈ P ′
is replaced by the affine simple root αi ∈ P . Alternatively, let b ∈ B(�). Then there is a
sequence a = (i1, i2, . . . , i p) of elements of I such that u� = ea(b). Define ̂D(b) to be
the number of times that 0 occurs in the sequence a. This yields a well-defined Z-grading
̂D : B(�) → Z. Then

̂wt(b) = (〈d , �〉 − ̂D(b))(δ/a0) +
∑

i∈I

(ϕi (b) − εi (b))�i . (3.56)

The following theorem is fundamental to the Kyoto path model for affine highest weight
crystals.
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Theorem 3.16 [13, Proposition 2.4.4] Let g be an affine algebra, B ∈ C(g) the crystal graph
of a U ′

q(g)-module, and � ∈ P+ a dominant weight with lev(�) = lev(B). Then there is an
affine crystal isomorphism

B(�) ⊗ B ∼=
⊕

u

B(ϕ(u)) (3.57)

where u runs over the elements of B such that ε(u) = �.

3.7 One-dimensional sums and stability

For B ∈ C and λ ∈ P+
0 , define the one-dimensional sum

Xλ,B(q) =
∑

b∈hwλ
I0

(B)

q D(b). (3.58)

Notation 3.17 Let

B = Br1,s1 ⊗ Br2,s2 ⊗ · · · ⊗ Br p,sp . (3.59)

We write Ri = (sri
i ), which is a rectangular partition with ri rows and si columns. Let

R = (R1, R2, . . . , Rp). We write B = B R if we wish to emphasize the indexing set of
rectangles.

For nonexceptional g, let n = rank(g0) and define

C∞(g) = {B = B R ∈ C(g) |
∑

i

ri ≤ n − 2} (3.60)

P∞
n = {λ ∈ Pn | �(λ) ≤ n − 2} (3.61)

C∞h (g0) = {B ∈ Ch(g0) | if BI0(ν) appears in B then ν ∈ P∞
n .}. (3.62)

These restrictions have the effect of guaranteeing that spin weights do not appear.

For ♦ ∈ {(1), (2), (1, 1)} and fixed R and λ define the stable 1-d sum X
♦
λ,B R (q) to

be Xλ,B R (q) of type g where g is chosen such that n = rank(g0) is large enough so that
B R ∈ C∞(g) and λ ∈ P∞

n . Without loss of generality we may choose g to be reversible [that
is, of the form g♦; see (1.5)].

4 g♦, I0, and An−1-crystals

In this section we assume g is one of the reversible affine algebras g♦. Its classical subal-
gebra g

♦
0 [see (1.5)] contains the subalgebra sln of type An−1 given by restricting to the

Dynkin node subset IAn−1 = {1, 2, . . . , n − 1}. Using the notation of Sect. 3 we write
B(b) := BI0(b), BAn−1(b) := BIAn−1

(b), and hwAn−1(b) := hwIAn−1
(b). In fact gln ⊂ g

♦
0

and we use the gln weights below.

4.1 Some subcrystals

For g0 of type Bn, Cn , or Dn and B ∈ C∞h (g0), define the I0-subcrystal

max(B) =
⋃

b∈hwI0 (B)

|wt(b)|=M(B)

BI0(b) (4.1)
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where M(B) is the maximum value of |ν| over ν ∈ Pn such that BI0(ν) is a component
of B. Define

tops(B) =
⋃

b∈hwI0 (B)

BAn−1(b). (4.2)

It is an An−1-subcrystal of B given by taking all the An−1-components of I0-highest weight
vertices in B. These An−1-components sit at the top of their respective I0-components.

Remark 4.1 For ν ∈ P∞
n we have tops(B(ν)) ∼= BAn−1(ν). Moreover this is the only

An−1-component of B(ν) of highest weight ν. Therefore there is a canonical inclusion
iνA : BAn−1(ν) → BI0(ν). This isomorphism just says that a type An−1 tableau can be
regarded as an KN tableau for g0.

For B ∈ C∞h (g0), define

̂B =
⋃

λ∈Pn

⋃

c∈hwλ
An−1

(B)

BAn−1(c). (4.3)

̂B is the An−1-subcrystal of B given by the dual polynomial part of B regarded as an
An−1-crystal. The terminology “dual polynomial part” makes sense: g0 ⊃ gln so that B
admits a gln weight function.

For ν ∈ P∞
n , write

̂B(ν) := B̂(ν). (4.4)

It is an An−1-subcrystal of the irreducible highest weight I0-crystal B(ν).

4.2 Row tableaux realization of ̂B(ν)

This section only concerns crystals of types Bn, Cn , and Dn , and herein we let ♦ =
(1), (2), (1, 1) correspond to Bn, Cn , and Dn respectively; they coincide with g

♦
0 but we

do not employ any affine algebra here.
In [15], the classical type crystal graph B(ν) was realized by tableaux which we will call

Kashiwara–Nakashima (KN) tableaux. These tableaux are based on the unique I0-crystal
embedding

B(ν) ↪→ B(ων′1) ⊗ B(ων′2) ⊗ · · ·
where ν′j is the size of the j th column of the partition ν.

However we shall use a different realization of B(ν) (which we call “row tableaux”) which
is better suited for the study of ̂B(ν). For ν ∈ P∞

n , there is a unique embedding of I0-crystals

rowtabν : B(ν) ↪→ B(ν1ω1) ⊗ · · · ⊗ B(νpω1) (4.5)

where p = �(ν). The image of rowtabν is the connected component

Im(rowtabν) = BI0(1
ν1 ⊗ 2ν2 ⊗ · · · ⊗ pνp ).

Here am denotes the word consisting of m copies of the symbol a. The image of b ∈ B(ν)

is a tensor product rowtab(b) = R1 ⊗ R2 ⊗ · · · ⊗ Rp with Ri ∈ B(νiω1); it is called the
row tableau associated with the element b ∈ B(ν) and may be depicted as a tableau of
shape ν whose i th row is Ri . Each Ri is a KN tableau of the single-row shape (νi ). In general
rowtab(b) does not coincide with the corresponding KN tableau of shape ν. We are not aware

123



836 C. Lecouvey et al.

of a simple characterization of the image of rowtabν . Nevertheless we characterize the image
of ̂B(ν) under rowtabν .

For a tableau c of shape ν and D ⊂ ν a skew shape, let c|D denote the restriction of c to
the subshape D.

For δ ∈ P♦
n with δ ⊂ ν, let L♦(ν, δ) ⊂ B(ν1ω1) ⊗ · · · ⊗ B(νpω1) be the set of vertices

b = R1 ⊗ · · · ⊗ Rp such that:

(1) b|ν\δ is a skew semistandard tableau on {n, . . . , 1}.
(2) b|δ = C♦

δ , where the latter tableau is the unique tableau such that:

• For ♦ = (1), the i th row equals na0δi−2an̄a where a = �δi/2�.
• For ♦ = (2), the i th row equals nan̄a where a = δi/2.

• For ♦ = (1, 1), the j th column consists of δ′j/2 copies of
n
n

.

Let L♦(ν) = ⋃

δ∈P♦
n

L♦(ν, δ).

Example 4.2 For ♦ = (1, 1), ν = (4, 4, 4, 2, 1, 1) and δ = (3, 3, 1, 1),

n − 3
n − 1

n n − 1
n n n n − 2
n n n n − 1
n n n n

is a row tableau in hwAn−1(L♦(ν, δ)).

Remark 4.3

(1) Given any b ∈ L♦(ν), the unbarred letters in b determine the unique δ ∈ P♦
n such that

b ∈ L♦(ν, δ), and b is determined by δ and b|ν\δ . By definition b ∈ L♦(ν) contains no
letters in {1, . . . , n − 1}.

(2) Let bν be the lowest weight vector of L♦(ν). Then rowtab(bν) ∈ L♦(ν,∅) where δ = ∅
is the empty partition.

Proposition 4.4 The map rowtabν restricts to an isomorphism

̂B(ν) ∼= L♦(ν). (4.6)

Proposition 4.4 will be deduced from Proposition 4.5 below.
The reading word of a single-rowed tableau is obtained by reading its letters from right

to left. The reading word of a tableau obtained by reading its rows from top to bottom.
A word w = x1x2 · · · x� with xi ∈ {n̄, n − 1, . . . , 1̄} is Yamanouchi if for all j , in the sub-
word x1x2 · · · x j there at least as many letters i + 1 as there are letters ī for 1 ≤ i ≤ n − 1.

Proposition 4.5 Let b ∈ L♦(ν, δ) for some δ ∈ P♦
n .

1. L♦(ν, δ) is an An−1-crystal.
2. b ∈ hwAn−1(L♦(ν, δ)) if and only if the row-reading word of the skew semistandard

subtableau of b of shape ν/δ, is Yamanouchi of weight λ for some λ ∈ Pn.
3. If ϕn(b) > 0 then fn(b) ∈ L♦(ν).
4. There exists a finite sequence a = ( j1, j2, . . . ) in I0 such that b = ea(rowtab(bν)). In

particular L♦(ν) ⊂ Im(rowtabν).
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5. Assume b ∈ hwλ
An−1

(L♦(ν, δ)) for some λ ∈ Pn and let a be as above. Then

card {k | jk = n} = |ν| − |λ|
|♦| . (4.7)

The proof of Proposition 4.5 is deferred to Appendix A.

Proof of Proposition 4.4 rowtabν(̂B(ν)) and L♦(ν) are both An−1-subcrystals of
Im(rowtabν), by definition and Proposition 4.5(4) respectively. Therefore it suffices to show
they have the same An−1-highest weight vertices. All such vertices have weight of the form
λ for some λ ∈ Pn . For λ ∈ Pn and δ ∈ P♦

n , |hwλ
An−1

(L♦(ν, δ))| = cν
δλ by Proposi-

tion 4.5(2) and the Littlewood–Richardson Rule [6]. All of these highest weight vertices are
in rowtabν(hwλ

An−1
(̂B♦(ν))). The result follows by summing over δ ∈ P♦

n and using (2.3).
��

4.3 ̂B(ν) when ν is a rectangle

We assume g = g♦ is reversible, and apply the previous results to max(Br,s) ∼= B(sωr ) for
Br,s ∈ C∞(g♦). For the rectangular partition ν = (sr ) ∈ P∞

n let

b(r, s, λ) = hwλ
An−1

(BI0(s
r )) for λ ∈ P♦

n (r, s) (4.8)

b
♦
min(r, s) = b(r, s, λ♦min(r, s)) (4.9)

where λ
♦
min(r, s) is defined in (3.50). Note that the set on the right hand side of (4.8) is a

singleton, by (2.3) and the Littlewood–Richardson Rule. We regard the elements b(r, s, λ)

as being in Br,s since Br,s contains a unique I0-component BI0(s
r ). We note that

hwAn−1(
̂B(sr )) = {b(r, s, λ) | λ ∈ P♦

n (r, s)}. (4.10)

Remark 4.6 For λ ∈ P♦
n (r, s), let δ ∈ P♦

n be the partition complementary to λ in the rect-
angle (sr ). Then by Propositions 4.4 and 4.5(2), rowtab(sr )(b(r, s, λ)) is explicitly given by
the row tableau of shape (sr ) whose restriction to the shape δ, is the canonical tableau C♦

δ

and whose restriction to (sr )/δ is the unique Yamanouchi tableau of that shape in the letters
{n, . . . , 2̄, 1̄}; each column of the latter subtableau consists of letters n̄, n − 1, etc., reading
from bottom to top.

For ν = (sr ) we are going to see that every An−1-highest weight vertex in ̂B(ν) is reach-
able by I0-lowering operators, starting with a certain fixed element. This is not true for a
general partition ν ∈ P∞

n .

