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Abstract We introduce the formalism of positive super currents on R
n , in strong analogy

with the theory of positive currents in C
n . We consider intersection of currents and Lelong

numbers, and as an application we show that the formalism can be used to describe tropical
varieties. This is similar in spirit to the fact that in complex analysis the current of integration
of an analytic variety can be identified with a closed, positive current.
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1 Introduction

In complex analysis, the natural counterpart of convexity in the real setting, is that of plu-
risubharmonicity, and there are many similarities between convex- and plurisubharmon-
ic functions. For instance, a smooth function defined on R

n is convex if and only if its
Hessian is positive definite, and a smooth function defined on C

n is plurisubharmonic iff its
(complex) Hessian is positive definite. On the complex side, a natural way of studying pluri-
subharmonicity is provided by the framework of so called positive currents. In fact, a closed
(1, 1)-current is positive iff it locally can be represented as i∂∂̄ϕ for a plurisubharmonic
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1012 A. Lagerberg

function ϕ. However, one could argue that from the point of view of geometry, the study of
positive currents rather than that of plurisubharmonic functions, is in a sense more natural.
For instance, a variety of higher co-dimension than 1, relates to closed, positive currents
of higher bi-degree. The aim of this paper is to introduce a notion of positive currents cor-
responding to convex functions defined on R

n . This is carried out by letting ourselves be
inspired by the complex setting (indeed, many of the results and ideas will probably be
familiar to the mathematician knowledgeable in pluripotential theory). The ideas can be seen
as a continuation of those developed in [3], and they are also influenced by the paper [14].
Another paper which treat convex analysis with tools from complex analysis is [11], with
which the present article share some similarities. We will consider the framework of positive
super currents in the context of tropical geometry, proving, amongst other things, that every
tropical hypersurface corresponds to a positive super current satisfying certain criterions.
This is similar in spirit to the fact that in complex analysis, a complex hypersurface can be
represented by a positive current satisfying certain hypotheses. The epithet “super” of “super
current” comes from the field of super geometry and super spaces, where the Berezin integral
(cf. [2]) share many properties with the integration of super forms considered in this article.
However, in order to not to burden the language more than necessary, we will refer to super
currents merely as currents, throughout the article. Our hope is for this work to provide a
useful tool for attacking problems within tropical geometry, and for it to serve as a gateway
between complex analysis and tropical geometry.

2 Positive super forms and currents in R
n

Let V and W denote real vector spaces of dimension n, with coordinates x = (x1, . . . , xn)

and ξ = (ξ1, . . . , ξn) respectively, for which we fix an isomorphism J : V → W, such that
J (x) = ξ . We denote its inverse by J as well, so that J (ξ) = x , if x ∈ V is the element for
which J (x) = ξ . One should think of V and W as two copies of R

n identified via the iso-
morphism J . Let E = V × W = {(x, ξ), x ∈ V, ξ ∈ W}. The map J extends to E by letting
J (x, ξ) = (J (ξ), J (x)), so that J 2 = id. We consider the space E of smooth differential
forms on E whose coefficients only depend on x . Thus, for x �→ αK L (x) smooth functions,

α =
∑

K ,L

αK ,L (x)dxK ∧ dξL (2.1)

is such a form, where we use the notation dxK = dxk1 ∧· · ·∧dxkp if K = (k1, . . . , kp), |K |
denotes the length of the vector K , and similarly for |L| = q . We use the convention that
we only sum over indices K and L such that if K = (k1, . . . , kp) then k1 < · · · < kp , and
similarly for the index L . If α is of the form (2.1), we say that α is a form of bi-degree (p, q),
and write α ∈ E p,q where 0 ≤ p, q ≤ n. A form α of degree (p, p) is called symmetric if
αK L = αL K for all indices K , L . We identify the isomorphism J with J ∗,which is to say
J (dxi ) = dξi , and we extend J to an arbitrary (p, q)-form by the rule

J

⎛

⎝
∑

K ,L

αK ,L (x)dxK ∧ dξL

⎞

⎠ =
∑

K ,L

αK ,L (x)dξK ∧ dxL .

Thus a (p, p)-form α is symmetric iff J (α) = (−1)pα. Note that we use the letter J to
denote several, slightly different maps, but we hope that no confusion will arise. Finally we
put ω = ∑n

i=1 dxi ∧ dξi and ωn = 1
n!ω

n . In this article, we will consider three different
notions of positivity for forms:
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Super currents and tropical geometry 1013

Definition 2.1 A (n, n)-form v is positive if v = gωn for some function g ≥ 0. Let v be a
symmetric (p, p)-form.

(i) The (p, p)-form v is weakly positive if

v ∧ α1 ∧ J (α1) ∧ · · · ∧ αn−p ∧ J (αn−p)

is a positive (n, n)-form for every choice of (1, 0)-forms α1, . . . , αn−p.

(ii) We say that the (p, p)-form v is positive, if

v ∧ (σn−p)α ∧ J (α) ≥ 0

for every (n − p, 0)-form α, where

σk = (−1)
k(k−1)

2 .

(iii) Finally, the (p, p)-form v is strongly positive if

v =
∑

s

csα1,s ∧ J (α1,s) ∧ · · · ∧ αp,s ∧ J (αp,s)

where cs ≥ 0, and α j,s are (1, 0)-forms.

In the following elementary lemma, which we shall state without proof, we collect some
properties concerning positive forms.

Lemma 2.1 The following properties hold:

(1) For (1, 0)-forms αi ,

α1 ∧ J (α1) ∧ · · · ∧ αp ∧ J (αp) = σpα1 ∧ α2 ∧ · · · ∧ αp ∧ J (α1) ∧ · · · ∧ J (αp).

(2) If wi are strongly positive forms for i = 1, . . . , s and v is a weakly positive form, then
v ∧ w1 ∧ · · · ∧ ws is weakly positive.

(3) The wedge product of finitely many symmetric forms is symmetric.
(4) We have the following inclusions:

{strongly positive forms} ⊂ {positive forms} ⊂ {weakly positive forms}.
Another elementary observation is that the property of a form being positive is reflected

in the associated matrix of the form, and we shall again omit the proof:

Proposition 2.1 Let α =∑K ,L αK L(σp · dxK ∧ dξL) be a symmetric (p, p)-form. Then α
is positive iff the matrix (αK L )K ,L is positive definite. Moreover, if α is positive, we can find
(p, p)-forms γk for which

α =
∑

K

αK K (σp · γK ∧ J (γK )),

where αK K ≥ 0, for each K .

The set of weakly positive and strongly positive forms are convex cones, by definition dual
under the paring

(v,w) �→ v ∧ w,
where v is a weakly positive (p, p)-form and w is a strongly positive (q, q)-form, and
p +q = n : By definition, v is weakly positive iff v∧w is positive for each strongly positive
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1014 A. Lagerberg

w, and since the bidual of a convex cone is equal to the closure of the cone, we see that w is
strongly positive iff w ∧ v is positive for every weakly positive v. Moreover, one can show
that the cone of positive forms is self-dual. As an easy corollary we obtain:

Lemma 2.2 A symmetric, weakly positive (n −1, n −1)-form is strongly positive. The same
applies for symmetric (1, 1)-forms.

In particular, the Lemma implies that the three different notions of positivity coincides for
forms of bi-degree (0, 0), (1, 1), (n − 1, n − 1) and (n, n). Thus, for such forms we will
usually only use the epithet “positive”.

Let V
′,W′ be real vector spaces of dimension m, between which we fix an isomor-

phism J ′ as above, and let ψ : V → V
′ be an affine map. We let E

′ = V
′ × W

′. Then
ψ extends, uniquely, to an affine map from E to E

′, which we denote by ψ̃, by demanding
that ψ̃ ◦ J = J ′ ◦ ψ̃ . We can now define the pull-back operator ψ̃∗ : E(E′) → E(E), by
letting

ψ̃∗
⎛

⎝
∑

I,J

αI J dxI ∧ dξJ

⎞

⎠ =
∑

I,J

(αI J ◦ ψ)ψ∗(dxI ) ∧ ψ∗(dξJ )

where, if I = (i1, . . . , i p), we as usual let ψ∗(dxI ) = ψ∗(dxi1) ∧ · · · ∧ ψ∗(dxi p ), and
analogously for ψ∗(dξJ ). Observe that the pull-back operator commutes with the operator
J , and also with the operator d . When no confusion seems likely to arise, we will denote the
extension ψ̃ by ψ as well. Note that if we did not demand ψ to be affine, the pullback of a
form in E could have coefficients depending on the variable ξ , and thus not be a map from E
to E . If ψ : E → E is an affine map, an easy computation shows that

ψ̃∗(ωn) = |det (ψ)|2ωn . (2.2)

This implies that ifψ corresponds to a change of coordinates, ψ̃∗ωn = cωn for some constant
c > 0. Thus, positivity does not depend on the form ω which we use as a reference. If ψ
corresponds to an inclusion of a subspace V ⊂ V

′
, we call ψ̃∗(α) the restriction of the form

α to the subspace V.

Proposition 2.2 With the above notation the following holds: α is a weakly positive (p, p)-
form on E

′
, iff the restriction ofα to every p-dimensional subspace is positive, that is, if ψ̃∗(α)

is positive for every inclusion map ψ : V → V
′
, where V is a p-dimensional subspace of V

′
.

The proof is almost identical in the complex case, and such a proof can be found in [8, p. 102].
We want to define the integral of an (n, n)-form over the space E. For this, we assume

that the vector space V is endowed with an inner product (·, ·), and choose an orthonormal
basis {e1, . . . , en}, with corresponding coordinates (x1, . . . , xn). We endow W with the same
structure via the isomorphism J . Then dx1 ∧ · · · ∧ dxn is a (n, 0) form on V, dξ1 ∧ · · · ∧ dξn

is an (0, n)-form on W, and every (n, n)-form α can be written as

α = α0(x)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ ξn,

for some function α0 on V.

Definition 2.2 The integral of an (n, n)-form α as above is given by
∫

E

α =
∫

V

α0(x)dx1 ∧ · · · ∧ dxn .
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Super currents and tropical geometry 1015

The above definition depends only on the inner product chosen. Indeed, if we choose a dif-
ferent orthonormal basis, say {e′

1, . . . , e
′
n}, the map ψ which sends ei to e

′
i has determinant

1 or −1. In either case, by formula (2.2) this means that
∫

E

ψ̃∗(α) = (±1)2
∫

E

α =
∫

E

α.

Thus the definition is independent of which orthonormal basis we choose to work with. In
particular, it does not depend on any orientation of V. One can also understand the definition
as follows: the choice of inner product allows us, as above, to choose a volume-element
dξ1 ∧ · · · ∧ dξn on W, the total volume of which we define to be

∫

W

dξ1 ∧ · · · ∧ dξn = 1.

Then, by formally applying Fubini’s theorem,
∫

E

α0(x)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ ξn =
∫

V

α0(x)dx1 ∧ · · · ∧ dxn ·
∫

W

dξ1 ∧ · · · ∧ ξn

=
∫

V

α0(x)dx1 ∧ · · · ∧ dxn .

If 
 ⊂ V is open, we define
∫


×W

α =
∫

E

χ
(x) · α0(x)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ ξn,

where χ
 denotes the characteristic function of the set 
. By formula (2.2) we have the
following change of variable formula for a non-singular, affine map ψ : V → V

′
:

∫

E

ψ̃∗α =
∫

V

|det (ψ)|2α0(ψ(x))dx1 ∧ · · · ∧ dxn = |det (ψ)|
∫

E

α. (2.3)

If L ⊂ V is an oriented submanifold of dimension k, and if

α =
∑

|I |=k

αI (x)dxI ∧ dξ1 ∧ · · · ∧ dξn

is an arbitrary (k, n)-form, we define the integral of α over L × W by

∫

L×W

⎛

⎝
∑

|I |=k

αI (x)dxI ∧ dξ1 ∧ · · · ∧ dξn

⎞

⎠ =
∑

|I |=k

∫

L

αI (x)dxI .

Remark 2.1 It might be interesting at this point to compare with the complex setting. First
of all, the map J could be compared with the usual complex structure which identifies C

n

with R
n + iRn . Under this identification we compactify the imaginary directions by consid-

ering R
n + iRn/Zn . A convex function f on R

n can then be regarded as a plurisubharmonic
function on R

n + iRn/Zn, by demanding the extension to be independent of the imaginary
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1016 A. Lagerberg

directions. In a similar way, we can consider a real n-form α as a complex (n, n)-form α̃,
and in a natural way,

∫

Rn+iRn/Zn

α̃ =
∫

Rn

α,

which could be seen as an analogue of our definition,
∫

Rn

dξ1 ∧ · · · ∧ dξn = 1.

Generalizing this slightly, we use another lattice in order to compactify the imaginary direc-
tions. Thus, if � is any lattice, we consider R

n + iRn/�. Such a lattice induces an inner
product on R

n . Indeed, � is isomorphic to Z
n via an affine map, and there is a one-to-one

correspondence between affine maps and inner products. In this sense, we can say that choos-
ing an inner product on R

n (thereby defining integration of (p, p)-forms along p-dimensional
subspaces of E) corresponds to compactifying using a lattice as above, and vice versa.

We define the operator d : E p,q → E p+1,q by the formula

d

⎛

⎝
∑

|I |=p,|J |=q

αI J dxI ∧ dξJ

⎞

⎠ =
∑

|I |=p,|J |=q

(
n∑

i=1

∂αI J (x)

∂xi
dxi ∧ dxI ∧ dξJ

)
.

