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Abstract We show the David–Jerison construction of big pieces of Lipschitz graphs inside
a corkscrew domain does not require surface measure be upper Ahlfors regular. Thus we can
study absolute continuity of harmonic measure and surface measure on NTA domains of
locally finite perimeter using Lipschitz approximations. A partial analogue of the F. and M.
Riesz Theorem for simply connected planar domains is obtained for NTA domains in space.
As one consequence every Wolff snowflake has infinite surface measure.
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1 Introduction

What are the minimal assumptions on the boundary of a domain � ⊂ R
n to guarantee its

harmonic measure ω and surface measure σ = H n−1 ∂� have the same null sets? When
n =2, for example, one has the classic result of F. and M. Riesz [15]. In the plane, a topolog-
ical condition (∂� is a Jordan curve) and a mild measure-theoretic condition (∂� has finite
length) imply harmonic measure vanishes exactly on sets of zero length.

Theorem A (F. and M. Riesz 1916) Let � ⊂ R
2 be a simply connected domain, bounded

by a Jordan curve. If H 1(∂�) < ∞, then

ω(E) = 0 ⇔ H 1(E) = 0 for every Borel set E ⊂ ∂�. (1.1)
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242 M. Badger

If one strengthens the hypothesis H 1(∂�) < ∞ in Theorem A, the relationship witnessed
betweenω andσ is stronger than absolute continuity [11]. A Jordan curve ∂� is called a chord-
arc curve if ∂� is a quasicircle and there exists a constant C>0 such that H 1(�(Q, r)) ≤ Cr
for all Q ∈ ∂� and 0 < r < diam�, where �(Q, r) = ∂� ∩ B(Q, r).

Theorem B (Lavrentiev 1936) Let � ⊂ R
2 be a simply connected domain, bounded by a

chord-arc curve. Then (1.1) holds and ω ∈ A∞(σ ), i.e., there exist constants 0 < δ < 1 and
0 < ε < 1 such that for every � = �(Q, r),

σ(E) ≤ δσ (�) ⇒ ω(E) ≤ εω(�) for every Borel set E ⊂ �. (1.2)

An amusing fact is that the “one-sided” condition (1.2) implies (1.1). Actuallyω ∈ A∞(σ )
if and only if σ ∈ A∞(ω); see [2], also for several equivalent definitions of A∞ weights. For
further discussion on harmonic measure in the plane, the reader should consult [6].

The situation in higher dimensions is more delicate. In 1974, Ziemer [18] found a topolog-
ical sphere� ⊂ R

3 whose boundary is 2-rectifiable with H 2(∂�)<∞, but whose harmonic
measure is supported on a subset of zero area. This means that any analogue of Theorem A
in space must impose extra non-topological conditions on ∂�. In this paper, we show the
class of NTA domains (recalled in §4) satisfy the forward direction of (1.1).

Theorem 1.1 Let � ⊂ R
n be NTA. If H n−1 ∂� is Radon (e.g. if H n−1(∂�) < ∞), then

∂� is (n − 1)-rectifiable and

ω(E) = 0 ⇒ H n−1(E) = 0 for every Borel set E ⊂ ∂�. (1.3)

The proof of Theorem 1.1 that we present is based on the extension of Theorem B to n ≥ 3
given by David and Jerison [4]. Let� ⊂ R

n be a NTA domain and assume its surface measure
is Ahlfors regular; that is, there exists a constant C > 0 such that

C−1rn−1 ≤ H n−1(�(Q, r)) ≤ Crn−1 for all Q ∈ ∂� and 0 < r < r0. (1.4)

Using the existence of (n − 1)-disks inside B(Q, r) ∩ � and B(Q, r)\� of radius ≥ c0r
(a weaker property than the corkscrew conditions enjoyed by NTA domains) and (1.4), David
and Jerison gave a geometric construction of Lipschitz domains �L ⊂ B(Q, r) ∩ � such
that H n−1(∂�L ∩ ∂�) ≥ c1rn−1. In other words, there exists a Lipschitz approximation to
� at each location and scale, which has substantial intersection in the boundary. Applying
Dahlberg’s theorem relating harmonic and surface measures on Lipschitz domains [3] and a
localization property for harmonic measure on NTA domains [8] yields Theorem B for NTA
domains. (Theorem C was independently verified for 2-sided NTA domains by Semmes [16]
using a stopping time argument.)

Theorem C (David and Jerison, Semmes 1990) Let � ⊂ R
n be NTA. If (1.4) holds, then

ω 
 σ 
 ω and ω ∈ A∞(σ ).

The existence of big pieces of Lipschitz graphs implies that every NTA domain satisfying
(1.4) is uniformly rectifiable; this notion of quantitative rectifiability is developed in [5].
For a class of domains with non-doubling harmonic measure, on which a variant of the A∞
condition in Theorem C still holds, see Bennewitz and Lewis [1]. In the present work, we
revisit David and Jerison’s construction of Lipschitz approximations to �, focusing on the
case when � is a corkscrew domain (e.g. when � is NTA). We make two observations.
First surface measure on any corkscrew domain is automatically lower Ahlfors regular
(Lemma 2.3). Second constructing a Lipschitz approximation at a given location and scale
does not require surface measure be upper Ahlfors regular. Therefore one may relax the
assumption that (1.4) holds uniformly at all scales in Theorem C. This is our main result.
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Null sets of harmonic measure on NTA domains 243

Theorem 1.2 Let � ⊂ R
n be NTA. Then the set

A =
{

Q ∈ ∂� : lim inf
r↓0

H n−1(�(Q, r))

rn−1 < ∞
}

(1.5)

is (n − 1)-rectifiable and ω A 
 σ A 
 ω A.

If H n−1 ∂� is Radon, then H n−1(∂� \ A) = 0. Hence Theorem 1.1 follows directly
from Theorem 1.2. It remains unknown whether the F. and M. Riesz theorem has a full
analogue on NTA domains in higher dimensions. However, in view of Theorem 1.2, one can
reverse the arrow in (1.3) if and only if

Conjecture 1.3 Let � ⊂ R
n be NTA. If H n−1 ∂� is Radon, then

B =
{

Q ∈ ∂� : lim
r↓0

H n−1(�(Q, r))

rn−1 = ∞
}

(1.6)

has harmonic measure zero.

The paper is organized as follows. In Sects. 2–3, we demonstrate how to build a Lipschitz
domain�L inside of a corkscrew domain� at a given location Q ∈ ∂� and scale r > 0 such
that H n−1(�(Q, r)) < ∞. At each step of the construction, we keep careful track of depen-
dencies on parameters. The common boundary ∂�∩∂�L of a domain and its approximation
has size determined by the dimension n and corkscrew constant M of �; the Lipschitz con-
stant and character of �L only depends on n, M and the ratio γ = H n−1(�(Q, r))/rn−1.
Section 2.1 outlines the construction of �L using cones of a fixed aperture and reduces the
approximation theorem (Theorem 2.4) to choosing the correct slope of the defining cones
(Proposition 2.8). In Sect. 2.2 we quantify the relationship between harmonic and surface
measures on the Lipschitz domain �L . The main tool is Jerison and Kenig’s proof [7] of
Dahlberg’s theorem for star-shaped Lipschitz domains. The construction of�L is completed
in Sect. 3, where we verify Proposition 2.8 by following the proof of the proposition in [4].

Section 4 is devoted to absolute continuity of harmonic measure on NTA domains of
locally finite perimeter. We derive Theorem 1.2 from three main ingredients: good Lipschitz
approximations to corkscrew domains (Theorem 2.4 and Lemma 2.13), a localization prop-
erty of harmonic measure on NTA domains (Lemma 4.3), and a Vitali type covering theorem
for Radon measures in R

n (Theorem 4.6). An NTA domain is a corkscrew domain that also
satisfies a Harnack chain condition. The proof of absolute continuity that we give actually
shows Theorem 1.2 is valid on any corkscrew domain whose harmonic measure satisfies the
conclusion of Lemma 4.3.

Two applications of the main theorem are presented in Sect. 5. First we prove that every
Wolff snowflake (studied in [17] and [12]) has infinite surface measure. Second we compute
the (upper) Hausdorff dimension of harmonic measure on NTA domains of locally finite
perimeter: if � ⊂ R

n is NTA and H n−1 ∂� is Radon, then H– dimω = n − 1. This
section can be read independently of §§2–4.