Proposition 4.7 Let (r, s) ∈ I0 ×Z>0 with Br,s ∈ C∞(g♦) and � = lev(Br,s). Then for any
λ ∈ P♦

n (r, s) there exists a finite sequence b = ( j1, j2, . . . ) in I0 such that

u��n ⊗ b(r, s, λ) = fb(u��n ⊗ b
♦
min(r, s)) (4.11)

card{k | jk = n} = |λ| − |λ♦min(r, s)|
|♦| . (4.12)

This result follows by induction using Lemma 4.9 below. For h ≥ 2 if ♦ = (1, 1)

and h ≥ 1 if ♦ ∈ {(1), (2)}, define the following sequences (the semicolons are just for
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readability):

ã′(h) =
⎧

⎨

⎩

(n − 2, n − 3, . . . , n − h + 1; n − 1, n − 2, . . . , n − h + 2) for ♦ = (1, 1)

(n − 1, n − 2, . . . , n − h + 1) for ♦ = (1)

((n − 1)2, (n − 2)2, . . . , (n − h + 1)2) for ♦ = (2)

ã(h) = (n; ã′(h)). (4.13)

Notation 4.8 Given λ ∈ P♦
n (r, s) with λ �= λmin = λ

♦
min(r, s), we define a canonical smaller

element λ− ∈ P♦
n (r, s) obtained from λ by removing a particular copy of the shape ♦. Sup-

pose the rightmost column in which λ and λmin differ, is the pth. Let h = λ′p be the height of

that column. Let λ− ∈ P♦
n (r, s) be obtained from λ by removing a vertical domino from the

pth column if ♦ = (1, 1), removing a cell from the pth column if ♦ = (1), and removing a
cell from the pth and (p − 1)th columns if ♦ = (2).

We note that if δ ∈ P♦
n is a nonempty partition then δ− ∈ P♦

n can be defined similarly.

Lemma 4.9 Let λ ∈ P♦
n (r, s) with λ �= λ

♦
min(r, s). Then

u��n ⊗ b(r, s, λ) = fã(h)(u��n ⊗ b(r, s, λ−)). (4.14)

The proof of Lemma 4.9 is deferred to Appendix A.

5 Affine crystals and the involution σ

In this section we summarize necessary facts on a single KR crystal Br,s belonging to C∞(g♦)

and show that a tensor product B of such KR crystals has an automorphism σ , which we
call the reversing crystal automorphism. This σ will be effectively used to show our main
theorem (Theorem 10.1).

5.1 KR crystal Br,s

We consider a single KR crystal Br,s ∈ C∞(g♦). Note that r ∈ I0 is nonspin. We recall the
crystal structure of Br,s . Firstly, the Uq(g

♦
0 )-crystal structure is described as follows. As we

explained in Sect. 1, Br,s decomposes into a multiplicity-free direct sum of highest weight
crystals B(λ), where λ runs over P♦

n (r, s), the set of partitions obtained by removing ♦’s
from (sr ). The action of Kashiwara operators ei , fi (i ∈ I0) on Br,s is given by realizing its
elements by KN tableaux. Hence, we are left to describe the action of e0 and f0. To do this
we explain the notion of ±-diagrams and a certain automorphism ς on Br,s for ♦ = (1, 1)

introduced in [28]. From here to Lemma 5.2 we assume ♦ = (1, 1).
A ±-diagram P of shape �/λ is a sequence of partitions λ ⊂ μ ⊂ � such that �/μ

and μ/λ are horizontal strips (i.e. every column contains at most one box). We depict this
±-diagram by the skew tableau of shape �/λ in which the cells of μ/λ are filled with
the symbol + and those of �/μ are filled with the symbol −. Write � = outer(P) and
λ = inner(P) for the outer and inner shapes of the ±-diagram P . We call μ the middle
shape. Set J = {2, 3, . . . , n}. There is a bijection � : P �→ b from ±-diagrams P of shape
�/λ to the set of J -highest weight elements b of J -weight λ. For details refer to section 4.2
of [28].

Now suppose b ∈ Br,s is a J -highest weight element corresponding to a ±-diagram P of
shape �/λ. Let ci = ci (λ) be the number of columns of height i in λ for all 1 ≤ i < r with
c0 = s − λ1. If i ≡ r − 1 (mod 2), then in P , above each column of λ of height i , there
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must be a + or a −. Interchange the number of such + and − symbols. If i ≡ r (mod 2),
then in P , above each column of λ of height i , either there are no signs or a ∓ pair. Suppose
there are pi∓ pairs above the columns of height i . Change this to (ci − pi )∓ pairs. The result
is S(P), which has the same inner shape λ as P but a possibly different outer shape. The
columns of height r in P are not changed by S. The following map ς (called σ in [28]) is
an automorphism on Br,s corresponding to interchanging the nodes 0 and 1 of the Dynkin
diagram of D(1)

n .

Definition 5.1 Let b ∈ Br,s and a be a sequence of elements of J such that ea(b) is a
J -highest weight element. Let a′ be the reverse sequence of a. Then

ς(b) := fa′ ◦ � ◦ S ◦ �−1 ◦ ea(b). (5.1)

With this ς the Kashiwara operators e0 and f0 are given by

f0 = ς ◦ f1 ◦ ς,
(5.2)

e0 = ς ◦ e1 ◦ ς.

By (5.1) and (5.2) e0 and f0 commutes with ei or fi for J ′ = {3, 4, . . . , n}. Hence, the
calculation of the actions of e0 and f0 are reduced to J ′-highest weight elements. Note
that J ′-highest weight elements are in one-to-one correspondence with pairs of ±-diagrams
(P, p), where the inner shape of P is the outer shape of p. To calculate the action of e0 it
suffices to know the action of e1 on (P, p), that is described in [28].

(1) Successively run through all + in p from left to right and, if possible, pair it with the
leftmost yet unpaired + in P weakly to the left of it.

(2) Successively run through all − in p from left to right and, if possible, pair it with the
rightmost yet unpaired − in P weakly to the left.

(3) Successively run through all yet unpaired + in p from left to right and, if possible, pair
it with the leftmost yet unpaired − in p.

Lemma 5.2 [28, Lemma 5.1] If there is an unpaired+ in p, e1 moves the rightmost unpaired
+ in p to P. Else, if there is an unpaired − in P, e1 moves the leftmost unpaired − in
P to p. Else e1 annihilates (P, p).

For types ♦ = (2), (1), we use a construction of Br,s in section 4.3 and 4.4 of [3] (where
it is called V r,s). As above we can assume b ∈ Br,s is J -highest. Let p = �−1(b) and
let p̂ be p itself if ♦ = (2), and the ±-diagram whose inner, middle and outer shapes are
all doubled rowwise if ♦ = (1). Let ci (1 ≤ i ≤ r ) be the number of columns of height
i in outer( p̂). We also set c0 = γ s − outer( p̂)1 where γ = 2/|♦|. Note that ci is even
except when ♦ = (2), i = r and r is odd. There exists a unique ±-diagram P such that
inner(P) = outer( p̂), the length of inner(P) ≤ r and there are equal number ci/2 of columns
with ∓ and · in P if i < r, i ≡ r (2), with + and − if i �≡ (2). Then the pair of ±-diagrams
(P, p̂) can be considered to correspond to a {3, 4, . . . , n}-highest element of Br,γ s of type
♦ = (1, 1). We now apply e1 ◦ς ◦e1 to (P, p̂) following the procedure explained previously
to get (P ′, p̂′). Let p′ be p̂′ if ♦ = (2), and the ±-diagram whose inner, middle and outer
shapes are all halved rowwise. (This is possible by Lemma 4.7 (1) in [3].) Finally, setting
b′ = �(p′) we obtain e0b = b′. To calculate the action of f0 we replace e1 ◦ ς ◦ e1 with
f1 ◦ ς ◦ f1.
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5.2 The reversing crystal automorphism σ

Recall σ ∈ Aut(X) from (1.6).

Theorem 5.3 For every B that is a tensor product of KR crystals in C∞(g♦), there is a
unique map σ = σB : B → B such that

σ ◦ ei = eσ(i) ◦ σ (5.3)

for all i ∈ I and b ∈ B. Moreover

wt(σ (b)) = −w
An−1
0 (wt(b)) (5.4)

σ 2 = id (5.5)

σB′ ◦ g = g ◦ σB for any g : B ∼= B ′ for B, B ′ ∈ C. (5.6)

Here w
An−1
0 ∈ W is the longest element of the type An−1 Weyl group generated by s1

through sn−1.

First we assume the existence of σ satisfying (5.3) and deduce (5.4), (5.5), and (5.6).
For (5.4) we recall the discussion of the weight function on KR crystals (and therefore

on B) in Sect. 3.4 and associated notation. By (5.3) and (3.37) we have σ(wt(b)) = wt(σ (b)),
computing in the lattice P ′. Now wt takes values in P0 ∼= P and one may check that the
action of σ on P0 agrees with that of −w

An−1
0 on P .

For (5.5), σ 2 is an I -crystal isomorphism B → B. By connectedness and the fact that B
contains a unique element u(B) of its weight, there is only one such isomorphism, namely,
the identity.

For (5.6), by the connectedness of B the proof reduces to verifying the relation for a single
value. However the value of both sides on u(B) must agree, for the answer must be the unique
element of B ′ whose weight is −w

An−1
0 (wt(u(B))).

Next, we prove the uniqueness of σ assuming its existence. Since B ∈ C is connected
we need only show that (5.3) uniquely specifies some single value of σ . The vertex u(B)

is the only element of its weight in B. The weight w
An−1
0 (u(B)) occurs in B since B is an

An−1-crystal. Since B is an I0-crystal (of classical type Bn, Cn , or Dn) with no spin weight, it
is self-dual, so its weights are closed under negation. In particular the weight −w

An−1
0 (u(B))

must also occur in B. Since wt(u(B)) occurs exactly once, the weight −w
An−1
0 (wt(u(B)))

also occurs exactly once. By (5.4) σ(u(B)) must be the unique element of B of weight
−w

An−1
0 (wt(u(B))). It follows that σ is unique.

It only remains to prove the existence of σ . By (3.41) we may reduce to the case B = Br,s .
The existence of σ on Br,s is proved in the next several subsections.

5.3 Definition of σ on KR crystals

Define the sequences

a′(h) =
⎧

⎨

⎩

(2, 3, . . . , h − 1; 1, 2, . . . , h − 2) if ♦ = (1, 1)

(1, 2, . . . , h − 1) if ♦ = (1)

(12, 22, . . . , (h − 1)2) if ♦ = (2)
(5.7)

a(h) = (0; a′(h)).
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Recalling ã(h) from (4.13) we have

σ(a(h)) = ã(h). (5.8)

Lemma 5.4 Let λ ∈ P(r, s) and λ �= λ
♦
min(r, s). Let � = lev(Br,s) and λ− be as in

Notation 4.8. Then

u��0 ⊗ b(r, s, λ) = fa(h)(u��0 ⊗ b(r, s, λ−)). (5.9)

Proof We first treat the case♦ = (1, 1). Suppose r is even. We apply fa′(h). Then b(r, s, λ−)

changes to the KN tableau t1 of shape λ− whose columns are filled with 123 · · ·, except the
rightmost, which is filled with 34 · · · instead. Now we want to apply f0 to us�0 ⊗t1. To do this
we first go to the J -highest element e(h−1,...,3,2)(t1)of t1, where we have set J = {2, 3, . . . , n}.
Then we have P = �−1(e(h−1,...,3,2)(t1)) is the ±-diagram such that there is no sign in the
rightmost column and only + in the other ones. Hence S(P) is the ±-diagram described as
follows. Denote the position of the rightmost column of λ by a. The height of the outer shape
from the 1st to the (a − 1)th column is the same as P , but from the ath to the sth column
the height is larger than P by 2. There is only − from the 1st to the (a − 1)th column, and
∓ from the ath to the sth column. Now we have ς(t1) = f(2,3,...,h−1)�(S(P)) described as
follows. The shape of ς(t1) is the same as the outer shape of S(P). To get contents we first
place the string 23 · · · k1̄ in each column and then reading from left to right, top to bottom
we change 1̄ to 2̄ and 2 to 1(s − a + 1) times. Note that ε1(ς(t1)) = s + a − 1. One finds
f1ς(t1) is a J -highest element corresponding to the ±-diagram that differs from S(P) only
in the ath column where there is only −. Hence we have f0t1 = b(r, s, λ) by definition.
Since ε0(t1) = s+a−1 ≥ s, we also have f0(us�0 ⊗ t1) = us�0 ⊗ f0t1 = us�0 ⊗b(r, s, λ).

