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Abstract A unique feature of smooth hyperbolic non-invertible maps is that of having
different unstable directions corresponding to different prehistories of the same point. In this
paper we construct a new class of examples of non-invertible hyperbolic skew products with
thick fibers for which we prove that there exist uncountably many points in the locally max-
imal invariant set� (actually a Cantor set in each fiber), having different unstable directions
corresponding to different prehistories; also we estimate the angle between such unstable
directions. We discuss then the Hausdorff dimension of the fibers of � for these maps by
employing the thickness of Cantor sets, the inverse pressure, and also by use of continuous
bounds for the preimage counting function. We prove that in certain examples, there are
uncountably many points in � with two preimages belonging to �, as well as uncountably
many points having only one preimage in �. In the end we give examples which, also from
the point of view of Hausdorff dimension, are far from being homeomorphisms on�, as well
as far from being constant-to-1 maps on �.

Keywords Chaotic dynamics of hyperbolic non-invertible skew products · Cantor sets ·
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1 Introduction

In this paper we study the chaotic dynamics of a class of non-invertible maps which are
hyperbolic on their basic set of saddle type. The dynamics of non-invertible maps (or endo-
morphisms) is different than that of diffeomorphisms due to possible complicated over-
lappings and to the fact that the number of preimages of a given point that remain in the
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734 E. Mihailescu

respective basic set may vary. Hyperbolicity over a compact invariant set � can be defined
for non-invertible smooth maps f : M → M (where M is a manifold), as the continuous
uniform splitting [13] of the tangent space Tx̂ M into a stable subspace Es

x and an unstable
subspace Eu

x̂ for x̂ ∈ �̂, where x̂ denotes a prehistory of x (i.e. a sequence of consecutive

preimages of x belonging to �) and �̂ is the space of all such sequences. This implies that,
unlike in the case of diffeomorphisms, where the local unstable manifolds form a foliation,
in the non-invertible case there may pass a priori several unstable manifolds through a given
point of �. However it is a difficult problem to distinguish between unstable directions cor-
responding to different prehistories, and there are few actual examples of such hyperbolic
endomorphisms for which several unstable manifolds pass through a given point. One such
example of an Anosov endomorphism was studied in [12], where also other properties of
Anosov endomorphisms were given; in fact for any arbitrary fixed point x from the torus T

m ,
it was proved there that there exists an endomorphism f , obtained as a perturbation of an
algebraic hyperbolic endomorphism of T

m , so that there exists infinitely many local unstable
manifolds of f through x .

In our paper we propose a way of obtaining endomorphisms with a new type of strange
behaviour, namely they are far from being homeomorphisms, and also far from being con-
stant-to-one; this happens both from the point of view of preimages, and from the point
of view of Hausdorff dimension. We study hyperbolic non-invertible skew products with
basic sets whose fibers will be obtained by contractions followed by translations and super-
positions, thus generating overlappings in fibers. Here by basic set for an endomorphism
f we mean an invariant compact set � so that there exists a neighbourhood U of � with
� = ∩n∈Z f n(U ). We prove that, when the contraction factors on fibers are all equal to 1

2
and the other parameters belong to some open set, we obtain a class of examples in (15)
which are far from having a homeomorphism-type behaviour on their basic set �.

Our case is different and complements the one involving families of IFS with overlaps
(see [15]), as we do not assume any transversality condition; we focus actually on some
non-generic contraction parameters and show that the strong non-invertible character is pre-
served for a large family of perturbations. Our examples also do not present any type of Open
Set Condition behaviour, as they will be proved to be far from homeomorphisms. Our study
will involve some new techniques, like the use of thickness of intersections of Cantor sets
in fibers, the inverse pressure, and approximating the number of preimages belonging to �
with continuous functions.

We will show that our method gives Cantor sets in fibers, which are obtained as subsets
of intersections of Cantor sets of large thickness [2,3,11]. This will guarantee the existence
of uncountably many points having more than one preimage. We show that, still, there are
uncountably many points with only one prehistory, giving thus an example where the number
of prehistories is infinite for some points, and equal to 1 for others. Estimation (or formulas)
for the Hausdorff dimension of fractal sets with the help of the zeros of pressure functions
appeared in many instances, starting with the work of Bowen [1] and Ruelle [14]. We proved
in [7] an extension of this type of results for the stable dimension for non-invertible maps; we
showed that this stable dimension is greatly influenced by the preimage counting function.
We will see how this relates to our skew product case. We will prove also that the local unsta-
ble manifolds (in fact even the unstable directions) depend on prehistories and will estimate
the angle between them. We can give also the unstable dimension by using a Bowen type
equation from [4].

Our method gives a class of examples of hyperbolic endomorphisms which behave differ-
ently than the hyperbolic diffeomorphisms, and also differently from constant-to-1 maps.
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Unstable directions and fractal dimension for skew products 735

Outline of main results:

The main object of study is the non-invertible skew product f defined in (2), and also its
generalization from (15), together with their respective locally maximal invariant set �.

The main results of the paper are contained in Theorems 1, 2, 3, 5 (and the remarks
thereafter), and in Corollaries 1 and 2.

First we will remind the notion of natural extension, hyperbolicity for non-invertible maps
and the notions of stable dimension and unstable dimension. Then in Theorem 1 we will show,
by using a result of [3] (see also [2]) about intersecting two Cantor sets of large thicknesses,
that there exists a Cantor set Fx of points having several preimages/prehistories, in each fiber
�x of �; we will also estimate the thickness of Fx . Moreover, this will give an example of
a dynamical system f where some points have two preimages in �, and other points with
only one preimage in �.

In Proposition 1 we will show that our skew product example is hyperbolic as an endo-
morphism, on its basic set �. Then in Theorem 2 we will show that the unstable directions
corresponding to different prehistories in � do not coincide, and will estimate the angle
between them.

In Theorem 4, we give estimates of the unstable dimension by using a Bowen type equation
on the natural extension, from [4]. And in Theorem 5 we show that the stable dimension at
any point of� is strictly smaller than 1 by using a result about the inverse pressure from [5];
and we obtain estimates for the stable dimension by using approximating continuous bounds
for the preimage counting function, based on results of [7]. Thus we obtain information on
the set of points with more than one preimage, vis-à-vis the set of points having only one
preimage.

The hyperbolicity on�, the existence of Cantor sets in fibers of points with more than one
prehistory, and the disjointness of unstable directions coresponding to different prehistories
are shown similarly, also for the more general examples defined in (15), for a suifficiently
small α. This property of strong non-invertibility is preserved for the nonlinear examples in
(15), for all α > 0 small enough, by a type of Newhouse phenomenon, involving intersecting
Cantor sets of large thickness in fibers.

By combining Theorems 5 and 2 we prove in Corollary 1 that there exist points in� with
infinitely many prehistories and infinitely many different unstable manifolds. We deduce in
Corollary 2 that for the examples in (15) having contraction factors equal to 1

2 (and the rest of
their parameters being in an open set), there are uncountably many points with one preimage
in� and uncountably many points with two preimages in�. We prove then in Corollaries 1
and 2 that, also from the point of view of Hausdorff dimension, the behaviour of this last
class of examples (with contraction factors 1

2 and the other parameters in an open set), is
far from that of a homeomorphism on �, as well as far from that of a constant-to-1 map
on �.

We notice that the domain of definition of the functions fα [defined in (15)] varies with α
and is not equal to the entire square I × I ; instead it is a product Kα × I , with Kα a Cantor
set. Also it is important to remark that our invariant set�(α) is not an attractor, but instead
is a saddle basic set.

2 Hyperbolic skew product endomorphisms: unstable directions on the basic set

Hyperbolic smooth endomorphisms appear naturally in many instances when invariant sets
have self-intersections. Several aspects of their dynamics are very different than in the case
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of diffeomorphisms (for example [5,7,12], etc.) Consider in the sequel a smooth (say C2)
map f : M → M on a smooth Riemannian manifold M and let � be a compact invariant
set, i.e. f (�) = �. So each point of � has at least one f -preimage in �; however it may
have several f -preimages in �.

