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Abstract Consider a smooth, projective family of canonically polarized varieties over a
smooth, quasi-projective base manifold Y , all defined over the complex numbers. It has been
conjectured that the family is necessarily isotrivial if Y is special in the sense of Campana.
We prove the conjecture when Y is a surface or threefold. The proof uses sheaves of sym-
metric differentials associated to fractional boundary divisors on log canonical spaces, as
introduced by Campana in his theory of Orbifoldes Géométriques. We discuss a weak var-
iant of the Harder–Narasimhan Filtration and prove a version of the Bogomolov–Sommese
Vanishing Theorem that take the additional fractional positivity along the boundary into
account. A brief, but self-contained introduction to Campana’s theory is included for the
reader’s convenience.
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1 Introduction and statement of main result

1.1 Introduction

Complex varieties are traditionally classified by their Kodaira–Iitaka dimension. A smooth,
projective variety Y is said to be of “general type” if the Kodaira–Iitaka dimension of the
canonical bundle is maximal, i.e. κ(�dim Y

Y ) = dim Y . Refining the distinction between “gen-
eral type” and “other,” Campana suggested in a series of remarkable papers to consider the
class of “special” varieties Y , characterized by the fact that the Kodaira–Iitaka dimension
κ(A ) is small whenever A is an invertible subsheaf of �

p
Y , for some p. Replacing �

p
Y

with the sheaf of logarithmic differentials, the notion also makes sense for quasi-projective
varieties.

Conjecturally, special varieties have a number of good topological, geometrical and arith-
metic properties. In particular, Campana conjectured that any map from a special quasi-pro-
jective variety to the moduli stack of canonically polarized manifolds is necessarily constant.
Equivalently, it is conjectured that any smooth projective family of canonically polarized
manifolds over a special quasi-projective base variety is necessarily isotrivial. This general-
izes the classical Shafarevich Hyperbolicity Theorem and recent results obtained for families
over base manifolds that are not of general type, cf. [10,11] and the references therein.

In this paper, we prove Campana’s conjecture for quasi-projective base manifolds Y ◦ of
dimension dim Y ◦ ≤ 3. Throughout the present paper we work over the field of complex
numbers.

1.2 Main result

Before formulating the main result in Theorem 1.5 below, we briefly recall the precise defi-
nition of a special logarithmic pair. The classical Bogomolov–Sommese Vanishing Theorem
is our starting point.

Theorem 1.1 (Bogomolov–Sommese Vanishing Theorem, [3, Sect. 6]) Let Y be a smooth
projective variety and D ⊂ Y a reduced, possibly empty divisor with simple normal cross-
ings. If p ≤ dim Y is any number and A ⊆ �

p
Y (log D) any invertible subsheaf, then the

Kodaira–Iitaka dimension of A is at most p, i.e., κ(A ) ≤ p. ��
In a nutshell, we say that a pair (Y, D) is special if the inequality in the Bogomolov–

Sommese Vanishing Theorem is always strict.

Definition 1.2 (Special logarithmic pair) In the setup of Theorem 1.1, a pair (Y, D) is
called special if the strict inequality κ(A ) < p holds for all p and all invertible sheaves
A ⊆ �

p
Y (log D). A smooth, quasi-projective variety Y ◦ is called special if there exists a
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Families over special base manifolds and a conjecture of Campana 849

smooth compactification Y such that D := Y\Y ◦ is a divisor with simple normal crossings
and such that the pair (Y, D) is special.

Remark 1.3 (Special quasi-projective variety) It is an elementary fact that if Y ◦ is a smooth,
quasi-projective variety and Y1, Y2 two smooth compactifications such that Di := Yi\Y ◦ are
divisors with simple normal crossings, then (Y1, D1) is special if and only if (Y2, D2) is. The
notion of special should thus be seen as a property of the quasi-projective variety Y ◦.

With this notation in place, Campana’s conjecture is then formulated as follows.