2 Lipschitz approximation to Corkscrew domains

A closed set 
 ⊂ R
n has big pieces of Lipschitz graphs (often abbreviated BPLG) if (i)

H n−1 
 is Ahlfors regular and (ii) there are constants ϕ > 0, h > 0 and r0 > 0 such that
for every Q ∈ 
 and 0 < r < r0 there exists (up to an isometry in R

n) a graph � ⊂ R
n of an

h-Lipschitz function such that H n−1(B(Q, r)∩
 ∩�) ≥ ϕrn−1. In [4], David and Jerison
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244 M. Badger

proved if 
 ⊂ R
n has Ahlfors regular surface measure and the open set R

n\
 satisfies a
“two disk” condition, then
 has BPLG. Reading their proof carefully reveals that the upper
bound in the Ahlfors regularity condition (1.4) is not used to build Lipschitz graphs �. We
verify this claim over the next two sections, in the special case that 
= ∂� and � ⊂ R

n is
a corkscrew domain. (This is the case applicable for Theorem 1.2 and using the corkscrew
condition instead of the two disk condition shortens the proof of several lemmas in §3.)

Definition 2.1 An open set� ⊂ R
n satisfies the corkscrew condition with constants M > 1

and R > 0 provided that for every Q ∈ ∂� and every 0 < r < R there exists a non-tangential
point A = A(Q, r) ∈ � such that |A − Q| < r and dist(A, ∂�) > r/M .

Definition 2.2 An open set � ⊂ R
n is a corkscrew domain if � is connected and both �

and R
n\� satisfy the corkscrew condition with constants M > 1 and R > 0.

When� ⊂ R
n is a corkscrew domain, we write A+(Q, r) for non-tangential points in the

interior�+ = � and write A−(Q, r) for non-tangential points in the exterior�− = R
n \� of

�. Notice the definition does not require the exterior of a corkscrew domain to be connected.
Let us start with a simple application of the interior and the exterior corkscrew conditions.

Surface measure on a corkscrew domain is always lower Ahlfors regular. Here we normalize
Hausdorff measure so that H n−1(Bn−1(0, 1)) = ωn−1.

Lemma 2.3 There exists a constant β = β(n,M) > 0 such that for every corkscrew domain
� ⊂ R

n with constants M > 1 and R > 0,

H n−1(�(Q, r)) ≥ βrn−1 for all Q ∈ ∂� and 0 < r < R. (2.1)

Proof Write t = M/(M + 1) and choose non-tangential points a± = A±(Q, tr) of �±.
Then B(a±, tr/M) ⊂ �± ∩ B(Q, r). Let π denote orthogonal projection onto a plane P (of
codimension 1) orthogonal to the line segment connecting a+ and a−. Assign D± to be the
(n − 1)-dimensional disk of radius tr/M inside of B(a±, tr/M) and parallel to P . Because
D+ and D− lie in different connected components of R

n\∂� and the ball B(Q, r) is convex,
any line segment from D+ to D− must intersect�(Q, r). Hence, since π(D+) = π(D−) is
a disk of radius tr/M = r/(M + 1) (Fig. 1),

H n−1(�(Q, r)) ≥ H n−1(π(�(Q, r))) ≥ H n−1(π(D±)) = ωn−1

(
r

M + 1

)n−1

. (2.2)

Thus β = ωn−1/(M + 1)n−1 suffices.

Our main goal in this section is to construct Lipschitz domains inside corkscrew domains
with substantial intersection on the boundary. An important observation is the size of the big
pieces of Lipschitz graphs depends only on the corkscrew constant.

Theorem 2.4 Let � ⊂ R
n be a corkscrew domain with constants M > 1 and R > 0. There

exists a constant ψ =ψ(n,M) > 0 with the following property. For every point Q ∈ ∂�

and every positive number r< R such that H n−1(�(Q, r)) < ∞,

(�) for every non-tangential point a = A+(Q, r/2) there exists a Lipschitz domain�L ⊂ R
n

such that a ∈ �L ⊂ �∩ B(Q, r), H n−1(∂�L ∩ ∂�) ≥ ψrn−1, and ∂�L ∩ ∂� is con-
tained in (the rigid motion of) a single Lipschitz graph.

Moreover, we can find �L in (�) so that the Lipschitz constant and character of �L depend
only on n, M and the ratio γ = H n−1(�(Q, r))/rn−1.
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Null sets of harmonic measure on NTA domains 245

Fig. 1 Proof of Lemma 2.3

Corollary 2.5 If � ⊂ R
n is a corkscrew domain and H n−1 ∂� is upper Ahlfors regular,

then ∂� has big pieces of Lipschitz graphs.

Corollary 2.6 Let� ⊂ R
n be a corkscrew domain with constants M > 1 and R > 0. There

exists a constant h =h(n,M) > 0 such that

{Q ∈ ∂� : H n−1(�(Q, r)) < ∞ for some r > 0} (2.3)

is contained, modulo a set of H n−1-measure zero, in the countable union of sets Fi (R
n−1)

where each function Fi : R
n−1 → R

n has Lipschitz constant at most h.

2.1 Constructing a Lipschitz Approximation

Let � ⊂ R
n be a corkscrew domain with constants M > 1 and R > 0, and fix Q ∈ ∂� and

0 < r < R such that

H n−1(�(Q, r)) ≤ γ rn−1 < ∞. (2.4)

We do not normalize the radius r , because we want to emphasize that the construction takes
place at any fixed scale such that H n−1(�(Q, r))/rn−1 < ∞. Our immediate goal is to find
a constant ψ=ψ(n,M) > 0 such that (�) in Theorem 2.4 holds.

Let a non-tangential point a = A+(Q, r/2) of� be given. We select a piece of the bound-
ary to approximate as follows. Pick any non-tangential point b = A−(Q, r/2) of �−. Then
the line segment from a to b intersects �(Q, r/2) in some point Q′. After a harmless trans-
lation and rotation, we may assume that Q′ =0, a =(0, an) and b=(0,−bn) where r/2M ≤
an, bn ≤ r . Note that B(a, r/2M) ⊂ B(Q, r) ∩ � and B(b, r/2M) ⊂ B(Q, r) ∩ �−. Let
I0 =[−s/2, s/2]n−1 ⊂ R

n−1 be the (n − 1)-dimensional cube with side length

s = r

2M
√

n − 1
(2.5)

centered at the origin. Then I1 = I0 × {an} ⊂ B(a, r/4M). Write π : R
n → R

n−1 and
f : R

n → R for the orthogonal projections onto the first (n − 1) coordinates and the last
coordinate of R

n , respectively. Fix a cone C opening upwards,

C = {
z ∈ R

n : f (z) ≥ h|π(z)|}, (2.6)
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246 M. Badger

with parameter h � 1 to be chosen later. Let T denote the trapezoidal region

T = {
y ∈ R

n : −bn ≤ f (y) ≤ an and (y + C ) ∩ f −1(an) ⊂ I1
}

(2.7)

and write T = ∂� ∩ T for the portion of boundary in T . We shall approximate T .
The reader can check that I0 × [an − s/4, an] ⊂ B(a, r/2M) ⊂ � and similarly that

I0 × [−bn,−bn + s/4] ⊂ B(b, r/2M) ⊂ �−. Thus we know

− bn + s/4 ≤ f (y) ≤ an − s/4 for all y ∈ T . (2.8)

If the slope h of the cone C is sufficiently large, then the surface T has large measure.

Lemma 2.7 If h ≥ h0 = 16M
√

n − 1, then H n−1(π(T )) ≥ rn−1/
(
4M

√
n − 1

)n−1
.

Proof If h is sufficiently large, we claim that T contains the (n − 1)-dimensional cube
I2 = [−s/4, s/4]n−1 × {−bn}. Indeed first note I2 ⊂ T if and only if the corner y =
(s/4, . . . , s/4,−bn) of the cube satisfies (y + C ) ∩ f −1(an) ⊂ I1. Hence if z ∈ R

n ,
f (z) = h|π(z)| and −bn + f (z) = f (y + z) = an (i.e. y + z ∈ (y + ∂C ) ∩ f −1(an)) then
s/4 + |π(z)| ≤ s/2 (i.e. y + z ∈ I1) implies I2 ⊂ T . That is,

s

4
+ an + bn

h
≤ s

2
⇒ I2 ⊂ T . (2.9)

Since an + bn ≤ 2r = 4Ms
√

n − 1, we find that I2 ⊂ T provided

s

4
+ 4Ms

√
n − 1

h
≤ s

2
. (2.10)

Thus I2 ⊂ T when h ≥ h0 = 16M
√

n − 1. Because every vertical line segment from
I2 ⊂ �− ∩ T to I1 ⊂ �+ ∩ T intersects T and π(I2) ∩ π(I1) = π(I2), we conclude

H n−1(π(T )) ≥ H n−1(π(I2)) =
( s

2

)n−1 =
(

r

4M
√

n − 1

)n−1

(2.11)

whenever h ≥ h0.