Next suppose r is odd. In this case the first row of λ has s nodes. Denote the position of
the rightmost column with height greater than 1 by a. The calculation goes similarly to the r
even case. The ±-diagram P is given as follows. The outer shape is the same as λ−. There is
no sign in the ath column and only + in the other columns. Applying f(2,3,...,h−1) ◦ � ◦ S,
one obtains ς(t1) described as follows. The shape of ς(t1) is the same as t1 except in the ath
column where the height of ς(t1) is larger than that of t1 by 2. To get contents we place the
string 23 · · · k1̄ (1̄ in the column of height 1) in each column. Only in the leftmost column
we put 2̄ instead of 1̄. Note that ε1(ς(t1)) = s+a−1. We obtain f0t1 = b(r, s, λ), and since
ε0(t1) ≥ s, we again have f0(us�0 ⊗ t1) = us�0 ⊗ b(r, s, λ).

Next we treat the case ♦ = (2). (Since the case ♦ = (1) is similar, we omit its proof.)
Applying fa′(h) makes b(r, s, λ−) change to the KN tableau t2 of shape λ− whose columns
are filled with 123 · · ·, except the rightmost two, which is filled with 23 · · · instead. Note that
t2 is J -highest. p = �−1(t2) is the ±-diagram such that there is no sign in the rightmost two
columns and only + in the other ones. From this p construct P as prescribed in the previous
subsection. We want to apply f1◦ς ◦ f1 to this pair (P, p) of±-diagrams. Denote the position
of the rightmost column of λ by a. By Lemma 5.2 the application of f1 changes (P, p) as
follows. In the (a − 1)th column there is + (resp. ∓) when h ≡ r (2) (resp. h �≡ r (2)) in P
and no sign in p. f1 moves + in P to p. Denote this new pair by (P ′, p′). Next ς changes
P ′ as follows. In the columns of P ′ of height h, the number of columns with ∓ (resp. +)
increases by 1 while the number of those with · (resp. −) decreases by 1 when h ≡ r (2)

(resp. h �≡ r (2)). By applying f1 again, we obtain (P ′′, p′′) described as follows. p′′ differs
from p only at the (a − 1)th and ath positions. outer(p′′) is of height h there with +’s. P ′′
is a unique ±-diagram determined from p′′ as in the previous subsection. To show (5.9) we
still need to check ε0(b(r, s, λ−)) ≥ �. Since the application of e0(= e1 ◦ ς ◦ e1) is similar

123



842 C. Lecouvey et al.

to above, we only give its value. Let ci (1 ≤ i ≤ r ) be the number of columns of λ of height
i and set c0 = s − λ1. Then we have

ε0(b(r, s, λ−)) = cr + cr−1 + · · · + ch − 1 + c0/2.

Noting that (cr + cr−1 + · · · + ch + c0 + r̄)/2 = � (r̄ = 0 or 1, r̄ ≡ r (2)) and ch ≥ 2, we
obtain ε0(b(r, s, λ−)) ≥ �. ��

For a KR crystal B of level �, say that the i-arrow b → b′ = fi (b) is good if either i ∈ I0

or i = 0 and ε0(b) ≥ �. Traversing the above edge backwards (using a raising operator),
going from b′ to ei (b′) = b is good if i ∈ I0 or i = 0 and ε0(b′) > �.

Lemma 5.5 Let Br,s be a KR crystal of level �. Then for every b ∈ Br,s there is a sequence
of good arrows from b to m(Br,s).

Proof Noting that from (3.45) u��0 ⊗m(Br,s) is an affine highest weight vector in B(��0)⊗
Br,s � B(ϕ(m(Br,s))), the lemma is clear from the previous one. ��

We obtain the following for KR crystals Br,s for g of kind (1, 1), (2), (1) where r ∈ I0 is
nonspin.

Corollary 5.6 For a KR crystal B of level �, there is a unique function DB satisfying the
conditions of Lemma 3.13. Moreover, identifying elements of u��0 ⊗ B with their images in
B(ϕ(m(B))) under the isomorphism (3.57), we have

̂DB(ϕ(m(B)))(u��0 ⊗ b)+ DB(b) = DB(m(B)) (5.10)

where m(B) is defined in Lemma 3.11.

Proof By Lemma 5.5 B is connected by good arrows. But properties (1) and (2) of
Lemma 3.13 specify how DB must change across good arrows. Therefore a single value
completely specifies DB . This is furnished by property (3) of Lemma 3.13. The left hand
side of (5.10), viewed as a function of b ∈ B, is invariant under good arrows in B. But B
is connected by good arrows so this function is constant, and its value is obtained by setting
b = m(B) and using that ̂D = 0 on the affine highest weight vector. ��

Let � = lev(Br,s) and let u ∈ Br,s be as in Lemma 3.11 using j = 0. From Theorem 3.16
there are bijections

B(��0) ⊗ Br,s ∼= B(ϕ(u)) −→ B(σ (ϕ(u))) ∼= B(��n) ⊗ Br,s . (5.11)

The first and third maps are isomorphisms given by Theorem 3.16 and the middle maps
are the unique automorphism in highest weight crystals induced by relabeling everything
according to σ ∈ Aut(X).

Lemma 5.7 Let b(r, s, λ) be as in (4.8). For λ ∈ P♦(r, s), u��0 ⊗ b(r, s, λ) is sent to
u��n ⊗ b(r, s, λ) under the previous bijection.

Proof The proof proceeds by induction on P♦(r, s). The claim holds for λmin(= λ
♦
min(r, s))

since these elements are the unique affine highest weight elements of both sides of (5.11). For
λ ∈ P♦(r, s) with λ �= λmin the claim follows from Lemmas 4.9, 5.4, (5.8) and induction.

��
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Proposition 5.8 For Br,s ∈ C∞(g♦) there is a unique map σ : Br,s → Br,s such that

1. Equation (5.3) holds for good arrows.

2. σ(m(Br,s)) = b
♦
min(r, s).

Proof Such a mapσ is necessarily unique. Assertion 2 specifies one value ofσ . By Lemma 5.5
Br,s is connected by good arrows, so Assertion 1 determines all other values of σ . So it suf-
fices to prove existence. Consider the bijection (5.11). For an element b ∈ Br,s the image of
u��0 ⊗ b by the bijection should belong to u��n ⊗ Br,s by Lemma 5.7. Denote this image
by u��n ⊗ σ(b). This map σ satisfies the two conditions. ��
Proposition 5.9 The map σ of Proposition 5.8 satisfies (5.3) for all i ∈ I and b ∈ Br,s .

The proof of Proposition 5.9 for ♦ = (1, 1) is deferred to Appendix B. For ♦ = (1), (2)

the map σ constructed in Theorem 7.1 of [3] is the one we need.

Proof of Theorem 5.3 As noted at the end of Sect. 5.2, it suffices to establish the case of a
single KR crystal. The map σ in Proposition 5.8 works by Proposition 5.9. ��

The following lemma is used later.

Lemma 5.10 For any λ ∈ P♦(r, s), there is a sequence a = (i1, . . . , im) of indices in In

such that

ea(u��0 ⊗ b(r, s, λ)) = u��0 ⊗ m(Br,s), (5.12)

where � = lev(Br,s). Moreover

card { j | i j = 0} = |λ| − |λ♦min(r, s)|
|♦| . (5.13)

Proof This follows from Proposition 4.7, (5.3), and Lemma 5.7. ��
Proof of Proposition 3.15 Equation (5.13) yields

̂DB(ϕ(u0(r,s)))(u��0 ⊗ b(r, s, λ)) = |λ| − |λ♦min(r, s)|
|♦| .

By Corollary 5.6 we have

DBr,s (b(r, s, λ)) = DBr,s (m(Br,s))− |λ| − |λ♦min(r, s)|
|♦| . (5.14)

Applying this for λ = (sr ) we have

DBr,s (b(r, s, (sr ))) = DBr,s (m(Br,s)) − rs − |λ♦min(r, s)|
|♦| . (5.15)

Subtracting (5.15) from (5.14) and using Lemma 3.13(3) and the fact that u(Br,s) =
b(r, s, (sr )), we obtain (3.55) as required. ��

6 Splittings

In this section we define maps that embed a KR crystal into the tensor product of KR crystals.
These maps are I0-crystal embeddings which are compatible with the grading. These results
hold for any nonexceptional affine algebra g and any r ∈ I0 with r �= 1 and r nonspin.
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6.1 Row splitting

In this section we construct a map which we call row splitting, because in type A, the map
simply splits off the top row of a rectangular tableau.

Proposition 6.1 For g nonexceptional, r ∈ I0 not a spin node and r �= 1, there exists a
unique map

S : Br,s −→ Br−1,s ⊗ B1,s

satisfying

S(ei (b)) = ei (S(b)) for any good arrow b → ei (b). (6.1)

Proof By Lemma 5.5, Br,s is connected by good arrows. By (6.1) it follows that S is com-
pletely determined by any single value. Again by (6.1), S is an I0-crystal embedding. But
S(u(Br,s)) = u(Br−1,s)⊗u′ where u′ is the unique element in B1,s of weight s(ωr −ωr−1),
since these elements are the only ones in their respective crystals that are I0-highest weight
vertices of weight sωr . So it remains to show existence.

Let � = lev(Br,s) be the common level of Bi,s for i ∈ I0 nonspin. By Lemma 3.11 and
Theorem 3.16 there are isomorphisms

B(��0) ⊗ Br,s ∼= B(ϕ(m(Br,s))) (6.2)

B(��0) ⊗ Br−1,s ⊗ B1,s ∼=
⊕

u′
B(ϕ(u′)) (6.3)

where u′ ∈ B1,s satisfies

ε(u′) = ϕ(m(Br−1,s)). (6.4)

In the nonperfect case there may be more than one such u′. However there is a unique
u′ ∈ B1,s such that (6.4) holds and also

ϕ(u′) = ϕ(m(Br,s)). (6.5)

First suppose Bi,s is perfect for i ∈ I0 nonspin. Since m(Br−1,s) ∈ Br−1,s
min , u′ satisfying

(6.4) is unique, in which case we must show this u′ satisfies (6.5).
For every i ∈ I0 define t−ci∗ωi∗ = wiτi where wi ∈ W and τi ∈ 	. One may verify that

τr = τr−1τ1. Perfectness yields the isomorphism

B(��0) ⊗ Br,s ∼= B(��τr (0)) ∼= B(��0) ⊗ Br−1,s ⊗ B1,s (6.6)

with u��0 ⊗ m(Br,s) �→ u��0 ⊗ m(Br−1,s) ⊗ u′. Equation (6.5) follows by applying ϕ to
these highest weight vectors.

Suppose B1,s is not perfect. Then g = C (1)
n , s = 2� − 1 and lev(B1,s) = �. In this

case ϕ(m(Br−1,s)) = (� − 1)�0 + �r−1 and ϕ(m(Br,s)) = (� − 1)�0 + �r . There are
exactly three elements u′ ∈ B1,s with ε(u′) = ϕ(m(Br−1,s)) = (�− 1)�0 +�r−1. Namely,
r, r − 1 ∈ B(ω1) and 1(r − 1)r − 1 ∈ B(3ω1). (If s = 1, neglect the last one.) The values
of ϕ are (� − 1)�0 + �r , (� − 1)�0 + �r−2, (� − 2)�0 + �1 + �r−1, respectively. Let
u′ = r . B(�′) ∼= B(��0) ⊗ Br,s in B(��0) ⊗ Br−1,s ⊗ B1,s such that u��0 ⊗ m(Br,s) �→
u��0 ⊗ m(Br−1,s) ⊗ u′.