We define now a prehistory of a point x ∈ �, as an infinite sequence x̂ =
(x, x−1, x−2, . . .) of consecutive preimages, i.e. f (x−1) = x, f (x−2) = x−1, . . ., with
x−i ∈ �, i ≥ 1. We take then the space of all these prehistories �̂, and consider the
shift homeomorphism f̂ : �̂ → �̂, f̂ (x̂) = ( f (x), x, x−1, x−2, . . .), x̂ ∈ �̂. The com-
pact space �̂ can be made a metric space in a natural way, and will be called the natural
extension of the couple (�, f ). One can introduce also the tangent bundle over �̂, given
by Tx̂ := {(x̂, v), v ∈ Tx M}, x̂ ∈ �̂. Now following [13], we define the notion of hyperb-
olicity for the endomorphism f as a continuous splitting of the tangent bundle over �̂ into
stable directions and unstable directions depending on prehistories. So we have a splitting
Tx̂ M = Es

x ⊕ Eu
x̂ , x̂ ∈ �̂ where D fx (Es

x ) ⊂ Es
f (x) and D f (Eu

x̂ ) ⊂ Eu
f̂ x̂

and D f con-

tracts uniformly the vectors from Es
x and expands the vectors from Eu

x̂ . We denote also by

D fs(x) := D f |Es
x

and by D fu(x̂) := D f |Eu
x̂
, x̂ ∈ �̂. Associated to this splitting, one con-

structs local stable and local unstable manifolds of size r > 0 for some small r , denoted by
W s

r (x), W u
r (x̂), for x̂ ∈ �̂.

For hyperbolicity and SRB measures for endomorphisms see also [6,16], etc.
For a fixed r > 0 small enough, we define the stable dimension at x ∈ �, denoted by

δs(x), as the Hausdorff dimension H D(W s
r (x)∩�); respectively the unstable dimension at

x̂ ∈ �̂, denoted by δu(x̂), as H D(W u
r (x̂)∩�). We proved in [4] that the unstable dimension

is equal to the unique zero of the pressure function t → Pf̂ |
�̂
(−t log |D fu(x̂)|), where the

pressure is considered on the natural extension �̂. However in the case of the stable dimen-
sion there is no simple general formula, due to the complicated foldings that may take place
in �.

Let us also define the preimage counting function d(·) associated to f on the invariant
set�, namely d(x) := Card{ f −1x ∩�}. It can be checked that d(·) is an upper semi-contin-
uous function [7]; it is not necessarily constant, nor continuous. This is bringing additional
difficulties in estimating the stable dimension in the non-invertible case, as noted in [7] or [8].

For a small positive α, let us take now the subintervals I α1 , Iα2 ⊂ I := [0, 1], of small
positive length, with I α1 = [b1(α), b2(α)], Iα2 = [b3(α), b4(α)]; assume that b2(α) <

1
2 ,

b2(α) is very close to 1
2 , and that b4(α) is very close to 1 −α and b4(α) < 1 −α; we assume

that |b1(α)− 1
2 | and |b3(α)− (1 − α)| are both much smaller than α, say

0 < max

{∣∣∣∣b1(α)− 1

2

∣∣∣∣ , |b3(α)− (1 − α)|
}

=: ε(α) < α2 (1)

The intervals I α1 , Iα2 depend on α. But may also be denoted in the sequel simply by I1, I2

when dependence on α is unambiguous.
Let us take now g : I α1 ∪ Iα2 → I , a strictly increasing smooth map which expands both

Iα1 and Iα2 to I , i.e. g(Iα1 ) = g(Iα2 ) = I . Assume that g′(x) > β(α) � 1, x ∈ I α1 ∪ Iα2 .
From this dilation condition, we see that there exist subintervals I α11, Iα12 ⊂ Iα1 and Iα21,

Iα22 ⊂ Iα2 such that g(Iα11) = g(Iα21) = Iα1 and g(Iα12) = g(Iα22) = Iα2 . Let us denote by
Jα := Iα11 ∪ Iα12 ∪ Iα21 ∪ Iα22 and

Jα∗ := {x ∈ Jα, gi x ∈ Jα, i ≥ 0}
When the dependence on α is clear, we may denote these sets also by J, J∗, Ii, j , i, j = 1, 2.
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Unstable directions and fractal dimension for skew products 737

We will define now for a small α > 0, the skew product with overlaps in fibers fα :
Jα∗ × I → Jα∗ × I

fα(x, y) = (g(x), hα(x, y)), where

hα(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x + y
2 , x ∈ Iα11

1 − x + y
2 , x ∈ Iα21

1 − y
2 , x ∈ Iα12

y
2 , x ∈ Iα22

(2)

We shall denote also the function hα(x, ·) : I → I by hx,α for x ∈ Jα∗ . From the definition
of hα(x, y) it can be seen that for x ∈ Jα∗ ∩ I1, there are two images of intervals intersect-
ing inside {x} × I , namely hx−1,α(I ) and hx̃−1,α , where x−1 denotes the g-preimage of x
belonging to I α1 , and x̃−1 denotes the g-preimage of x belonging to I α2 .

We denote by

�(α) := ∪
x∈Jα∗

∩
n≥0

∪
y∈g−n x∩Jα∗

hn
y,α(I ), (3)

where hn
y,α := h f n−1 y,α ◦ · · · ◦ hy,α, n ≥ 0. For x ∈ Jα∗ we also denote by

�x (α) := ∩
n≥0

∪
y∈g−n x∩Jα∗

hn
y,α(I ),

and call it the fiber of �(α) over x . It is clear that �(α) is a compact f -invariant set, but
�(α) is not necessarily totally invariant hence the number of fα-preimages of a point from
�(α), belonging to�(α), may vary. The sets�(α),�x (α)will be denoted simply by�,�x

when dependence on α is clear.
We shall now prove that the fibers�x (α), x ∈ Jα∗ ∩ I1 have an interesting property, namely

they contain a Cantor set of points which have two different fα-preimages in �(α).
Before we proceed with the Theorem, let us remind the notion of thickness of a Cantor

set introduced by Newhouse [10], and studied also for example in [2,3,11].
Consider a Cantor set K obtained as I0\ ∪n≥1 Un , where Un are open subintervals of I0,

called the gaps of K , and I0 is the minimal interval containing K . Of course the gaps of K can
be ordered in many ways, and we call such an ordering U = (Un)n a presentation of K . For
a point u ∈ ∂Un , let C be the connected component of I0\(U1 ∪ · · · ∪ Un) which contains u;
the component C is also called a bridge at u. For such a point denote by τ(K ,U, u) := 	(C)

	(Un)

(see [11]), where 	(C) denotes the length of the subinterval C . Then the thickness of K is
defined by

τ(K ) = sup
U

inf
u∈K

τ(K ,U, u),

where the infimum is taken over all the boundary points of finite gaps of K , and the supremum
is taken over all different presentations of K . In fact it can be proved that the supremum in
the definition of thickness is attained for a presentation with decreasing lengths of gaps, i.e.
so that 	(Up) ≤ 	(Un) if p ≥ n. Thickness is an important numerical invariant of a Cantor
set, and it is preserved by an affine transformation of the interval. Newhouse showed that if
K1, K2 are Cantor sets with τ(K1)τ (K2) > 1 and neither of them is contained in a gap of
the other (i.e. they are interleaved), then K1 ∩ K2 �= ∅ (see [10]).

We will use below the thickness in order to prove that the fibers�x [defined in (3)] contain
“big” intersections of certain Cantor sets.
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738 E. Mihailescu

Theorem 1 In the above setting, for all points x ∈ Jα∗ ∩ I1, there exists a Cantor set of
points Fx (α) ⊂ �x (α), so that each point from Fx (α) has two different f -preimages in �.
Also if x ∈ Jα∗ ∩ Iα2 , it follows that there is a Cantor set Fx (α) ⊂ �x (α) such that each point
of Fx (α) has more than one prehistory in �̂(α).

Proof Fix a small positive α; we will work with the corresponding I j , f,�, h for this fixed α,
without recording their dependence on it. From the construction of the subintervals Ii j , i, j =
1, 2, we see that I11 and I12 are close to 1

2 , while I21, I22 are close to 1 −α (recall that α > 0
was taken very small).