In our setting, we have the following version of Stokes’ formula.

Proposition 2.3 For 
 ⊂ V a smoothly bounded, open subset, and α an (n − 1, n)-form
on E,

∫


×W

dα =
∫

∂
×W

α.

Proof By the usual Stokes’ formula, we have that
∫


×W

dα =
∑ ∫


×W

d(αI J (x)dxI ) ∧ dξJ =
∑∫




d(αI J (x)dxI )

∫

W

dξJ

=
∑∫

∂


(αI J (x)dxI )

∫

W

dξJ =
∫

∂
×W

α.

We define the operator d# : E p,q → E p,q+1 by

d# = J ◦ d ◦ J,

which in coordinates is equivalent to

d# =
n∑

j=1

∂x j ∧ dξ j .

As immediately follows from the definition, d2 = (d#)2 = 0, and moreover, d# ◦ J = J ◦d .
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Super currents and tropical geometry 1017

2.1 Currents and positivity

In this section, we assume the reader to be familiar with the basic theory of currents, but
we include some proofs to illustrate the setting in which we work. The precise defini-
tion of a (super) current is tedious and almost identical to the complex case, so we refer
to [4] for the details. The basic idea is that by introducing a topology on D p,q = {α ∈
E p,q ;α has compact support}, we can consider the topological dual of D p,q , which we define
to be the space of currents Dn−p,n−q . Suffice it so say that an element of Dn−p,n−q can be
viewed as a (n − p, n − q)-form whose coefficients are distributions which only acts on V,

that is, the coefficients are “independent of ξ”. Thus every T ∈ Dp,q can be written as

T =
∑

|I |=p,|J |=q

TI J dxI ∧ dξJ ,

where TI J are uniquely defined distributions on V. We denote the paring between an element
α ∈ D p,q and T ∈ Dn−p,n−q by 〈T, α〉 , and we use the convention that

〈TI J dxI ∧ dξJ , α0dxI c ∧ dξJ c 〉 = ± 〈TI J , α0〉 ,
where the sign is determined by the sign of the permutation sending dxI ∧dξJ ∧dxI c ∧dξJ c to
ωn . For convenience, when a current acts on an element of E , we always assume this element
to have compact support, without explicitly stating so. As usual we can define dT, d#T, dd#T
by 〈dT, α〉 = ± 〈T, dα〉 and so forth. Thus we say that a current T is d-closed if dT = 0,
and similarly for d#. These operators so defined, act continuously on the space of currents.

Now, let ρ be a smooth, radial function with support in the unit ball, satisfying
∫
ρ = 1,

and put ρε(x) = 1
εn ρ(

x
ε
), for ε > 0. If we consider the convolution of a current T =∑

|I |=p,|J |=q TI J dxI ∧ dξJ with this function ρε , defined in the usual way as

T � ρε =
∑

|I |=p,|J |=q

(TI J � ρε)dxI ∧ dξJ , (2.4)

then {T � ρε}ε>0 defines a family in E p,q converging weakly to the current T, as ε → 0.We
call this family a regularization of the current T , and it is easy to see that if dT = 0, then
d(T � ρε) = 0, so regularization preserves the property of being closed.

Lemma 2.3 Let 
 ⊂ V be an open set. For a d-closed current T ∈ Dp,q(
 × W) there
exists a T ′ ∈ E p,q(
× W) such that T − T ′ = d R for some R ∈ Dp−1,q(
× W).

Proof Let

T =
∑

|I |=p,|J |=q

TI J dxI ∧ dξJ .

If we denote by SJ the (p, 0)-currents
∑

|I |=p TI J dxI , then

T =
∑

|J |=q

SJ ∧ dξJ ,

and by the hypothesis d SJ = 0. It is well known from theory of currents in V, that for every
such SJ there is a smooth (p, 0)-form S

′
J such that SJ − S

′
J = d RJ for some (p − 1, 0)-

current RJ (where we identify (p, 0)-currents on E with p-currents on V). Thus, if we let
T

′ =∑|J |=q S
′
J ∧ dξJ , and R =∑|J |=q RJ ∧ dξJ we have that T

′
is smooth and
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1018 A. Lagerberg

T − T
′ =

∑

|J |=q

(SJ − S
′
J ) ∧ dξJ =

∑

|J |=q

d RJ ∧ dξJ = d
∑

|J |=q

RJ dξJ = d R,

as required.

Proposition 2.4 Let 
 ⊂ V be a star shaped open subset. If T ∈ Dp,q(
× W) is d-closed
and q ≥ 1, then there exists an element T̃ ∈ Dp−1,q(
 × W) such that dT̃ = T . An
analogous statement holds if T is instead d#-closed.

Proof By Lemma 2.3, it suffices to show the proposition in the case where T has smooth
coefficients, that is, T ∈ E p,q . To this end assume that

T =
∑

|I |=p,|J |=q

TI J dxI ∧ dξJ ,

with TI J smooth. If we, as above, denote by SJ the (p, 0)-forms
∑

|I |=p TI J dxI , then
T =∑|J |=q SJ ∧ dξJ , and since dT =∑|J |=q(d SJ )∧ dξJ = 0 by the hypothesis, we see
that d SJ = 0. Since
 is star shaped, the Poincaré lemma tells us that there exists (p −1, 0)-
forms, S̃J such that d S̃J = SJ . Thus, if we consider the (p−1, q)-form T̃ =∑|J |=q S̃J ∧dξJ ,
we see that it satisfies

dT̃ =
∑

|J |=q

d S̃J ∧ dξJ =
∑

|J |=q

SJ ∧ dξJ = T .

If T is instead d#-closed, the same argument as above still applies with the obvious changes.

We now come to the corresponding notions of positivity for currents.

Definition 2.3 We say that a symmetric (p, p)-current T is weakly positive if

〈T, α〉 ≥ 0

for each smooth strongly positive (n − p, n − p)-form α with compact support. T is positive
if

〈
T, σn−pβ ∧ J (β)

〉 ≥ 0,

for every smooth (p, 0)- form β with compact support. T is strongly positive, if

〈T, γ 〉 ≥ 0

for each smooth, weakly positive form γ of compact support.

Proposition 2.5 A continuous function f : V → R is convex iff dd# f is a positive (1,1)-
current.

Proof This is clear if f is smooth since the matrix associated to dd# f is the Hessian of
f , so we can apply Proposition 2.1. The general case follows by approximation: if f is
convex but not smooth, we can find a family { fε}ε of smooth, convex functions such that
fε → f.Using the definition of currents, we see that dd# fε → dd# f in the weak sense, and
thus,

〈
dd# f, α

〉 = limε→0
〈
dd# fε, α

〉 ≥ 0, for every positive (n − 1, n − 1)-form α. Hence
dd# f ≥ 0. Conversely, if dd# f ≥ 0, we put fε(x) = ∫

f (y)ρε(x − y) where ρε is the
regularizing kernel from above. One easily verifies that dd# fε ≥ 0 and hence fε is convex.
Moreover, fε is smooth, fε ≥ f and fε → f uniformly on compacts. Thus f is convex, as
desired.
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Super currents and tropical geometry 1019

Of course, if f is also smooth, then dd# f is a positive, closed (1, 1)− f orm. The following
proposition is fundamental for what is to come; it is the counterpart in our setting of the so
called ddc-lemma from complex analysis:

Proposition 2.6 (dd#-lemma) Let T be a closed, positive (1,1)-current on E. Then there
exists a convex function f : V → R for which

T = dd# f.

Proof By regularization, we can assume T to be smooth. Since T is also closed, by Propo-
sition 2.4 we can find a smooth (0, 1)-current

S =
n∑

i=1

Si dξi

such that T = d S. Moreover, T being symmetric implies ∂
∂x j

Si = Ti j = Tji = ∂
∂xi

S j , and
so we see that

d# S =
n∑

i, j=1

∂

∂x j
Si dξ j ∧ dξi = 0.

Another application of Proposition 2.4 provides us with a function f such that S = d# f . We
conclude that

T = dd# f,

and since T is positive, f must be convex.

Using this proposition we can show the following:

Proposition 2.7 If T is a closed, positive (1,1)-current, then each component of (SuppT )c

is convex.

Proof By the dd#-lemma, we know that T = dd# f , for some convex function f . Then f
is affine on (SuppT )c, and thus, by a standard argument, the convexity of f implies the
proposition.

3 Intersection theory of currents

Let Mp denote the space of (p, p)- forms on E whose coefficients are measures, endowed
with the following topology: if Ti , T ∈ Mp then Ti → T iff Ti (α) → T (α) for every
(n − p, n − p)-form α with compact support and whose coefficients are continuous func-
tions. Note that Mp ⊂ Dp,p as a set, but the topology of Mp is stronger than that induced by
Dp,p . However, a standard proposition in the setting of currents with measure coefficients,
which carries over to our case, is the following (cf. [8]):

Proposition 3.1 Let Ti , T ∈ Mp. Then Ti → T in Mp if and only if

Ti (α) → T (α),

for every compactly supported, smooth (n − p, n − p)-form α, and if for every compact
subset L ⊂ R

n we have,

sup
i

max
I,J

|(Ti )I J |(L) < +∞. (3.1)
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1020 A. Lagerberg

Here, if μ is a measure |μ| denotes the total variation of μ. Now, let us consider the map
given by

�p( f1, . . . , f p) = dd# f1 ∧ · · · ∧ dd# f p,

where fi is smooth and convex for each index i ; let us denote the set of such functions by
K . We consider �p as a map from K p to Mp . Our aim is to show that this map extends, in
a natural way, to a map defined on p-tuples of convex functions (that need not be smooth).
By the inclusion Mp ⊂ Dp,p , this extension can be considered as a (p, p)-current, which
we will call the intersection product. The scheme to prove this extension property is the
following: first we prove that �p maps bounded subsets of K p to bounded subsets of Mp .
By the Banach–Alaoglu theorem, this implies that for every bounded subset A ⊂ K p , the
family {�p(x), x ∈ A} contains a weakly convergent subsequence. Thus there exists at least
one accumulation point of {�p(x), x ∈ A} in Mp , and we then show that, in fact, there exists
only one, unique accumulation point. Before we turn to the details, we need an important
property of positive currents:

Proposition 3.2 If

T =
∑

|I |=|J |=p

TI J (σp · dxI ∧ dξJ )

is a symmetric, positive (p, p)-current, then each coefficient TI J satisfies

| 〈TI J , φ〉 | ≤ C ·
∑

|I |=p

〈TI I , φ〉 ,

for each smooth, non-negative function with compact support, φ. In particular, TI I is a
positive measure, and TI J is a signed measure, for each multi-indices I, J .

Proof The argument is clearest when T is smooth, so let us first assume this is the case. By
Proposition 2.1 the p2 × p2 matrix (TI J ), is positive definite and symmetric at every point
of R

n , and thus defines a metric g on R
p2

. Let (eI )|I |=p be an orthonormal basis of R
p2

such
that g(eI , eJ ) = TI J . Then the Cauchy–Schwartz inequality gives us

TI J = g(eI , eJ ) ≤ √g(eI , eI ) ·√g(eJ , eJ ) = √TI I ·√TJ J ≤ TI I + TJ J

2
, (3.2)

where we used the inequality between geometric and arithmetic mean in the last inequality.
By exchanging eI for −eI in (3.2) we have established the inequality

|TI J (x)| ≤ C ·
∑

|I |=p

TI I (x) (3.3)

for some constant C > 0, which proves the proposition when T is smooth. If T is not smooth,
we can still define an associated metric as follows: for each smooth, non-negative function
with compact support, φ, we define

g(eI,eJ ) = 〈T, σn−pφdxI ∧ dξJ
〉
,

and extend by linearity. Then g is a positive definite, symmetric form on R
p2

, since, if
v =∑I vI eI ∈ R

p2
, then

g(v, v) =
〈

T, σn−pφ

(
∑

I

vI dxI

)
∧ J

(
∑

I

vI dxI

)〉
=
〈
T, σn−p ṽ ∧ J (ṽ)

〉
≥ 0,
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where ṽ = √
φ
∑

I vI dxI . Thus, g(eI , eI ) = 〈TI I , φ〉 ≥ 0, which implies that TI I is a
positive measure. Moreover, g(eI , eJ ) = 〈TI J , φ〉, and by the argument used above,

| 〈TI J , φ〉 | ≤ C ·
∑

|I |=p

〈TI I , φ〉 ,

for some constant C > 0. The proposition follows.

A subset A ⊂ K p is bounded if for every compact subset L , and every element ( f1, . . . ,

f p) ∈ A, we have that

max
i

sup
x∈L

| fi (x)| ≤ CL ,

for some constant CL (these norms, indexed by L , define the topology of K p).

Proposition 3.3 If A ⊂ K p is bounded, then for each compact set L ⊂ R
n, there exists a

constant DL such that if

T = dd# f1 ∧ · · · ∧ dd# f p

where ( f1, . . . , f p) ∈ A, the coefficients of T satisfy

|TI J |(L) :=
∫

L

|TI J | ≤ DL .