Conjecture 1.4 (Generalization of Shafarevich Hyperbolicity, [2, Conj. 12.19]) Let f ◦ :
X◦ → Y ◦ be a smooth family of canonically polarized varieties over a smooth quasi-projec-
tive base. If Y ◦ is special, then the family f ◦ is isotrivial.

Theorem 1.5 (Campana’s conjecture in dimension three) Conjecture 1.4 holds if dim Y ◦ ≤3.

Remark 1.5.1 In the case of dim Y ◦ = 2, Conjecture 1.4 is claimed in [2, Thm. 12.20].
However, we had difficulties following the proof, and offered a new proof of Campana’s
conjecture in dimension two [9, Cor. 4.5].

Remark 1.6 In analogy to the maximally rationally connected fibration, Campana proves the
existence of a quasi-holomorphic “core map”, c : Y ◦ ��� C(Y ◦), which is characterized by
the fact that its fibers are special any by a certain maximality property. One equivalent refor-
mulation of Conjecture 1.4 is that the core map always factors the moduli map μ : Y ◦ → M,
i.e., that there exists a commutative diagram of rational maps

C(Y ◦)

��

� � � �
�

�
Y ◦

μ
��

c
��

�
	


 � � 


M.

1.3 Outline of the paper

In Part I of this paper, we introduce the notion of C-pairs, also called Orbifoldes Géométr-
iques by Campana, and prove a number of basic results that will be important later. The
notion of a C-pair offers the formal framework suitable for the discussion of differentials
on charts of moduli stacks and on the associated coarse moduli spaces. Section 2 contains a
brief introduction to C-pairs and their use for our purposes. Several sheaves of differentials
and the associated version of Kodaira–Iitaka dimension for subsheaves of C-differentials are
also introduced.

Even though our presentation differs from that of Campana’s papers, most of the material
covered in Part I is not new and appears, e.g., in [2]. We have chosen to include a complete
and entirely self-contained introduction because we found some parts of [2] hard to read, and
because some of the basic notions have still not found their final form in the literature.

In contrast, the results of Part II are new to the best of our knowledge. In Sect. 6, we
discuss a weak variant of the Harder–Narasimhan Filtration that works for sheaves of C-dif-
ferentials and takes the extra fractional positivity of these sheaves into account. Even though
we believe that a refinement of the Harder–Narasimhan Filtration works in the more gen-
eral context of vector bundles with fractional elementary transformations, and might be of
independent interest, we develop the theory only to the absolute minimum required to prove
Theorem 1.5.

123



850 K. Jabbusch, S. Kebekus

In Sect. 7, we generalize the classical Bogomolov–Sommese Vanishing Theorem 1.1 to
sheaves of C-differentials on C-pairs with log canonical singularities. Again, this is a general-
ization of the results obtained in [5] that respects the fractional positivity along the boundary.

In Part III we prove Theorem 1.5. To prepare for the proof we recall in Sect. 9 a recent
refinement of Viehweg–Zuo’s fundamental positivity result: if the family f ◦ is non-isotriv-
ial and if Y is any smooth compactification of Y ◦ such that D := Y\Y ◦ is a divisor with
simple normal crossings, then there exists a number m 
 0 and an invertible subsheaf
A ⊆ Symm �1

Y (log D) of positive Kodaira–Iitaka dimension. In the appropriate orbifold
sense, this “Viehweg–Zuo sheaf” A comes from the moduli space. One of the main diffi-
culties in the proof of Theorem 1.5 is that special pairs are defined in terms of subsheaves in
�1

Y (log D), while Viehweg–Zuo’s result only gives subsheaves of high symmetric products
Symm �1

Y (log D).
To give an idea of the proof, consider the simple setup where Y = Y ◦ is compact and

admits a morphism γ : Y → Z to a curve such that the family f ◦ is the pull-back of a
smooth family that lives over Z . Applied to the family over the one-dimensional space Z , the
Viehweg–Zuo result implies that �1

Z is ample, so that the inclusion γ ∗�1
Z ⊆ �1

Y immediately
shows that Y cannot be special. Since all sheaves constructed by Viehweg and Zuo really
come from the moduli space, a more elaborate version of this argument can in fact be used to
deal with all cases of Theorem 1.5 where the moduli map has a one-dimensional image. For
moduli maps with higher-dimensional images, minimal model theory gives the link between
the existence of A and positivity of subsheaves in �1

Y (log D).