For a point x ∈ J∗, denote by x−1,1, x−1,2 the two g-preimages of x in J∗, i.e. x−1,1 ∈
I1, x−1,2 ∈ I2, g(x−1,1) = g(x−1,2) = x .

At the first iteration, if x ∈ I1, we obtain �x (1) := hx−1,1(I ) ∪ hx−1,2(I ) = [α, c1],
with c1 = 1

2 + x−1,1 ≈ 1; indeed x−1,1 ∈ [a, c] and |a − 1
2 | < α. If x ∈ I2, then

�x := hx−1,1(I ) ∪ hx−1,2(I ) = [0, 1], where again x−1,1, x−1,2 are the two g-preimages of
x , one in I1 and the other in I2.

For the second iteration, we obtain �x (2) := hx−1,1(�x−1,1(1)) ∪ hx−1,2(�x−1,2(1)) =
[α, c2], where c2 = x−1,1 +c1/2 ≈ 1+c1

2 . For x ∈ I2, we have�x (2) := hx−1,1(�x−1,1(1))∪
hx−1,2(�x−1,2(1)) = [0, 1

2 ]∪ [1− c1
2 , 1− α

2 ]. This is hinting already on the nature of the gaps
of the fiber �x , which is obtained as an intersection �x = ∩n≥1�x (n). There will be gaps
coming from the successive iterations of the gap ( 1

2 , 1 − c1
2 ).

At the third iteration, we see that for x ∈ J∗∩I1,�x (3) :=hx−1,1(�x−1,1)∪hx−1,2(�x−1,2) =
[α, c3], where c3 = x−1,1 + c2

2 and x−1,i is the g-preimage of x belonging to Ii , i = 1, 2.
And for x ∈ J∗ ∩ I2, we have �x (3) = hx−1,1(�x−1,1(2)) ∪ hx−1,2(�x−1,2(2)) = [0, 1

4 ] ∪
[ 1

2 − c1
4 ,

1
2 − α

4 ] ∪ [1 − c2
2 , 1 − α

2 ]. At this iteration, we have therefore the gaps ( 1
4 ,

1
2 − c1

4 )

and ( 1
2 − α

4 , 1 − c2
2 ), having lengths 1

4 − c1
4 and 1

2 − c2
2 + α

4 respectively. These lengths
are very small in comparison to the lengths of their associated left and right bridges C .
We can say that 	(U j (3)) ≤ 
(α)−1	(J ), where J is one of the component intervals of
�x (3) and U j (3) is one of the gaps between two consecutive subintervals J of �x (3), and
where 
(α) = O( 1

α
). So 
(α) → ∞ when α ↘ 0.

At the fourth iteration we see gaps forming inside �x (4) for x ∈ J∗ ∩ I1 as well, i.e.
�x (4) contains several disjoint closed subintervals. For x ∈ J∗ ∩ I1, we have �x (4) =
hx−1,1(�x−1,1(3)) ∪ hx−1,2(�x−1,2(3)); so from the above calculations we obtain �x (4) =
[x−1,1 +α/2, x−1,1 + c3/2] ∪ [1 − x−1,2, 1 − x−1,2 + 1

8 ] ∪ [1 − x−1,2 + 1
4 − c1

8 , 1 − x−1,2 +
1
4 − α

8 ]∪[1− x−1,2 + 1
2 − c2

4 , 1− x−1,2 + 1
2 − α

4 ]. We see thus that there are gaps forming this
time in�x (4), and that still 	(J )/	(U ) ≥ 
(α), for any component J of�x (4) and adjacent
gap U between two consecutive J ’s. If x ∈ J∗ ∩ I2, then we obtain �x (4) as before and we
see more gaps forming, still having the property that 	(J )/	(U ) ≥ 
(α) for any component
subinterval (bridge) J and adjacent gap U .

Assume now that at iteration n, �x (n) = J1(x, n) ∪ . . . Jk(n)(x, n), where this is an
ordered union of mutually disjoint closed subintervals, i.e. the right endpoint of Jk(x, n) is
strictly less than the left endpoint of Jk+1(x, n), k = 1, . . . , k(n) − 1. Denote Jk(x, n) =
[ak(x, n), ck(x, n)], k = 1, . . . , k(n) if x ∈ I1, and Jk(x, n) = [ãk(x, n), c̃k(x, n)],
k = 1, . . . , k(n) for x ∈ I2. Then we will show that there must exist points from �x as
close as we want to the endpoints of each Jk(x, n). Indeed we know from above that there are
gaps of�y for y ∈ J∗ ∩ I2, as close as we want to 0. But if x ∈ I1 and x−1,2 is its g-preimage
in I2, we have that hx−1,2 takes �x−1,2 into �x , so there exist points of �x as close as we
want to the left endpoint of J1(x, n), n > 1. Again for x ∈ I1, and the g-preimage x−1,1 ∈ I1

of x , points z in �x−1,1 are taken by hx−1,1 into points of type x−1,1 + z
2 ; if we repeat the
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procedure, we see that there are points from �x as close as we want to the right endpoint of
Jk(n)(x, n). Now from the fact that there are points of �x−1,1 as close as we want to the left
endpoint of intervals of type J1(x−1,1, n), we see that by applying gx−1,1 we obtain points
from �x as close as we want to the right endpoint of Jk(n)(x, n) if x ∈ I2.

But now by recalling that all the intervals of type Jk(x, n) are obtained by applying repeat-
edly hy (for preimages y of x), we obtain that there are points from �x as close as we want
to each of the endpoints of the subintervals Jk(x, n) obtained at step n. This procedure tells
us that indeed, we can use the subintervals Jk(x, n) as bridges in the construction of the
respective Cantor set, since the gaps between them do not extend inside any of Jk(x, n).
Thus we can use the lengths of the subintervals of type Jk(x, n), k = 1, . . . , k(n) and the
lengths of the gaps between them, in the calculation of the thickness of �x .

We also notice the following property: assume that�x (n) = J1(x, n)∪· · ·∪ Jk(n)(x, n) for
x ∈ J∗, where these disjoint subintervals are arranged in increasing order. Then if x ∈ J∗∩ I1,
we claim that the left endpoint of J1(x, n), i.e. a1(x, n) is ε-close to α where for our fixed α,
ε denotes the positive number ε(α) defined in (1). Also if x ∈ J∗ ∩ I2, we claim that the left
endpoint of J1(x, n), i.e. ã1(x, n) is 0 and the right endpoint of Jk(n)(x, n), i.e. c̃k(n)(x, n)
is ε(α)-close to 1 − α

2 , for every n ≥ 1. We saw this property for iterations 1 through 4,
let us prove it in general by induction. Assume it is satisfied at step n for �x (n),∀x ∈ J∗.
Then at step n + 1, if x ∈ I1 we have �x (n + 1) = hx−1,1(�x−1,1(n)) ∪ hx−1,2(�x−1,2(n));
so J1(x, n + 1) = 1 − x−1,2 + 1

2 · J1(x−1,2, n). Since by induction, the left endpoint of
J1(x−1,2, n) is 0, we see that the left endpoint of J1(x, n + 1) is 1 − x−1,2. But x−1,2 ∈ I21

is ε-close to 1 − α, hence the left endpoint of J1(x, n + 1) is ε-close to α. Now if x ∈ I2,
we see that the left endpoint J1(x, n + 1) is obtained from applying y → y/2 to the interval
J1(x−1,2, n), thus it is equal to 0. And the right endpoint of Jk(n)(x, n + 1) is obtained from
applying the map y → 1 − y/2 to J1(x−1,1, n); thus the right endpoint of Jk(n)(x, n + 1) is
ε-close to 1 − α

2 .
We have to see also what is happening to the subintervals that overlap in �x (n + 1) for

x ∈ I1. The overlap is between the points x−1,1 + a1(x−1,1,n)
2 and 1 − x−1,2 + c̃k(n)(x−1,2,n)

2 .
However we saw above that a1(x−1,1, n) is ε-close to α (recall that ε = ε(α)); and that
c̃k(n)(x−1,2, n) is ε-close to 1 − α

2 . We recall also that I1, I2 are ε-close to 1
2 and 1 − α

respectively. Thus the overlap mentioned above is between points that are ε-close to 1
2 + α

2
and α + 1

2 − α
4 = 1

2 + 3α
4 . As for all α > 0 small we have 1

2 + α
2 <

1
2 + 3α

4 , we see that
indeed we have overlaps inside �x (n), x ∈ J∗ ∩ I1, n > 1.