We now use the cone C to identify a subset of T which intersects a Lipschitz graph
contained inside � ∩ B(Q, r) in a big piece. By a standard argument the set T� (Fig. 2),

T� = {y ∈ T : (y + C ) ∩ T = {y}}, (2.12)

sits inside the graph � of a function F : I0 → R with Lipschitz constant at most h. Note by
(2.8) replacing F by max(min(F, an − s/4),−bn + s/4) does not effect � ∩ T . Hence we
may assume without loss of generality that −bn + s/4 ≤ F(x) ≤ an − s/4 for all x ∈ I0.
Define the domain

�L = {(x, u) ∈ I0 × R : u > F(x)} ∩ int (T ∪ (I0 × [an, an + s/4])). (2.13)

That is, �L is obtained by taking the area above � inside T and then extending upwards so
that B(a, s/4) lies inside the domain. Since the vertical extension satisfies I0 × [an, an +
s/4] ⊂ B(a, r/2M), �L ⊂ � ∩ B(Q, r) and �L is a Lipschitz domain with intersection
∂�L ∩ ∂� = � ∩ T = T� . Notice that �L can be covered by c(n) Lipschitz graphs with
constant at most h.

To select the slope h of C large enough so that H n−1(T�) ≥ ψrn−1 for some constant
ψ = ψ(n,M) > 0, we need the following claim, a slight modification of the geometric
proposition in [4].
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Null sets of harmonic measure on NTA domains 247

Fig. 2 What do T� and �L look like?

Proposition 2.8 For all ε > 0, there exists h ≥ h0 depending only on n, M, γ and ε such
that H n−1(π(T )\π(T�)) ≤ εrn−1.

The proof of Proposition 2.8 is a long but fairly straightforward application of the cork-
screw condition on the exterior �− of �, the lower Ahlfors regularity of H n−1 ∂�, and
the upper bound H n−1(�(Q, r)) ≤ γ rn−1; details are postponed until §3. First let us finish
studying the Lipschitz approximation �L to � ∩ B(Q, r).

Proof of Theorem 2.4 By Lemma 2.7 and Proposition 2.8,

H n−1(T�) ≥ H n−1(π(T�)) = H n−1(π(T ))− H n−1(π(T )\π(T�))

≥
(

1(
4M

√
n − 1

)n−1 − ε

)
rn−1. (2.14)

Choosing ε > 0 sufficiently small (equivalently choosing h ≥ h0 sufficiently large), we
conclude that H n−1(∂�L ∩ ∂�) = H n−1(T�) ≥ ψrn−1 with

ψ = 1(
8M

√
n − 1

)n−1 . (2.15)

The constant ψ only depends on n and M ; the Lipschitz constant of the graph � and the
Lipschitz character of the domain �L are determined by h and thus by n, M , γ .

2.2 Harmonic measure and the A-infinity condition

Next we compare harmonic measure ωL and surface measure σL on�L (Lemma 2.13) using
constants depending only on n, M and γ . A theorem of Dahlberg [3] asserts a strong rela-
tionship between harmonic measure and surface measure exists on any bounded Lipschitz
domain.

Theorem 2.9 ([3] Theorem 3) Let D ⊂ R
n be a bounded Lipschitz domain equipped with

harmonic measure ωD and surface measure σD. Then ωD ∈ A∞(σD).

To use Theorem 2.9 effectively, we must understand the dependence of constants in the
A∞ condition on the features of a Lipschitz domain. There are two proofs of Theorem 2.9
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248 M. Badger

(Dahlberg [3], Jerison and Kenig [7]) and each proof first establishes the theorem on a special
class of star-shaped Lipschitz domains. (A domain D is called star-shaped with center c if
every open line segment from c to ∂D lies inside D.) Thus the A∞ condition in Theorem 2.9
may depend on how star-shaped Lipschitz domains cover the original domain. To clarify this
dependence, we need to introduce some notation. Let D be a star-shaped Lipschitz domain
with center c, and write ny for the outer unit normal to ∂D defined at H n−1-a.e. y ∈ ∂D.
Define the angle function ϑD,c(y) (see Fig. 3) by

cosϑ = 〈ny, y − c〉
‖y − c‖ , 0 ≤ ϑ ≤ π. (2.16)

Note ϑD,c(y) is defined at H n−1-a.e. y ∈ ∂D. Since D is star-shaped with center c, the
angle function ϑD,c(y) ∈ [0, π/2] almost surely.

The following proposition is adapted from the proof of Theorem 2.9 in [7].

Proposition 2.10 Let D ⊂R
n be a bounded star-shaped Lipschitz domain with center c ∈ D.

Let h be the Lipschitz constant of D and assume there exists radii ρ1, ρ2 > 0 such that
B(c, ρ1) ⊂ D ⊂ B(c, ρ2). For all ϑ0 < π/2, there exists a constant C = C(n, h, ρ2/ρ1, ϑ0)

with the following property. If ϑD,c ≤ ϑ0 a.e. on �D(y0, r0) for some y0 ∈ ∂D and r0 > 0,
then the Radon-Nikodym derivative k = dωc

D/dσD of harmonic measure with pole at c with
respect to surface measure satisfies the reverse Hölder inequality

(
−
∫
�(y,r)

k2dσD

)1/2

≤ C−
∫
�(y,r)

kdσD for every �D(y, r) ⊂ �D(y0, r0). (2.17)

Here the dashed integral −
∫
�

kdσ = (σ (�))−1
∫
�

kdσ denotes an average. By the theory
of A∞ weights, if condition (2.17) holds, then (1.2) also holds on�D(y0, r0) with constants
δ and ε which depend only on n and C .

Let us return our attention to the comparison of harmonic measure and surface measure
on�L . First we cover�L using two types of star-shaped Lipschitz domains (see Fig. 4) and
estimate harmonic measure in each case separately.

Lemma 2.11 Up to a dilation, the Lipschitz domain

Dtop = {y ∈ �L : f (y) > an − s/4} (2.18)

is determined by n and h. Moreover, there exists a constant η0 = η0(n,M, γ ) such that

ωa
L(E) ≤ η0 ⇒ H n−1(E) ≤ ψ

4
rn−1 for all E ⊂ ∂�L ∩ ∂Dtop (2.19)

Here ωa
L denotes harmonic measure of �L with pole at a.

Fig. 3 The angle function
ϑD,c(y)
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Null sets of harmonic measure on NTA domains 249

Fig. 4 Star-shaped domains in Lemmas 2.11 and 2.12

Proof The Lipschitz function F : I0 → R used to build �L satisfied F(x) ≤ an − s/4 for
all x ∈ I0. Hence Dtop is a fixed subset of the region int(T ∪ (I0 × [an, an + s/4])) and
determined by n and h. By Theorem 2.9, ωa

top ∈ A∞(σtop), where ωa
top is harmonic mea-

sure on Dtop with pole at a and σtop = H n−1 ∂Dtop. Thus there exist constants p, q > 0
depending only on n and h such that

H n−1(E) ≤ p
[
ωa

top(E)
]q

H n−1(Dtop) for all E ⊂ ∂Dtop. (2.20)

On one hand, ωa
top(E) ≤ ωa

L(E) for all E ⊂ ∂�L ∩ ∂Dtop, by the maximum principle. On

the other hand, H n−1(Dtop) ≤ C0rn−1 for some C0 = C0(n, h). Therefore,

H n−1(E) ≤ C0 p
[
ωa

L(E)
]q

rn−1 for all E ⊂ ∂�L ∩ ∂Dtop, (2.21)

and the constant η0 = (ψ/4C0 p)1/q depending only on n, M and γ suffices.

Lemma 2.12 Set h∗ = h
√

n − 1. For each c ∈ I1 define

Dc = {y ∈ �L : ‖π(y)− π(c)‖∞ < s/8h∗} (2.22)

where ‖x‖∞ = maxi |xi | for all x ∈ R
n−1. Assume ‖π(c)‖∞ ≤ s/2 − s/4h∗ − s/8h∗.