Since Br,s is connected by good arrows, we may define S by

S(b) = b1 ⊗ b2 where u��0 ⊗ b �→ u��0 ⊗ b1 ⊗ b2 under (6.6). (6.7)

Equation (6.1) follows immediately. ��
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6.2 Splitting B ∈ C into rows

Let g be nonexceptional. We use Notation 3.17 for B = B R . Let Brows(R) ∈ C∞(g) be defined
by replacing each Br,s in B by (B1,s)⊗r . We define a map

S = SR : B R → Brows(R) (6.8)

as follows. Starting B R we define a sequence of maps that go through various crystals
in C, ending with Brows(R). We repeat the following step. We locate the leftmost tensor factor
of the form Br,s with r > 1, apply a sequence of combinatorial R-matrices to swap it to
the left, and apply S ⊗ id (which we will sometimes by abuse of notation also denote S),
which trades in Br,s for Br−1,s ⊗ B1,s . Eventually the current crystal consists tensor factors
of the form B1,s , and we apply a sequence of combinatorial R-matrices to reorder the tensor
factors, obtaining Brows(R). Call the composite map SR . It is an I0-crystal morphism, being
the composition of such [see (6.1)].

Remark 6.2 One can apply splitting of the first tensor factor and combinatorial R-matrices
in any order until Brows(R) is reached. We conjecture that the resulting map is independent
of the order that these steps were taken.

Proposition 6.3 For g = g♦ reversible, B R ∈ C∞(g♦), and b ∈ tops(B R) we have

SR ◦ σB R (b) = σBrows(R) ◦ SR(b). (6.9)

Proof By (5.6) we may reduce to the case B = Br,s and SR = S. Let � = lev(Br,s). By
(5.3) and the fact that S is an I0-crystal morphism, we may assume b ∈ hwI0(tops(Br,s)). By
Lemma 5.10, there is a sequence a = (i1, . . . , i p) of indices in In such that ea(u��0 ⊗ b) =
u��0 ⊗ m(Br,s). Therefore we have

ea(b) = m(Br,s) (6.10)

and moreover this sequence consists of good arrows. Applying σS we obtain

σ(S(m(Br,s))) = σ(S(ea(b)))

= eσ(a)σ (S(b))

using (6.1) and (5.3). Applying Sσ to (6.10) we have

S(σ (m(Br,s)) = S(σ (ea(b)))

= eσ(a)S(σ (b))

using (5.3), the fact that σ(a) has indices in I0, and (6.1). Since eσ(a) has a left inverse, we
may assume that b = m(Br,s). We have S(m(Br,s)) = m(Br−1,s) ⊗ u′ for some u′ ∈ B1,s .
By Proposition 5.8(2) we reduce to the equality

S(b
♦
min(r, s)) = b

♦
min(r − 1, s) ⊗ σ(u′). (6.11)

Since b
♦
min(r, s) ∈ BI0(sωr ), we may apply rowtab = rowtab(sr ) and similarly for b

♦
min(r −

1, s). By definition (rowtab(sr−1) ⊗ 1B(sω1))(S(b
♦
min(r, s))) = rowtab(sr )(b

♦
min(r, s)) =

rowtab(sr−1)(b
♦
min(r−1, s))⊗u′′ where u′′ ∈ BI0(sω1) is the last row of rowtab(sr )(b

♦
min(r, s)).

So it remains to show u′′ = σ(u′). Using the explicit form of rowtab(b
♦
min(r, s)) given in

Remark 4.6 one has
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ε(u′′) =
⎧

⎨

⎩

��n−1 (♦ = (1, 1), r : even)

(� − 1)�n + �n−r+1 (♦ = (2), s : odd)

��n (otherwise)

ϕ(u′′) =
⎧

⎨

⎩

��n−1 (♦ = (1, 1), r : odd)

(� − 1)�n + �n−r (♦ = (2), s : odd)

��n (otherwise).

Therefore ε(σ (u′′)) and ϕ(σ(u′′)) are given by replacing every � j with �n− j in the above
table. But ε(σ (u′′)) = ϕ(m(Br−1,s)) and ϕ(σ(u′′)) = ϕ(m(Br,s)). Therefore by (6.7)
u′ = σ(u′′) for there is a unique element in B1,s having such values of ε and ϕ, and we
are done since σ is an involution. ��
6.3 Box splitting

Let g be of affine type such that g0 is of type Bn, Cn , or Dn .
Define a map B1,s ↪→ B1,s−1 ⊗ B1,1 as follows. For b = x1 · · · x p ∈ B(pω1) ⊂ B1,s ,

b �→
⎧

⎨

⎩

1b ⊗ 1̄ if s ≥ p + 2
b ⊗ ∅ if s = p + 1
x2 · · · x p ⊗ x1 if s = p.

(6.12)

Here ∅ denotes the element of B(0) ⊂ B1,1 for g of kind (1). This map is evidently an
I0-crystal embedding. Iterating this map on the first tensor factor, we obtain the following
I0-crystal embedding S : B1,s ↪→ (B1,1)⊗s :

S (b) = x p ⊗ · · · ⊗ x2 ⊗ x1 ⊗ 1 ⊗ · · · ⊗ 1
︸ ︷︷ ︸

m times

⊗ ∅
︸︷︷︸

k times

⊗ 1̄ ⊗ · · · ⊗ 1̄
︸ ︷︷ ︸

m times

(6.13)

where m = � s−p
2 � and k is 0 or 1 according as s − p is even or odd.

Define a map S : B R → (B1,1)⊗|R| as follows. First apply S : B R → Brows(R). Then
do the following repeatedly until (B1,1)⊗|R| is reached. Find the leftmost factor of the form
B1,s with s > 1 and swap it to the left end using combinatorial R-matrices and then apply
S ⊗ id to replace this B1,s with (B1,1)⊗s . Write S for the composite map. We have

S ◦ ei = ei ◦ S for i ∈ I0 (6.14)

since S is the composition of I0-crystal morphisms S and S ⊗ 1.

Remark 6.4 If R consists of tensor factors of the form B1,s then DB R = D(B1,1)⊗|R| ◦ S .

Proposition 6.5 For g = g♦ reversible and b ∈ tops(B R),

S (σ (b)) = σ(S (b)). (6.15)

Proof By Proposition 6.3, (5.6), (6.14), and (5.3) it suffices to prove (6.15) for b ∈
tops(B1,s). Consider the case ♦ = (1) where tops(B1,s) consists of elements
1p = hwI0(B(pω1)) ⊂ B1,s for 0 ≤ p ≤ s. With notation as in (6.13) we have

σ(S (1p)) = σ(1⊗p+m ⊗ ∅
⊗k ⊗ 1̄m)

= n̄⊗p+m ⊗ 0k ⊗ n⊗m

= S (nm0k n̄ p+m)

= S (σ (1p)).

The cases ♦ ∈ {(1, 1), (2)} are easier. ��
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7 Correspondence on An−1-highest weight vertices

Again we assume that g = g♦ is reversible.
Let m̂ax(B) = m̂ax(B) in the notation of Sect. 4.1. The goal of this section is to prove

the following theorem.

Theorem 7.1 For B ∈ C∞(g♦) and every λ ∈ Pn, σ : B → B restricts to a bijection

hwλ
An−1

(tops(B))
σ� hwλ

An−1
(m̂ax(B)). (7.1)

Lemma 7.2

card hwλ
An−1

(tops(B)) = card hwλ
An−1

(m̂ax(B)). (7.2)

Proof There is an I0-crystal isomorphism

max(B R) �
⊕

ν∈Pn

B(ν)
⊕cν

R1,...,Rp .

By (2.3) we have

card hwλ
An−1

(m̂ax(B R)) =
∑

ν∈Pn

cν
R1,...,Rp

∑

δ∈P♦
n

cν
δλ = K

λ,♦
R1,...,Rp

where the last equality follows from Proposition 2.1. We have Xλ,B R (1) = K
λ,♦
R1,...,Rp

by
(3.58), (1.2), and (2.2). Therefore (7.2) holds. ��
Proposition 7.3 The map σ : B → B sends tops(B) into max(B).

Proof Let b ∈ tops(B). By (6.14) S (b) ∈ tops((B1,1)⊗|R|). Assuming the Proposition holds
for tensor powers of B1,1 and using Proposition 6.5 we have S (σ (b)) ∈ max((B1,1)⊗|R|).
By (6.14), we deduce that σ(b) ∈ max(B R).

We now assume B = (B1,1)⊗m and b ∈ tops(B). We may assume that b ∈
hwAn−1(tops(B)). By induction on m, the letters of b lie in the set {1, 2, . . . , m}∪{m̄, . . . , 1̄}.
Thus the letters of σ(b) belong to {n − m + 1, . . . , n, n, . . . , n − m + 1}. When n is suffi-
ciently large, this implies that σ(b) ∈ max(B). This can either be proved by induction on m
or more directly by using the insertion procedure described in [19]. ��
Proof of Theorem 7.1 By Proposition 7.3 σ sends tops(B) into max(B). Since tops(B) is an
An−1-crystal whose weights lie in Z

n≥0 and σ sends such weights to Z
n≤0 by (5.4), σ must send

tops(B) into m̂ax(B). By (5.3) and (5.4) σ sends hwλ
An−1

(tops(B)) into hwλ
An−1

(m̂ax(B)).
Theorem 7.1 follows due to Lemma 7.2 and the injectivity of σ [which holds by (5.5)]. ��

8 A relation between D and D ◦ σ

In this section we assume g = g♦ is reversible. Define the map B → Pn by b �→ λ(b) where

BI0(b) ∼= B(λ(b)). (8.1)

The goal of this section is to prove the following theorem.
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Theorem 8.1 For B R ∈ C(g♦) and b ∈ tops(B R)

D(b) = D(σ (b))+ |R| − |λ(b)|
|♦| . (8.2)

We use Notation 3.17. For b ∈ C(g♦) set ν(b) = wt(b) = (ν1(b), ν2(b), . . .) and |ν(b)| =
∑

i νi (b). Note that some νi (b)’s may be negative. Hence |ν(b)| = ∑

i νi (b) may also become
negative. We prepare a lemma.

Lemma 8.2 Let B1, B2 ∈ C(g♦). Let b1 ⊗ b2 be an element of B1 ⊗ B2 and suppose it is
mapped to b′2 ⊗ b′1 by the combinatorial R-matrix. Then we have

H(b1 ⊗ b2) − H(σ (b1) ⊗ σ(b2)) = |ν(b′2)| − |ν(b2)|
|♦| . (8.3)

Proof Since B1 ⊗ B2 is connected, it is sufficient to show

(i) if b1 = u(B1), b2 = u(B2), (8.3) holds, and
(ii) (8.3) with b1 ⊗ b2 replaced by ei (b1 ⊗ b2) holds, provided that (8.3) holds and ei

(b1 ⊗ b2) �= 0.

For (i) recall b′1 = b1, b′2 = b2 if b1 = u(B1), b2 = u(B2). Since u(B1) ⊗ u(B2) can be
reached from σ(u(B1)) ⊗ σ(u(B2)) by applying ei (i �= 0), we have H(u(B1) ⊗ u(B2)) =
H(σ (u(B1))⊗ σ(u(B2))) = 0. Hence (i) is verified.

For (ii) recall |ν(ei b)| − |ν(b)| = −|♦| (i = 0),= |♦| (i = n),= 0 (otherwise). If
i �= 0, n, both sides do not change when we replace b1 ⊗ b2 with ei (b1 ⊗ b2). If i = 0, the
first term of the l.h.s decreases by one in case LL, increases by one in case RR, and does not
change in case LR or RL. (For the meaning of LL, etc, see Proposition 3.7(2).) The second
term does not change, while the r.h.s varies in the same way as the first term of the l.h.s. The
i = n case is similar. ��
Proof of Theorem 8.1 We may reduce to the case that b ∈ hwAn−1(tops(B)) since tops(B)

is an An−1-crystal and the entire Eq. (8.2) is invariant under An−1-arrows.
We proceed by induction on the number p of tensor factors in B R . When p = 1 we have

B = Br,s . By (1.2) b = b(r, s, λ) for some λ ∈ P(r, s). By Theorem 7.1, σ(b) ∈ m̂ax(B) ⊂
max(B) = B((sr )) ⊂ Br,s . But D is 0 on B((sr )) by the definition of DBr,s . Therefore
D(σ (b)) = 0. Then (8.2) holds by Proposition 3.15.