Denote by Jint this maximal overlap at the third Iteration. Then Jint comes from apply-
ing hx−1,1 to the intervals in the last half of �x−1,1(n − 1) and from applying hx−1,2 to the
intervals in the first half of �x−1,2(n − 1). However we noticed that, when y ∈ I1 ∩ J∗, the
component intervals of �y(n − 1) outside [1/2 + α/2, 1/2 + 3α/4] contain each a Cantor
set, obtained successively by eliminating a fixed proportion of the intervals at step n − 1.
Thus there exists n large enough so that, for any two points ξ, ζ ∈ �x ∩ Jint , there exists
a gap U1 in �x−1,1(n − 1) and a gap U2 in �x−1,2(n − 1) with hx−1,1(U1) ∩ hx−1,2(U2)

non-empty and situated between ζ and ξ . Obviously n depends on the distance between ξ
and ζ .

We saw above that there are points from �x as close as we wish to the endpoints of the
subintervals Jk(x, n), k = 1, . . . , k(n) of�x (n), n ≥ 1. Therefore these subintervals can be
used as bridges J and the intervals between them as gaps U , in the Cantor set construction
of �x , x ∈ J∗. By induction we also see that at each step n we have

	(Jk(x, n))/	(U ) ≥ 
(α), k = 1, . . . , k(n)
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for any subinterval Jk(x, n) of �x (n) and any corresponding adjacent gap U of Jk(x, n)
(where we say that U is an adjacent gap for Jk(x, n) if it is immediately at the left or at the
right of Jk(x, n) at step n). But this ratio between a subinterval and its adjacent gap is preserved
by linear transformations, like the ones we deal with in hx , x ∈ J∗. By overlapping two sub-
intervals (as it may happen in�x (n), x ∈ J∗∩ I1), we can only increase the lengths of bridges
J and decrease the lengths of adjacent gaps U . Thus we see by induction that at each step

	(J )/	(U ) ≥ 
(α), (4)

for each bridge subinterval J and adjacent gap U of�x (n). Since by applying iterations we cut
in half the length of the gaps between the subintervals Jk(x, n), k = 1, . . . , k(n) at step n (or
decrease them by an even larger factor), we obtain that the gaps are ordered decreasingly when
n ↗ ∞; this presentation of �x will be denoted by Ustep . And from the observation made
when we defined the thickness of a Cantor set, we have that τ(�x ) = infξ∈�x τ(�x ,Ustep, ξ).
But from (4) we notice that

τ(�x ) ≥ 
(α), x ∈ J∗ (5)

Now let x ∈ J∗∩ I1; then�x = hx−1,1(�x−1,1)∪hx−1,2(�x−1,2), where x−1,1 ∈ g−1(x)∩ I1

and x−1,2 ∈ g−1(x) ∩ I2. It is easy to see that the two Cantor sets S1(x) := hx−1,1(�x−1,1)

and S2(x) := hx−1,2(�x−1,2) are interleaved, i.e. neither set is contained in a gap of the other.
Also from (5) we know that τ(S1(x)) ≥ 
(α) and τ(S2(x)) ≥ 
(α).

We recall that 
(α) →
α→0

∞. Thus if τ1 := τ(S1(x)), τ2 := τ(S2(x)) and α is small

enough, we can check that τ1τ2 > 1 and in addition that (τ1, τ2) ∈ B, where:

B :=
{
(τ1, τ2), τ1 >

τ 2
2 + 3τ2 + 1

τ 2
2

or τ2 >
τ 2

1 + 3τ1 + 1

τ 2
1

}

∩
{
(τ1, τ2), τ1 >

(1 + 2τ2)
2

τ 3
2

or τ2 >
(1 + 2τ1)

2

τ 3
1

}

Since S1(x), S2(x) are not interleaved and we do have the above conditions satisfied for

(α) large enough (i.e. for α small enough), we obtain from [3] that there exists indeed a
Cantor set Fx in S1(x) ∩ S2(x).

Moreover from [2] (page 882), it follows that we have:

τ(Fx ) ≥ √
min{τ(S1(x)), τ (S2(x))} ≥ √


(α))

From the definition of the sets S1(x), S2(x) we see that for every x ∈ I1 ∩ J∗, each point
from the set Fx has two different f -preimages belonging to �.

Now if x ∈ J∗ ∩ I2, there exists a g-preimage x−1,1 ∈ I1 of x and then in the fiber
�x−1,1 there must exist a Cantor set Fx−1,1 of points having two distinct f -preimages in �.
So we obtain that there exists a Cantor set Fx := hx−1,1(�x−1,1) of points with two different
f 2-preimages in �. The Theorem is then proved. ��

In fact we show in Corollary 1 that there are points with infinitely many prehistories in �̂.
Let us prove now the hyperbolicity of f as an endomorphism on the basic set �. We

will show that this set is of saddle type, i.e. f has both stable and unstable directions on
it. Consider an expanding smooth map g : I1 ∪ · · · ∪ Ip → I1 ∪ · · · ∪ Ip and let J∗ :=
{x ∈ I1 ∪ · · · ∪ Ip, gi (x) ∈ I1 ∪ · · · ∪ Ip, i ≥ 0}. Let also a smooth function h(x, y) :
(I1 ∪ · · · ∪ Ip)× I → I , which is uniformly contracting in the second coordinate, i.e. exists
δ ∈ (0, 1) with |∂yh| < δ everywhere. Define the skew product f (x, y) : J∗ × I → J∗ ×
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Unstable directions and fractal dimension for skew products 741

I, f (x, y) = (g(x), h(x, y)), (x, y) ∈ J∗ × I . We define � := ∪x∈J∗ ∩n≥0 ∪y∈g−n x hn
y(I ),

where hn
y := hgn−1 y ◦ · · · ◦ hy, y ∈ J∗.

Although it may appear at a first sight that f is expanding horizontally on�, the calculation
on derivatives shows this to be false. Indeed we have the derivative of f ,

D f (x, y) =
(

g′(x) 0
∂x h(x, y) ∂yh(x, y)

)
,

where ∂x h(x, y) represents the partial derivative of h with respect to x at the point (x, y).

Thus for a vector w̄ = (0, v) ∈ R × R, we get D f (x, y) · w̄ =
(

0
∂yh(x, y)v

)
, so the vector

space {(0, v) ∈ R × R} is invariant and D f is contracting on vertical lines; these vertical
lines represent therefore the stable tangent subspaces.

However if we consider the horizontal vector w̄ = (ζ, 0) ∈ R × R, then D f (x, y) · w̄ =(
g′(x) · ζ

∂x h(x, y) · ζ
)

, so the horizontal line {(ζ, 0), ζ ∈ R, 0 ∈ R} is not invariated by D f , and

thus the unstable spaces do not have to be equal to this line.
To prove the hyperbolicity of the non-invertible map f on� and to construct its unstable

spaces, we use a generalization of a theorem of Newhouse [9] to this endomorphism case.
Let f : M → M be a smooth, not necessarily invertible map and suppose that � is a

compact f -invariant set in M . Assume that there exists a field of cones in the tangent space,
C = {Cẑ}ẑ∈�̂, so that the dimension of the core linear space of Cẑ is constant on �̂; but the
cone field C is not necessarily assumed to be D f -invariant. Let us say that a function f is
expanding and co-expanding on the cone field C, if given the notations:

mC,ẑ( f ) := inf
v∈Cẑ ,v �=0

|D fzv|
|v| , and m′

C,ẑ( f ) := inf
v /∈C f̂ ẑ

|D f −1
f z v|

|v| , ẑ ∈ �̂,

we have that inf ẑ∈�̂ mC,ẑ( f ) > 1, and inf ẑ∈�̂ m′
C,ẑ( f ) > 1.