PART I. C-PAIRS AND THEIR DIFFERENTIALS

2 C-pairs, adapted morphisms and covers

2.1 C-pairs, introduction and definitions

Let γ : Y → X be a finite morphism of degree N between n-dimensional smooth varie-
ties and assume that γ is totally branched over a smooth divisor D ⊂ X . In this setting, if
σ ∈ �

(
X, �

p
X (∗D)

)
is a p-form, possibly with poles of arbitrary order1 along D, its pull-

back γ ∗(σ ) is again a p-form, now with poles along Dγ := supp γ ∗(D). It is an elementary
fact that to check whether σ does indeed have poles, it suffices to look at its pull-back γ ∗(σ ).
More precisely, it is true that σ has poles of positive order if and only if γ ∗(σ ) does. A similar
statement holds for forms with logarithmic poles along D. This is, however, no longer true
if we look at symmetric products of �

p
X .

For an example that will be important later, choose local coordinates z1, . . . , zn on X such
that D = {z1 = 0}. The symmetric form

σ := 1

za
1
(dz1)

⊗b1 ⊗ (dz2)
⊗b2 ⊗ · · · ⊗ (dzn)⊗bn ∈ �

(
X, Symb1+···+bn �1

X (∗D)
)

(2.0.1)

has a pole of order a along D. However, an elementary computation shows that γ ∗(σ ) does
not have any pole if the pole order of σ is sufficiently small with respect to b1, that is
a ≤ b1 · N−1

N .

1 See Definition 3.4 on page 10 for a proper definition of the sheaf �
p
X (∗D) of differential forms with poles

of arbitrary order along D.
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Families over special base manifolds and a conjecture of Campana 851

In our proof of Theorem 1.5, we consider morphisms γ : Y → X , where X is a suitable
subvariety of the coarse moduli space and Y is a chart for the moduli stack, or simply has a
morphism to the moduli stack. Tensor products of �

p
Y and �

p
X and the pull-back map appear

naturally in this context when one discusses positivity and the Kodaira–Iitaka dimension of
invertible subsheaves of �

p
Y , and tries to relate that to objects living on the coarse moduli

space. The formal set-up for this discussion has been given by Campana in his theory of
Orbifoldes Géométriques. Since the word orbifold is already used in a different context, and
since the notion of a geometric orbifold is not widely accepted, we have chosen to use the
words C-pair, C-form and C-differential in this paper, where “C” stands for Campana. In this
language, we will say that the form σ defined in (2.0.1) is a C-form on the C-pair (X, N−1

N · D)

if and only if a ≤ b1 · N−1
N holds.

Notation 2.1 We will often need to consider numbers N−1
N , where N is either a positive

integer or N = ∞. Throughout the paper we follow the convention that ∞−1
∞ := 1.

Definition 2.2 (C-pair and C-multiplicities, cf. [2, Def. 2.1]) A C-pair is a pair (X, D) where
X is a normal variety or complex space and D is a Q-divisor of the form

D =
∑

i

ni −1
ni

· Di

where the Di are irreducible and reduced distinct Weil divisors on X and ni ∈ N+ ∪ {∞}.
The numbers ni are called C-multiplicities of the components Di , denoted m(X,D)(Di ). More
generally, if E ⊂ X is any irreducible, reduced Weil divisor, set

m(X,D)(E) :=
{

ni if ∃i such that E = Di

1 otherwise

2.2 Adapted coordinates

In Sect. 3, we compute sheaves of C-differentials in local coordinates. For this, we consider
“adapted” systems of coordinates, defined as follows.