Let B = B ′ ⊗ Br p,sp and b1 ⊗ b2 ∈ B ′ ⊗ Br p,sp is mapped to b′2 ⊗ b′1 ∈ Br p,sp ⊗ B ′ by
the affine crystal isomorphism. Then σ(b1) ⊗ σ(b2) should be mapped to σ(b′2) ⊗ σ(b′1).
Using (3.52) we have

D(b) = D(b1) + D(b′2) + H(b1 ⊗ b2),

D(σ (b)) = D(σ (b1))+ D(σ (b′2))+ H(σ (b1) ⊗ σ(b2)).

On the other hand, by the previous lemma we have

H(b1 ⊗ b2) − H(σ (b1)⊗ σ(b2)) = |λ(b′2)| − |λ(b2)|
|♦| .

Using the induction hypothesis we obtain

D(b) − D(σ (b)) = |B ′| − |λ(b1)|
|♦| + |Br p,sp | − |λ(b′2)|

|♦| + |λ(b′2)| − |λ(b2)|
|♦|

= |B| − |λ(b)|
|♦|

as desired. ��

123



One-dimensional sums in affine types 849

9 Energy function on max elements

9.1 Highest elements in max(Br1,s1 ⊗ Br2,s2)

Proposition 9.1 Let b1 ⊗ b2 ∈ hwI0(max(Br1,s1 ⊗ Br2,s2)) and r = min(r1, r2).

(1) Then b1 = b(r1, s1, (s
r1
1 )) and there exists a partition λ ⊂ (sr2

2 ) such that �(λ) ≤ r and
λr ≥ s2 − s1, and b2 ∈ B(sr2

2 ) is the tableau whose entries are i in the i th row in λ and
r1 + 1, r1 + 2, . . . from bottom to top outside of λ.

(2) Let λ be as in (1). Suppose b1 ⊗ b2 is sent to b′2 ⊗ b′1 by the combinatorial R. Then the
corresponding partition μ of b′1 is obtained from λ by adding s1 − s2 (resp. removing
s2 − s1) columns of height r if s1 ≥ s2 (resp. s1 ≤ s2).

Proof (1) is immediate from (3.41). For (2) note that the combinatorial R preserves the
weight. Given a highest element b1 ⊗ b2 as in (1), there is a unique highest element in
max(Br2,s2 ⊗ Br1,s1) of the same weight. ��

Example 9.2

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

⊗

5 6 6 7 9
4 5 5 6 8
3 3 3 5 7
2 2 2 2 6
1 1 1 1 5

is the unique element of hwI0(max(B4,4 ⊗ B5,5)) with associated λ = (4, 4, 3, 1). By the
combinatorial R it is sent to

5 5 5 5 5
4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
1 1 1 1 1

⊗
6 6 7 9
3 3 6 8
2 2 2 7
1 1 1 6

Our goal in this section is to prove the following proposition.

Proposition 9.3 Assume s1 ≥ s2 and let r = min(r1, r2). Let b1 ⊗ b2 ∈ hwI0(max(Br1,s1 ⊗
Br2,s2)) whose partition is λ. Then

H(b1 ⊗ b2) = 2

|♦| (rs2 − |λ|).

Let emax
i (b) = eεi (b)

i (b).

Lemma 9.4 Let Br,s be a KR crystal of type D(1)
n . Let α, β, γ ∈ Z≥0 sum to s and let b be

the element of max(Br,s) with α columns whose entries are 1, 2, . . . , r from bottom to top,
β columns with 2, 3, . . . , r + 1 and γ columns with 3, 4, . . . , r + 2. Then

(1) ε0(b) = 2α + β, ϕ0(b) = 0, and
(2) emax

0 (b) is the tableau with γ columns with 3, 4, . . . , r+2, β columns with 3, 4, . . . , r+
1, 1 and α columns with 3, 4, . . . , r, 2, 1.
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850 C. Lecouvey et al.

Proof b is a {3, 4, . . . , n}-highest weight vertex. As is explained in section 4.2 of [3], such
elements are in one-to-one correspondence with pairs of±-diagrams (P, p), where the inner
shape of P is the outer shape of p. b corresponds to (P, p), where P has the outer shape
(sr ) and the inner shape (sr−1, s − α), and p has the inner shape (sr−2, s − α, s − α − β).
The signs in P and p are all +. Once we have the corresponding pair of ±-diagrams, it is
easy to see ε0, ϕ0, and the action of e0. As a result we see emax

0 (b) corresponds to the pair of
±-diagrams with all + in (P, p) being replaced with −. In turn this yields the above tableau.

��
Lemma 9.5 Let b and λ be as in Proposition 9.1(1). Let r = min(r1, r2) and let wr

0 be
the longest element of the symmetric group Sr ⊂ W generated by s1 through sr−1. Then
hwI0(e

max
0 (bwr

0)) has associated partition λ− obtained by adding min(2, r − λ′j ) (resp.
min(1, r − λ′j )) boxes to the j th column for 1 ≤ j ≤ s2 for ♦ = (1, 1) (resp. ♦ = (1), (2)).

Example 9.6 Let b be the element of max(B4,4 ⊗ B5,5) of Example 9.2.

b =
4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

⊗

5 6 6 7 9
4 5 5 6 8
3 3 3 5 7
2 2 2 2 6
1 1 1 1 5

wr
0−→

4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

⊗

5 6 6 7 9
4 5 5 6 8
3 4 4 5 7
2 3 3 4 6
1 2 2 3 5

emax
0−→

1 1 1 1
2 2 2 2
4 4 4 4
3 3 3 3

⊗

7 7 1 1 1
6 6 6 8 2
5 5 5 5 7
4 4 4 4 6
3 3 3 3 5

hwI0−→
4 4 4 4
3 3 3 3
2 2 2 2
1 1 1 1

⊗

5 5 5 5 7
4 4 4 4 6
3 3 3 3 5
2 2 2 2 2
1 1 1 1 1

We indicate λ and λ− by boldface entries.

Proof of Lemma 9.5 We first treat the case of ♦ = (1, 1). bwr
0 is obtained from b by modi-

fying the λ-part of the second component of b as follows. The column of entries 1, 2, . . . , h
(h ≤ r ) reading from bottom to top is replaced by r − h + 1, r − h + 2, . . . , r .

Next we want to apply emax
0 . Suppose r1 ≤ r2. (The other case is similar.) Write bwr

0 =
b̃1 ⊗ b̃2. From Lemma 9.4 we have ϕ0(b̃1) = 0, and emax

0 (b̃1) is the tableau with s1 columns
of entries 3, 4, . . . , r1, 2, 1. To calculate emax

0 (b̃2) define a sequence a = ar2 � · · · � a2 � a1

where

a j = (( j + 2)s2−λr1−2 , . . . , (r1 + j − 2)s2−λ2 , (r1 + j − 1)s2−λ1)

for j = 1, 2, . . . , r2, and set b̃′2 = ea(b̃2). Then b̃′2 is the tableau with λr1 columns of
entries 1, 2, . . . , r2, λr1−1 − λr1 columns of entries 2, 3, . . . , r2 + 1 and s2 − λr1−1 columns
of entries 3, 4, . . . , r2 + 2. Again from Lemma 9.4 emax

0 (b̃′2) is the tableau with s2 − λr1−1

columns of 3, 4, . . . , r2 + 2, λr1−1 − λr1 columns of 3, 4, . . . , r2 + 1, 1 and λr1 columns of
3, 4, . . . , r2, 2, 1. Since ei , fi for 3 ≤ i ≤ n commutes with e0, we have b̃′′2 = emax

0 (b̃2) =
fRev(a)emax

0 (b̃′2), where Rev(a) is the reverse sequence of a. The j th row of b̃′′2 from bottom
(1 ≤ j ≤ r2) is given by

( j + 2)λr1−2( j + 3)λr1−3−λr1−2 · · · (r1 + j − 1)λ1−λ2(r1 + j)s2−λ1 for 1 ≤ j ≤ r2 − 2

(r2 + 1)λr1−2−λr1 (r2 + 2)λr1−3−λr1−2 · · · (r1 + r2 − 1)s2−λ1 2
λr1 for j = r2 − 1

(r2 + 2)λr1−2−λr1−1(r2 + 3)λr1−3−λr1−2 · · · (r1 + r2)
s2−λ1 1

λr1−1 for j = r2.

123



One-dimensional sums in affine types 851

Thus we have emax
0 bwr

0 = emax
0 (b̃1) ⊗ b̃′′2 .

Finally, we want to calculate the I0-highest vertex of emax
0 bwr

0 . This calculation is long but
not difficult, and it is checked that the statement is true.

For the proof for ♦ = (1), (2) we use the construction of a KR crystal in [3, §4.3&§4.4].
Namely, Br,s is realized as a suitable subset of an A(2)

2n+1-KR crystal where 0 actions are

defined in the same way as D(1)
n . Hence we do not repeat the proof. ��

Proof of Proposition 9.3 Let b′2 ⊗ b′1 be the image of b1 ⊗ b2 by the combinatorial R.
We apply wr

0 to both b1 ⊗ b2 and b′2 ⊗ b′1 as prescribed in Lemma 9.5. Noting that e0

commutes with e j and f j for j ≥ 3 we find the 0-signature of these elements are −2s1

⊗−λr+λr−1 and −2s2 ⊗−λr+λr−1+2s1−2s2 for ♦ = (1, 1),−s1 ⊗−λr and −s2 ⊗−λr+s1−s2

for ♦ = (2),−2s1 ⊗ −2λr and −2s2 ⊗ −2λr+2s1−2s2 for ♦ = (1) by Lemma 9.4. Setting
b◦1 ⊗ b◦2 = hwI0(e

max
0 ((b1 ⊗ b2)

wr
0)) and recalling (3.42) we have

H(b◦1 ⊗ b◦2) = H(b1 ⊗ b2) +
⎧

⎨

⎩

(λr + λr−1) − 2s2 for ♦ = (1, 1)

λr − s2 for ♦ = (2)

2λr − 2s2 for ♦ = (1).

This formula implies the desired result. ��
9.2 The general case

In this section let g be an affine algebra such that g0 is of type Bn, Cn , or Dn . Using Remark 4.1
with ν = (sr ) ∈ P∞

n there is a unique embedding of An−1-crystals

Br,s
A

∼= BAn−1(s
r )

i A−→ BI0(s
r ) ⊂ Br,s, (9.1)

which yields an An−1-crystal isomorphism

Br,s
A

∼= tops(max(Br,s)). (9.2)

We use Notation 3.17. Define

BA = B R
A = Br1,s1

A ⊗ · · · ⊗ B
r p,sp
A (9.3)

where Br,s
A is the type A(1)

n−1 KR crystal. There is an embedding

i R
A : B R

A → B R (9.4)

given by the tensor product of embeddings (9.1), inducing the isomorphism of An−1-crystals

B R
A
∼= tops(max(B R)). (9.5)

Theorem 9.7 For ♦ ∈ {(1), (2), (1, 1)}, B R ∈ C∞(g) and ν ∈ P∞
n such that |ν| = |R| we

have

X
♦
ν,B R (q) = X

∅
ν,B R

A
(q

2
|♦| ). (9.6)

Proof Immediate from (9.5) and Proposition 9.10 below. ��
Lemma 9.8 Let R and R′ be sequences of rectangles that are reorderings of each other with
B R, B R′ ∈ C∞(g) and let g : B R → B R′

be the unique isomorphism of I -crystals. Denote
by gA : B R

A → B R′
A the corresponding isomorphism of crystals of type A(1)

n−1. Then on B R
A

we have

g ◦ i R
A = i R′

A ◦ gA (9.7)
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Proof One may reduce to the case that R = (R1, R2) and R′ = (R2, R1) and further to
considering only An−1-highest weight vertices. But then the two sides must agree since
B R1

A ⊗ B R2
A is An−1-multiplicity-free. ��

Lemma 9.9 For B R1 ⊗ B R2 ∈ C∞(g), we have H
B

R1
A ⊗B

R2
A

= H B R1⊗B R2 ◦ i R1,R2
A .

Proof This follows from Proposition 9.3 and the analogous type A(1)
n−1 result [29,31]. ��

Proposition 9.10 D A = D ◦ i A on BA.