Theorem (Newhouse) In the above setting, assume that there exists an integer N ≥ 1 such
that f N is expanding and co-expanding on C; then it follows that f is hyperbolic on �.

The proof is similar to the one given in [9]. We can prove consequently the following
result of hyperbolicity for our skew product:

Proposition 1 In the above setting, i.e. with g : J∗ → J∗ expanding and h : I∗ × I → I
uniformly contracting in the second coordinate, we have that f (x, y) = (g(x), h(x, y)) is
hyperbolic as an endomorphism on �.

Proof Let a continuous positive function γ defined on �̂, and the cone Cu
ẑ := {(v,w) ∈

R
2, |w| ≤ γ (ẑ) · |v|}, z = (x, y) ∈ �, ẑ ∈ �̂. The dimension of the core real linear space

of this cone is 1. Our cone field will be then Cu = {Cu
ẑ }ẑ∈�̂ and we do not know a priori

whether it is D f -invariant. We have D fz(v,w) =
(

g′(x) · v
∂x h(z) · v + ∂yh(z) · w

)
. So in order

to have an f -expanding field of cones, it is enough to take

|g′(x)|2 > 1 + γ 2(ẑ), z ∈ �
If we assume |g′(x)| > β > 1, x ∈ X , then it would be enough to have

0 < γ (ẑ) ≤
√
β2 − 1 or 0 < γ (ẑ) ≤

√
β2N − 1, (6)
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742 E. Mihailescu

where the second inequality is needed if we work with f N instead of f . So in this last case,
f N is expanding on the cone field Cu .

Now we estimate the co-expansion coefficient. If N ≥ 1 is an integer and if (v,w) /∈ Cu
f̂ N ẑ

,

then |w| > γ ( f̂ N ẑ) · |v|. Denote also f N z = (gN (x), h( f N−1x, hN−1(x, y))), where hN−1

is given by: f N−1z = (gN−1(x), hN−1(x, y)), z = (x, y) ∈ �. So

∂x hN (x, y) = ∂x h( f N−1x, hN−1(x, y)) · ∂x gN−1(x)

+ ∂yh( f N−1x, hN−1(x, y)) · ∂x hN−1(x, y)

= ∂x h( f N−1x, hN−1(x, y)) · ∂x gN−1(x)

+ ∂yh( f N−1x, hN−1(x, y)) · ∂x h( f N−2x, hN−2(x, y)) · ∂x gN−2(x)

+ ∂yh( f N−1x, hN−1(x, y)) · ∂yh( f N−2x, hN−2(x, y)) · ∂x hN−2(x, y) (7)

Denote by K := sup� |∂x h| and K ′ := K · 1
1−δ/β , where δ ∈ (0, 1) is a contraction factor,

such that |∂yh| < δ < 1 on �. Therefore by induction in (7) we have:

|∂x hN (x, y)| ≤ K · |(gN−1)′x | + δK · |(gN−2)′x | + · · · ≤ K ′ · |(gN−1)′x | (8)

But D( f N )−1
f N z

(
v

w

)
=

(
v

(gN )′(x)−∂x hN (z)v
(gN )′(x)·∂y hN (z)

+ w
∂y hN (z)

)
.

Hence ||D( f N )−1
f N z

(
v

w

)
||2 ≥ v2

|(gN )′(x)|2
(
1+ |∂x hN |2(z)

|∂y hN |2(z)
)
+ w2

|∂y hN |2(z) ·
(
1− 2|∂x hN (z)|

|(gN )′(x)·γ ( f̂ N ẑ)|
)

,

for any N ≥ 1. But then since |∂x hN (z)| ≤ K ′ · |(gN−1)′(x)|, and K ′ depends only on g, h,

there must exist N sufficiently large such that

∣∣∣∣
2K ′· 1

g′(gN−1x)

γ ( f̂ N (ẑ))

∣∣∣∣ ≤ 2K ′
β·

√
β2N −1

< 1
2 , if we take

the map γ (·) to be constant on �̂ and close to
√
β2N − 1 (although smaller than

√
β2N − 1).

So:
∥∥∥∥D( f N )−1

f N z

(
v

w

)∥∥∥∥
2

≥ |w|2
2|∂yhN (z)|2 (9)

But we had |w| > γ ( f̂ N ẑ) · |v|, hence:

|w|2
2|∂yhN (z)|2 ≥ |w|2

2δ2N
>

|v|2 + |w|2
δ

,

for N sufficiently large, since γ (·) is bounded on �̂. Hence inf ẑ∈�̂ m′
Cu ,ẑ( f N ) > 1 for some

large integer N . So f N is both expanding and co-expanding on the cone field Cu over �, so
the map f is hyperbolic according to the previous result. The unstable space corresponding
to the arbitrary prehistory ẑ ∈ �̂ is obtained then as Eu

ẑ = ∩n≥0 D f n(Cu
f̂ −n ẑ

). ��

We will show now that there correspond different unstable tangent directions Eu
ẑ �= Eu

ẑ′ , to

two different prehistories of z, ẑ, ẑ′ ∈ �̂.

Theorem 2 Let a fixed small α > 0 and consider the skew product f : J∗ × I → J∗ × I
defined in (2). Then if ẑ and ẑ′ are two different prehistories of z from �̂, it follows that
Eu

ẑ �= Eu
ẑ′ ; in particular the local unstable manifolds W u

r (ẑ),W u
r (ẑ

′) are not tangent to each
other.
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Proof We have that f (x, y) = (g(x), h(x, y)), (x, y) ∈ J∗ × I as defined in (2) (for nota-
tional simplicity, we do not record here the dependence of f on α). Let the point z = (x, y) ∈
�x , x ∈ J∗. For a tangent vector (v,w) we have

D fz

(
v

w

)
=

(
g′(x) · v

∂x h(z) · v + ∂yh(z) · w
)

Assume that the unstable tangent space corresponding to the prehistory ẑ ∈ �̂ is given by

Eu
ẑ := {

(v, ω(ẑ) · v), v ∈ R
}
, ẑ ∈ �̂, (10)

where ω(·) is a bounded function on �̂, since the unstable spaces must be transversal to the
stable (vertical) ones. Thus from the above formula, we obtain

D fz

(
v

w

)
=

(
g′(x) · v

∂x h(z) · v + ∂yh(z) · ω(ẑ)v
)

Now we know from the construction of unstable spaces on �̂ as intersections of iterates
of unstable cones (Proposition 1) that D fz(Eu

ẑ ) ⊂ Eu
f̂ ẑ

. Therefore ∂x h(z)+ ∂yh(z) ·ω(ẑ) =
ω( f̂ ẑ) · g′(x), ẑ ∈ �̂. So if z−1 denotes an f -preimage of z belonging to� and x−1 denotes
an g-preimage of x belonging to J∗, we obtain the following recurrence formula for ω(·):

ω( f̂ ẑ) = 1

g′(x)
∂x h(z)+ 1

g′(x)
∂yh(z) · ω(ẑ) (11)

By iterating (11) and by recalling that ω is a bounded function on �̂ (since the stable and
unstable directions must be transversal to each other), we obtain:

ω( f̂ ẑ) = 1

g′(x)
∂x h(z)+ 1

g′(x)
· ∂yh(z)

(
1

g′(x−1)
· ∂x h(z−1)

+ 1

g′(x−1)
· ∂yh(z−1) · ω(ẑ−1)

)

= 1

g′(x)
∂x h(z)+ 1

g′(x)g′(x−1)
∂yh(z)∂x h(z−1)

+ 1

g′(x)g′(x−1)
∂yh(z)∂yh(z−1)ω(ẑ−1)

= · · · = 1

g′(x)
∂x h(z)+

∞∑
i=1

1

g′(x) · · · · · g′(x−i )

· ∂x h(z−i )∂yh(z−i+1) · · · ∂yh(z) (12)

Now if ẑ′ = (z, z′−1, z′−2, . . .) is another prehistory of z from �̂, say with z′−1 �= z−1, we
have from above that

ω(ẑ′) = 1

g′(x ′−1)
∂x h(z′−1)+

∞∑
i=2

1

g′(x ′−1) · · · g′(x ′−i )
· ∂x h(z′−i )∂yh(z′−i+1) · · · ∂yh(z′−1)
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Therefore

ω(ẑ)− ω(ẑ′) = 1

g′(x−1)
∂x h(z−1)− 1

g′(x ′−1)
∂x h(z′−1)

+
[ ∞∑

i=2

∂x h(z−i ) · ∂yh(z−i+1) · · · ∂yh(z−1)

g′(x−1) · · · g′(x−i )
−

∞∑
i=2

∂x h(z′−i ) · ∂yh(z′−i+1) · · · ∂yh(z′−1)

g′(x ′−1) · · · g′(x ′−i )

]

(13)

Let us assume that

β2 > g′(x) > β � 1, x ∈ J∗,

for some large β which depends on α; this holds since the map g expands the small intervals
I1, I2 to the whole I = [0, 1], and g was assumed increasing.