Definition 2.3 (Adapted coordinates) Let (X, D) be a C-pair, and let x ∈ supp(D) be a point
which is smooth both in X and in supp(D). If U is a neighborhood of x , open in the analytic
topology, and if z1, . . . , zn ∈ Ohol(U ) are local analytic coordinates about x , we say that the
zi form an adapted system of coordinates if the set-theoretic equation

supp(D) ∩ U = {z1 = 0}
holds.

Remark 2.4 If (X, D) is a C-pair, and x ∈ supp(D) is a point which is smooth both in X and
in supp(D), then there always exists an open neighborhood of x with an adapted system of
coordinates. The set of points for which there is no system of adapted coordinates is therefore
contained in a closed subset of codimension ≥ 2.

The last remark shows that the set of points for which there is no system of adapted coor-
dinates will not play any role when we use adapted coordinates in the discussion of reflexive
sheaves of differentials. For a more general setup on smooth spaces, see [2, Sect. 2.5].
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2.3 Adapted morphisms

In Sect. 2.1, we attached a C-pair to the base of a finite morphism. Conversely, in the discus-
sion of a given C-pair (X, D), we will often use morphisms Y → X which induce the C-pair
structure on X , at least to some extent. In this section, we introduce the necessary notation
and prove the existence of these “adapted” morphisms.

Notation 2.5 (Multiplicity of a Weil divisor in a pull-back divisor) Let γ : Y → X be a
surjective morphism of normal varieties of constant fiber dimension. If D is any divisor on
X , its restriction D|Xreg to the smooth locus of X is Cartier. In particular, there exists a pull-
back γ ∗(D|Xreg), which we can interpret as a Weil divisor on the normal space γ −1(Xreg). If
E ⊂ Y is any irreducible divisor, then E necessarily intersects γ −1(Xreg), and it makes sense
to consider the coefficient m of the pull-back divisor γ ∗(D|Xreg) along E |γ −1(Xreg)

. Abusing
notation, we say that E appears in γ ∗(D) with multiplicity m.

Convention 2.6 (Pull-back of Weil divisors) In the setup of Notation 2.5, the pull-back mor-
phism for Cartier divisors defined on Xreg extends to a well-defined pull-back morphism

γ ∗ : {Weil divisors on X} → {Weil divisors on Y }
that respects linear equivalence. Throughout this article, whenever a surjective morphism of
constant fiber dimension is given, we will use the pull-back morphism for Weil divisors and
their linear equivalence classes without extra mention.

Definition 2.7 (Adapted morphism) Let (X, D) be a C-pair, with D = ∑i
ni −1

ni
Di . A sur-

jective morphism γ : Y → X from an irreducible and normal space is called adapted if the
following holds:

(2.7.1) for any number i with ni < ∞ and any irreducible divisor E ⊂ Y that surjects onto
Di , the divisor E appears in γ ∗(Di ) with multiplicity precisely ni .

(2.7.2) the fiber dimension is constant on X .

The morphism γ is called subadapted if in (2.7.1) we require only that E appears in
γ ∗(Di ) with multiplicity at least ni .

The preimage of the logarithmic part of D will appear again and again when we use
adapted covers to discuss the differentials associated with a C-pair. We will thus introduce a
specific notation for this divisor.

Notation 2.8 (Adapted logarithmic divisor) Given a C-pair (X, D) and an adapted or sub-
adapted morphism γ : Y → X as in Definition 2.7, we set

Dγ := supp γ ∗(�D�) ⊂ Y.

We call Dγ the adapted logarithmic divisor associated with γ .

Given a C-pair (X, D) as in Definition 2.2 and general hyperplane H , we construct an
adapted morphism γ : Y → X which is also a finite cyclic cover totally branched over H .
The proof is fairly standard and is included only for completeness.

Proposition 2.9 (Existence of an adapted morphism) Let (X, D) be a C-pair as in Defini-
tion 2.2. If X is projective and if the components Di ⊆ D are Cartier, then there exists a
very ample line bundle L ∈ Pic(X) such that for general H ∈ |L|, there exists a finite cover
γ : Y → X with the following properties.
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Families over special base manifolds and a conjecture of Campana 853

(2.9.1) The domain Y is normal.
(2.9.2) The morphism γ is adapted in the sense of Definition 2.7. It is cyclic, in particular

Galois.
(2.9.3) The branch locus of γ is the union of H and those components Di with C-multiplic-

ities ni �= ∞.
(2.9.4) The morphism γ is totally branched over H.
(2.9.5) If Di ⊆ �D� is any component, then γ in unbranched over the general point of Di .