Proof By (3.52), induction, and Lemmata 9.8 and 9.9, we may reduce to the case of a single
tensor factor Br,s . Since Br,s

A
∼= BAn−1(s

r ) as An−1-crystals [14], DBr,s
A

= 0. But i A sends

the An−1-highest weight vertex of Br,s
A to b(r, s, (sr )) = u(Br,s), on which DBr,s has value

0 by definition. ��

10 Main results

10.1 The decomposition theorem

We prove Conjecture 1.1 and any tensor product of KR crystals.

Theorem 10.1 Let B R ∈ C∞(g) where g is of kind ♦ ∈ {(1), (2), (1, 1)}. Then for any
λ ∈ Pn we have

X
♦
λ,B R (q) = q

|R|−|λ|
|♦|

∑

ν∈Pn

∑

δ∈P♦
n

cν
λ,δ X

∅
ν,B R

A
(q

2
|♦| ).

Proof We have

X
♦
λ,B R (q) = q

|R|−|λ|
|♦|

∑

b∈hwλ
I0

(B R)

q D(σ (b))

= q
|R|−|λ|
|♦|

∑

b∈hwλ
An−1

(̂max(B R))

q D(b)

by (3.58) and Theorems 8.1 and 7.1. max(B R) has I0-decomposition

max(B R) =
⊕

ν∈Pn|ν|=|R|

⊕

c∈hwν
I0

(B R)

B(c).

For c ∈ hwI0(max(B)), let ̂B(c) := B̂(c) for the dual polynomial part of B(c); see
Sect. 4.1. Taking the dual polynomial part, we have

m̂ax(B R) =
⊕

ν∈Pn|ν|=|R|

⊕

c∈hwν
I0

(B R)

̂B(c).

Taking hwλ
An−1

, we have

hwλ
An−1

(m̂ax(B R)) =
⊔

ν∈Pn|ν|=|R|

⊔

c∈hwν
I0

(B R)

hwλ
An−1

(̂B(c)).
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For c ∈ hwν
I0

(B R), observe that D(b) = D(c) for b ∈ hwλ
An−1

(̂B(c)) since these vertices b
all belong to the same classical component B(c). This gives

X
♦
λ,B R (q) = q

|R|−|λ|
|♦|

∑

ν∈Pn|ν|=|R|

∑

c∈hwν
I0

(B R)

q D(c)card hwλ
An−1

(̂B(c)).

But by (2.3) we have

card hwλ
An−1

(̂B(c)) =
∑

δ∈P♦
n

cν
λ,δ.

By Theorem 9.7 we have

X
♦
λ,B R (q) = q

|R|−|λ|
|♦|

∑

ν∈Pn|ν|=|R|

∑

δ∈P♦
n

cν
λ,δ

∑

c∈hwν
I0

(B R)

q D(c)

= q
|R|−|λ|
|♦|

∑

ν∈Pn

∑

δ∈P♦
n

cν
λδ X

∅
ν,B R (q

2
|♦| ).

��
10.2 Link with parabolic Lusztig q-analogues

We now give a brief overview on parabolic Lusztig q-analogues in type An−1, Bn, Cn

and Dn . Assume G = GLn, SO2n+1, S P2n or SO2n . Consider U a subset of 	+
G and denote

by πU the standard parabolic subgroup of G (that is, containing the Borel subgroup BG)

defined by U . Write LU for the Levi subgroup of the parabolic πU and lU its corresponding
Lie algebra. Let RU be the subsystem of roots spanned by U and R+

U the subset of positive
roots in RU . Then RU and R+

U are respectively the set of roots and the set of positive roots
of lU .

The Levi subgroup LU corresponds to the removal, in the Dynkin diagram of G, of the
nodes which are not associated to a simple root belonging to U . When U �= 	+

G , write

V = 	+
G \ U = {α j1 , . . . , α jp }

where for any k = 1, . . . , p, α jk is a simple root of 	+
G and j1 < · · · < jp . Then set

l1 = j1, lk = jk − jk−1, k = 2, . . . , p and l p+1 = n − jp . The Levi group LU is isomorphic
to a direct product of classical Lie groups determined by the (p+1)-tuple lU = (l1, . . . , l p+1)

of nonnegative integers summing to n. Namely, we have

LU �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

GLl1 × · · · × GLl p if G = GLn

GLl1 × · · · × GLl p × SO2l p+1+1 if G = SO2n+1

GLl1 × · · · × GLl p × Sp2l p+1 if G = Sp2n

GLl1 × · · · × GLl p × SO2l p+1 if G = SO2n .

Let PU = Pl1 × · · · × Pl p+1 . Then each (p + 1)-partition of PU can be regarded as a
dominant weight for LU . For any μ ∈ PU , let V LU (μ) be the finite dimensional irreducible
representation of LU with highest weight μ. We denote by μ ∈ N

n the concatenation of the
parts of the partitions μ(k), k = 1, . . . , p.
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Define the partition function PU by the formal identity

∏

α∈R+
G\R+

U

1

1 − eα
=

∑

β∈Zn

PU (β)eβ .

Consider λ ∈ Pn and μ ∈ PU then we have [7, Theorem 8.2.1]

[V G(λ) : V LU (μ)] =
∑

w∈WG

(−1)�(w)PU (w ◦ λ − μ).

Here [V G(λ) : V LU (μ)] is the branching multiplicity of the irreducible LU -module V LU (μ)

in the restriction of V G(λ) to LU . For GLn, SO2n+1, S P2n, SO2n, we define the q-partition
function PU

q from the formal identity

∏

α∈R+
G\R+

U

1

1 − qeα
=

∑

β∈Zn

PU
q (β)eβ . (10.1)

In type Bn, we shall also need another partition function. Consider the weight function L on
the set R+

SO2n+1
of positive roots of SO2n+1 such that L(α) = 2 (resp. L(α) = 1) on the long

(resp. short) roots. The partition function PU,L
q is defined by

∏

α∈R+
SO2n+1

\R+
U

1

1 − q L(α)eα
=

∑

β∈Zn

PU,L
q (β)eβ .

Definition 10.2 Let λ be a partition of Pn and μ ∈ PU .

1. The parabolic Lusztig q-analogue K G,U
λ,μ (q) is the polynomial

K G,U
λ,μ (q) =

∑

w∈WG

(−1)�(w)PU
q (w ◦ λ − μ) (10.2)

where w ◦ λ = w(λ+ ρG) − ρG .

2. The stable parabolic Lusztig q-analogue ∞K G,U
λ,μ (q) is the polynomial

∞K G,U
λ,μ (q) =

∑

w∈Sn

(−1)�(w)PU
q (w ◦ λ − μ) for G = GLn, S P2n, SO2n (10.3)

∞K G,U
λ,μ (q) =

∑

w∈Sn

(−1)�(w)PU,L
q (w ◦ λ − μ) for G = SO2n+1. (10.4)

Remark (i) When U = 	+
G , lU is the Cartan subalgebra of g and K G,U

λ,μ (q) is the usual
Lusztig q-analogue.

(ii) The terminology for the polynomials ∞K G,U
λ,μ (q) is motivated by the following iden-

tities proved in [18]

∞K G,U
λ,μ (q) = ∞K G,U

λ+κ,μ+κ (q) for G = GLn, SO2n+1, S P2n, SO2n

∞K G,U
λ,μ (q) = K G,U

λ+kκ,μ+kκ (q) for G = GLn, S P2n, SO2n and k sufficiently large

where κ = (1, . . . , 1) ∈ Pn . In particular ∞K GLn ,U
λ,μ (q) = K GLn ,U

λ,μ (q).

The problem of the positivity of the coefficients appearing in the polynomials K G,U
λ,μ (q)

has been barely addressed in the literature.
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Conjecture 10.3 Let λ be partition of Pn and μ ∈ PU such that μ is a partition. Then
K G,U

λ,μ (q) has nonnegative coefficients.

We have the following result due to Broer [2].

Theorem 10.4 Let λ be a partition of Pn and μ = (μ(1), . . . , μ(p)) a dominant weight of
LU such that the μ(k)’s are rectangular partitions of decreasing widths with μ(p) = 0 when
LU is not a direct product of linear groups. Then K G,U

λ,μ (q) has nonnegative coefficients.

This theorem has been recently extended in [8]. Nevertheless, as far as we are aware,
Conjecture 10.3 has not been completely proved yet.

Let η = (η1, . . . , ηp) be a p-tuple of positive integers summing n. Consider λ ∈ Pn

and μ = (μ(1), . . . , μ(p)) a p-tuple of partitions such that μ(k) belongs to Pηk for any
k = 1, . . . , p. Recall that K

λ,♦
μ(1),...,μ(p) is the multiplicity of V G(λ) in W G(μ(1)) ⊗ · · · ⊗

W G(μ(p)). Write μ ∈ N
n for the n-tuple obtained by reading successively the parts of the

partitions μ(1), . . . , μ(p) defining μ from left to right. Let a be the minimal integer such that

a ≥ |μ| − |λ|
2

and (10.5)

̂λ = (a − λn, . . . , a − λ1) ∈ N
n, μ̂ = (a − μn, . . . , a − μ1) ∈ N

n .

Then̂λ is a partition of length n.
For any k = 1, . . . , p, set η̂k = ηp−k+1 and η̂ = (̂η1, . . . , η̂p). Denote by

μ̂ = (μ̂(1), . . . , μ̂(p)) the p-tuple of partitions such that μ̂(1) = (μ1, . . . , μη̂1) ∈ Pη̂1

and μ̂(k) = (μη̂1+···+η̂k−1+1, . . . , μη̂1+···+η̂k ) ∈ Pη̂k for any k = 2, . . . , p. The Lie groups
GLn, SO2n+1,

S P2n, SO2n contain Levi subgroups LU isomorphic to GL η̂1 × · · · ×GL η̂p . With the above
terminology, the corresponding subset of simple roots is

U = {0 < αi < η̂1} ∪1≤k≤p−1 {αi | η̂1 + · · · + η̂k < i < η̂1 + · · · + η̂k+1}. (10.6)

In particular when G = SO2n+1, S P2n or SO2n, U never contains the simple root αn .

Example 10.5 Consider μ(1) = (5, 4, 4), μ(2) = (6, 3, 2) and μ(3) = (4, 3). Take λ =
(4, 4, 3, 2, 2, 1, 0, 0). Then a = 8, μ̂(1) = (5, 4), μ̂(2) = (6, 5, 2), μ̂(3) = (4, 4, 3) and
̂λ = (8, 8, 7, 6, 6, 5, 4, 4).

The coefficients K
λ,♦
μ(1),...,μ(p) defined in (2.1) can in fact be regarded as branching coef-

ficients corresponding to the restriction to Levi subgroup isomorphic to a direct product of
linear groups. The following duality was established in [18].

Proposition 10.6 With the previous notation for ̂λ, μ̂ we have for G = SO2n+1, S P2n and
SO2nK

λ,♦
μ(1),...,μ(p) =∞ K G,U

̂λ,μ̂
(1).

We then define for G = SO2n+1, S P2n and SO2n the q-analogue K
λ,♦
μ(1),...,μ(p) (q) of

K
λ,♦
μ(1),...,μ(p) by setting

K
λ,♦
μ(1),...,μ(p) (q) =∞ K G,U

̂λ,μ̂
(q).
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Theorem 10.7 [18]

1 We have the decomposition

K
λ,♦
μ(1),...,μ(p) (q) = q

|μ|−|λ|
|♦|

∑

ν∈Pn

∑

δ∈P♦
n

cν
λ,δ K GLn ,U

ν,μ (q
2
|♦| ). (10.7)

2 The polynomial K
λ,♦
μ(1),...,μ(p) (q) has nonnegative integer coefficients when the μ(k)’s are

rectangular partitions of decreasing widths

Remark (i) Assertion 2 of the previous theorem follows directly from Theorem 10.4 for
G = S P2n and SO2n . For G = SO2n+1, we have to use Assertion 1 and Theorem 10.4
for G = GLn .

(ii) Proposition 10.6 generalizes a similar duality result in type An−1. For (μ(1), . . . , μ(p))

a p -tuple of partitions, we have K GLn ,U
ν,μ (1) = cν

μ(1),...,μ(p) where cν
μ(1),...,μ(p) is the

multiplicity of V GLn (ν) in V GLn (μ(1)) ⊗ · · · ⊗ V GLn (μ(p)). We set for completion

K
λ,∅
μ(1),...,μ(p) (q) = K GLn ,U

ν,μ (q). (10.8)

Recall the following theorem connecting one-dimensional sums in affine type A(1)
n with

parabolic Lusztig q-analogues for GLn .