We assume that |∂yh| < δ < 1 on �. Now the expression in the straight brackets in (13),
is less than 1

β2 (1 + δ
β

+ · · · ) = 1
β2 · 1

1− δ
β

< 1.2
β2 , if β is large enough.

But if z−1, z′−1 are different preimages of z, it follows that we must have z−1 ∈ �x−1 and
z′−1 ∈ �x ′−1

for two different g-preimages of x , say x−1 ∈ I1 and x ′−1 ∈ I2. Then we have

∂x h(z−1) = 1 and ∂x h(z′−1) = −1. Therefore we have that
∣∣∣∣∣

1

g′(x−1)
∂x h(z−1)− 1

g′(x ′−1)
∂x h(z′−1)

∣∣∣∣∣ >
2

β2

Hence from the above estimate of the expression in the straight brackets of (13), we see that
for two prehistories ẑ, ẑ′ ∈ �̂ of z with z−1 �= z′−1, we obtain:

|ω(ẑ)− ω(ẑ′)| > 0.7

β2

In general, let ẑ, ẑ′ two different prehistories of z from �̂. Then there exists m ≥ 1 so that
z−m �= z′−m and z−i = z′−i for i = 0, . . . ,m − 1 (where as always we denote z = z0). Then
similarly as above we obtain that

|ω(ẑ)− ω(ẑ′)| > 0.7

βm+1 , (14)

where we recall that β = β(α). Clearly if Eu
ẑ �= Eu

ẑ′ for two different prehistories of z then
also the corresponding local unstable manifolds W u

r (ẑ),W u
r (ẑ

′) are different, and they are
not tangent to each other. ��

We estimated thus in the previous Theorem the angle between unstable directions cor-
responding to different prehistories of the same point, by using the dilation factor β of
g : I1 ∪ I2 → I .

We will give now a generalization of example (2) to a family which is nonlinear in x and
linear in y, with fiber contraction factors belonging to a neighbourhood of 1

2 .
First let us fix a small α ∈ (0, 1). Then take the subintervals I α1 , Iα2 ⊂ I = [0, 1] so that

Iα1 is contained in [ 1
2 − ε(α), 1

2 + ε(α)] and I α2 is contained in [1 −α− ε(α), 1 −α+ ε(α)],
for some small ε(α) < α2. We take then a strictly increasing smooth map g : I α1 ∪ Iα2 → I
such that g(I α1 ) = g(Iα2 ) = I ; assume that there exists a large β � 1 s. t β2 > g′(x) >
β >> 1, x ∈ Iα1 ∪ Iα2 . Then there exist subintervals I α11, Iα12 ⊂ Iα1 , Iα21, Iα22 ⊂ Iα2 such that
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g(Iα11) = g(Iα21) = Iα1 and g(Iα12) = g(Iα22) = Iα2 . We define again Jα := Iα11 ∪ Iα12 ∪ Iα21 ∪ Iα22
and Jα∗ := {x ∈ Jα, gi (x) ∈ Jα, i ≥ 0}.

Now define fα : Jα∗ × I → Jα∗ × I ,

fα(x, y) = (g(x), hα(x, y)), with

hα(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ1,α(x)+ s1,α y, x ∈ Iα11

ψ2,α(x)+ s2,α y, x ∈ I α21

ψ3,α(x)− s3,α y, x ∈ Iα12

s4,α y, x ∈ Iα22,

(15)

where for some small ε0, we take s1,α, s2,α, s3,α, s4,α to be positive numbers, ε0-close to
1
2 ,

1
2 ,

1
2 ,

1
2 respectively; and ψ1,α(·), ψ2,α(·), ψ3,α(·) are smooth (say C2) functions on I

which are ε0-close in the C1-metric, to the linear functions x → x , x → 1 − x and x → 1,
respectively. By |g1 − g2|C1 we shall denote the distance in the C1(I )-metric between two
smooth functions on I , g1 and g2.

We shall denote also the function hα(x, ·) : I → I by hx,α(·), for x ∈ Jα∗ .
Again when α is unambiguous and fixed, we will not record the dependence of the above

on α (but will keep it in mind).

Theorem 3 There exists a function ϑ(α) > 0 defined for all positive small enough numbers
α, with ϑ(α) →

α→0
0 and such that, if f is an arbitrary map defined in (15) whose parameters

satisfy:

max

{
|ψ1(x)−x |C1 , |ψ2(x)−1+x |C1 , |ψ3(x)−1|C1 ,

∣∣∣∣s1− 1

2

∣∣∣∣ ,
∣∣∣∣s2− 1

2

∣∣∣∣ ,
∣∣∣∣s3− 1

2

∣∣∣∣ ,
∣∣∣∣s4− 1

2

∣∣∣∣
}

< ϑ(α) (16)

then we obtain:

a) For x ∈ J∗ ∩ I1, there exists a Cantor set Fx ⊂ �x , s. t every point of Fx has two
different f -preimages in �. And if x ∈ J∗ ∩ I2, then there exists a Cantor set Fx ⊂ �x

s. t every point of Fx has two different f 2-preimages in �.
b) f is hyperbolic on �.
c) If ẑ, ẑ′ ∈ �̂ are two different prehistories of an arbitrary point z ∈ �, then Eu

ẑ �= Eu
ẑ′ .

We have the same estimate for the angle between Eu
ẑ and Eu

ẑ′ as in (14).

Proof The proof uses basically the same ideas as in Theorem 1, Proposition 1 and Theorem 2,
with certain modifications.

a) I1, I2 are ε(α)-close to 1
2 , 1 − α. We assumed in the definition (15), that ε(α) <

α2 � 1. Like in the proof of Theorem 1, the set �x (n) is formed by k(n) disjoint subin-
tervals J1(x, n), . . . , Jk(n)(x, n) arranged in an increasing order; assume also that for x ∈
J∗ ∩ I1, Jk(x, n) = [ak(x, n), ck(x, n)], k = 1, . . . , k(n) and for x ∈ J∗ ∩ I2, Jk(x, n) =
[ãk(x, n), c̃k(x, n)], k = 1, . . . , k(n). Also for a point x ∈ J∗, there exist two g-preimages
of x in J∗, which will be denoted by x−1,1 (for the g-preimage of x from I1), and x−1,2 (for
the g-preimage of x belonging to I2).

Then by induction we see that ã1(x, n) = 0 for all n > 1 and x ∈ J∗ ∩ I2. This implies
that for all x ∈ J∗ ∩ I1, n > 1, we have a1(x, n) = hx−1,2(ã1(x−1,2, n − 1)) = hx−1,2(0).
Therefore we obtain that a1(x, n) is α2-close to ψ2(1 − α) if x ∈ J∗ ∩ I1. This implies
also that the right most endpoint of �y(n), y ∈ I2 ∩ J∗, namely c̃k(n)(y, n), is α2-close to
ψ3(

1
2 )− s3ψ2(1 − α).
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We see now that the right endpoint of Jk(n)(x, n), x ∈ I1 ∩ J∗, namely ck(n)(x, n) is
α2-close to ψ1(

1
2 )+ s1ck(n−1)(x−1,1, n − 1). Thus we see that ck(n)(x, n) ↗ c(x,∞) when

n → ∞ and that c(x,∞) is α2-close to ψ1(
1
2 )(1 + s1 + s2

1 + · · · ) = ψ1(
1
2 )

(1−s1)
. It follows as in

Theorem 1 that we do have points of �x as close as we want to ck(n)(x, n) for n > 1; hence
there are points of �x as close as we want to c(x,∞) when x ∈ J∗ ∩ I1.