Proof By the previous proposition, we need only to prove that TI I ≤ D̃L , for every I .
Assume first that p = 1. Fix a compact set L and let f ∈ K . Moreover, let χ be a smooth
function equal to 1 on L and 0 outside a small neighbourhood of L . Then, since ∂2

i i f ≥ 0,
by partial integration we get,

∣∣∣∣∣∣

∫

L

∂2
i i f

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∫

E

χ(x)dd# f (x) ∧ d̂xi ∧ d̂ξi

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

Suppχ×Rn

f (x)dd#χ(x) ∧ d̂xi ∧ d̂ξi

∣∣∣∣∣∣∣
≤ sup

x∈Suppχ
| f (x)| · Cχ ,

using thatχ has uniformly bounded second-order partial derivatives on every compact subset.
Thus, there exists a constant D̃L such that

|Tii |(L) ≤ D̃L

for each i , proving the case p = 1.Assume now that we have proven the proposition for p =
k−1.We want to show that it holds for p = k as well. To this end, let S = dd# f2∧· · ·∧dd# fk ,
and fix a multi-index I of length k. Then, using the same notation as in the case p = 1,

∣∣∣∣∣∣

∫

L

(dd# f1 ∧ S)I I dV

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∫

E

χ(x)dd# f1(x) ∧ S ∧ d̂xI ∧ d̂ξI

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∫

Suppχ×Rn

f1(x)dd#χ(x) ∧ S ∧ d̂xI ∧ d̂ξI

∣∣∣∣∣∣∣
.
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1022 A. Lagerberg

By the induction hypothesis, S has coefficients satisfying |SK L |(Suppχ) ≤ DSuppχ . Thus
∣∣∣∣∣∣

∫

L

(dd# f1 ∧ S)I I dV

∣∣∣∣∣∣
≤ sup

x∈Suppχ
| f1(x)| · Cχ ,

and we are done.

Proposition 3.4 Let f1, . . . , f p be convex (but not necessarily smooth) functions, and let,
for each i, { f k

i }k be a sequence of smooth, convex functions converging uniformly to fi

on compact subsets. Then the sequence {dd# f k
1 ∧ · · · ∧ dd# f k

p }k ⊂ Mp converges to an

element in Mp. If {gk
i }k is another sequence of smooth convex functions converging, uni-

formly on compact subsets, to fi for each i , then the limits of dd# f k
1 ∧ · · · ∧ dd# f k

p and

dd#gk
1 ∧ · · · ∧ dd#gk

p are equal.

Proof Let A = {( f k
1 , . . . , f k

p ), k ≥ 1}. Obviously, the set A is bounded. Using Proposi-
tion 3.3, we see that for each compactly supported (n − p, n − p)-form α with continuous
coefficients, there exists a constant Dα , for which

(dd# f k
1 ∧ · · · ∧ dd# f k

p )(α) ≤ Dα · max
I J

sup
x∈Suppα

|αI J (x)|.

Thus, applying the Banach–Alaoglu theorem, we see that the sequence {dd# f k
1 ∧ · · · ∧

dd# f k
p }k contains a convergent subsequence, {dd# f jk

1 ∧ · · · ∧ dd# f jk
p }k , in Mp . To prove

the in fact the sequence {dd# f k
1 ∧ · · · ∧ dd# f k

p }k converges, we first assume that p = 1 and
let α be a smooth, compactly supported (n − 1, n − 1)-form. Then,
∣∣∣∣∣∣

∫

E

(dd# f k
1 − dd# f jk

1 ) ∧ α
∣∣∣∣∣∣
=
∣∣∣∣∣∣

∫

E

( f k
1 − f jk

1 ) ∧ dd#α

∣∣∣∣∣∣
≤ sup

x∈Suppα
| f k

1 − f jk
1 | · Cα

which tends to 0 as k → ∞. This proves that limk→∞ dd# f k
1 = limk→∞ dd# f jk

1 converges

in D1,1. However, by Proposition 3.3, both of the forms dd# f k
1 and dd# f jk

1 satisfy (3.1), and

so, by Proposition 3.1, dd# f k
1 and dd# f jk

1 converge to the same limit in Mp as well. Now,
assume the statement is proved for p = m − 1, and let Sk = dd# f k

2 ∧ · · · ∧ dd# f k
p . Then,

since Sk is closed,
∫

E

(dd# f k
1 ∧ Sk − dd# f jk

1 ∧ S jk ) ∧ α =
∫

E

( f k
1 Sk − f jk

1 S jk ) ∧ dd#α,

where α is a test-form of degree (n − p, n − p). Since

f jk
1 S jk ∧ dd#α = ( f jk

1 − f1)S
jk ∧ dd#α + f1S jk ∧ dd#α,

and since
∣∣∣∣∣∣

lim
k→∞

∫

E

( f jk
1 − f1)S

jk ∧ dd#α

∣∣∣∣∣∣
≤ lim

k→∞ sup
x∈Suppα

| f jk
1 − f1| ·

∫

E

S jk ∧ dd#α = 0

by the induction hypothesis, we see that

lim
k→∞

∫

E

(dd# f k
1 ∧ Sk − dd# f jk

1 ∧ S jk ) ∧ α = lim
k→∞

∫

E

( f k
1 Sk − f1Sk) ∧ dd#α = 0,
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where we used that limk→∞
∫

E
f1S jk ∧ dd#α = limk→∞

∫
E

f1Sk ∧ dd#α by assumption.
Moreover, by Proposition 3.3, the coefficients of Sk satisfy

|Sk
I J |(Suppα) ≤ Cα.

Thus, yet another application of Proposition 3.3 and Proposition 3.1, shows that the sequence
{dd# f k

1 ∧ · · · ∧ dd# f k
p }k converges. The last statement is proved by repeating the argument

above, with f jk
i replaced by gk

i .

We can now define the intersection product dd# f1 ∧ · · · ∧ dd# f p , for f1, . . . , f p convex
functions on R

n , by using the continuity of �p: it is well known that for a convex function
f one can find a sequence of smooth, convex functions f k which is monotone in k, and
which converge to f pointwise. By Dini’s theorem (for its statement, see the discussion after
Eq. (3.10), f k converges uniformly to f on every compact subset of R

n . Applying this for
each function fi , by using Proposition 3.4 we can define,

dd# f1 ∧ · · · ∧ dd# f p = lim
k→∞ dd# f k

1 ∧ · · · ∧ dd# f k
p ,

and the definition does not depend on the way we approximate the functions fi .

Remark 3.1 A slight adaptation of the above arguments shows that if S is a (strongly) positive,
closed (p, p)-current, we can, in the same way as above, define the intersection product
S ∧ dd# f1 ∧ · · · ∧ dd# fk , which then is a (strongly) positive, closed, (p + k, p + k)-current.

We collect some immediate observations:

Proposition 3.5 The intersection product dd# f1 ∧· · ·∧dd# f p is a strongly positive current,
it is symmetric in its arguments, and its coefficients are measures. Moreover, it satisfies the
relation

Supp(dd# f1 ∧ · · · ∧ dd# f p) ⊂ Supp(dd# f1) ∩ · · · ∩ Supp(dd# f p). (3.4)

We also have the following stability property:

Proposition 3.6 Let f, g1, . . . , gp be convex functions, where p < n. If { fε} is a family of
continuous functions converging pointwise to f, for which

sup
ε

sup
x∈K

fε(x)

is bounded for every compact set K ⊂ V, then

lim
ε→0

dd# fε ∧ dd#g1 ∧ · · · ∧ dd#gp = dd# f ∧ dd#g1 ∧ · · · ∧ dd#gp.

Proof Since the current dd#g1 ∧· · ·∧dd#gp has measure coefficients when written in coor-
dinates, we see that if α is a compactly supported, smooth (n − p − 1, n − p − 1)-form, the
(n, n)-current dd#g1 ∧ · · · ∧ dd#gp ∧ dd#α can be represented by a positive measure on R

n

with compact support. By the dominated convergence theorem,

lim
ε→0

〈
dd# fε ∧ dd#g1 ∧ · · · ∧ dd#gp, α

〉 = lim
ε→0

∫

E

fε ∧ dd#g1 ∧ · · · ∧ dd#gp ∧ dd#α

=
∫

E

f ∧ dd#g1 ∧ · · · ∧ dd#gp ∧ dd#α = 〈dd# f ∧ dd#g1 ∧ · · · ∧ dd#gp, α
〉
,

which proves the claim.
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1024 A. Lagerberg

Proposition 3.7 If f 1, . . . , f p are convex functions, and for each i ∈ {1, . . . , p} there is a
family of convex functions { f i

εi
}εi>0 such that

lim
εi →0

f i
εi
(x) = f i (x),

for every x ∈ V, and which satisfy that supε supx∈K f i
εi
(x) is bounded for every compact set

K ⊂ V and for each i . Then

lim
εi1 →0

. . . lim
εi p →0

dd# f 1
εi1

∧ · · · ∧ dd# f p
εi p

= dd# f 1 ∧ · · · ∧ dd# f p, (3.5)

for any permutation (i1, . . . , i p) of the n-tuple (1, . . . , p).

Proof We can apply Proposition 3.6 successively to the left hand side of 3.5 to obtain the
desired conclusion.

Definition 3.1 The Monge-Ampère measure of a convex function f is the positive measure
defined by

M A( f ) = (dd# f )n := dd# f ∧ · · · ∧ dd# f,

where the product is taken n times.

Note that we here identify closed, positive (n, n)-currents with positive measures. If f is
smooth, then

M A( f ) = det

(
∂2 f

∂xi∂x j

)
dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn .

A very nice paper concerning real Monge-Ampère measures is [14]. In fact, our approach in
this paper could be considered as a generalization of the formalism defined there in. From
that paper, it is clear that the following proposition holds:

Proposition 3.8 Let f be a convex, 1-homogeneous function, that is, f (λx) = λ f (x) for
every x ∈ V and λ ∈ R. Then M A( f ) = 0 at every point x �= 0.

Example 3.1 We wish to calculate the Monge-Ampère measure of dd#|x |. First we calculate

dd#|x | = d

(
1

2|x |d#(|x |2)
)

= dd#|x |2
2|x | − d|x |2 ∧ d#|x |2

4|x |3 . (3.6)

But the form d|x |2∧d# |x |2
4|x |3 = 0 on |x | = r > 0 and so, by using Stokes’ theorem, we obtain

∫

B(0,r)×Rn

(dd#|x |)n =
∫

∂B(0,r)×Rn

d#|x | ∧ (dd#|x |2)n−1

2n |x |n

= 1

2nrn

∫

B(0,r)×Rn

(
∑

k

2dxk ∧ dξk

)n

= n!
rn

∫

B(0,r)×Rn

dx1 ∧ dξ1 ∧ · · · ∧ dxn ∧ dξn

= n!V oln(B(0, 1)).

Since the above integral is independent of r (or by using Proposition 3.8), we see that the
measure (dd#|x |)n equals the Dirac measure at the origin multiplied with a dimensional
constant.
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A useful class of convex functions are those that grow “at most linearly at infinity”. By
the similarity with the complex setting, we define theLelong class to be the class of such
functions:

L = { f : R
n → R : f (x) ≤ C |x | + D, f convex,C ≥ 0, D ∈ R}. (3.7)

This class is useful in our context since the intersection of currents whose potentials belongs
to L has finite total mass. To see this, we first consider the case of the Monge-Ampère measure
of functions in L:

Proposition 3.9 Let f ∈ L so that we can find a constant c > 0 for which f ≤ c|x |, when
|x | is sufficiently large. Then f satisfies

∫

E

(dd# f )n < +∞.

Proof Fix ε > 0. For every r > 0 we can find a constant D > 0 such that f ≥ −D + (c +
ε)|x |, if |x | < r but f ≤ −D + (c + ε)|x |, if |x | > R, for R sufficiently large. Denote by
H the function max{ f,−D + (c + ε)|x |}. Then H is convex, and so dd# H ≥ 0. We can
exploit this as follows:
∫

B(0,r)×Rn

(dd# f )n =
∫

B(0,r)×Rn

(dd# H)n ≤
∫

B(0,R)×Rn

(dd# H)n

=
∫

∂B(0,R)×Rn

d#(−D + (c + ε)|x |) ∧ (dd#(−D + (c + ε)|x |))n−1

=
∫

B(0,R)×Rn

(dd#(−D + (c + ε)|x |))n ≤ (c + ε)n
∫

Rn×Rn

(dd#|x |)n < +∞.

Letting r → ∞ we obtain
∫

E

(dd# f )n < +∞.

Proposition 3.10 If f1, . . . , fn ∈ L,then
∫

E

dd# f1 ∧ · · · ∧ dd# fn < +∞.

Proof Since f1 + · · · + fn ∈ L there exists a C > 0 such that f1 + · · · + fn ≤ C |x |, when
|x | is large enough. By Proposition 3.9, with f = f1 + · · · + fn , we obtain

∫

E

(dd# f1 + · · · + dd# fn)
n < +∞.

But (dd# f1 +· · ·+dd# fn)
n is a sum with one term equal to dd# f1 ∧· · ·∧dd# fn , and since

every term of the sum is a positive measure, we deduce that
∫

E

dd# f1 ∧ · · · ∧ dd# fn < +∞,

which concludes the proof.
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1026 A. Lagerberg

A slight modification of the proof of the above Proposition 3.9 gives us a useful comparison
theorem, whose analogue in the complex setting is well known.

Proposition 3.11 Let fi , gi ∈ L be such that fi ≤ gi + O(1) for each 1 ≤ i ≤ n. Then
∫

E

dd# f1 ∧ · · · ∧ dd# fn ≤
∫

E

dd#g1 ∧ · · · ∧ dd#gn .

In particular, if f, g ∈ L, satisfies f ≤ g + O(1), then
∫

E

(dd# f )n ≤
∫

E

(dd#g)n .