Then Dc is a star-shaped Lipschitz domain with center c, the Lipschitz constant of Dc is
at most h and B(c, s/8h∗) ⊂ Dc ⊂ B(c, 4Ms

√
n − 1). Moreover, there exists a constant

ϑ1 = ϑ1(n,M, γ ) < π/2 such that ϑD,c ≤ ϑ1 on ∂Dc almost surely.

Proof Fix any point c ∈ I1 such that ‖π(c)‖∞ ≤ s/2 − s/4h∗ − s/8h∗. This condition on
c guarantees that ‖π(y)‖∞ ≤ s/2 − s/4h∗ for all y ∈ Dc and the top portion of Dc is a box
that (up to translation) is independent of c:

Dc ∩ Dtop = (π(c)− s/8h∗, π(c)+ s/8h∗)n−1 × (an − s/4, an + s/4). (2.23)

Hence B(c, s/8h∗) ⊂ Dc. The inclusion Dc ⊂ B(c, 4Ms
√

n − 1) follows from (2.8). The
bottom portion of Dc (i.e. Dc ∩ f −1(−∞, an − s/4)) is the area above the graph

�c = {y ∈ ∂�L ∩ � : ‖π(y)− π(c)‖∞ < s/8h∗}. (2.24)
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For all p > 0 let Cp = {z ∈ R
n : f (z) ≥ p|π(z)|} denote the cone opening upwards with

slope p. The cone used to define �L above was C = Ch . If y ∈ �c, then c ∈ y + C2h

since f (c)− f (y) = an − f (y) ≥ s/4 and |π(c)− π(y)| ≤ s/8h. Because C2h ⊂ Ch and
(y + Ch) ∩ � = {y}, the open line segment from c to y ∈ �c is contained in Dc. Thus Dc is
star-shaped with respect to c. It remains to bound the angle function.

Suppose ny is an outer normal to ∂Dc defined at y ∈ �c. On one hand, ny ∈ −C1/h ,
since (y + Ch) ∩ � = {y}. On the other hand, y − c ∈ −C2h . The greatest angle between
a vector v ∈ −C1/h and a vector w ∈ −C2h is obtained by v = (1, 0, . . . ,−1/h) and
w = (−1, 0, . . . ,−2h); in this case,

cosϑ = 〈v,w〉
‖v‖‖w‖ = 1

(1 + h−2)1/2(1 + 4h2)1/2
≥ 1

h
√

10
. (2.25)

We conclude ϑD,c(y) ≤ cos−1(1/h
√

10) < π/2 for almost every y ∈ �c. Bounding ϑD,c

on ∂Dc\�c (that is, on sides of a box) is easier and left to the reader.

Equipped with Proposition 2.10, Lemma 2.11 and Lemma 2.12, we are ready to compare
harmonic measure and surface measure on �L .

Lemma 2.13 There exists a constant 0 < η < 1 depending only on n, M and γ with the
following property. For every Borel set E ⊂ ∂�L ,

ωa
L(E) ≤ η ⇒ H n−1(E) ≤ ψ

2
rn−1. (2.26)

Here ωa
L denotes harmonic measure on �L with pole at a.

Proof Choose points c1, . . . , ci0 ∈ I1 such that ‖π(ci )‖∞ ≤ s/2 − s/4h∗ − s/8h∗ and

(−s/2 + s/4h∗, s/2 − s/4h∗)n−1 × {an} ⊂
⋃

i

Dci . (2.27)

We can make this choice so that i0 only depends on n and h. Notice that

∂�L ⊂ ∂Dtop ∪
⋃

i

�ci . (2.28)

The points ci and a lie inside Dtop, at a uniform distance away from ∂Dtop. By Lemma 2.11
and Harnack’s inequality, there exists a constant C1 = C1(n, h) > 1 such that

ω
ci
L (E) ≤ C1ω

a(E) for all 1 ≤ i ≤ i0 and E ⊂ ∂�L . (2.29)

Thus, in view of (2.19), (2.28) and (2.29), to prove Lemma 2.13 it suffices to display η =
η(n,M, γ ) ∈ (0, η0) small enough so that

ω
ci
L (E ∩ �ci ) ≤ C1η ⇒ H n−1(E ∩ �ci ) ≤ ψ

4i0
rn−1 (2.30)

for all 1 ≤ i ≤ i0 and E ⊂ ∂�.
By Proposition 2.10 and Lemma 2.12, Dci is a star-shaped Lipschitz domain whose

harmonic measure ωci
D satisfies (2.17) on every disk for some constant C2 depending only on

n, M and γ . An equivalent form of the A∞ condition states that for every ε > 0 there exists
δ = δ(n,C2, ε) > 0 such that

ω
ci
D(E ∩ �ci ) ≤ δ ⇒ H n−1(E ∩ �ci ) ≤ εH n−1(∂Dci ). (2.31)
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But H n−1(∂Dci ) ≤ C3(n, h)rn−1, so we can assign ε = C−1
3 ψ/4i0 to find a constant

δ = δ(n,M, γ ) > 0 such that

ω
ci
D(E ∩ �ci ) ≤ δ ⇒ H n−1(E ∩ �ci ) ≤ ψ

4i0
rn−1. (2.32)

Set η = min(η0, δ/C1) so that η only depends on n, M and γ . Then (2.30) follows from
(2.32) and the maximum principle.

3 Proof of Proposition 2.8

We continue to assume the notation adopted in §2.1. Let ε > 0 be given. Our goal is to
choose the slope h ≥ h0 of the cone C so that H n−1(π(T )\π(T�)) ≤ εrn−1. In the course
of exposition we shall introduce several constants and indicate their dependence on pre-
viously defined quantities; each one will ultimately depend on at most n (dimension), M
(corkscrew constant), γ (upper bound at scale r ) and ε. Following [4], we start by breaking
up the set π(T )\π(T�) into manageable pieces.

Lemma 3.1 Let H : R
n−1 → [0,∞] be the function

H(x) = sup

{
H n−1(�(Q, r) ∩ π−1(I ))

H n−1(I )
: I ⊂ R

n−1 is a cube and x ∈ I

}
. (3.1)

If λH (N ) = {x ∈ R
n−1 : H(x) ≥ N }, then H n−1(λH (N )) ≤ 5n−1γ rn−1/N.

Proof Just note H(x) is the maximal function of the the measure

μ = π�(H
n−1 �(Q, r)) (3.2)

with respect to the Lebesgue measure on R
n−1. By the Hardy-Littlewood maximal theorem

(for example, see Theorem 2.19 in [14]), H n−1(λH (N )) ≤ 5n−1μ(Rn−1)/N . By (2.4), μ
has total mass μ(Rn−1) ≤ γ rn−1.

Note that the upper bound H n−1(�(Q, r)) ≤ γ rn−1 on surface measure was used in the
proof of Lemma 3.1. It will not be used again until after proof of Lemma 3.8.

For the remainder of the section, fix N = 2 · 5n−1γ /ε so that the set � = λH (N ) of
points in R

n−1 where the maximal function H(x) is large has small measure, H n−1(�) ≤
(ε/2)rn−1. We must control the size of π(T )\π(T�) in �c = R

n−1\�. For each y ∈ T , let
L(y) = [y, (π(y), an)] denote the vertical segment above y in T . Then the set of points

TE = {y ∈ T : L(y) ∩ T = {y}} (3.3)

denotes the “top edge” of ∂� inside T . Observe that T� ⊂ TE ⊂ T and π(T ) = π(TE ). Let
α be a large power of 2 to be chosen later (after Lemma 3.8) and abbreviate sp = s/α p for
all p. For each integer k ≥ 0, define the set Fk ⊂ I0 (Fig. 5),

Fk = {π(y) : ∃y, z ∈ TE such that z ∈ y + C and sk ≤ f (z)− f (y) ≤ sk−1}. (3.4)

By (2.8), if we choose αs = s−1 ≥ an + bn − s/2, each bad point x ∈ π(T )\π(T�)
belongs to at least one Fk . For this reason, we will stipulate that

α ≥ 4M
√

n − 1 = 2r/s > s−1(an + bn − s/2). (3.5)
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Fig. 5 A point π(y) ∈ Fk

Thus, we can prove Proposition 2.8 by verifying H n−1
(⋃

k Fk
) ≤ εrn−1, or because of

Lemma 3.1, by demonstrating that∑
k

H n−1(Fk\�) ≤ ε

2
rn−1 for some h ≥ h0. (3.6)

Remark 3.2 We do not assert that TE or Fk are measurable. While this fact is irksome, it does
not hinder the proof. A careful reader will observe that we only use countable subadditivity
of the outer measure H n−1 in coverings involving Fk .