Now if a1(x, n) is ε(α)-close toψ2(1−α) for x ∈ I1∩ J∗, it follows from construction that
c̃k(n)(x ′, n) is ε(α)-close to ψ3(

1
2 )− s3ψ2(1−α) if x ′ ∈ I2 ∩ J∗. Recall also that ε(α) < α2.

Again, since there are points of �x as close as we want to a1(x, n) when x ∈ I1 ∩ J∗, we
see that a1(x, n) = hx−1,2(0) ∈ �x ; thus there exist points of �x ′ as close as we want to
c̃k(n)(x, n) = ψ3(

1
2 )− s3 · a1(x ′−1,1, n) for x ′ ∈ I2 ∩ J∗.

Now for an iteration of order n > 3, we will want to have the two phenomena which gave
the fractal structure of�x in Theorem 1. The first desired phenomenon is the overlapping in
�x , x ∈ I1 ∩ J∗, of the first intervals of hx−1,1(�x−1,1) (i.e. subintervals Jk(x, n), k < m(n)
for some m(n)), with the last intervals of hx−1,2(�x−1,2) (i.e. with the subintervals of type
Jk(x, n), k > p(n)). And the second desired phenomenon is the appearance of a gap of
length comparable to α, in �x , x ∈ I2 ∩ J∗, between hx−1,2(c̃k(n−1)(x−1,2, n − 1)) and
hx−1,1(c(x−1,1,∞)). We use c(x−1,1,∞) since ck(n)(x−1,1, n) ↗

n→∞
c(x−1,1,∞) and there

are points from �x−1,1 as close as we want to c(x−1,1,∞); thus the gap in �x is bounded
above by hx−1,1(c(x−1,1,∞)).

Therefore our two conditions are satisfied if:

ψ1

(
1

2

)
+ s1 · ψ2(1 − α) < ψ2(1 − α)+ s2 ·

[
ψ3

(
1

2

)
− s3ψ2(1 − α)

]
, and (17)

α

2
< ψ3

(
1

2

)
− s3 · ψ1

( 1
2

)
1 − s1

− s4 ·
[
ψ3

(
1

2

)
− s3ψ2(1 − α)

]
< α (18)

As we can see these two conditions are verified if there exists a sufficiently smallϑ(α) > 0,
s.t. ∣∣∣∣si − 1

2

∣∣∣∣ < ϑ(α), i = 1, . . . , 4 and

max
{|ψ1(x)− x |C1 , |ψ2(x)− 1 + x |C1 , |ψ3(x)− 1|C1

}
< ϑ(α) (19)

It is clear that ϑ(α) →
α→0

0. If ϑ(α) is small enough, then the thickness of the fibers �x

remains larger than
(α). This permits for every x ∈ I1 ∩ J∗, to have an intersection between
the images hx−1,1(�x−1,1) and hx−1,2(�x−1,2) inside�x . Thus we obtain a Cantor set Fx ⊂ �x

s.t every point of Fx has two different f -preimages inside �. We obtain again that

τ(Fx ) ≥ √

(α), x ∈ I1 ∩ J∗,

where 
(α) = O( 1
α
), α > 0.

b) The hyperbolicity follows in the same way as in Proposition 1, if the inequalities in
(19) are satisfied and ϑ(α) is small enough.

c) The disjointness of unstable directions corresponding to different prehistories of the
same point, follows as in the proof of Theorem 2 since the derivatives of ψ1, ψ2 are
ϑ(α)-close to 1, respectively −1. And similarly we obtain the same estimates (14) for the
angle between two unstable directions Eu

ẑ and Eu
ẑ′ , corresponding to two different prehistories

of the same point z ∈ �; we recall also that β depends on α, in (14). ��
Let us study now the unstable, respectively stable dimension on �; from this study we

shall obtain further information about the preimage counting function on �. We will see
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more arguments towards the idea that the skew products defined in (15) are far from being
homeomorphisms on their respective basic set �, and also far from being 2-to-1 on �.

First we have the following result about the unstable dimension:

Theorem 4 For a small fixed α > 0, let the function f : � → � defined in (15). Then
the unstable dimension δu(ẑ) = tu,∀ẑ ∈ �̂, where tu is the unique zero of the pressure
function t → Pf̂ |

�̂
(t�u), and where �u(ŷ) := − log |D fu(ŷ)|, ŷ ∈ �̂. Consequently if

g′(x) > β(α) >> 1 on J∗, we have

δu(ẑ) <
log 2

log β(α)
2

, ẑ ∈ �̂

Proof The first part of the Theorem follows from [4] since the unstable manifolds in our case
are 1-dimensional (hence conformal). So δu(ẑ) = tu , for all ẑ ∈ �̂. We notice that tu is the
zero of a pressure function calculated on the natural extension �̂.

Now, from the proof of Theorem 3 we know that ω(ẑ) < 1
β(α)

, ẑ ∈ �̂. Hence |D fu(ẑ)| >
β(α)

2 , ẑ ∈ �̂ so �u(ẑ) < − log β(α)
2 , ẑ ∈ �̂.

Also it is easy to see that htop( f |�) = log 2 since the Bowen balls of f are given mainly
by the expansion of g in the horizontal direction, and g|J∗ is conjugated to σ2 on the one-
sided Bernoulli shift �+

2 . Therefore 0 = Pf̂ |
�̂
(tu�u) < −tu log β(α)

2 + log 2 and we obtain

δu(ẑ) = tu <
log 2

log β(α)
2

. ��

Now we want to estimate the stable dimension over�; by contrast to Theorem 4 or to the
diffeomophism case, we do not know here that δs(z) is constant when z ranges in �.

Recall that we denoted by d(·) the preimage counting function for f on �, defined by
d(z) := Card{z′ ∈ �, f (z′) = z}, z ∈ �. One major difficulty is that d(·) is not necessarily
continuous on �, and not necessarily constant. So the expression P(t�s − log d) does not
make sense, since pressure was defined for continuous maps. We will overcome this obstacle
in 2 different ways. The first one will be by using a notion of inverse pressure (see [8]).
For a continuous non-invertible map f : X → X on a compact metric space X , the inverse
pressure P−

f (·) is a functional defined by using consecutive f -preimages of points (rather
than the forward iterates like for usual pressure). It is useful in the case of estimating the stable
dimension of endomorphisms that are not necessarily constant-to-1 [5,8]. For the negative
function�s , we proved that there exists a unique zero t−s of the function t → P−

f (t�
s), and

that in our case

δs(z) ≤ t−s , z ∈ �
The second way is by using continuous upper bounds η(·) for the preimage counting

function d(·), and then to employ the unique zero tη of the function t → P(t�s − log η).

Theorem 5 Let a sufficiently small α > 0 and a function f defined as in (15), and assume
that the parameters of f satisfy condition (16).

a) Then the stable dimension δs(z) ≤ t−s < 1, for any point z ∈ �.
b) If η(·) is a continuous function on � such that d(z) ≤ η(z), z ∈ �, it follows that

δs(z) ≥ tη, z ∈ �, where tη is the unique zero of the function t → P(t�s − log η).

Proof a) We take a fixed small enough α > 0; this will imply that ϑ(α) is also small enough
such that Theorem 3 works. Hence f is hyperbolic as an endomorphism on�. Also we notice
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that it is conformal on stable manifolds as these have real dimension 1, and also that f does
not have any critical points in �. We proved in [8] that in this case, δs(z) ≤ t−s , where t−s is
the unique zero of the inverse pressure function t → P−

f (t�
s).

From Theorem 3, an arbitrary fiber �x does not contain intervals. Hence since local sta-
ble manifolds are contained in the vertical fibers in our case, it follows that no local stable
manifold is contained in �. Thus � is not a local repellor, in the sense of [5]. Translating to
our case the result of [5] we obtain then, that t−s < 1.