Theorem 10.8 [30] Let B be the tensor product of type A(1)
n KR crystals associated to the

p-tuple of rectangular partitions (R(1), . . . , R(p)) of decreasing widths. Then for any parti-
tion λ in Pn, we have

X
∅
λ,B(q) = q ||R||Kλ,∅

R(1),...,R(p) (q
−1) = q ||R|| K GLn ,U

ν,μ (q−1)

where U is defined in (10.6) and

||R|| =
∑

1≤i< j≤p

|Ri ∩ R j |. (10.9)

Theorem 10.9 Let B be a tensor product of p KR crystals. Assume the widths of the rectan-
gles R(1), . . . , R(p) associated to B are decreasing and the large rank hypothesis is satisfied.
Then, for any λ ∈ Pn

X
♦
λ,B(q) = q

2(||R||+|R|−|λ|)
|♦| K

λ,♦
R(1),...,R(p) (q

−1) = q
2(||R||+|R|−|λ|)

|♦| ∞K G,U
̂λ,μ̂

(q−1)

where U is defined in (10.6) and ||R|| in (10.9).

Proof This follows from Theorems 10.8, 10.7 and 10.1. ��
Theorem 10.10 Let B be a tensor product of KR crystals. Assume the large rank hypothesis
is satisfied. Then, for any λ ∈ Pn

X
♦t

λt ,Bt (q) = q
2(||R||+|R|−|λ|)

|♦| X
♦
λ,B(q−1).

Proof For ♦ = ∅, the equality K
λt ,∅
(R(1))t ,...,(R(p))t (q) = q‖B‖Kλ,♦

R(1),...,R(p) (q
−1) was proved

in [16]. By using Theorem 10.8, one obtains X
∅
λt ,Bt (q) = q‖B‖X

∅
λ,B(q−1). Theorem 10.1

gives

X
♦t

λt ,Bt (q) = q
|B|−|λ|
|♦|

∑

ν∈Pn

∑

δ∈P♦
n

cνt

λt ,δt X
∅
νt ,Bt (q

2
|♦| ).
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But cνt

λt ,δt = cν
λ,δ. Thus by using the previous identity for ♦ = ∅

X
♦t

λt ,Bt (q) = q
2‖B‖
|♦| + |B|−|λ|

|♦|
∑

ν∈Pn

∑

δ∈P♦
n

cν
λ,δ X

∅
ν,B(q−

2
|♦| ) = q

2(||R||+|R|−|λ|)
|♦| X

♦
λ,B(q−1).

��

11 Splitting preserves energy

In this section we assume g is of affine type with g0 of type Bn, Cn , or Dn .
For B ∈ C(g) we define the opposite grading D : B → Z (the intrinsic energy) to DB . We

show in Theorem 11.3 that it is invariant under the row-splitting map S. The normalization
of D is somewhat subtle. For example, D is nonnegative with minimum value zero, while
D may be negative. Also, if B1, B2 ∈ C are both tensor products of KR crystals, then the
formula relating HB1,B2 and H B1,B2 , requires knowledge of all the KR tensor factors in B1

and B2.
For this reason, instead of an inductive definition analogous to that of DB we make the

following definitions.
For Bi = B Ri = Bri ,si ∈ C∞(g) for i ∈ {1, 2} we define

HB1,B2(b1 ⊗ b2) = |R1 ∩ R2| − H B1,B2(b1 ⊗ b2) (11.1)

for b1 ∈ B1 and b2 ∈ B2, where |R1∩ R2| = min(r1, r2) min(s1, s2) is the number of cells in
the rectangular partition given by the intersection of the Young diagrams of the rectangular
partitions R1 and R2. We define

DB R1 (b) = −DB R1 (b) for b ∈ B R1 . (11.2)

Analogous to (3.53) we define

DB R (b) =
p

∑

i=1

DB Ri (b
(1)
i ) +

∑

1≤i< j≤p

HBi ,B j (bi ⊗ b(i+1)
j ). (11.3)

We make the same definitions (11.1), (11.2), and (11.3) for type A(1)
n−1 also. Then (11.2) reads

D
B

R1
A

= −D
B

R1
A

≡ 0. Using (3.53) we deduce that

DB R (b) = ||R|| − DB R (b) for b ∈ B R (11.4)

DB R
A
(b) = ||R|| − DB R

A
(b) for b ∈ B R

A (11.5)

where ||R|| is defined in (10.9). DB R
A

has nonnegative values with minimum value 0 in the
large rank case, while DB R has negative values in general.

Proposition 11.1 For any sequence of rectangles R such that B Ri ∈ C∞(g),

DB R
A
= DB R ◦ i R

A . (11.6)

Proof As in the proof of Proposition 9.10, we reduce to checking the case R = (R1) and

H
B

R1
A ,B

R2
A

= HB R1 ,B R2 ◦ i R1,R2
A . (11.7)

For (11.6) for R = (R1) we see that both sides yield zero by definition. Equation (11.7)
follows from Lemma 9.9 and the definitions. ��
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Let SA : B R
A → BS(R)

A be type A(1)
n−1 row-splitting of the first tensor factor and SA :

B R
A → Brows(R)

A the type A complete splitting into rows (split first factor if possible and use
R-matrices).

Proposition 11.2 With R such that B Ri ∈ C∞(g),

i S(R)
A ◦ SA = S ◦ i R

A
(11.8)

i rows(R)
A ◦ SA = S ◦ i R

A .

Proof By Lemma 9.8 and the definitions, we may reduce the statement on S to that of S and
check S only in the single tensor factor case B = B R = Br,s . In this case tops(max(B)) is
the An−1-component of b(r, s, (sr )) ∈ B(sr ) ⊂ Br,s, tops(max(B)) consists of type Bn, Cn ,
or Dn KN tableaux of shape (sr ) with no barred letters, and (11.8) is easily verified. ��
Theorem 11.3 For B = B R ∈ C∞(g♦),

DB R = DBS(R) ◦ S (11.9)

DB R = DBrows(R) ◦ S. (11.10)

Proof We need only prove (11.9). Since energy functions are constant on I0-components, it
suffices to check (11.9) on b ∈ tops(B R). We have

D(b) = D(σ (b))− |R| − |λ(b)|
|♦|

by Theorem 8.1 and (11.4). Since S is an embedding of I0-crystals, S(b) ∈ tops(BS(R)).
Applying the previous argument to S(b) we have

D(S(b)) = D(σ (S(b)))− |S(R)| − |λ(S(b))|
|♦| .

But |S(R)| = |R| and |λ(S(b))| = |λ(b)| since S is an embedding of I0-crystals. So
it suffices to prove that D(σ (b)) = D(σ (S(b))). By Proposition 6.3, this is equivalent
to D(σ (b)) = D(S(σ (b))). So by Theorem 7.1 we are reduced to prove the equality
D(c) = D(S(c)) for any c ∈ m̂ax(B R). Since D is constant on I0-components we need
only show D(c) = D(S(c)) for c ∈ hwI0(max(B R)) = hwAn−1(tops(max(B R))). By Prop-
osition 11.1 applied for R and S(R), the desired equality reduces to the identity DA(a) =
DA(SA(a)) for any a ∈ B R

A which was established in [29]. ��
Remark 11.4 In the statement of Theorem 11.3, it should be unnecessary to assume that g

is reversible and B R ∈ C∞(g). However for S to make sense there cannot be spin nodes in
the Ri .
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Appendix A: Proofs for Section 4

A.1. Proof of Proposition 4.5

Proof of Proposition 4.5 Let b ∈ L♦(ν, δ) for δ ∈ P♦
n . Observe that the letters of the canon-

ical subtableau C♦
δ collectively do not affect any An−1-string. Now b|ν\δ is a semistandard
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tableau in the alphabet {n̄, . . . , 1̄}. It is well-known that the set of skew tableaux of a fixed
shape, form an An−1-crystal. This proves 1.

For Assertion 2, based on the above observations, b is An−1-highest weight, if and only
if b|ν/δ is An−1-highest weight as an element of the type An−1 skew tableau crystal. But it
is well-known that such a skew tableau is An−1-highest weight if and only if its row-reading
word is Yamanouchi. Finally, since the tableau has letters in {n̄, . . . , 1̄}, if it is An−1-highest
weight, then its weight must have the form λ for some λ ∈ Pn .

For Assertion 3, suppose b admits fn .

(1) ♦ = (1, 1): The application of fn to b, changes an n (which by the signature rule, must
be in a corner cell of δ) to a n − 1. Since every n sits atop a n̄, Assertion 3 follows.

(2) ♦ = (1): The application of fn to b changes some 0 to n̄ or some n to 0 (say in
row i). The tableau fn(b) contains C (1)

δ− where δ− ∈ P(1)
n is obtained from δ by remov-

ing a cell in row i . The only way that fn(b) is not in L(1)(ν, δ−) is if fn(b)|ν/δ− contains
two letters n̄ in the same column, either because the changed letter became n̄ and now
lies beneath another n̄, or because in b there was a pair of letters n̄ atop each other but
one was in δ and the other not in δ, but now in fn(b) both are outside δ−. However the
assumption that δi+1 ≤ δi and the signature rule, imply that this cannot occur.

(3) ♦ = (2): The application of fn to b changes some n to n̄ (say in the i th row). The
tableau fn(b) contains C (2)

δ− where δ− ∈ P(2)
n is obtained from δ by removing two cells

in row i . Similarly to the case ♦ = (1), one may deduce Assertion 3.

We prove Assertions 4 and 5 by induction on |δ| = |ν| − |λ|. Equivalently we find a
sequence a of indices in I0 such that fa(b) = rowtab(bν). By Assertion 1 we may assume b
is a An−1-lowest weight vertex.

If |δ| = 0 then b = rowtab(bν) and the empty sequence works. Suppose δ �= ∅. Since b is
An−1-lowest weight and ν ∈ P∞

n the skew tableau b|ν\δ admits no An−1-lowering operator
and contains letters in {n − 2, . . . , 2̄, 1̄}. So the letters outside b|δ = C♦

δ are irrelevant for the
n-signature. In the various cases we see that fn(b) ∈ L♦(ν, δ−) where δ− ∈ P♦

n is obtained
from δ in the same way that λ− is obtained from λ in Lemma 4.9. Induction completes the
proof. ��
Example A.1 λ = (4, 3, 3, 1, 1) ∈ P(5, 4) since δ = (3, 3, 1, 1) ∈ P(1,1).

rowtab(b(5, 4, λ)) =

n n − 2 n − 2 n − 4
n n − 1 n − 1 n − 3
n n n n − 2
n n n n − 1
n n n n

and rowtab(b
(1,1)
min (5, 4)) =

n n n n
n n n n
n n n n
n n n n
n n n n

.

Proof of Lemma 4.9 Let rowtab = rowtab(sr ), b′ = rowtab(b(r, s, λ−)) and b =
rowtab(b(r, s, λ)). It suffices to show

εn( fã′(h)(b
′)) ≥ � (A.1)

ϕn( fã′(h)(b
′)) > 0 (A.2)

u��n ⊗ b = fã(h)(u��n ⊗ b′). (A.3)

Let δ− ∈ P(1,1) be the complementary partition to λ− within (sr ). We will need to keep track
of certain letters that may contribute to the n-signature.