Proof Fix ε > 0. For every r > 0 we can, for each i between 1 and n, find constants Di > 0
such that fi ≥ −Di + gi + ε|x |, if |x | < r but fi ≤ −Di + gi + ε|x |, if |x | > Ri , for Ri a
sufficiently large number. Denote by Hi the function max{ fi ,−Di + gi + ε|x |}. Then each
Hi is convex, and so dd# Hi ≥ 0. Thus:

∫

B(0,r)×Rn

dd# f1 ∧ · · · ∧ dd# fn =
∫

B(0,r)×Rn

dd# H1 ∧ · · · ∧ dd# Hn

≤
∫

B(0,R)×Rn

dd# H1 ∧ · · · ∧ dd# Hn .

But for x ∈ B(0, R), we have that Hi (x) = −Di + gi + ε|x |, and thus we obtain,
∫

B(0,r)×Rn

dd# f1 ∧ · · · ∧ dd# fn ≤
∫

Rn×Rn

(dd#g1 + εdd#|x |) ∧ · · · ∧ (dd#gn + εdd#|x |).

Letting r → ∞ we obtain that, for every ε > 0,
∫

E

dd# f1 ∧ · · · ∧ dd# fn ≤
∫

Rn×Rn

(dd#g1 + εdd#|x |) ∧ · · · ∧ (dd#gn + εdd#|x |).

This last integral contains terms of the type dd#gi1 ∧ · · · ∧ dd#gin−k ∧ εk(dd#|x |)k with
k = 0, . . . , n, and 1 ≤ il ≤ n. Proposition 3.10 tells us that

∫

E

dd#gi1 ∧ · · · ∧ dd#gin−k ∧ εk(dd#|x |)k ≤ Cεk

and consequently there is a constant C > 0 (independent of ε) for which
∫

Rn×Rn

(dd#g1 + εdd#|x |) ∧ · · · ∧ (dd#gn + εdd#|x |) ≤
∫

E

dd#g1 ∧ · · · ∧ dd#gn + εC.

Letting ε → 0 completes the proof.

Interchanging the roles of f and g in the above proposition gives us:

Corollary 3.1 If f, g ∈ L satisfy

| f − g| ≤ C,
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for some constant C > 0, then
∫

E

(dd# f )n =
∫

E

(dd#g)n .

In fact, the proof gives us a slightly stronger statement, which we will find useful:

Corollary 3.2 If f, g ∈ L satisfy

| f − g| ≤ C + ε|x |
for every ε > 0 and for some constant C > 0, then

∫

E

(dd# f )n =
∫

E

(dd#g)n .

At this point, we introduce the useful notation d̂xi = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ . . . dxn .

Example 3.2 Let K ⊂ R
n be a convex set containing the origin, and denote by HK its sup-

port function, that is, HK (x) = supξ∈K {x · ξ}. The polar of K , denoted K ◦, is defined by
K ◦ = {x : HK (x) ≤ 1}. If ∂K is smooth and K strictly convex, it is well known that the
map x �→ ∂HK (x) defines a diffeomorphism between ∂K and ∂K ◦. We can thus introduce
∂HK
∂x j

as coordinates on ∂K ◦ to obtain

n!V ol(K ) =
∫

K×Rn

(dd#|x |2)n =
∫

∂K×Rn

d#|x |2 ∧ (dd#|x |2)n−1

= cn

∫

∂K

∑
xi d̂xi = cn

∫

∂K ◦

∑ ∂HK

∂xi
·

̂

d
∂HK

∂xi
=

∫

K ◦×Rn

d# HK ∧ (dd# HK )
n−1

=
∫

K ◦×Rn

(dd# HK )
n =

∫

E

(dd# HK )
n . (3.8)

In the last equality we used Proposition 3.8: since HK is smooth outside the origin (thanks to
∂K being smooth) and 1-homogeneous, the support of (dd# HK )

n is the origin. By approxi-
mation, the same formula holds without any smoothness assumptions on ∂K .

One can generalize this example as follows: Recall that if K1, . . . , Kn are convex sets in R
n

one can define the mixed volume of K1, . . . , Kn , which we will denote by V (K1, . . . , Kn)

as follows: consider the function

P(t1, . . . , tn) := V ol(t1 K1 + · · · + tn Kn),

where
∑

j∈J

t j K j := {t j1 · x j1 + · · · + t jl · x jl : x ji ∈ K ji , J = ( ji , . . . , jl)}

is the Minkowski sum. As will follow from the proof of Proposition 3.12, P is a n-homoge-
neous polynomial in n variables:

P(t1, . . . , tn) =
n∑

i1,...,in=1

ai1,...,in · ti1 · · · · · tin ,
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1028 A. Lagerberg

for some coefficients ai1,...,in . The mixed volume is the coefficient in this polynomial corre-
sponding to the monomial t1 · · · · · tn , that is,

V (K1, . . . , Kn) := a1,...,n .

We claim the following:

Proposition 3.12 Let K1, . . . , Kn be convex sets in R
n with corresponding support functions

HKi . Then

dd# HK1 ∧ · · · ∧ dd# HKn = n! · V (K1, . . . , Kn)δ0ωn,

and P(t1, . . . , tn) := V ol(t1 K1 + · · · + tn Kn) is a n-homogeneous polynomial.

Proof To begin with, we note that

Ht K+sL = t HK + s HL (3.9)

if K , L are compact subsets, and t, s real numbers. Generalizing this slightly, we obtain the
identity

M A(Ht1 K1+···+tn Kn ) = M A(t1 HK1 + · · · + tn HKn ),

and thus M A(Ht1 K1+···+tn Kn ) is a n-homogeneous polynomial in (t1, .., tn). Moreover, by
(3.8) we know that

M A(Ht1 K1+···+tn Kn ) = n!V ol(t1 K1 + · · · + tn Kn) · δ0 · ωn .

This immediately gives us that P(t1, . . . , tn) = V ol(t1 K1+· · ·+tn Kn) is an n-homogeneous
polynomial. Moreover, comparing coefficients of the two polynomials, we see that

dd# HK1 ∧ · · · ∧ dd# HKn = n! · V (K1, . . . , Kn) · δ0 · ωn

as desired.

Example 3.3 Let Ki , Li ⊂ R
n be convex sets, such that Ki ⊂ Li for i between 1 and n. Then

HKi ≤ HLi , and an application of Proposition 3.11 together with the previous proposition,
tells us that

V (K1, . . . , Kn) ≤ V (L1, . . . , Ln).

We use this observation to prove that if K ⊂ L are two convex, smoothly bounded sets,
then the surface area of K is smaller than that of L . Indeed, let us consider the function
v(t) = V ol(K + t B) where B is the unit ball. Then, it is not difficult to realize that

v′(0) = |∂K |,
that is, the derivative of v at t = 0 is equal to the surface area of K . On the other hand, by
the description of v(t) = V ol(K + t B) as a polynomial in t , we see that, in fact,

v′(0) = V (B, K , . . . , K ).

Thus |∂K | = V (B, K , . . . , K ), and by the above we obtain,

|∂K | = V (B, K , . . . , K ) ≤ V (B, L , . . . , L) = |∂L|,
as promised.
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Remark 3.2 These results should be compared with the results already obtained in [11].
Moreover, the setting presented here seems to share similarities with that of [7].

Let f be a convex function on R
n , belonging to the Lelong class L. To this f we associate

the function

f̃ (x) = lim
t→∞

f (t x)

t
,

where the limits exists thanks to the assumption on linear growth at infinity. This function f̃
is easily seen to be convex and one-homogeneous. Moreover, we claim that

| f − f̃ | ≤ C + ε|x |, (3.10)

for every ε > 0. This is readily seen as follows: By standard properties of convex functions,
the expression f (t x)− f (0)

t is increasing in t , for every x . We recall Dini’s theorem which says
the following: if f is continuous on a compact set K , and ft is a monotone sequence of
continuous functions which converge to f̃ pointwise, then the convergence is in fact uniform
on K . Consequently, for each ε > 0 we have that

sup
|x |=1

∣∣∣∣
f (t x)− f (0)

t
− f̃ (x)

∣∣∣∣ < ε,

if t > T , for some T > 0. Multiplying through by t we obtain

sup
|x |=1

| f (t x)− f (0)− f̃ (t x)| < tε,

if t is sufficiently large, which implies (3.10). An application of Corollary 3.2 shows that the
total Monge-Ampère mass of f equals that of f̃ :

Proposition 3.13 With f and f̃ as above
∫

E

(dd# f )n =
∫

E

(dd# f̃ )n .

As we will see in Sect. 5.3, the above Proposition is essentially Bezout’s theorem in tropical
geometry.

4 Lelong numbers, trace measures and push forwards of currents

Definition 4.1 Thetrace measure of a (p, p)-current T is defined as

�T (U ) = 1

2n−p(n − p)!
∫

U×Rn

T ∧ (dd#|x |2)n−p,

for each Borel-set U ⊂ R
n .

Proposition 4.1 If T is a positive (p, p)-current, then �T is a positive measure, and

|TI J | ≤ C ·�T , (4.1)

for some C > 0.

Proof This follows immediately from Proposition 3.2.
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1030 A. Lagerberg

Remark 4.1 Let us compare with the complex setting: if S is a complex, weakly positive
(p, p)-current, then S always satisfies a trace measure inequality of the type (4.1). However,
in our setting the form α, on E = R

4 × R
4, given by

α = dx1 ∧ dx2 ∧ dξ3 ∧ dξ4 + dx2 ∧ dx3 ∧ dξ1 ∧ dξ4 − dx1 ∧ dx3 ∧ dξ2 ∧ dξ4

+dx3 ∧ dx4 ∧ dξ1 ∧ dξ2 + dx1 ∧ dx4 ∧ dξ2 ∧ dξ3 − dx2 ∧ dx4 ∧ dξ1 ∧ dξ3,

satisfies

α ∧ v ∧ J (v) = 0 (4.2)

for every (1, 0)-form v. Thus, α is weakly positive, but all the diagonal elements are 0, and
consequently α does not satisfy an inequality of the type (4.1). This implies a significant
difference between our setting and the complex setting. In fact, in the complex case, the
strongly positive forms constitute a basis for the space of all forms. Equation (4.2) tells us
that this is not the case in our setting.

Proposition 4.2 For fixed x ∈ R
n, if T is a weakly positive (p, p)-current, then the function

r �→ �T

rn−p
(B(x, r))

is increasing on R+.

Proof We can assume that x = 0. By Eq. (3.6) we have,

dd#|x | = dd#|x |2
2|x | − d|x |2 ∧ d#|x |2

4|x |3 ,

and d|x |2∧d# |x |2
4|x |3 = 0 on the sphere |x | = r . Moreover, d#|x | = d# |x |2

2|x | , so that d#|x | = d# |x |2
2r

if |x | = r . Combining these observations, we find that
∫

{|x |=r}×Rn

T ∧ d#|x | ∧ (dd#|x |)n−p−1 =
∫

{|x |=r}×Rn

T ∧ d#|x |2
2|x | ∧

(
dd#|x |2

2|x |
)n−p−1

= 1

(2r)n−p

∫

{|x |=r}×Rn

T ∧ d#|x |2 ∧ (dd#|x |2)n−p−1.

Thus, by Stokes’ theorem we obtain
∫

B(0,r)×Rn

T ∧ (dd#|x |2)n−p =
∫

{|x |=r}×Rn

T ∧ d#|x |2 ∧ (dd#|x |2)n−p−1

= (2r)n−p
∫

{|x |=r}×Rn

T ∧ d#|x | ∧ (dd#|x |)n−p−1

= (2r)n−p
∫

B(0,r)×Rn

T ∧ (dd#|x |)n−p.

Since T is weakly positive, T ∧ (dd#|x |)n−p is a positive measure. Thus the function

r �→ �T

rn−p
(B(0, r))

is increasing.
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Corollary 4.1 Let T be a closed, positive (p, p)-current. If K is a compact set with vanish-
ing (n− p)-dimensional Hausdorff measure, then T vanishes on K . In particular, if Supp(T )
has vanishing (n − p)-dimensional Hausdorff measure, then T = 0.

Proof Let K be a compact set, satisfying the assumptions of the hypothesis. The condition
Hn−p(K ) = 0, means that we can, for every ε > 0, find a finite number of balls B(a j , r j )

for which K ⊂ ∪ j B(a j , r j ) and
∑

rn−p
j ≤ ε.

We can assume that each r j ≤ 1. By Proposition 4.2 we see that

�T

rn−p
j

(B(a j , r j )) ≤ �T (B(a j , 1)) ≤ �T (K
′
),

where K
′

is a compact set such that K ⊂ ∪ j B(a j , 1) ⊂ K
′

and thus, with C = �T (K
′
) we

obtain the inequality: �T (B(a j , r j )) ≤ Crn−p
j for all j. We conclude that

�T (K ) ≤
∑

j

�T (B(a j , r j )) ≤ C
∑

j

rn−p
j ≤ Cε,

and thus, T|K = 0, since |TI J |(K ) ≤ �T (K ) by Proposition 4.1.

As a consequence of the proposition, we can define the Lelong number of a weakly positive,
closed (p, p)-current T at a point x by

νx (T ) = lim
r→0

�T (B(x, r))

V ol(Bn−p)rn−p
,

where V ol(Bn−p) is the volume of the (n − p)-dimensional unit ball. We define the Lelong
number of a convex function f : R

n → R by

νx ( f ) = νx (dd# f ).