Proof For convenience of notation, we sort the indices ni so that the first C-multiplicities
n1, n2, . . . , nk are those that are finite. Let N be the least common multiple of the C-multi-
plicities (ni )i≤k that are not ∞, consider a very ample Cartier divisor A such that

L := A⊗N −
∑

i≤k

N
ni

· Di

is still very ample, and consider a general hyperplane H ∈ |L|. Let σ ∈ H0
(
X, A⊗N

) \{0}
be a non-vanishing section associated to the divisor H +∑i≤k

N
ni

· Di ∈ |A⊗N |. Abusing

notation, let A and A⊗N also denote the total spaces of the associated bundles. Consider the
multiplication map m : A → A⊗N , identify the section σ with a subvariety of the space
A⊗N , and let σ̃ ⊂ A be the preimage σ̃ = m−1(σ ). The map m|σ̃ : σ̃ → σ is clearly a cyclic
cover, with an associated action of Z

/
NZ, acting via multiplication with N th roots of unity.

The restricted morphism m|σ̃ : σ̃ → σ is obviously unbranched away from H ∪⋃i≤k Di .
Over the general point of H , the variety σ̃ is smooth and the morphism m|σ̃ is totally branched
to order N .

Now let x be a general point of one of the Di with i ≤ k. Choose an open neighborhood
of x with a system of adapted coordinates, z1, . . . , zn , and choose bundle coordinates y and
y′ on A and A⊗N , respectively, such that the multiplication map m is given as y �→ yN = y′.
In these coordinates, we have Di = {z1 = 0}, and the subvarieties σ and σ̃ are given as

σ =
{

y′ − z
N
ni
1 = 0

}
and σ̃ =

{
yN − z

N
ni
1 = 0

}
.

Recalling that

yN − z
N
ni
1 = (yni

) N
ni − z

N
ni
1 =

N
ni

−1
∏

k=0

(
yni − εk · z1

)

for ε = exp
( ni

N · √−1
)
, similar to [1, Sect. III.9], we obtain that

σ̃ =
N
ni

−1
⋃

k=0

{
yni = εk · z1

}

is the union of N
ni

distinct smooth components, each totally branched to order ni over Di .
Defining Y as the normalization of σ̃ , we obtain the claim. ��
Notation 2.10 (Cyclic adapted cover with extra branching) Given a C-pair (X, D) and a gen-
eral hyperplane H as in Proposition 2.9, we call the associated morphism γ a cyclic adapted
cover with extra branching along H and set Hγ := supp γ ∗(H).

The standard adjunction formula immediately gives the following useful relation between
the log canonical divisor KY + Dγ and the pull-back of K X + D.

123



854 K. Jabbusch, S. Kebekus

Lemma 2.11 If γ : Y → X is a cyclic adapted cover with extra branching along H, the
following equivalence of Weil divisor classes holds,

KY + Dγ = γ ∗(K X + D) + (N − 1) · Hγ ,

where N is the degree of the finite morphism γ .

Proof Again, we sort the indices ni so that the first C-multiplicities n1, n2, . . . , nk are those
that are finite. By definition of adapted cover, the cycle-theoretic preimage γ ∗(Di ) is a sum
of divisors Di, j that appear with multiplicity precisely ni if i ≤ k, and with multiplicity one
if i > k

γ ∗(Di ) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

j

ni · Di, j if i ≤ k

∑

j

Di, j if i > k

In particular,

γ ∗(D) =
∑

i≤k

∑

j

ni
ni −1

ni
· Di, j +

∑

i>k

∑

j

Di, j =
∑

i≤k

∑

j

(ni − 1) · Di, j + Dγ .