Therefore we obtain δs(z) ≤ t−s < 1, z ∈ �.
b) The estimate δs(z) ≥ tη follows immediately from [7], since d(·) ≤ η(·) and since f

is hyperbolic on �, conformal on stable manifolds and does not have critical points in �.
��

Remark (1) Theorem 5 permits us to get better and better lower estimates for δs(z), if we
take continuous functions η which approximate better and better the preimage counting
function d(·). Indeed in the notation of Theorem 3, let an open subset W1 ⊂ V1 so
that W̄1 ⊂ V1. Then let η(·) a continuous real function on � such that η(z) ≡ 1, z ∈
W1, η(z) ≡ 2, z ∈ V2, and 1 ≤ η ≤ 2 in rest. Then from Theorem 5 it follows that
δs(z) ≥ tη. When the set W1 is increased inside V1, we will obtain smaller and smaller
maps η, and thus larger and larger zeros tη. Still, from part a) of Theorem 5, we know
that always tη ≤ δs(z) ≤ t−s < 1 for these functions η.

(2) Theorem 5 shows that from the point of view of stable dimension, when the fiber contrac-
tion factors s1, s2, s3, s4 are all equal to 1

2 , then f |� is far from being a homeomorphism
for all choices of parameters ψ j , j = 1, 2, 3 satisfying condition (16). Indeed if δs(z)
were the zero ts of the pressure t → P(t�s), then since�s ≡ − log 2 on�, we would
obtain t s = 1. But we saw in Theorem 5 that δs(z) < 1, z ∈ �.

(3) Also we notice that in the setting of Theorem 5, f |� is not 2-to-1 either. Indeed assume
that the parameters si , ψ j , i = 1, . . . , 4, j = 1, 2 satisfy (16) and α is small enough
and let the function f given by these parameters in (15) (we do not record now the
dependence of f on α, but are keeping it in mind). Then from Theorem 3, we know
that f is hyperbolic as an endomorphism on �. In that case, from [8] it follows that
for all z ∈ �, δs(z) would be equal to the unique zero t s

2 of t → P(t�s − log 2).
But we saw above that htop( f |�) = log 2; hence it would follow that t s

2 = 0. On the
other hand, we know from the proof of Theorem 3 that there are points z ∈ �x with
δs(z) = H D(�z) ≥ log 2

log(2+ 1√

(α)

)
> 0.

We have thus obtained a contradiction; hence f |� is not 2-to-1. �

Let us assume now that α is fixed and si = 1
2 , i = 1, . . . , 4 in the definition (15) of f .

Now if there were only at most m prehistories in the natural extension �̂ (associated to this
f ) for each point of �, then the stable dimension would still be equal to the zero ts of the
pressure t → P(t�s); this follows from [8]. Therefore for any integer m ≥ 1, there must
exist a point zm ∈ � with more than m prehistories in �̂. One may assume that the points
zm converge to some point z ∈ �. We will prove that z has infinitely many prehistories
in �̂. First we know that each zm has at least m prehistories in �̂ for all m ≥ 1. Denote
the set of all these prehistories by P; clearly P is infinite. Hence there is some level k1 so
that there exists an infinite set P(k1, 1) ⊂ P of prehistories whose k1 entries are close to
some k1-preimage z(k1, 1) of z, and another disjoint infinite set of prehistories P(k1, 2) ⊂ P
whose elements have their k1 entries close to another k1-preimage of z called z(k1, 2), with
d(z(k1, 2), z(k1, 1)) > ε0(k1) > 0; this estimate follows from the fact that f does not have
critical points in �. Next we take the family P(k1, 2) and show as above that there exists
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some k2 > k1 and two disjoint subcollections of P(k1, 2), denoted by P(k2, 1) and P(k2, 2),
s. t the distance between the k2 entry of any prehistory from P(k2, 1) and the k2 entry of
any prehistory from P(k2, 2), is larger than a fixed ε0(k2) > 0. This is done similarly as in
the previous step and we use again that f does not have critical points in �. We obtain thus
by induction a sequence of disjointed infinite families of prehistories P(kn, 1), n ≥ 1. Also
recall that �̂ is compact so any infinite family has accumulation points in �̂. Hence from the
above procedure we see that we can separate at some level any accumulation point of P(kn, 1)
from any accumulation point of P(kp, 1) whenever n �= p; thus any two such accumulation
points must be different. But on the other hand we assumed the points zm converge to z, so
any accumulation point of an infinite family P(kp, 1)must be some prehistory of z in �̂, for
any p ≥ 1. We thus obtain an infinite collection of different prehistories of z in �̂.

Then by employing also Theorem 2, we have proved the following:

Corollary 1 Let a small α > 0 and a function f as in (15), and assume that si = 1
2 , i =

1, . . . , 4 and that the parameters ψ j , j = 1, . . . , 3 satisfy (16). Then there exists a point
z ∈ � having infinitely many different prehistories in �̂, and thus infinitely many different
unstable directions of type Eu

ẑ .

We show now that our examples are both far from having a homeomorphism-type behav-
iour, and also far from the constant-to-1 maps of [8]:

Corollary 2 Let a small α > 0 and a function f defined as in (15), s. t the parameters
si , ψ j , i = 1, . . . , 4, j = 1, . . . , 3 of f satisfy (16). Write � as the union V1 ∪ V2, where
V1 is defined as the set of points having only one f -preimage inside � and V2 is the set of
points having exactly two f -preimages in �.

a) Then δs(z) ∈ ( log 2
log(2+ 1


(α)
)
, 1), z ∈ �. So if α tends to 0, then the stable dimension at an

arbitrary point of � may be made as close as we want to 1, but always strictly smaller
than 1.

b) V1 is an open uncountable set in �, and V2 is a closed set in �.
c) Assume moreover that in the definition (15) of f , the contraction factors si , i = 1, . . . , 4

are all equal to 1
2 . Then V2 is uncountable as well.

Proof a) We apply a result of Palis and Takens [11] giving an estimate for the Hausdorff
dimension of a Cantor set K in the line, as follows:

H D(K ) ≥ log 2

log(2 + 1
τ(K ) )

We showed in Theorem 3 that we have τ(�x ) ≥ 
(α); and as in the proof of Theorem 1,

(α) →

α→0
∞. Hence combining also with Theorem 5, we obtain the estimates.

b) We recall that d(z) was defined as the number of f -preimages of z belonging to �.
We can partition now � into two subsets, V1 := {z ∈ �, d(z) = 1} and V2 := {z ∈

�, d(z) = 2}. It can be seen easily that V1 is open and V2 is closed, since d(·) is upper
semi-continuous. We remark that V1, V2 are not necessarily f -invariant.

If V1 would be countable, then we can approximate any point from � by points from V2;
given an arbitrary n > 1, we can even approximate any point z ∈ � with points w such that
w ∈ V2 and all its preimages of order less than n are also in V2; i.e. ifw−i ∈ �∩ f −iw, then
w−i ∈ V2, i < n. This makes the proof of Theorem 3.1 of [8] to work (holomorphicity in that
Theorem is not essential); all that is important is that f be conformal on stable manifolds,
and this is satisfied in our case as the stable manifolds are 1-dimensional.
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Hence it would follow that δs(z) = t s
2 , where t s

2 is the unique zero of the pressure t →
P(t�s − log 2). Now htop( f |�) = log 2, since the expansion takes place mainly in the hor-
izontal direction and since g|J∗ is topologically conjugate to σ2 on the one-sided Bernoulli
space �+

2 . Thus it follows that t s
2 = 0.

However we saw in part a) that H D(�x ) ≥ log 2
log(2+ 1


(α)
)
> 0. So we cannot have

H D(�x ) = t s
2 , and we obtain a contradiction. Therefore V1 is uncountable.

c) Now assume that all the contraction factors of f on fibers are equal to 1
2 . Let us suppose

also that V2 is countable. Then as above, for any n > 1 we can approximate any point of �
with points having only one preimage of order n and the proof of Theorem 3.1 from [8] gives
that δs(z) = t s, z ∈ �, where t s is the unique zero of the pressure function t → P(t�s).
But since in our case �s ≡ − log 2 on �, we obtain t s = 1. But from Theorem 5, t s < 1,
thus a contradiction. In conclusion V2 is uncountable as well. ��
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