Example 4.1 We calculate the Lelong number of the function x �→ |x |. We begin with
considering the behaviour at the origin. By (3.6) and Stokes’,

∫

B(0,r)×Rn

dd#|x | ∧ (dd#|x |2)n−1

= 1

2r

∫

B(0,r)×Rn

(dd#|x |2)n = 2n−1 · n! · rn−1 · V oln(B(0, 1)),

and thus

ν0(|x |) = lim
r→0

�(B(0, r))

V oln−1(B(0, r))
= n · V oln(B(0, 1))

V oln−1(B(0, 1))
.

On the other hand, at a point x0 away from the origin our function is smooth, and so the form
dd#|x | is locally smooth. But if g is a smooth function in a neighbourhood around x , then the
trace measure of dd#g(x) is just the Laplacian of g at x and thus there is a constant C > 0
such that

�dd# g(B(x, r)) ≤ Crn,
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1032 A. Lagerberg

since every coefficient ∂2g
∂xi ∂x j

is uniformly bounded in some neighbourhood around x . Thus

νx (g) ≤ lim
r→0

Crn

rn−1V oln−1(B(0, 1))
= 0,

and so νx0(|x |) = 0 if x0 �= 0.

The above argument displays the following expected behaviour of the Lelong number, show-
ing that the Lelong number is a measurement of the singularity at a point:

Proposition 4.3 If a (1, 1)-current T is locally smooth around a point x, then ν(T, x) = 0.

Remark 4.2 In complex analysis, it is a well known theorem due to Y.T. Siu, which states
that the set {x : ν(T, x) ≥ c} constitutes an analytic variety, for each c > 0 (in this remark,
ν(T, x) denotes the complex version of the Lelong number). It would be interesting to know
if there is a corresponding result in our setting. One could perhaps hope that one would
obtain tropical varieties (which we define in Sect. 5), but this is not the case as the example
f = max(|x |, 1) shows: {x ∈ V : ν(dd# max(|x |, 1), x) ≥ c} = {x : |x | = 1} which is not a
tropical variety.

4.1 Push forwards of currents

Let f : V → V
′
be an affine map, with dim(V) = dim(V

′
) = n, inducing a map f̃ : E → E

′
.

Then we can define the push-forward f∗T of a current T ∈ Dn−p,n−p(E) via the formula

〈 f∗T, α〉 = 〈T, f ∗α
〉
, (4.3)

where α ∈ D p,p . This formula only makes sense if f ∗α has compact support on Supp(T ),
and so we first demand that f is such that f −1(K )

⋂
Supp(T ) is compact for every compact

K ⊂ V
′, or in other words, the restriction of f to Supp(T ) is proper. For such f the induced

map f ∗ : E p,p(E′) → E p,p(E) is continuous and thus the above formula defines an element
in Dn−p,n−p(E

′). If T is weakly positive, then
〈
f∗T, α1 ∧ J (α1) ∧ · · · ∧ αp ∧ J (αp)

〉 = 〈T, f ∗α1 ∧ J ( f ∗α1) ∧ · · · ∧ f ∗αp ∧ J ( f ∗αp)
〉 ≥ 0.

Thus we have the following proposition.

Proposition 4.4 If T ∈ Dn−p,n−p(E) is weakly positive and f : V → V
′ is an (non-con-

stant) affine function, then f̃∗T is a weakly positive current in Dn−p,n−p(E
′).

Example 4.2 Every form β ∈ E p,p can be considered as a current acting on compactly sup-
ported forms of complementary degree. Now, if f : V → V is a non-singular affine map,
then

〈α, f∗β〉 = 〈 f ∗α, β
〉 =
∫

E

f ∗α ∧ β = 1

|det ( f −1)|
∫

E

( f −1)∗( f ∗α ∧ β)

= |det ( f )

∣∣∣∣∣∣

∫

E

α ∧ ( f −1)∗β = |det ( f )

∣∣∣∣∣∣

〈
α, ( f −1)∗β

〉
,

where we used formula (2.3) in the third equality. Thus we see that,

f∗β = |det f |( f −1)∗β, β ∈ E p,p. (4.4)
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Now let us consider the projection (here we write V,W = R
n)

π : R
n → R

n−k, π(x1, . . . , xn) = (x1, . . . , xn−k),

where k ≥ 0 and take a (p, p)-form α on R
n , with locally integrable coefficients, which

we will consider as a current. Assume this form α is such that π is proper on its sup-
port, and let ω be a (n − p, n − p)-form on R

n−k = {(x1, . . . , xn−k)} . Observe that if
n − p > n − k, the form ω is 0, so we assume this is not the case. We regard, for each
x ∈ R

n−k , the set π−1(x) as R
k with coordinates (xn−k+1, . . . , xn). Thus ω only con-

tains differentials dxi and dξi with 1 ≤ i ≤ n − k, and π∗ω = ω. Let us write α =∑
|I |=|J |=p αI J dxI ∧ dξJ , and ω = ∑

|K |=|L|=n−p ωK L dxK ∧ dξL where each K and L
only contain indices between 1 and n − k. The (n, n)-form α ∧ π∗ω is a sum of terms of
the form αI JωK L dxI ∧ dξJ ∧ dxK ∧ dξL and such a term vanishes if I and K , or if J and
L , contain the same indices. Since n − p ≤ n − k, this implies that the only terms in the
expression defining α that will contribute to the push-forward are those for which dxI ∧ dξJ

contains the differential dxn−k+1 ∧· · ·∧dxn ∧dξn−k+1 ∧· · ·∧dξn . In effect, we can write α
as α = {∑|I ′|=|J ′|=p−k αI ′ J ′dxI ′ ∧dξJ ′ }∧dxn−k+1 ∧· · ·∧dxn ∧dξn−k+1 ∧· · ·∧dξn + R,

where R is such that R ∧ ω′ = 0 for every (n − p, n − p)-form ω′ on R
n−k , and hence will

not contribute to the push forward. The definition of push-forward tells us that

〈π∗α, ω〉 = 〈α, π∗ω
〉

=
∫

W

∫

(x1,...,xn−k )∈Rn−k

∫

(xn−k+1,...,xn)∈π−1(x)

α(x1, . . . , xn) ∧ ω(x1, . . . , xn−k),

and from this we deduce that the push forward ofα underπ is given by the (p−k, p−k)-form

(π∗α)(x1, . . . , xn−k) =
∫

π−1(x1,...,xn−k )×W

⎧
⎨

⎩
∑

|I ′ |=|J ′ |=p−k

αI ′ J ′ dxI ′ ∧ dξJ ′

⎫
⎬

⎭ ∧ dxn−k+1 ∧ · · · ∧ dξn

=
∑

|I ′ |=|J ′ |=p−k

α̃I ′ J ′ (x1, . . . , xn−k)dxI ′ ∧ dξJ ′ ,

where

α̃I ′ J ′(x1, . . . , xn−k) =
∫

π−1(x1,...,xn−k )

αI ′ J ′(x1, . . . , xn)dVk(xn−k+1, . . . , xn) (4.5)

and dVk is the volume measure induced by the chosen inner product on R
n . We have hence

obtained an explicit formula for the push-forward of a form α under a projection. By using an
approximation argument, the discussion above still holds true if we assume α to be a current.
Now, since π∗dω = dπ∗ω, we see that

〈dπ∗α, ω〉 = ± 〈π∗α, dω〉 = ± 〈α, π∗dω
〉 = ±〈π∗α, dω〉 = 〈π∗dα, ω〉 ,

which implies that π∗dα = dπ∗α. Thus, if α is closed, then π∗α is closed as well. Since
strong positivity of forms is preserved under pullbacks, we find that if α is a weakly positive
form, then π∗α is weakly positive. Moreover, the formula

〈
f∗α, σ(n−k)−(p−k)β ∧ J (β)

〉 = 〈α, σn−p f ∗β ∧ J ( f ∗β)
〉
,

tells us that if α is positive, then so is f∗α. Thus we have:
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1034 A. Lagerberg

Proposition 4.5 Let π be a projection from R
n onto a (n − k)-dimensional subspace, and

let α be a (weakly) positive (p, p)-current on R
n × R

n such that π is proper on the support
of α. Then the push-forward π∗α is a well-defined (p − k, p − k)-current. Moreover, π∗α is
(weakly) positive, and if α is closed then π∗α is closed as well.

Let S be a strongly positive, closed, (p, p)-current such that
∫

E

S ∧ (dd#|x |)n−p < +∞. (4.6)

We call the left hand side of (4.6) the degree of S. Let π be a projection from R
n onto a

(n −k)-dimensional subspace L as above. Since the restriction of π to Supp(S)might not be
proper, the expression π∗S has no meaning as of yet. However, if χ is a continuous function
with compact support on π−1(L) and with values in [0, 1], we can consider the positive (but
not closed) current π∗χ S on L . We have the following lemma:

Lemma 4.1 Let S be a strongly positive, closed, (p, p)-current of finite degree. Then, for
every compact subset K ⊂ L there exists a constant CK > 0 which is independent of χ ,
such that the coefficients of π∗χ S applied to K are bounded by CK .

Proof We choose coordinates so that L = R
n−k as above and write x ′ = (x1, . . . , xn−k). It is

enough to prove that the statement holds for every ball with center at the origin, in R
n−k . Fix

such a ball B(0, R). Define a function φ on R
n−k by letting φ(x ′) = |x ′|2 for x ′ ∈ B(0, 2R),

and φ(x ′) = 4R|x ′|−4R2 otherwise. Then φ ∈ L, and dd#φ =∑n−k
i=1 dxi ∧dξi on B(0, R).

Thus, (dd#φ)n−p = (dd#|x ′|2)n−p on B(0, R), which implies that

�B(0,R)(π∗χ S) =
∫

(B(0,R)×Rk )×Rn

χ S ∧ (ddc|x ′|2)n−p =
∫

(B(0,R)×Rk )×Rn

χ S ∧ (ddcφ)n−p

≤ supχ
∫

E

S ∧ (ddcφ)n−p.

Since φ(x) ≤ |x | + O(1), a slight adaptation of Proposition 3.11 tells us that
∫

E
S ∧

(ddcφ)n−p ≤ ∫
E

S ∧ (ddc|x |)n−p . Thus, by (4.6) we see that �B(0,R)(π∗χ S) < +∞.
Since π∗χ S is positive, we can apply Proposition 4.1 to obtain that every coefficient of π∗χ S
when applied to B(0, R) has mass bounded by the trace-measure of χπ∗S acting on B(0, R)
and is consequently less than some constant CR > 0 depending on R (since φ depends on
R) but not on χ . The proposition follows.

Now, let S satisfy the hypothesis of the above lemma. Then Lemma 4.1 together with (4.5)
tells us that there is a constant C > 0 such that for every positive, compactly supported, con-
tinuous function χ defined on π−1(L) = R

k with values in [0, 1], the following inequality
holds:
∣∣∣∣∣∣∣

∫

π−1(x1,...,xn−k )

χ(xn−k+1, . . . , xn)SI ′ J ′(x1, . . . , xn)dVk(xn−k+1, . . . , xn)

∣∣∣∣∣∣∣
≤ C · sup(χ).

This implies that all of the integrals
∫

π−1(x1,...,xn−k )

SI ′ J ′(x1, . . . , xn)dVk(xn−k+1, . . . , xn)
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converge. Thus, if we let χR be functions of the kind considered with the additional assump-
tion that their support should exhaust π−1(L) as R → ∞, we see that the weak limit of
π∗χR S as R → ∞ exists, and we put

π∗S = lim
R→∞π∗χR S.

It is easy to see that it does not depend on the choice of functions χR , and if π were to
have proper support on Supp(S), this definition would coincide with the previous one given
above. We want to show that this current is closed and positive. For this we construct explicit
choices of χR as follows:

Let χ̃R : R+ → R be the piecewise linear function, equal to 1 on [0, R], equal to 0 on
[2R,+∞) and linear in between. Then χ̃

′
R = R−1 on the interval [R, 2R] and 0 otherwise.

We now put χR(x) = χ̃R(|x |).
Proposition 4.6 Letπ : R

n → L be a projection, where L is a (n−k)-dimensional subspace
of R

n, and assume that S is a strongly positive, closed, (p, p)-current of finite degree. Then
the push-forward, π∗S, is a well-defined positive, closed (p − k, p − k)-current. If p < k
then π∗S = 0.

Proof We have yet to show that it is closed and positive. But positivity is clear, since, if
α ∈ Dn−p,0,

〈
(π∗S), σ(n−k)−(p−k)α ∧ J (α)

〉 = lim
R→∞

∫

E

χR S ∧ σn−p · π∗α ∧ π∗ J (α) ≥ 0,

by the positivity of S. To prove closedness, we use the specific functionχR constructed above.
Then, for α ∈ Dn−p−1,n−p(L),

〈d(π∗S), α〉 = ± lim
R→∞

〈
χR · S, π∗(dα)

〉 = lim
R→∞

〈
dχR ∧ S, π∗α

〉

thanks to S being closed. We need to show that limR→∞ 〈dχR ∧ S, π∗α〉 = 0. To this end
we define the following bi-linear form:

(v,w) =
∫

E

S ∧ σn−pv ∧ J (w),

where v,w are compactly supported, smooth (n − p, 0)-forms on R
n . Clearly (v, v) ≥ 0,

since S is positive, and thus the bi-linear form is positive definite. A variant of the Cauchy–
Schwartz inequality tells us that for each ε > 0,

(v,w) ≤ ε(v, v)+ ε−1(w,w). (4.7)

Let us define, for each R > 0,

ψR(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2
R t − 3

2 , if t ∈ [0, R)
t2

2R2 , if t ∈ [R, 2R]
4
R t − 6, if t ∈ (2R,∞)

.