The next lemma captures a simple idea. If the surface ∂�∩π−1(I ) over a cube I ⊂ R
n−1

has a big vertical span relative to the width of I , then the maximal function is big on I (by
lower Ahlfors regularity). Thus the maximal theorem limits the frequency of “vertical jumps”
in ∂�. Let β = β(n,M) be the constant given in Lemma 2.3. Define the n-dimensional box
R = 2I0 × [−bn, an] and note T ⊂ R ⊂ B(Q, r).

Lemma 3.3 Let I ⊂ 2I0 be a cube of side length t. Suppose one can find line segments L
in � ∩ R and L ′ in �− ∩ R such that π(L) and π(L ′) belong to I and f (L) ∩ f (L ′) is a
segment of length ≥ �4n−1β−1 N�t . Then the cube I belongs to �.

Proof Select �4n−1β−1 N� points ui in f (L)∩ f (L ′) such that |ui −u j | ≥ t for i �= j . Then
for each ui the horizontal line segment in f −1(ui )which joins L to L ′ intersects ∂� at some
point yi , because L and L ′ belong to different components of R\∂�. The balls �(yi , t/2)
are disjoint sets and by Lemma 2.3 (note t 
 2s < r < R),

H n−1

(⋃
i

�(yi , t/2)

)
≥ (4n−1β−1 N )β

(
t

2

)n−1

= NH n−1(2I ). (3.7)

Hence, 2I ⊂ �, since �(yi , t/2) ⊂ �(Q, r) ∩ π−1(2I ) for each yi (one easily checks that
the distance of R to R

n\B(Q, r) is farther than t/2). In particular, I ⊂ �.

It will be convenient to work with a “dyadic” decomposition of I0. We say that a cube
I ⊂ I0 is admissible if the cube {(1/2, . . . , 1/2)+ x/s : x ∈ I } is dyadic in the usual sense.
Hence I0 is admissible and every admissible cube I ⊂ I0 of side length s/2i is the almost
disjoint union of 2 j (n−1) admissible cubes of side length s/2i+ j . Moreover, given any cube
I ⊂ I0 of side length t , we can find an admissible cube contained in I of side length ≥ t/4.
The following “search lemma” locates admissible cubes inside � ∪ Fc

k .

123



Null sets of harmonic measure on NTA domains 253

Lemma 3.4 There exist constants C1 = C1(n, N , α, β) and C2 = C2(n,M, N , β) with the
following property. If I ⊂ I0 is any cube with side length t satisfying

C1

h
sk ≤ t ≤ sk, (3.8)

then one can find an admissible cube J ⊂ I ∩ (� ∪ Fc
k ) of side length ≥ t/C2.

Proof Let I ⊂ I0 with side length t , C1h−1sk ≤ t ≤ sk be given. Since any cube contains
an admissible cube of comparable size, we may first search for a cube J ⊂ I ∩ (� ∪ Fc

k )

which is not necessarily admissible.
For every cube Q ⊂ R

n−1 such that π(T ) ∩ Q �= ∅, define

λ(Q) = max{ f (y) : y ∈ TE and π(y) ∈ Q}. (3.9)

The maximum in (3.9) is realized, because TE is the “top edge” of T and T is compact.
Suppose there exists a cube Q ⊂ I of side length qt such that λ(Q) ≤ λ

( 1
2 Q

) + sk/8.
Pick w ∈ TE such that π(w) ∈ 1

2 Q and f (w) = λ( 1
2 Q), and let c = A−(w, qt/8) be

a non-tangential point of �−. Then B(c, qt/8M) ⊂ �−. We assign K ⊂ R
n−1 to be the

(n − 1)-dimensional cube with center π(c) and side length tK ,

tK = �4n−1β−1 N�−1qt/4M. (3.10)

Note K ⊂ Q ⊂ I , since π(c) is the center of K , π(w) ∈ 1
2 Q, dist( 1

2 Q,Qc) = qt/4 and

dist(x, 1
2 Q) ≤ diam K

2
+ |π(c)− π(w)| 
 qt

16
+ qt

8
= 3qt

16
for all x ∈ K . (3.11)

If K ∩ Fk = ∅, we are done. Otherwise there exist points y, z ∈ TE such that π(y) ∈ K ,
z ∈ y + C and sk ≤ f (z) − f (y) ≤ sk−1. We claim π(z) ∈ Q if C1 is sufficiently large.
Because z ∈ y + C and C1h−1sk ≤ t ,

|π(z)− π(y)| ≤ h−1( f (z)− f (y)) ≤ h−1αsk ≤ tα/C1. (3.12)

Since π(y) ∈ K , using (3.11) it follows that

dist(π(z), 1
2 Q) ≤ |π(z)− π(y)| + dist(π(y), 1

2 Q) ≤ t

(
α

C1
+ 3q

16

)
. (3.13)

Hence, dist(π(z), 1
2 Q) ≤ qt/4 and π(z) ∈ Q provided C1 ≥ 16α/q . Assume that C1 has

been chosen so that this is true. Then

f (y) ≤ f (z)− sk ≤ λ(Q)− sk ≤ λ( 1
2 Q)− 7

8
sk = f (w)− 7

8
sk ≤ f (c)− 3

4
sk, (3.14)

where the last inequality holds since | f (c) − f (w)| ≤ |c − w| ≤ qt/8 ≤ sk/8. Now con-
sider the line segment L = L(y) ⊂ � ∩ R and let L ′ be the vertical line segment inside
B(c, qt/8M) ⊂ �− ∩ R through c with length qt/4M . By (3.14), f (L ′) ⊂ f (L). Hence
π(L) = π(y) and π(L ′) = π(c) belong to K and f (L) ∩ f (L ′) = f (L ′) is a line segment
of length ≥ �4n−1β−1 N�tK . By Lemma 3.3, the cube K ⊂ �. We have proved that if C1 ≥
16α/q and if there exists a cube Q ⊂ I of side length qt such that λ(Q) ≤ λ( 1

2 Q)+ sk/8,
then I ∩ (� ∪ Fc

k ) contains a cube K of side length tK = �4n−1β−1 N�−1qt/4M .
To finish the lemma, set m0 = �32n−1β−1 N� and consider the sequence of cubes I ⊃

J1 ⊃ · · · ⊃ Jm0 with the same center as I but with side lengths t, t/2, . . . , t/2m0 . There are
three alternatives. First if it happens Jm ∩π(T ) = ∅ for some 1 ≤ m ≤ m0, then Jm ∩ Fk = ∅
and we set J = Jm . Otherwise we know λ(Jm) is defined for every m. Second suppose that
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for each m < m0, λ(Jm) ≥ λ(Jm+1)+ sk/8. Then one can find m0 points ym ∈ T such that
π(ym) ∈ Jm ⊂ I but |ym − ym′ | ≥ | f (ym)− f (ym′)| ≥ sk/8 ≥ t/8 for each m �= m′. The
m0 surface balls �(ym, t/16) ⊂ �(0, r) ∩ π−1(2I ) are disjoint; by Lemma 2.3,

H n−1(�(0, r) ∩ π−1(2I )) ≥ m0β(t/16)n−1

≥ 32n−1 N (t/16)n−1 = NH n−1(2I ). (3.15)

Thus, 2I ⊂ � and we can select J = I . Third suppose that λ(Jm) ≤ λ(Jm+1)+sk/8 for some
1 ≤ m < m0. Put C1 = 2m0+3α (which depends only on n, N , α and β) so that C1 ≥ 16α/q
for q = 1/2m . With Q = Jm the argument above produces a cube K ⊂ I ∩ (� ∪ Fc

k )

with side length tK = �4n−1β−1 N�−1qt/4M and we can set J = K . In the worst scenario
(the last case), we found a cube J ⊂ I ∩ (� ∪ Fc

k ) of side length ≥ t/2m0+2n+1β−1 N M .
Therefore, since any cube contains an admissible cube at least one-quarter of its own size,
we can take C2 = 2m0+2n+3β−1 N M (which depends only on n, M , N and β).

Next we iterate Lemma 3.4. If the slope h of C is sufficiently large, then Fk\� is not
concentrated in any cube of size sk .

Lemma 3.5 For all δ > 0 there exists h1 = h1(n,C1,C2, δ) such that

H n−1(I ∩ Fk\�) ≤ δH n−1(I ) (3.16)

whenever h ≥ h1, k ≥ 0 and I ⊂ I0 is an admissible cube of side length sk .