Together with the standard adjunction formula for a finite morphism,

KY = γ ∗(K X ) +
∑

i≤k

∑

j

(ni − 1) · Di, j + (N − 1) · Hγ ,

this gives the claim. ��
2.4 Adapted differentials

If γ : Y → X is a cyclic adapted cover with extra branching along H and if X and Y are
smooth, it will be useful later to slightly enlarge the sheaf γ ∗�1

X (log�D�) and consider a
sheaf �1

Y (log Dγ )adpt of “adapted differentials” with

det �1
Y (log Dγ )adpt ∼= OY

(
γ ∗(K X + D)

)
.

If X and Y are singular, we do a similar construction, using the reflexive hull of
γ ∗�1

X (log�D�). The following notation is useful in this context and is used throughout
the present paper.

Notation 2.12 (Reflexive sheaves and operations) Let Z be a normal variety and A a coher-
ent sheaf of OZ -modules. For n ∈ N, set A [n] := ⊗[n]A := (A ⊗n)∗∗, Sym[n] A :=
(Symn A )∗∗, etc. Likewise, for a morphism γ : X → Z of normal varieties, set γ [∗]A :=
(γ ∗A )∗∗. If A is reflexive of rank one, we say that A is Q-Cartier if there exists a number
n ∈ N such that A [n] is invertible.

Adapted differentials are now defined as follows.

Definition 2.13 (Adapted differentials) If γ : Y → X is a cyclic adapted cover with extra
branching along H and 1 ≤ p ≤ dim X , we define a sheaves

�
[p]
Y (log Dγ )adpt ⊆ �

[p]
Y (log Dγ ),

123



Families over special base manifolds and a conjecture of Campana 855

called sheaves of adapted differentials associated with the adapted cover γ , on the level of

presheaves as follows. If U ⊆ Y is any open set and σ ∈ �
(

U, �
[p]
Y (log Dγ )

)
any sec-

tion, then σ is in �
(

U, �
[p]
Y (log Dγ )adpt

)
if and only if the restriction of σ to the open set

V := U\γ −1(�D�) satisfies σ |V ∈ �
(

V, γ [∗]�[p]
X

)
.

We end this section by noting a few properties of the sheaf of adapted differentials for
later use.

Remark 2.14 (Reflexivity, inclusions of adapted differentials) It is immediate from the
definition that the sheaf �

[p]
Y (log Dγ )adpt of adapted differentials is reflexive. Since

γ [∗]
(
�

[p]
X (log�D�)

)
⊆ �

[p]
Y (log Dγ ), it is also clear that there exist inclusions

γ [∗] (�[p]
X (log�D�)

)
⊆ �

[p]
Y (log Dγ )adpt ⊆ �

[p]
Y (log Dγ ).

Remark 2.15 (Determinant of adapted differentials) There exist isomorphisms of sheaves

det
(
�

[1]
Y (log Dγ )adpt

) ∼= OY
(
KY + Dγ − (N − 1) · Hγ

)
by Construction

∼= OY
(
γ ∗(K X + D)

)
. by Lemma 2.11

Remark 2.16 (Normal bundle sequence for adapted differentials) Let F ⊂ X be a smooth
curve. Assume that the pair (X, �D� ∪ H) is snc along F , and that F intersects the support
supp(D + H) transversely. The preimage F̃ := γ −1(F) ⊂ Y is then smooth, intersects
Dγ ∪ Hγ transversely, and the standard conormal sequence of logarithmic differentials,

0 → N∗
F̃/Y

→ �1
Y (log Dγ )|F̃ → �1

F̃
(log Dγ |F̃ ) → 0,

restricts to an exact sequence

0 → N∗
F̃/Y︸ ︷︷ ︸

∼=γ ∗(N∗
F/X )

→ �1
Y (log Dγ )adpt|F̃ → �1

F̃
(log Dγ |F̃ ) ⊗ OF̃

(−(N − 1)Hγ |F̃

)

︸ ︷︷ ︸
∼=γ ∗(�1

F )⊗OF̃ (γ ∗ D|F )

→ 0.