Then ψR is convex, ψR(|x |) ∈ L, and ψ
′′
R(t) = 1/R2 if t ∈ [R, 2R] and 0 otherwise.

Moreover, a direct calculation shows that

dd#ψR − dχR ∧ d#χR ≥ 0. (4.8)
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1036 A. Lagerberg

Let v be a (n − p − 1, 0)-form, and w a (0, n − p)-form defined on R
n−k, both smooth and

with compact support. Then

∣∣〈dχR ∧ S, π∗v ∧ π∗w
〉∣∣ =

∣∣∣∣∣∣

∫

E

S ∧ dχR ∧ π∗v ∧ π∗w

∣∣∣∣∣∣
= ∣∣(dχR ∧ π∗v, π∗w)

∣∣ (4.9)

which by (4.7) is dominated by

ε

∫

E

S ∧ π∗w ∧ J (π∗w)+ ε−1
∫

E

S ∧ dχR ∧ π∗v ∧ J (dχR ∧ π∗v) = I + I I.

Here the form π∗w will not have compact support on R
n so the first term actually has no

meaning. However, we may here replace π∗w with χ3Rπ
∗w which has compact support on

R
n ; doing so will not affect (4.9), since χ3R = 1 on Supp(dχR). Using Lemma 4.1 we see

that the first term, I , is bounded by εCw. For the second term, I I , we show that the trace
measure of the strongly positive current, S ∧dχR ∧ J (dχR) tends to 0 as R → ∞ : For each
multi-index I of length n − p, we can use the idea of Lemma 4.1 to find a function φI ∈ L,
such that,

dd#φI = dd#
√

x2
i1

+ · · · + x2
in−p

= dxI ∧ dξI ,

on B(0, 2R). Thus, since S ∧ dχR ∧ J (dχR) is strongly positive,
∣∣∣∣∣∣∣

∫

B(0,2R)×Rn

S ∧ dχR ∧ J (dχR) ∧ dxI ∧ dξI

∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣

∫

Rn×Rn

S ∧ dχR ∧ J (dχR) ∧ dd#φI

∣∣∣∣∣∣
.

By (4.8) the last integral is dominated by
∣∣∣∣∣∣

∫

E

S ∧ dd#ψR ∧ dd#φI

∣∣∣∣∣∣
.

Thus, since dd#ψR(|x |) = R−2dd#|x | on B(0, R) and zero otherwise, we obtain by Propo-
sition 3.10 that

ε−1

∣∣∣∣∣∣∣

∫

B(0,R)×Rn

S ∧ dχR ∧ J (dχR) ∧ dxI ∧ dξI

∣∣∣∣∣∣∣
≤ ε−1 R−2

∫

E

S ∧ dd#|x | ∧ dd#φI ≤ ε−1 R−2 D,

for some constant D > 0 independent of R. Thus the trace measure of the positive current
S ∧ dχR ∧ J (dχR) tends to 0 with R. Thus we find that the second term, I I , tends to 0 as
R → ∞. In conclusion, we see that

lim
R→∞

〈
dχR ∧ S, π∗(v ∧ w)〉 = 0,

for every pair of forms v and w as above. Since every (n − p − 1, n − p)-form α can be
written as a linear combination of forms of the type v ∧ w as above, this implies that

lim
R→∞

〈
dχR ∧ S, π∗(α)

〉 = 0.

By definition, this mean precisely that d(π∗S) = 0, as desired.
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Corollary 4.2 If f1, . . . , f p ∈ L, then π∗(dd# f1 ∧ · · · ∧ dd# f p) is a positive and closed
(p − k, p − k)-current.

Proof The current dd# f1 ∧ · · · ∧ dd# f p has finite degree by Proposition (3.9), and thus
satisfies the hypothesis of the Proposition.

5 Tropical geometry

For a finite set A in Z
n we let P = conv(A), the convex hull in R

n of the set A.

Definition 5.1 A tropical polynomial is a function f (x) = maxα∈A(−ν(α)+ α · x), where
ν : A → R is some arbitrary function. For a tropical polynomial f , we define the associated
tropical hypersurface, which we will denote V f , as the set where f is not smooth.

Observe that a tropical polynomial is a convex function. Moreover, since the maximum of a
finite number of affine functions is piecewise affine, we see that V f is the set where f is not
affine. This set coincides with the set where two or more of the elements which we take the
maximum over obtain the maximum value at the same time. It is easy to realize that V f thus
consist of finitely many affine hyperplanes (or rather convex polyhedras), glued together at
(n − 2)-dimensional affine manifolds of R

n . Now, let us extend the function ν to all of R
n

by letting

ν∞(x) =
{
ν(x), x ∈ A
∞, x /∈ A

.

The tropical polynomial f then coincides with the Legendre transform of ν∞. It is a well
known fact of convex analysis that applying the Legendre transform twice to any function
g : R

n → R will produce the largest convex function which is smaller than g at any point.
Thus, applying the Legendre transform to the tropical polynomial f gives us the largest
convex function on R

n which, when restricted to A, is less than or equal to ν. We will denote
this function by ν̃. It is not hard to realize that ν̃ is piecewise affine on P and equal to +∞
on R

n\P . Let us assume for the time being that the dimension n = 2. Then the set � ⊂ P
defined as the set where the function ν̃ is singular, is a graph which is dual to the tropical line
V f in the following sense (cf. [15]): each edge of� is perpendicular to an edge of V f and vice
versa. One calls the graph � a convex triangulation of the polytope P. Similar statements
hold in higher dimensions as well.

We can associate weights, normal vectors and primitive integer vectors to the facets of
V f in the following way: consider an (n − 1)-dimensional facet V of V f . The set V is the
set where precisely two of the affine functions competing for the maximum in the tropical
polynomial f , say −ν(α1)+α1 · x and −ν(α2)+α2 · x , are equal and realize the maximum.
The facet V has two natural normal vectors defined from the data given, namely α1 −α2 and
α2 − α1. We pick one of these two, and call it the normal vector v associated to V . Note that
a choice of normal vector v induces an orientation on V compatible with any fixed choice of
orientation on R

n . We will only be interested in the pair (V, v)where we take the orientation
of V into account, and consequently it does not matter which vector we chose above to be
the normal vector associated to V : If we instead had chosen −v, the orientation of V would
have been reversed. The weight w is the absolute value of the greatest common divisor of
the numbers v1, . . . , vn , where v j denotes the j :th component of the vector v. We let N
denote the primitive integer vector associated to v = α1 − α2, i.e., the vector in Z

n such that
wN = v.
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1038 A. Lagerberg

A tropical hypersurface V f thus consists of a finite number of convex polyhedras of
dimension (n − 1), call them V1, . . . , Vs , which are glued together along convex polyhedras
of dimension (n − 2), which we denote by W1, . . . ,Wr . Now, assume that W1 is the locus
of intersection of V1, . . . , Vk , and the sign of the corresponding normal vector vi has been
chosen such that each Vi induces the same orientation on W1. We explain this last condition
in detail. Fix an orientation of W1 and let {e1, .., en−2} be a basis of W1, compatible with the
orientation chosen. Fix also one of the convex polyhedras adjacent to W1, say V1. Then there
exists a unique unit normal of W1 pointing into V1, which we denote by w1, and for which
{w1, e1, .., en−2} is a basis for V1. We choose the sign of v1 so that {v1, w1, e1, .., en−2} is a
basis compatible with the fixed orientation of R

n . Under these circumstances one can show:

Proposition 5.1 (Balancing property of tropical varieties, cf. [9]) With the above hypothesis
the balancing condition holds around W :

k∑

i=1

vi = 0.

Let us study an example as to see how tropical polynomials may arise in practice.
Consider a complex algebraic hypersurface {h = 0} in (C\ {0})n , where h is a Laurent

polynomial h = ∑
α∈A cαzα , where multi-index notation is used. Let P = conv(A) be

the Newton polytope associated with f . We consider the function Log : (C\ {0})n → R
n,

given by Log(z1, . . . , zn) = (− log |z1|, . . . ,− log |zn |), and define Ah = Log({h = 0}).
This set Ah ⊂ R

n is called the amoeba of the polynomial h. Tropical pictures arise when
we start deforming the amoeba, and shrink its width to 0. To make this precise, we let for
t > 0, logt (x) = log(x)/ log(t), and define Logt by exchanging log for logt in the definition
of Log. Also we define At

h = Logt ({h = 0}). Then as t → 0, the sets At
h converges to a set

in the Hausdorff topology (cf. [9]), which we denote by Sh . This set Sh can actually be seen
to be piecewise affine, and all its pieces have rational slope. Thus, it constitutes a tropical
variety.

Example 5.1 Let us consider the two dimensional case. We choose the polynomial h to be
1 − z2 + w where (z, w) are coordinates for C

2. Its Newton polytope is then the trian-
gle with vertices at the points (0, 0), (2, 0), and (0, 1). We want to consider the image of
{h = 0} ⊂ (C\ {0})2, where we denote the coordinates on R

2 with (x, y), under the map
Logt . Of course, for a fixed point (z0, w0) ∈ {h = 0} ∩ (C\ {0})2, we have

lim
t→0

Logt (z0, w0) = lim
t→0

(
− log |z0|

log t
,− log |w0|

log t

)
= (0, 0).

However, if we were allowed to insert the point (1, 0) (note that while h(1, 0) = 0, the point
does not belong to (C\ {0})2, we would obtain

lim
t→0

Logt (1, 0) = (0,−∞).

Since we can find points in {h = 0}∩(C\ {0})2 arbitrarily close to (1, 0), we see that the limit
set, Sh , will contain the ray starting at (0, 0) and “ending in” (0,−∞). Similar behaviour
will be observed for every point in {h = 0} (as a subset of C

2) where at least one of the
coordinates is 0. Consequently, we start searching for those. Ifw = 0 then z = ±1, if we are
to have (z, w) ∈ {h = 0}. This point will give rise, under the Log-map, to the ray along the
y-axis starting at (0, 0) and ending in (0,−∞). Similarly, if z = 0 then w = −1, and this
point will give rise to the ray along the x-axis, starting at (0, 0) ending in (−∞, 0). Also,
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for z and w large, and (z, w) ∈ {h = 0}, we have that log |w| ≈ 2 log |z|, that is y ≈ 2x .
Thus the amoeba will have three asymptotic lines, namely the sets (∞, 0]×{0}, {0}×(∞, 0]
and {y = 2x} ∩ {x ≥ 0}. Moreover, one can show that each component of the complement
of the amoeba is convex (cf. [11]). It is not hard to realize that if we consider the limit of
At

f as t gets closer and closer to 0, the picture is that the “deformed” amoeba converges
to exactly the asymptotic lines we have found, and we obtain the tropical curve given by
the tropical polynomial max{0, y, 2x}. At this point we should also note that each of the
directional vectors for the lines are in fact normal vectors to the Newton polytope. As in the
above discussion, we say the Sh is dual to the polytope P .

Tropical geometry can also be seen as algebraic geometry over a non-archimedian field,
K. The attribute non-archimedian means that the field has a norm which satisfy a stronger
condition than the triangle inequality, namely that

|x + y| ≤ max{|x |, |y|}.
Here we let K be the field of Puiseux series, namely the set of all formal power series∑

q∈Q
aq tq , where we demand that the set of all q such that aq �= 0 is bounded from below.

We can equip K with a valuation map ν : K → R, by demanding that ν(
∑

q∈Q
aq tq) is the

infimum of all q such that aq �= 0. Let us now consider the polynomial ring K[z1, . . . , zn],
and an element in it, G. Thus G =∑αi ∈A rαi z

αi , for A some finite subset of Z
n , and rαi ∈ K.

To this G we associate its tropicalization

trop(G)(x) = max
αi ∈A

{αi · x − ν(rαi )},

where x ∈ R
n , and α · x is the scalar product between x and α. For instance, trop(t−2zw +

tw2)(x, y) = max {−2 + x + y, 1 + 2y}. Similar as for the function Log defined above, we
put V al(z1, . . . , zn) = (val(z1), . . . , val(zn)). We now come to an important point: One
can show ([5]) that the closure of the set V al({G = 0}) is equal to the set in R

n where
the maximum tropG(x) = maxαi ∈A {αi · x − ν(rαi )} is obtained by two or more of the αi .
Thus the closure of the set V al({G = 0}) defines a tropical variety. Of course, by letting the
function ν in Definition 5.1 be equal to αi �→ ν(rαi ), the tropical polynomial will be just
trop(G), and so we could equally well take the following as a definition of a tropical variety:

Proposition 5.2 ([5]) A tropical variety is given by the closure of V al({G = 0}) in R
n,

where G ∈ K[z1, . . . , zn].
Remark 5.1 Let h = ∑

α∈A cαzα be a complex polynomial with h(0) = 0, where A is a
finite subset of Z

n . In the complex setting, there is a generalization of the Lelong number,
called Kisleman’s directed Lelong number, denoted γz,ϕ(x), which gives more precise infor-
mation concerning the singularities of ϕ. It depends on three parameters: a plurisubharmonic
function ϕ on C

n , a point z ∈ C
n , and a vector in x ∈ R

n+, and if x = (1, . . . , 1) it reduces
to the ordinary (complex) Lelong number. It is well known that x �→ −γz,ϕ(x) is a convex
function, for x ∈ R

n+. For our discussion, it suffices to say that, with ϕ(z) = log(h(z)),

γ0,ϕ(x) = min
α∈A

{α · x}.
This is closely related to choosing K = C and endowing K with the trivial valuation ν(w) = 0
for every w ∈ C. Indeed, then we would have

trop(h)(−x) = max
α∈A

{−α · x} = −γ0,log(h(z))(x).
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1040 A. Lagerberg

For ν a valuation on K, we put

tropv(log(h))(x) = max
αi ∈A

{αi · x − ν(rαi )}.