Proof Let us agree that a cube J ⊂ I is good if J ⊂ �∪ Fc
k ; otherwise, we call J bad. Let P

be the smallest integer power of two that is at least C2. In round one, cover I by Pn−1 admis-
sible cubes of side length sk/P . If h is sufficiently large, then Lemma 3.4 applies to I and at
least one cube of size sk/P is good and at most Pn−1 − 1 cubes are bad. Round two. Cover
each bad cube of size sk/P by Pn−1 admissible cubes of size sk/P2. Applying Lemma 3.4
to each parent, we conclude the number of bad admissible cubes of size sk/P2 is at most
(Pn−1 − 1)2 = P2(n−1)(1 − P−n+1)2. Repeating this procedure through round R, we con-
clude the number of bad admissible cubes of size sk/P R is at most P R(n−1)(1− P−n+1)R . Set
R to be the first positive integer such that (1−P−n+1)R < δ. In order to invoke Lemma 3.4 for
R rounds total, we needed sk/Pq ≥ C1h−1sk for each q < R. Thus, if h ≥ h1 = C1 P R−1,
then the number of bad admissible cubes J of size sk/P R is at most δP R(n−1). It follows that

H n−1(I ∩ Fk\�) ≤
∑
J⊂I

H n−1(J ∩ Fk\�)

≤ δP R(n−1)(sk/P R)n−1 = δH n−1(I ) (3.17)

as desired.

For each k ≥ 0, call (Ik, j ) j the sequence of all admissible cubes of side length sk that
meet Fk\�. In order to control the sum in (3.6), we associate a piece of surface S(Ik, j ) to
every cube Ik, j and then study the size and overlap of the S(Ik, j ):

Fix a large constant ζ � 1 to be chosen later (after Lemma 3.8). Suppose I = Ik, j

is an admissible cube of side length sk that meets Fk\�. Let y = y(I ) and z = z(I ) be
any two points of TE such that π(y) ∈ I ∩ (Fk\�), such that z ∈ y + C , and such that
sk ≤ f (z) − f (y) ≤ sk−1. Let c = c(I ) be any non-tangential point c = A−(z, sk/ζ )

of z in �−. Then |c − z| ≤ sk/ζ and B(c, sk/ζM) ⊂ �− ∩ B(z, 2sk/ζ ). Furthermore,
B(c, sk/ζM) ⊂ R if we select ζ ≥ 8 (compare points in the ball to z ∈ TE ). Assign
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D = D(I ) to be the (n − 1)-dimensional disk with center c and radius sk/2ζM that is
parallel to I0. We define S = S(I ) to be the set of all points w such that (Fig. 6)

1. w ∈ ∂� ∩ R or w ∈ π(D)× {−bn},
2. π(w) ∈ π(D),
3. f (w) ≤ f (c)− sk/ζM , and
4. the open vertical line segment joiningw to ŵ = (π(w), f (c)−sk/ζM) does not intersect

∂�.

Including the extra (n−1) diskπ(D)×{−bn} in the definition of S ensures that the projection
π(S) = π(D) is also a disk of radius sk/2ζM .

Lemma 3.6 Assume that h ≥ 4α and ζ ≥ 8. Then π(S(Ik, j )) ⊂ 2Ik, j .

Proof Let I = Ik, j and write y, z, c, D and S for the data associated to I . Then π(y) ∈ I
and |π(z)− π(y)| ≤ h−1( f (z)− f (y)) ≤ sk−1/h = αsk/h. Let x ∈ π(S). Since the disk
π(S) = π(D) of radius sk/2ζM is centered at π(c) and |π(c)− π(z)| ≤ sk/ζ , we get

dist(x, I ) ≤ |x − π(c)| + |π(c)− π(z)|+|π(z)− π(y)| ≤ sk

2ζM
+ sk

ζ
+ αsk

h
. (3.18)

Hence, dist(x, I ) ≤ sk/2 and x ∈ 2I , if we require that ζ ≥ 8 and h ≥ 4α.

Set Sk = ⋃
j S(Ik, j ) to be the union of pieces of surface S(Ik, j ) associated to cubes of

side length sk . If the slope h of C is sufficiently large, then the measure of Fk\� is controlled
by the measure of π(Sk).

Lemma 3.7 There exists h2 = h2(n,M, γ, ε,C1,C2, ζ ) such that if h ≥ max(h2, 4α), then
for each k ≥ 0,

H n−1(Fk\�) ≤ ε

2

(
γ + 1

M
√

n − 1

)−1

H n−1(π(Sk)). (3.19)

Proof Let h2 = h1(n,C1,C2, δ) from Lemma 3.5 where

δ = ε

2

(
γ + 1

M
√

n − 1

)−1

× ωn−1

(6ζM)n−1 . (3.20)

Fig. 6 A piece of surface S(Ik, j )
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If p is the number of admissible cubes of size sk that meet Fk\�, then

H n−1(Fk\�) ≤
∑

j

H n−1(Ik, j ∩ Fk\�) ≤ pδsn−1
k . (3.21)

Fix a cube I = Ik, j . By Lemma 3.6, π(S(I )) = π(D(I )) is a disk of radius sk/2ζM that
is contained in 2I . Hence H n−1(π(Sk) ∩ 2I ) ≥ ωn−1(sk/2ζM)n−1. Because the cubes
(2Ik, j ) j have bounded overlap (each x ∈ R

n−1 lies in at most 3n−1 cubes),

pωn−1(sk/2ζM)n−1 ≤
∑

j

H n−1(π(Sk) ∩ 2Ik, j ) ≤ 3n−1H n−1(π(Sk)). (3.22)

(This step uses the fact that the sets π(Sk) and π(Sk) ∩ 2Ik, j are measurable.) Thus,
H n−1(Fk\�) ≤ δ(6ζM)n−1H n−1(π(Sk))/ωn−1, explaining our choice of δ.

By choosing good parameters, we can make the pieces of surface S0, S1, S2, . . . disjoint!

Lemma 3.8 We can find α ≥ 4M
√

n − 1 depending only on n and M, and find ζ ≥ 8
depending only on n, N and β such that Sk ∩ Sk′ = ∅ for all k �= k′ whenever h ≥ αζ .

Proof To start assume that h ≥ 4α and ζ ≥ 8. Then the pieces of surface (S(Ik, j )) j have
finite overlap by Lemma 3.6. Hence Sk = ⋃

j S(Ik, j ) for each k.
Let cubes I = Ik, j and I ′ = Ik′, j ′ be given. We shall write y, z, c, D and S for the data

associated to I and write y′, z′, c′, D′ and S′ for the data associated to I ′. Suppose to get a
contradiction that k ≥ k′ + 1 and S ∩ S′ �= ∅. Then there exist w ∈ S and w′ ∈ S′ such that

|w − w′| ≤ sk′

4ζM
. (3.23)

Let Lw denote the vertical line segment joining w to ŵ = (π(w), f (c)− sk/ζM), and write
L y = L(y) ⊂ � for the vertical line segment over y in T . Also set B ′ = B(c′, sk′/ζM) ⊂
�−.

Our first claim is π(y) ∈ π(B ′) and f (y) > f (c′) for certain choices h, α and ζ . Indeed,
since π(w) ∈ π(S),

|π(w)− π(y)| ≤ |π(w)− π(c)| + |π(c)− π(z)| + |π(z)− π(y)|
≤ sk

2ζM
+ sk

ζ
+ αsk

h
. (3.24)

If we select h ≥ αζ , then (3.24) implies that |π(w)− π(y)| ≤ 3sk/ζ . Hence,

|π(y)− π(c′)| ≤ |π(y)− π(w)| + |π(w)− π(w′)| + |π(w′)− π(c′)|
≤ 3sk

ζ
+ sk′

4ζM
+ sk′

2ζM
≤ 3sk′

αζ
+ sk′

4ζM
+ sk′

2ζM
, (3.25)

where sk ≤ sk′/α since k ≥ k′ + 1. Thus, |π(y) − π(c′)| ≤ sk′/ζM and π(y) ∈ π(B ′),
provided α ≥ 12M . If f (y) ≤ f (c′), then π(y) ∈ π(B ′) implies that L y ⊂ � intersects
B ′ ∩ f −1(c′) ⊂ �−, which is absurd. Therefore, f (y) > f (c′), as claimed.