Suppose♦ = (1, 1). By Proposition 4.5(2), the restriction of b′ to the skew shape (sr )\δ−,
has the letter n̄ at the bottom of each column and a letter n − 1 atop the letter n̄ if it fits into
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(sr ). We may think that every n not in the top row is paired (in the (n−1)-signature) with the
n̄ sitting atop it. The n’s in the top row (which may occur if r is even) are unpaired and occur
at the end of the rowwise n-signature reading. There are s unpaired letters n̄ in the bottom
row, and an unpaired n − 1 in each column of δ that is not of maximum height 2�r/2�. We
now apply fã′(h) to b′; call the result b′′. It only changes letters at the top of the pth column

from the right, from (reading down) n − h + 3, . . . , n − 1, n, to n − h + 1, . . . , n − 2. The
bottom row still consists of s copies of n which occur at the beginning of the n-signature, so
(A.1) holds. The dominant elements in the n-signature of b′′ are the unpaired letters n in the
top row if r is even, and the copy of n in the active column, since the relevant letters changed
from n − 1, n, n to n − 3, n − 2, n. Therefore (A.2) holds. Applying fn to b′′ changes the n
in the active column to the letter n − 1, with final result rowtab(b(r, s, λ)).

Now assume ♦ = (2). Similarly, the restriction of b′ to the skew shape (sr ) \ δ−, has the
letter n̄ at the bottom of each column and a letter n̄ or n − 1 atop the letter n̄ if it fits into (sr ).
Moreover, each letter n is paired with a letter n̄ in the (n − 1)-signature of b′. Therefore,
b′′ = fã′(h)(b

′) is obtained by changing the letters at the top of the pth and (p+1)th columns

from (reading down) n − h + 2, . . . , n − 1, n, to n − h + 1, . . . , n − 2, n − 1. In b′ and b′′
the bottom contains at least

⌈ s
2

⌉

letters n̄ which are unpaired in the n-signature. Thus (A.1)
holds. In the columns p and p+ 1, the letters n are changed in n − 1. Therefore (A.2) holds.
Applying fn to b′′ changes the n in the active column p to the letter n, with final result
rowtab(b(r, s, λ)) as desired.

The case ♦ = (1) is similar. ��

Appendix B: Proofs for Section 5

In this appendix we assume ♦ = (1, 1) and g♦ = D(1)
n .

B.1. Reduction to relation on automorphisms of Br,s

Our first reduction for proving Proposition 5.9 in the case ♦ = (1, 1) is to rephrase it in
terms of a relation among various automorphisms on Br,s . Recall the automorphism ς on
Br,s from Sect. 5.1.

Let ς ′ ∈ Aut(D(1)
n ) be defined by the permutation of I s given by (n − 1, n). ς ′ is also

not a special automorphism. It coincides with ∗ ∈ Aut(D(1)
n ) if n is odd. There is a unique

bijection ς ′ : Br,s → Bς ′(r),s

ς ′ei = eς ′(i)ς
′ for all i ∈ I. (B.1)

It is explicitly given by exchanging n’s with n̄’s in KN tableaux. For r ∈ I0 nonspin, ς ′ is an
involution on Br,s .

Lemma B.1 If

ς ′σ = σς (B.2)

holds on Br,s , then Proposition 5.9 holds.

Proof We have

ς ′σe0 = σςe0 = σe1ς = en−1σς = en−1ς
′σ = ς ′enσ.
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Applying the involution ς ′, we have σe0 = enσ on Br,s . By Proposition 5.8 it follows that
σ satisfies (5.3) as required. ��
B.2. Rule for rowtab(σ (�(P))) for a ±-diagram P

We give a rule for rowtab(σ (�(P))) for any ±-diagram P .

Rule 1. Rotate P 180 degrees and place it in the r × s rectangle so that the NE corners
of the rotated P and the rectangle coincide.

2. Fill each column of the inner shape of P by sequences of the form k, . . . , n − 2,

n − 1 reading from the top, place n in each node where + is situated, and fill all
columns from top to bottom in the rest of the rectangle by sequences of the form
n, n, n, n, . . ., always starting with n.

3. In each row perform the following substitution. Suppose there are k+n’s and
k−n’s in the row. Then replace them with (n−1)k−nk+−k−(n − 1)k− if k+ ≥ k−,
and
(n − 1)k+nk−−k+(n − 1)k+ otherwise.

Example B.2 Let n = 9, r = 6, s = 7.

−

+ −
+

− −
+

�→

+
− −

+
− +

−

�→

9 9 8 7 6 5 4
9 9 9 8 7 6 5
9 9 9 9 8 7 6
9 9 9 9 9 8 7
9 9 9 9 9 9 8
9 9 9 9 9 9 9

�→

8 8 8 7 6 5 4
8 9 8 8 7 6 5
8 9 9 8 8 7 6
8 8 9 8 8 8 7
8 8 8 8 8 8 8
8 8 8 9 8 8 8

Proposition B.3 For any ±-diagram P for Br,s , the above rule gives rowtab(σ (�(P))).

The proof of this key technical result is given in the following subsection. We use it to
finish up the proofs of Sect. 5.

Proposition B.4 For any b ∈ hwJ (Br,s), we have σς(b) = ς ′σ(b).

Proof Compare P and S(P) where S is the involution on ±-diagrams corresponding to the
automorphism ς on Br,s . The inner shapes are the same and in each column, if there is +
in P , then there is no + in S(P), and vice versa. Therefore, at the moment when Rule 2 is
finished, the number of n’s and n’s in each row are switched for P and S(P). Hence, we
have σ�(S(P)) = ς ′σ�(P). This is what we needed to show. ��

Proof of Proposition 5.9 Let b ∈ Br,s . Let b◦ = hwJ (b) and let b = (i1, i2, . . . ) be a finite
sequence in J such that b = fb(b◦). Then

σς(b) = fσς(b)σς(b◦),
ς ′σ(b) = fς ′σ(b)ς

′σ(b◦),

where the Dynkin automorphisms ς, ς ′, and σ act on sequences of Dynkin nodes in the
obvious way. Since σς(b) = ς ′σ(b) and σς(b◦) = ς ′σ(b◦) by Lemma 5.7, we obtain
σς(b) = ς ′σ(b). ��
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B.3. Proof of Proposition B.3

We need some notation. Let r ′ = �r/2�. For λ ∈ P(r, s) and 0 ≤ j ≤ r ′, define c j by

λ =
r ′

∑

j=0

(c j − c j+1)ωr−2 j

with c0 = s and cr ′+1 = 0. Then a sequence (c1, c2, . . . , cr ′) such that s ≥ c1 ≥ c2 ≥ · · · ≥
cr ′ ≥ 0 is in one-to-one correspondence with the I0-highest element b(r, s, λ) ∈ Br,s .

It remains to prove Proposition B.3. First we assume the ±-diagram P has no column for
which a + can be added. Let λ be the outer shape of P, c−i the number of columns that has

a − at height i in P . Set ai = ∑i
j=1 c−j . By [25, Prop. 2.2] we have

�(P) = f(1ar ,...,(n−1)ar ,nar ,(n−2)ar ,...,(r+1)ar ,rar ,...,2a2 ,1a1 )b(r, s, λ).

(The notation ai in [25, Prop. 2.2], is equal to
∑r

j=1 c−j .) Hence, by Lemma 5.7 and the
definition of σ we obtain

σ(�(P)) = f((n−1)ar ,...,1ar ,0ar ,2ar ,...,(n−2)a2 ,(n−1)a1 )b(r, s, λ).

Lemma B.5 The row tableau

t1 = f(2ar ,...,(n−r−1)ar ,(n−r)ar ,...,(n−2)a2 ,(n−1)a1 )b(r, s, λ)

differs from b(r, s, λ) only in the top row, which is given by

ns−λ1 n − 1
λ1−λ3−c−2 n − 3

λ3−λ5−c−4 · · · n − r + 1
λr−1−c−r 2

ar

for r is even and

ns−λ2−c−1 n − 2
λ2−λ4−c−3 n − 4

λ4−λ6−c−5 · · · n − r + 1
λr−1−c−r 2

ar

for r is odd.

Proof We consider the r even case. Consider the (n − 1)-signature. +’s in the (2 j)th row
and −’s in the (2 j + 1)th row from bottom cancel out for any j = 1, . . . , r − 1. Hence
f((n−1)a1 ) acts only on the top row. We proceed similarly. ��

Let t be the row tableau constructed by the Rule 3. The following lemma allows us to
calculate the action of Kashiwara operators on t before applying Rule 3.

Lemma B.6 Let t− be another row tableau obtained by putting nk+nk− instead of apply-
ing Rule 3 in each row. One can formally apply en and fn on t−. Then the action of en

(resp. fn) commutes with applying Rule 3. A similar fact hold also for en−1 and fn−1 by
replacing nk+nk− with nk−nk+ .

Proof It suffices to prove the statement for a one-row tableau. This is done easily. ��
Lemma B.7 The row tableau t2 for

e(1ar ,...,(n−2)ar ,(n−1)ar )t

differs from t only in the bottom row, which is given by 1ar ns−ar .
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Proof In view of the previous lemma we can replace t with t−. Note that the lowest row of
t is given by nar ns−ar . Since e((n−1)ar ) acts only on the lowest row, we get (n − 1)ar ns−ar .
The application of e(1ar ,...,(n−2)ar ) is easier. ��

Next we want to show f(0ar )t1 = t2. To do this we calculate the {3, 4, . . .}-highest ele-
ment of t1 and t2. Let N (α) (resp. N ′(α)) be the number of letter α in t1 (resp. (t2)−) (see
Lemma B.6 for the definition of t−). Define a sequence a by a = ar � · · · � a2 � a1 where

a j = (( j + 2)s+N (3), . . . , (n − 2)s+N (n− j−1), (n − δ
(2)
j )s+N (n− j))

for j = 1, 2, . . . , r − 1, and ar = ((r + 2)s−N (2), . . . , (n − 2)s−N (2), (n − δ
(2)
r )s−N (2)).

Here δ
(2)
j = 1 if j is even, = 0 otherwise and � means the concatenation of sequences. We

also define a′ = a′1a′2 · · · a′r by replacing N (k) with N ′(k) for k = 3, 4, . . . , n − 1 and N (2)

with N ′(1) in a. Then we have the following lemma.

Lemma B.8 1. eat1 is a {3, 4, . . .}-highest element whose j th row from bottom is given by
( j + 2)s for j = 1, . . . , r − 1 and (r + 2)s−ar 2

ar for j = r .
2. ea′ t2 is a {3, 4, . . .} -highest element whose j th row from bottom is given by 1ar 3s−ar for

j = 1 and ( j + 1)ar ( j + 2)s−ar for j = 2, . . . , r .
3. N (k) = N ′(k) for k = 3, 4, . . . , n − 1 and N (2) = N ′(1).

Proof For (1) and (2) simply calculate the action of ea and ea′ using Lemma B.6. For (3)
note that for 1 ≤ j ≤ n − 3N (n − j) = λ j − c−j+1 if j is odd, = λ j+1 otherwise when r is

even, and N (n − j) = λ j+1 if j is odd, = λ j − c−j+1 otherwise when r is odd. We also have

N (2) = N ′(1) = ar . For the definition of the partition λ, c−j or ar see the paragraph before
Lemma B.5. ��

Now we can prove Proposition B.3 under the assumption that P has no column for which
a + can be added. Using Lemma 9.4 with α = 0, β = ar , γ = s − ar and with applying
ear

1 , the results in Lemma B.8 show that f(0ar )eat1 = eat2. Since f0 commutes with e j for
3 ≤ j ≤ n, we obtain f(0ar )t1 = t2, but this equality is what we wanted to show.

Finally, we prove Proposition B.3 for general ± -diagram P . We show by induction on
the number of columns for which a + can be added. If there is no such column, the statement
is proven already. Now let P be a ±-diagram with at least one column for which a + can
be added. Let c be the rightmost such column. Let P ′ be the ±-diagram obtained from P
by adding a + in column c. Let h be the height of this added +. Then it is known [28] that
�(P) = f(1,...,h−1,h)�(P ′). Hence, we have

σ(�(P)) = f(n−1,...,n−h)σ (�(P ′)).

Since we know the row tableau of σ(�(P ′)) is given by the Rule by induction hypoth-
esis, it suffices to calculate the right hand side and see it agrees with the row tableau of
σ(�(P)) given by the Rule. Careful calculation using Lemma B.6 shows that the application
of f(n−1,...,n−h) changes the row tableau of σ(�(P ′)) only in the rightmost column with let-
ters n − h + 1, n − h + 2, . . . , n, . . . reading from top to n − h, n − h + 1, . . . , n − 1, . . ..
This completes the proof of Proposition B.3.
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