Thus, if we restrict ourselves to complex polynomials, tropν could be considered as a gener-
alization of Kiselman’s Lelong number. It would be interesting to know if one could extend
tropv to act on arbitrary plurisubharmonic functions.

5.1 Tropical geometry and super currents

Since a tropical polynomial f is the maximum of a finite number of Z-affine functions on
V and since dd# f = 0 at points where f is affine, we must have that Supp(dd# f ) = V f .
Thus the support of the current dd# f coincides as a point set with the tropical hypersurface
V f . We make the following definition.

Definition 5.2 The support of a current T is of dimension k if Supp(T ) is a piecewise smooth
manifold of dimension k, that is, Supp(T ) consists of a finite number of smooth manifolds
of dimension k, glued together along manifolds of lower dimension.

We can now prove the fundamental result of this paper.

Proposition 5.3 There is a one to one correspondence between tropical hypersurfaces V f ,
and closed, positive (1,1)-currents T whose support is of dimension n −1, and whose normal
vectors (see below) are integral.

Proof Let T be as in the hypothesis, and denote by A the support of T . We first show that A
is a piecewise affine manifold. Fix a point x ∈ A, and a small ball B centered at x, such that
B\A consists of precisely two components; call them C1 and C2. By Proposition 2.7 both C1

and C2 are convex, which implies that each (n − 1)-dimensional piece of A must be affine.
Thus A is piecewise affine. Now, by Proposition 2.6, we can find a convex function f such
that T = dd# f . Let us denote by V1, . . . , VN the (n − 1)-dimensional (affine) pieces of A.
For each i = 1, . . . , N , there is a vector vi ∈ V and a real number ci such that, for x ∈ Vi ,

f (x) = −ci + vi · x .

The convexity of f implies that, in fact,

f (x) = max
i=1,...,N

(−ci + vi · x),

for x ∈ V. The condition that the currents normal vectors are integral, means that each
vector vi belongs to Z

n (under the identification of V with R
n). If this is the case, then f

is actually a tropical polynomial, and thus we can conclude that Supp(T ) coincides with a
tropical hypersurface. This establishes one part of the correspondence. The second part is
easier: for each tropical hypersurface V f we let T = dd# f ; then T satisfies the hypothesis
of the proposition.

The arguments used above immediately give:

Corollary 5.1 If the support Supp(T ) is of dimension n − 1, for a closed, positive (1, 1)-
current T , then Supp(T ) is piecewise affine.

By the previous discussion, we know that Supp(T ) = V f consists of a finite number of
convex polyhedras Vi , whose affine hull is of dimension n − 1, glued together at affine con-
vex polyhedras Wk of dimension n − 2. Let us recall the discussion before Proposition 5.1:
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each facet Vi is the set where, for some α1, α2 ∈ A,

−cα1 + vα1 · x = −cα2 + vα2 · x

attains the maximum defining the tropical polynomial f, and we defined the normal vector
of Vi to be, up to sign, equal to vi = α1 − α2. Thus vi is a normal vector to Vi whose length
is determined by the tropical polynomial. We make the following definition:

Definition 5.3 The normal 1-form associated to Vi is defined as v∗
i = d(vi · x).

Let V be a hyperplane in R
n with normal v, and let δV denote the surface measure of V .We

will consider the (1, 1)-current

1

|v|δV v
∗ ∧ J (v∗),

whose action on an (n − 1, n − 1)-form α is defined by
〈

1

|v|δV v
∗ ∧ J (v∗), α

〉
= 1

|v|
∫

V

v∗ ∧ J (v∗) ∧ α
ωn

δV .

Observe that this current does not depend on which sign we have chosen for the normal
vector v. This current represents a tropical variety:

Proposition 5.4 Let V ⊂ R
n be a hyperplane, determined by a normal vector v =

(v1, . . . , vn), and define f = max (0, v · x). Then

dd# f = 1

|v|δV v
∗ ∧ J (v∗).

Moreover, we have the following equality

[V ] ∧ J (v∗) = 1

|v|δV v
∗ ∧ J (v∗), (5.1)

where [V ] is the current of integration on V, with orientation determined by v.

Proof We prove Eq. (5.1) first. We have the following equality of currents on R
n :

1

|v|δV v
∗ = [V ], (5.2)

where [V ] is the current of integration of V, defined in a natural way as

〈[V ], α〉 =
∫

V

α,

forα a compactly supported dimV -form on R
n .To prove this we extend {v} to an orthonormal

basis of R
n , compatible with the orientation chosen, which we denote {|v|−1v, e1, . . . , en−1}.

For simplicity, we use the notation e∗ = e∗
1 ∧ · · · ∧ e∗

n−1. Then we need only to prove
the formula for forms of the type α0e∗, where α0 is a function. But, since δV = e∗, and
v∗ ∧ e∗ = |v|dx1 ∧ · · · ∧ dxn , we see that

〈
δV

|v|v
∗, α0e∗

〉
= 〈δV , α0|v|−1v∗ ∧ e∗〉 =

∫

V

α0e∗.
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On the other hand,

〈[V ], α0e∗〉 =
∫

V

α0e∗,

which proves the formula (5.2). Thus, we see that

1

|v|δV v
∗ ∧ J (v∗) = [V ] ∧ J (v∗).

We now proceed to prove the first formula of the proposition. Recall that if P ′ ⊂ V is a
submanifold of the same dimension as that of V , and with piecewise smooth boundary, then
the current T := [P ′] ∧ J (v∗) satisfies

〈dT, α〉 = 〈[∂P ′] ∧ J (v∗), α
〉
,

which follows from Stokes’ theorem (2.3).
We begin by considering the function f = max {0, xn}. To compute dd# f we choose for

ε > 0, a family of smooth, one-variable functions gε satisfying limε→0 gε(t) = max {0, t},
and limε→0 g

′′
ε = δ0 (the Dirac measure at 0). For such a family gε , we put

fε(x1, . . . , xn) = gε(xn).

Then, for each α ∈ En−1,n−1,

〈
dd# fε, α

〉 =
〈

f
′′
ε dxn ∧ dξn, α

〉
=
〈

f
′′
ε dxn ∧ dξn, αnn ̂dxn ∧ dξn

〉

=
∫

Rn

f
′′
ε αnndx1 ∧ · · · ∧ dxn,

where αnn is the coefficient in front of ̂dxn ∧ dξn in the sum defining α. Thus we see that

lim
ε→0

〈
dd# fε, α

〉 =
∫

Rn−1

αnn(x1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1, (5.3)

which is the same as saying

dd# f = dd# max {0, xn} = [{xn = 0}] ∧ dξn .

Now, let’s turn to the general case: as above, let {v/|v|, e1, . . . , en−1} be an orthonormal
basis, and let F correspond to the matrix (v/|v|, e1, . . . , en−1) in the standard basis of R

n .
We again use the notation e∗ = e∗

1 ∧ · · · ∧ e∗
n−1. Then, if we consider the action of dd# f on

the form αe∗ ∧ J (e∗), since det F = 1 we get by (4.4) and the discussion above, that
〈
dd#max(0, v · x), αe∗ ∧ J (e∗)

〉 = 〈dd#max(0, |v|xn), F∗(αe∗ ∧ J (e∗))
〉

= |v|
∫

{xn=0}
F∗(αe∗) = |v|

∫

{v·x=0}
αe∗.

On the other hand,

〈[{v · x = 0}] ∧ J (v∗), αe∗ ∧ J (e∗)
〉 = |v|

∫

{v·x=0}
αe∗,
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where we used that
∫

W
J (v∗) ∧ J (e∗) = |v|. Since we need only to consider forms that are

multiples of e∗ ∧ J (e∗), we have proved that

[{v · x = 0}] ∧ J (v∗) = dd#max(0, v · x),

which is what we aimed for.

For a tropical hypersurface V f consisting of (n − 1)-dimensional convex polyhedras Vi

as discussed before, we consider the current defined as T
′ = ∑N

i=1[Vi ] ∧ J (v∗
i ), and let

T = dd# f. The previous proposition shows that Supp(T − T
′
) is of dimension at most

n − 2. Moreover, T − T
′

is closed. These hypotheses actually implies that T − T
′ = 0 as

follows from the following lemma.

Lemma 5.1 Let S be a closed (p, q)-current whose coefficients are measures and whose
support is a piecewise affine manifold M ⊂ R

n of co-dimension p + 1. Then S = 0.

Proof Let x ∈ M . Assume that, for a small neighbourhood U of x , we can choose coordi-
nates so that M ∩ U = {x1 = x2 = · · · = x p+1 = 0}. Since S has measure coefficients, it is
easy to see that

x1S = x2S = · · · = x p S = 0

on U . It follows that d(x1S) = dx1 ∧ S = 0, thanks to S being closed. Thus, we can
write S = S

′ ∧ dx1 for a d-closed (p − 1, q)-current S
′
. By the same means x2S

′ = 0
from which we see that dx2 ∧ S

′ = 0 and so S
′ = S

′′ ∧ dx2 for some (p − 2, q)-current
S

′′
. Repeating the argument, we eventually find that there is a (0, q)-current S

′′′
such that

S = S
′′′∧dx1∧· · ·∧dx p . As before, this S

′′′
satisfies the equation S

′′′
x p+1 = 0,which implies

S
′′′ ∧ dx p+1 + d S

′′′ · x p+1 = 0. Thus S
′′′ ∧ dx p+1 = 0 on M , and since S

′′′ =∑|J |=q SJ dξJ

for some measures SJ, we see that S
′′′

, and hence S, vanish on U . Thus we have shown that S
carries no mass on the pieces of Supp(S) which are of pure co-dimension p + 1. Thus S has
support that is a piecewise affine manifold of co-dimension p + 2. Iterating the procedure
above gives the desired result.

Concluding the discussion before the lemma, we obtain the following result:

Proposition 5.5 With the notation above, dd# f =∑[Vi ] ∧ J (v∗
i ).

We can also show the following proposition, shedding more light on the connection between
currents and tropical hypersurfaces.

Proposition 5.6 Let T = ∑[Vi ] ∧ J (v∗
i ) be a tropical hypersurface. Then the condition

dT = 0 is equivalent to the balancing condition (cf. Proposition 5.1): for each (n − 2)-
dimensional affine manifold W defined as the locus where m hyperplanes V1, . . . , Vm meet,
we have that

∑m
1 vi = 0.

Proof For 1 ≤ j ≤ n, we let v j
i denote the j :th component of the vector vi . Each Vi has

a boundary built up from a number of (n − 2) dimensional pieces which we call Pr
i . For a

fixed W where V1, . . . , Vm meet, we then have finitely many Pr
i , say P1

1 , . . . , P1
k coinciding

with W as sets. Fix a (n − 2, n − 1)-form α =∑I, j αI, ĵ dxI ∧ d ξ̂ j with compact support in
a small neighbourhood of a point on W . We can choose the support so small that W is the
only part of co-dimension two of V f that lies in Supp(α). Then, by Stokes’ theorem,

〈dT, α〉 =
〈

m∑

i=1

[∂Vi ] ∧ J (v∗
i ), α

〉
=
〈

m∑

i=1

[P1
i ] ∧ J (v∗

i ), α

〉
.
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Thus, since J (v∗
i ) ∧ d̂ξ j = v

j
i dξ1 ∧ · · · ∧ dξn ,

〈dT, α〉 =
m∑

i=1

〈
[P1

i ] ∧ J (v∗
i ),
∑

I, j

αI, ĵ dxI ∧ d̂ξ j

〉
= ±

∑

j,I

(
n∑

i=1

v
j
i

)∫

W

αI, ĵ dxI .

Thus, if
∑m

i=1 vi = 0, this last sum is 0, whence 〈dT, α〉 = 0. Since we can do this for every
W , we see that dim(Supp(dT )) ≤ n − 3 and since dT has measure coefficients, Lemma
(5.1) implies that dT = 0. Conversely, if 〈dT, α〉 = 0, then

∑

j,I

(
n∑

i=1

v
j
i

)∫

W

αI, ĵ dxI = 0

and so, to see that the balancing property holds, it suffices to choose, for every fixed I0, j0,
a form α such that

∫
W αI0, ĵ0

dxI0 = 1 and
∫

W αI, ĵ = 0 for I �= I0, J �= J0.

Example 5.2 For the tropical hyperplane corresponding to the polynomial f = max {0, v · x}
we have

ν0(V f ) = ν0(dd# f ) = |v|.
To see this, let V be the singularity locus of f . Then, since T := dd# f = [V ] ∧ J (v∗),

we have

�T (B(0, r)) = 1

2n−1(n − 1)!
n∑

i=1

vi

∫

{B(0,r)∩V }×Rn

dξi ∧ (dd#|x |2)n−1

and it easy to see that,

1

2n−1(n − 1)!
∫

{B(0,r)∩V }×Rn

dξi ∧ (dd#|x |2)n−1 = vi|v| V ol(Bn−1)rn−1.