Next we claim Lw ⊂ �−. On one hand the upper endpoint ŵ of Lw satisfies

f (ŵ) ≥ f (z)− 2sk

ζ
≥ f (z)− sk

4
≥ f (y)+ 3sk

4
> f (c′) (3.26)

since ζ ≥ 8. On the other hand the lower endpoint w of Lw satisfies,

f (w) ≤ f (w′)+ sk′

4ζM
≤ f (c′)− 3sk′

4ζM
< f (c′). (3.27)
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Thus, since π(w) ∈ π(B ′) (in fact |π(w) − π(c′)| ≤ (3/4)sk′/ζM), the line segment
Lw intersects B ′ ∩ f −1(c′) ⊂ �−. But Lw does not intersect ∂� (by definition of S), so
Lw ⊂ �−.

Finally, since f (ŵ) ≥ f (y) + 3sk/4 and f (y) > f (c′) > f (w), we know the interval
f (Lw) ∩ f (L y) has length at least 3sk/4. Previously we showed |π(w) − π(y)| ≤ 3sk/ζ

if h ≥ αζ . Thus, Lw and L y lie over a cube J of side length �4n−1β−1 N�−13sk/4 if
ζ ≥ 4�4n−1β−1 N�. By Lemma 3.3, π(y) = π(L y) ∈ J ⊂ �. This contradicts the fact
π(y) �∈ � (by the definition of y). Examining conditions on the parameters assumed above
reveals the lemma holds with ζ = 4�4n−1β−1 N�, α = max(4M

√
n − 1, 12M) and h ≥ αζ .

We are ready to conclude. Use Lemma 3.8 to pick the constants α and ζ , and set h =
max(h0, h2, αζ ). Then the pieces of surface Sk ⊂ S := �(Q, r)∪(2I0×{−bn}) are disjoint
and measurable. Thus, since H n−1(�(Q, r)) ≤ γ rn−1,

∞∑
k=0

H n−1(π(Sk)) ≤
∞∑

k=0

H n−1 (
Sk

) ≤ H n−1(S ) ≤
(
γ + 1

M
√

n − 1

)
rn−1. (3.28)

Using Lemma 3.7, we conclude

∞∑
k=0

H n−1(Fk\�) ≤ ε

2

(
γ + 1

M
√

n − 1

)−1 ∞∑
k=0

H n−1(π(Sk)) ≤ ε

2
rn−1. (3.29)

Therefore, (3.6) holds and Proposition 2.8 is established.

4 Harmonic measure on NTA domains

In this section we prove Theorem 1.2 on the absolute continuity of harmonic measure. An NTA
domain is a corkscrew domain (studied in §2 above) that also admits a Harnack chain condi-
tion. The class of NTA domains was introduced by Jerison and Kenig [8]. Given X1, X2 ∈ �
a Harnack chain from X1 to X2 is a sequence of open balls in � such that the first ball
contains X1, the last ball contains X2, and consecutive balls intersect.

Definition 4.1 A connected open set � ⊂ R
n satisfies the Harnack chain condition with

constants M > 1 and R > 0 if for every Q ∈ ∂� and 0 < r < R when a pair of points
X1, X2 ∈ � ∩ B(Q, r) satisfy

min
j=1,2

dist(X j , ∂�) > ε and |X1 − X2| < 2kε (4.1)

then there exists a Harnack chain from X1 to X2 of length Mk such that the diameter of each
ball is bounded below by M−1 min j=1,2 dist(X j , ∂�).

Definition 4.2 A domain� ⊂ R
n is non-tangentially accessible or NTA if there exist M > 1

and R > 0 such that (i) � satisfies the corkscrew and Harnack chain conditions, (ii) R
n\�

satisfies the corkscrew condition.

The exterior corkscrew condition guarantees an NTA domain � ⊂ R
n is regular for the

Dirichlet problem; i.e. for every f ∈ Cc(∂�) there exists u ∈ C2(�) ∩ C(�) such that
�u = 0 in � and u = f on ∂�. Together the maximum principle and Riesz representation
theorem yield a family of Borel regular probability measures {ωX }X∈� on ∂� such that

u(X) =
∫
∂�

f (Q)dωX (Q) (4.2)
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is the unique harmonic extension of f ∈ Cc(∂�). We call ωX the harmonic measure of �
with pole at X . Because ωX1 
 ωX2 
 ωX1 for any X1, X2 ∈ � (by Harnack’s inequality),
it makes sense to discuss null sets of harmonic measure ω = ωX0 with respect to some fixed
pole X0 ∈ � far away from the boundary.

The special feature of harmonic measure on NTA domains (versus corkscrew domains)
that we need below is the the following localization property.

Lemma 4.3 ([8] (4.18)) There exists C = C(n,M) > 0 with the following property. Let
� ⊂ R

n be NTA with constants M > 1 and R > 0. Assume the pole of harmonic measure
ω = ωX0 satisfies X0 ∈ �\B(Q, 2r) for some Q ∈ ∂� and r < R/2. Then for every
non-tangential point a = A+(Q, r) and every Borel set E ⊂ �(Q, r),

C−1ωa(E) ≤ ω(E)

ω(�(Q, r))
≤ Cωa(E). (4.3)

Remark 4.4 In Definition 4.2 we allow an NTA domain � ⊂ R
n to be either bounded or

unbounded. The proof of Lemma 4.3 for bounded domains in [8] carries through to the
unbounded case without modification; c.f. [10].

At every boundary point of finite lower density there is a shrinking sequence of scales on
which the harmonic measure and the surface measure are comparable in the sense of (1.2).
The proof of Proposition 4.5 below follows the same structure of David and Jerison’s proof of
Theorem 2 in [4]; however, we keep careful track of the constants appearing from Lipschitz
approximations of the domain (Theorem 2.4 and Lemma 2.13). The required technical tools
are the localization principle for harmonic measure (Lemma 4.3) and the maximum principle
for harmonic functions.

Proposition 4.5 There exist constants 0 < δ < 1 and 0 < ε < 1 depending only on n,
M and γ with the following property. Let � ⊂ R

n be NTA with constants M > 1 and
R > 0. If lim infr↓0 H n−1(�(Q, r))/rn−1 < γ < ∞, then there is a sequence of numbers
0 < ri < R such that limi→∞ ri = 0 and for every Borel set E ⊂ �(Q, ri ):

ω(E) ≤ δω(�(Q, ri )) ⇒ H n−1(E) ≤ εH n−1(�(Q, ri )), (4.4)

H n−1(E) ≤ δH n−1(�(Q, ri )) ⇒ ω(E) ≤ εω(�(Q, ri )). (4.5)

Proof Let � ⊂ R
n be NTA with constants M > 1 and R > 0 and assume Q ∈ ∂� satis-

fies lim infr↓0 H n−1(�(Q, r))/rn−1 < γ < ∞. Then there exists a sequence of numbers
0 < ri < R decreasing to zero such that H n−1(�(Q, ri )) ≤ γ rn−1

i . Let ψ = ψ(n,M) and
η = η(n,M, γ ) be the constants given by Theorem 2.4 and Lemma 2.13. By passing to a
subsequence of ri if necessary, we may assume that the pole of ω lies outside B(Q, 2ri ) for
all i (so that we can invoke Lemma 4.3).

Fix ri and pick any non-tangential point a = A+(Q, ri/2) of �. Let ωa denote harmonic
measure of � with pole at a and let � = �(Q, ri ). By Lemma 4.3,

C−1ωa(E) ≤ ω(E)

ω(�)
≤ Cωa(E) for every Borel set E ⊂ �, (4.6)

where the constant C > 1 only depends on the dimension and NTA constants of �. By
Theorem 2.4 there is a Lipschitz domain�L ⊂ R

n such that (i) a ∈ �L ⊂ �∩ B(Q, ri ) and
(ii) F = ∂�L ∩ ∂� satisfies H n−1(F) ≥ ψrn−1

i . Let ωa
L denote the harmonic measure of

�L with pole at a.
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Null sets of harmonic measure on NTA domains 259

Assume E ⊂ � is Borel and ω(E) < δω(�). By (4.6) and the maximum principle,

ωa
L(E ∩ F) ≤ ωa(E ∩ F) ≤ ωa(E) ≤ Cδ. (4.7)

If Cδ ≤ η, then (2.26) and (4.7) imply H n−1(E ∩ F) ≤ (ψ/2)rn−1
i . Hence

H n−1(F\E) = H n−1(F)− H n−1(E ∩ F)