Thus

�T (B(0, r)) = V ol(Bn−1)|v|rn−1.

and so

νx (dd# f ) = lim
r→0

�T (B(x, r))

rn−1 = |v|,

as claimed.

An easy adaptation of this example shows the following:

Proposition 5.7 Let T = ∑[Vi ] ∧ J (v∗
i ) and let x be a point where a finite number of the

polyhedra Vi meet at a convex polyhedron of co-dimension 2. Assume, after reordering, that
they are V1, . . . , Vm . Then

νx (T ) = 1

2

m∑

i=1

|v j |.
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5.2 Intersection theory and tropical varieties of higher co-dimension

Let f1, . . . , f p be tropical polynomials with corresponding tropical hypersurfaces
V f1 , . . . , V f p .

Definition 5.4 The intersection of V f1 , . . . , V f p is defined as the strongly positive (p, p)-
current

V f1 ∧ · · · ∧ V f p := dd# f1 ∧ · · · ∧ dd# f p.

By Proposition 3.6 the intersection is stable in the following sense: if Vε → V , then

Vε ∧ V1 ∧ · · · ∧ Vp → V ∧ V1 ∧ · · · ∧ Vp,

as ε → 0. However, it is important to realize that this does not imply that the support of
Vε ∧ V1 ∧ · · · ∧ Vp tend to the support of V ∧ V1 ∧ · · · ∧ Vp in the Hausdorff topology (see
Example 5.3). We proceed by investigating properties of intersections of tropical hypersur-
faces.

Proposition 5.8 Let vi be linearly independent vectors in R
n, for 1 ≤ i ≤ n, and define

fi (x) = max{0, vi · x}, where x ∈ R
n . Then

dd# f1 ∧ · · · ∧ dd# fn = cδ0

where

c = |det (v1, . . . , vn)|.
Proof Let F be the linear map corresponding to the inverse of the matrix (v1, . . . , vn), so
that |det |F || = c−1. Then, fi ◦ F = max(0, xi ), and consequently

F∗dd# fi = dd#max{0, xi }.
Using formula (4.4) we see that for a compactly supported, smooth function g,

〈
dd# f1 ∧ · · · ∧ dd# fn, g

〉 = c
〈
F∗(dd# f1 ∧ · · · ∧ dd# fn), F∗g

〉

= c
〈
dd#max{0, x1} ∧ · · · ∧ dd#max{0, xn}, g ◦ F

〉
.

By Fubini’s theorem and Eq. (5.3), the last line of the above equation is equal to c·(g◦F)(0) =
c · g(0), which finishes the proof.

If Vi is a tropical hyperplane of the form

Vi = dd# fi = [{vi · x = 0}] ∧ J (v∗
i )

for each 1 ≤ i ≤ q , the same argument as in the above proof gives us that

V1 ∧ · · · ∧ Vq = dd# f1 ∧ · · · ∧ dd# fq = [{v1 · x = 0} ∩ · · · ∩ {vq · x = 0}]
∧J (v∗

1) ∧ · · · ∧ J (v∗
q ).

Notice that if two of the q hyperplanes are parallel, then the intersection vanishes. Thus, in
this case the support, Supp(V1 · · · · ·Vq), is either of dimension n −q or empty. This property
holds for general tropical hypersurfaces as well:

Proposition 5.9 Let V f1 , . . . , V f p be tropical hypersurfaces such that V f1 ∧ · · · ∧ V f p �= 0.
Then,

dim(Supp(V f1 ∧ · · · ∧ V f p )) = n − p.
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1046 A. Lagerberg

Proof By Proposition 5.5, each tropical hypersurface V can be written as

V =
k∑

i=1

[Vi ] ∧ J (v∗
i ),

where each Vi is a convex polyhedron of dimension n − 1. Each [Vi ] can be considered as
χi [Ṽi ] where Ṽi denotes the affine hull of Vi , and χi is the characteristic function

χi (x) =
{

1, x ∈ Vi

0, x /∈ Vi
.

Define the (1, 1)-current Ṽ by

Ṽ =
k∑

i=1

[Ṽi ] ∧ J (v∗
i ). (5.4)

This current is positive and closed since each summand is, and satisfies the relation

Supp(V ) ⊂ Supp(Ṽ ).

Thus the inclusion

Supp(V f1 ∧ · · · ∧ V f p ) ⊂ Supp(Ṽ f1 ∧ · · · ∧ Ṽ f p )

holds, which implies, since dim(Supp(Ṽ f1 ∧ · · · ∧ Ṽ f p )) = n − p, that

dim(Supp(V f1 ∧ · · · ∧ V f p )) ≤ n − p.

By the assumption that V f1 ∧ · · · ∧ V f p �= 0 we see that in fact equality must hold, since
dim(Supp(V f1 ∧ · · · ∧ V f p )) < n − p would force V f1 ∧ · · · ∧ V f p = 0 by Corollary 4.1.

The following result can be compared with the case of positive (1, 1)-currents in Proposition
2.7:

Proposition 5.10 Let T be a strongly positive, closed (p, p)-current of finite degree (i.e. T
satisfies (4.6)) such that Supp(T ) is a piecewise smooth manifold of dimension n − p. Then
Supp(T ) is piecewise affine.

Proof Let L be an affine subspace of R
n of dimension n − p + 1 and let πL denote the

projection onto L . By Proposition 4.5, the push-forward (πL )∗T is a closed, positive (1, 1)-
current on L × L . Since Supp((πL )∗T ) ⊂ πL(Supp(T )), we see that for every subspace
L as above, Supp((πL )∗T ) is of at least co-dimension 1 in L . If the co-dimension is larger
than 1, then (πL)∗T = 0 by Lemma 5.1. On the other hand, if the co-dimension is 1 we
obtain by Corollary 5.1, that Supp((πL )∗T ) is piecewise affine. This implies that Supp(T )
is piecewise affine.

As an immediate corollary, we obtain:

Corollary 5.2 With the notation of Proposition 5.9, Supp(V f1 ∧ · · · ∧ V f p ) is piecewise
affine.

Example 5.3 For a simple example, assume that we are in R
2 and consider the intersec-

tion dd# f ∧ dd#g where f = max(0, v1x + v2 y), and g = max(0, w1x + w2 y) where
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(v1, v2) �= (w1, w2) are vectors in R
2. This corresponds to the intersection between the lines

{v1x + v2 y} and {w1x + w2 y = 0}. Indeed, by Proposition 5.8,

dd# f ∧ dd#g =
∣∣∣∣det

[
w1 v1

w2 v2

]∣∣∣∣ δ0.

Thus the intersection of the two lines is the origin with intersection multiplicity determined
by the volume of the parallelepiped spanned by the defining vectors of the two lines. As was
noticed above, we see that if the two lines coincide, the intersection vanishes.

Let us take (v1, v2) = (w1, w2) = (1, 0) with associated tropical lines V and W and let
us perturb W slightly by considering the tropical line Wε associated to gε(x) = max{(1 +
ε)x1 + εx2, 0}. Then

Wε · V = δ0

∣∣∣∣det

[
1 1 + ε

0 ε

]∣∣∣∣ = δ0 · ε,

and

Wε · V → W · V,

as ε → 0. But, Supp(W · V ) = ∅ and Supp(Wε · V ) = {0}, which shows that the condition
Wε · V → W · V does not imply that Supp(Wε · V ) → Supp(W · V ).

These results motivate the following definition:

Definition 5.5 A tropical variety of co-dimension p is the support of strongly positive, closed
(p, p)-current T of finite degree, and where T satisfies:

– dim(Supp(T )) = n − p, and
– each of the affine pieces of Supp(T ) have rational slope.

A piece has rational slope if its affine hull, which is a plane of co-dimension k, is the set
where k linear forms with integer coefficients vanish.

Proposition 5.11 Let V1, . . . , Vp be tropical hypersurfaces, and let T = V1 ∧ · · · ∧ Vp.
Then, if T �= 0, then T is a tropical variety of co-dimension p.

Proof Indeed, by Proposition 5.9 the dimension of Supp(T ) is n − p, and by Corollary 5.2
we know that Supp(T ) is piecewise affine. Moreover, since

Supp(V1 · · · · · Vp) ⊂ Supp(V1) ∩ · · · ∩ Supp(Vp),

by Eq. (3.4), each piece has rational slope. Thus, T is a topical variety of co-dimension n − p.

The set theoretic intersection of two tropical hypersurfaces need not coincide with the sup-
port of a tropical variety. Indeed, if f = max{0, x, y} and g = max{0, x − y} then the set
theoretic intersection of V f and Vg is the half-ray {(x, y) : y = x, x ≥ 0} which is not a
tropical variety (for instance, it does not satisfy the balancing property). However, V f ∧ Vg

is equal to δ0ωn , which is a tropical variety.

Remark 5.2 The intersection theory developed here seems to fit well with the intersection
theory for tropical geometry considered in [10].
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5.3 Bezout’s theorem

We use the ideas we have developed to prove known theorems within tropical geometry.
Recall that we associated to an element f ∈ L the function

f̃ (x) = lim
t→∞

f (t x)

t
,

and that by Proposition 3.13 we have the following relation between f and f̃ :
∫

E

(dd# f )n =
∫

E

(dd# f̃ )n . (5.5)

Let us explore the effects of this result to tropical polynomials. For f (x) = maxα∈A{cα+α·x}
it is easy to see that f̃ (x) = maxα∈A{α · x}. Relating to the discussion in the beginning of
Sect. 5, this means that if f corresponds to a convex triangulation of conv(A) then f̃ corre-
sponds to “forgetting” this triangulation. In fact, since

max
α∈A

{α · x} = max
α∈conv(A)

{α · x},

we see that f̃ is just the support function of the set conv(A).

Proposition 5.12 Let f1, . . . , fn be tropical polynomials defined by

fi = max
α∈Ai

{ci
α + α · x},

where each Ai is a finite set of point of Z
n, and ci

α are real numbers. Let Ãi = conv(A).
Then f̃i is the support function of Ãi and

∫

E

dd# f1 ∧ · · · ∧ dd# fn = n! · V ( Ã1, . . . , Ãn). (5.6)

Proof It is clear that, if g = f1 + · · · + fn , then g̃ = f̃1 + · · · + f̃n . Thus, (5.5) implies that,
for every (t1, . . . , tn) ∈ R

n,

∫

E

⎛

⎝dd#

⎛

⎝
∑

j∈J

t j f j

⎞

⎠

⎞

⎠
n

=
∫

E

⎛

⎝dd#

⎛

⎝
∑

j∈J

t j f̃ j

⎞

⎠

⎞

⎠
n

and so, by comparing coefficients, we see that
∫

E

dd# f1 ∧ · · · ∧ dd# fn =
∫

E

dd# f̃1 ∧ · · · ∧ dd# f̃n .

Since f̃i is the support function of the set Ãi , we obtain from Proposition 3.12 that
∫

E

dd# f1 ∧ · · · ∧ dd# fn = n! · V ( Ã1, . . . , Ãn).

Remark 5.3 In the complex setting, there is an analogue of the associated function f̃ ,
called the indicator associated to a plurisubharmonic function of logarithmic growth. See
for instance the article [12], and also the article [13] where relations between mixed Monge-
Ampère measures (of plurisubharmonic functions of logarithmic growth) and mixed volumes
are obtained.
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Let us apply the above Proposition to obtain, in an easy way, two results from tropical geom-
etry. We stress that these are not new results. Let us assume for the moment that n = 2. A
tropical curve associated to a tropical polynomial f = maxα∈A{cα + α · x} is of degree d
if Newt ( f ) is equal to the set {(x, y) : x + y ≤ d, x, y ≥ 0}. The tropical version of the
Bezout theorem in 2 dimensions is the following:

Theorem 5.1 Consider two generic tropical curves C1 and C2 in R
2 of degree d1 and d2

respectively. Then the number of intersection points counted with multiplicity is equal to
d1d2.

Proof If the curve Ci corresponds to the tropical polynomial fi then we know that the number
of intersection between the curves is equal to

∫

R2×R2

dd# f1 ∧ dd# f2.

By Proposition 5.12 this number is equal to n! · V (Newt ( f1), Newt ( f2)). But, if we let
Sd = {(x, y) : x + y ≤ d, x, y ≥ 0}, then

V (Sd1 , Sd2) = V ol(Sd1 + Sd2)− V ol(Sd1)− V ol(Sd1)

= 2−1((d1 + d2)
2 − d2

1 − d2
2 ) = d1d2,

and we are done.

In general, we consider Eq. (5.6) to be the general version of Bezout’s theorem. As another
application, we show that the Proposition implies an interesting interplay between tropical
and ordinary polynomials (cf. [16]): We begin by recalling Bernstein’s theorem.

Theorem 5.2 Let P1, . . . , Pn be (generic) polynomials on (C\{0})n . Then the number of
solutions of the system P1 = · · · = Pn = 0 is equal to

n! · V (Newt (P1), . . . , Newt (Pn)),

where Newt (Pi ) is the Newton polytope of Pi .

For each polynomial Pi , we associate the function f̃i (x) = supξ∈Newt (Pi )
ξ · x, that is,

the support function of Newt (Pi ). Clearly, f̃i belongs to L and is a tropical polynomial.
Then Proposition 5.12 combined with Bernstein’s theorem says the following: the number
(counted with multiplicities) of intersection points of the tropical hypersurfaces associated
to f̃i is equal to the number of intersection points of the varieties {Pi = 0} ⊂ (C\{0})n .
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