≥ ψrn−1
i − (ψ/2)rn−1

i = (ψ/2)rn−1
i . (4.8)

It follows that

H n−1(E) = H n−1(�)− H n−1(�\E) ≤ H n−1(�)− H n−1(F\E)

≤ H n−1(�)− ψ

2
rn−1

i = H n−1(�)− ψ

2γ
γ rn−1

i

≤ H n−1(�)− ψ

2γ
H n−1(�) =

(
1 − ψ

2γ

)
H n−1(�). (4.9)

Thus (4.4) holds for all 0 < δ ≤ η/C and for all 1 − ψ/2γ ≤ ε < 1.
Now assume E ⊂ � satisfies H n−1(E) ≤ δH n−1(�) ≤ δγ rn−1

i . If δγ ≤ ψ/4, then
H n−1(F\E) = H n−1(F) − H n−1(E ∩ F) ≥ (3ψ/4)rn−1

i . The contrapositive of (2.26)
implies ωa

L(F\E) > η. By (4.6) and the maximum principle, ω(F\E) ≥ (η/C)ω(�). We
conclude

ω(E) = ω(�)− ω(�\E) ≤ ω(�)− ω(F\E) ≤ (1 − η/C)ω(�). (4.10)

Thus (4.5) holds for all 0 < δ ≤ ψ/4γ and for all 1 − η/C ≤ ε < 1. Therefore,

δ = min{η/C, ψ/4γ } and ε = 1 − δ (4.11)

which depend only on n, M and γ suffice.

To stich together estimates in Proposition 4.5 at different points, we use a Vitali type
covering lemma for Radon measures in R

n .

Theorem 4.6 ([14] Theorem 2.8) Letμ be a Radon measure on R
n, A ⊂ R

n and B a family
of closed balls such that each point of A is the center of arbitrarily small balls; i.e.,

inf{r : B(x, r) ∈ B} = 0 for all x ∈ A. (4.12)

Then there are disjoint balls Bi ∈ B such that

μ

(
A\

⋃
i

Bi

)
= 0. (4.13)

We now establish the main theorem. Recall: Let � ⊂ R
n be NTA. Then the set

A =
{

Q ∈ ∂� : lim inf
r↓0

H n−1(�(Q, r))

rn−1 < ∞
}

(4.14)

is (n − 1)-rectifiable and ω A 
 σ A 
 ω A.

Proof of Theorem 1.2 The set A is (n − 1)-rectifiable by Corollary 2.6. Define

Ak =
{

Q ∈ ∂� : lim inf
r↓0

H n−1(�(Q, r)

rn−1 < k

}
(4.15)
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260 M. Badger

for each integer k ≥ 1. Then A = ⋃∞
k=1 Ak and to show ω A 
 σ A 
 ω A we may

prove that ω(E) = 0 if and only if H n−1(E) = 0 for every k ≥ 1 and compact set E ⊂ Ak .
(It is enough to take E compact, because H n−1 Ak is Radon.)

Let E ⊂ Ak be an arbitrary compact set and assume ω(E) = 0. By Proposition 4.5 there
exist constants 0 < δ < 1 and 0 < ε < 1 such that (4.4) and (4.5) hold for all Q ∈ E
(along some sequence ri ↓ 0 depending on Q). Let U be any (relatively) open set U ⊂ ∂�

such that E ⊂ U . The family F = {�(Q, ri )} of all closed balls with center Q ∈ E and
radii ri satisfying �(Q, ri ) ⊂ U and (4.4) is a fine cover of E , in the sense of (4.12). By
Theorem 4.6, there exists a disjoint sequence �i of disks in F such that

H n−1

(
E\

⋃
i

�i

)
= 0. (4.16)

Since ω(E ∩ �i ) = 0 ≤ δω(�i ) for each i , H n−1(E ∩ �i ) ≤ εH n−1(�i ) for each i by
(4.4). Thus, by (4.16),

H n−1(E) =
∑

i

H n−1(E ∩�i ) ≤ ε
∑

i

H n−1(�i ) ≤ εH n−1(U ). (4.17)

Because U ⊃ E was an arbitrary open set, by the outer regularity of Radon measures,
H n−1(E) ≤ εH n−1(E). But H n−1(E) < ∞ (since E is compact) and 0 < ε < 1.
Therefore, H n−1(E) = 0 whenever ω(E) = 0.

If E ⊂ Ak is a compact set such that H n−1(E) = 0, then the same argument with the
roles of ω and H n−1 reversed and (4.5) in place of (4.4) shows ω(E) = 0. This completes
the proof of absolute continuity on A.

5 Hausdorff dimension and Wolff snowflakes

We now present two corollaries of Theorem 1.2 related to the dimension of harmonic
measure. Let dim E denote the Hausdorff dimension of a set E ⊂ R

n . The (upper) Hausdorff
dimension of harmonic measure,

H– dimω = inf{dim E : E ⊂ ∂� is Borel and ω(E) = 1}, (5.1)

is the smallest dimension of a set with full harmonic measure. In [13] Makarov showed that
H– dimω = 1 for every simply connected planar domain (independent of the Hausdorff
dimension of the boundary); moreover, ω 
 H s for all s < 1 and ω ⊥ H t for all t > 1.
Higher dimensions display different behavior.

Wolff [17] constructed NTA domains � ⊂ R
3 such that H– dimω > 2 and other NTA

domains � ⊂ R
3 such that H– dimω < 2. Extending this construction, Lewis, Verchota

and Vogel [12] built 2-sided NTA domains� ⊂ R
n (i.e.�+ = � and�− = R

n\� are both
NTA) called Wolff snowflakes such that

1. H– dimω+ > n − 1 and H– dimω− > n − 1,
2. H– dimω+ > n − 1 and H– dimω− < n − 1,
3. H– dimω+ < n − 1 and H– dimω− < n − 1.

Here ω+ denotes harmonic measure on the interior �+ and ω− denotes harmonic measure
on the exterior�− of�. While surface measure σ = H n−1 ∂� is clearly infinite for Wolff
snowflakes of type (1) or (2), the same is not apparent for snowflakes of type (3). This is the
first application of Theorem 1.2: every Wolff snowflake has infinite surface measure. In fact,

123



Null sets of harmonic measure on NTA domains 261

if the dimension of harmonic measure on a (1-sided) NTA domain is small, then the surface
measure is infinite at all locations and scales.

Theorem 5.1 Let � ⊂ R
n be NTA. If H– dimω < n − 1, then σ is locally infinite; i.e.,

H n−1(�(Q, r)) = ∞ for every Q ∈ ∂� and r > 0.

Proof Assume that � ⊂ R
n is NTA and H– dimω < n − 1. Then there exists a Borel

set E ⊂ ∂� such that dim E < n − 1 and ω(∂�\E) = 0. Suppose for contradiction that
H n−1(�(Q, r)) < ∞ for some Q ∈ ∂� and r > 0. Then harmonic measure and surface
measure have the same null sets on �(Q, r) ∩ A by Theorem 1.2. On one hand,

ω(�(Q, r) ∩ A) = ω(E ∩�(Q, r) ∩ A) = 0 (5.2)

since H n−1(E) = 0. On the other hand,

ω(�(Q, r) ∩ A) > 0 (5.3)

since H n−1(�(Q, r)∩ A) = H n−1(�(Q, r)) > 0 by Lemma 2.3. The fallacy is clear. We
conclude H n−1(�(Q, r)) = ∞ for every Q ∈ ∂� and r > 0.

In [9] Kenig, Preiss and Toro used the tangent measures of harmonic measure to demon-
strate H– dimω+ = H– dimω− = n − 1 on every 2-sided NTA domain � ⊂ R

n (n ≥ 3)
with ω+ 
 ω− 
 ω+. (Thus the interior and exterior harmonic measures on Wolff snow-
flakes are mutually singular.) Using Theorem 1.1, we obtain a similar result for (1-sided)
NTA domains of locally finite perimeter.

Theorem 5.2 Let � ⊂ R
n be NTA. If H n−1 ∂� is Radon, then H– dimω = n − 1.

Proof If E ⊂ ∂� is Borel and has dimension t < n − 1, then H n−1(∂�\E) > 0. Hence,
ω(∂�\E) > 0, because σ 
 ω by Theorem 1.1. Since no set E ⊂ ∂� of Hausdorff
dimension t < n − 1 has full harmonic measure, we get H– dimω ≥ n − 1. Conversely,
H– dimω ≤ dim ∂� = n − 1, since H n−1 ∂� is Radon.
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