3 C-differentials

Given a C-pair (X, D) and numbers p and d , we next define the sheaf of C-differentials, writ-

ten as Sym[d]
C �

p
X (log D). A section σ ∈ �

(
X, Sym[d]

C �
p
X (log D)

)
is a symmetric form on

X , possibly with logarithmic poles along the support of D, which satisfies extra conditions.
There are two essentially equivalent ways to specify what these conditions are.

(3.0.1) The pole order of σ along a component of D is small compared to the mul-
tiplicity of the component in D, and to the pole order of forms f · σ ∈
�
(

X, Sym[d]
C �

p
X (log D)

)
, where f is a rational or meromorphic function.

(3.0.2) The pull-back of σ to any adapted covering γ has only logarithmic poles along Dγ ,
and no other poles elsewhere.

The sheaf of C-differentials has been defined in [2] writing down Condition (3.0.1) in
adapted coordinates on smooth spaces. For our purposes, however, Condition (3.0.2) is more
convenient. The relation between the definitions is perhaps most clearly seen when the C-
differentials are computed explicitly in local coordinates. This is done in Computation 3.8
below.
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3.1 Useful results of sheaf theory

Before defining the sheaf of C-differentials in Definition 3.5 below, we recall a few facts and
definitions concerning saturated and reflexive sheaves.

Definition 3.1 (Saturation of a subsheaf) Let X be a normal variety, B a coherent, reflexive
sheaf of OX -modules and A a subsheaf, with inclusion ι : A → B. The saturation of A in
B is the kernel of the natural map

B → coker(ι)
/

tor.

If the ambient sheaf B is understood from the context, the saturation of A is often denoted
as A . If coker(ι) is torsion free, we say that A is saturated in B.

Proposition 3.2 (Reflexivity of the saturation, cf. [13, Claim on p. 158]) In the setup of
Definition 3.1, the saturation A is reflexive. ��

The next proposition shows that the reflexive symmetric product of a saturated sheaf
remains saturated.

Proposition 3.3 (Saturation and symmetric products) Let X be a normal variety, B a coher-
ent, reflexive sheaf of OX -modules and A a saturated subsheaf, with inclusion ι : A → B.
If m is any number, then the natural inclusion of reflexive symmetric products,

Sym[m] ι : Sym[m] A → Sym[m] B

represents Sym[m] A as a saturated subsheaf of Sym[m] B.

Proof There exists a closed subset Z ⊂ X of codimX Z ≥ 2 such that A , B and coker(ι)
are locally free on X◦ := X\Z . It follows from standard sequences [8, II, Ex. 5.16] that the
cokernel of Sym[m] ι is torsion-free on X◦. In particular, the natural inclusion

Sym[m] A → Sym[m] A (3.3.1)

is isomorphic away from Z . By definition and by Proposition 3.2, respectively, both sides
of (3.3.1) are reflexive. The inclusion (3.3.1) must thus be isomorphic. ��
Definition 3.4 (Sheaf of sections with arbitrary pole order) Let X be a variety, let D ⊂ X
be a reduced Weil divisor and F a reflexive coherent sheaf of OX -modules. We will often
consider sections of F with poles of arbitrary order along D, and let F (∗D) be the associated
sheaf of these sections. More precisely, we define

F (∗D) := lim−→
m

(F ⊗ OX (m · D))∗∗ .

3.2 The definition of C-differentials

We next define a C-differential. Our approach is slightly different than Campana’s approach
in [2], as Campana defines C-differentials in local adapted coordinates. However, we will
recover his definition in Sect. 3.3.

Definition 3.5 (C-differentials, cf. [2, Sect. 2.6–7]) If (X, D) is a C-pair we define a sheaf

Sym[d]
C �

p
X (log D)

︸ ︷︷ ︸
=:A

⊆
(

Sym[d] �p
X

)
(∗�D�)

︸ ︷︷ ︸
=:B
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on the level of presheaves as follows: if U ⊆ X is open and σ ∈ � (U, B) any form, possibly
with poles along D, then σ is a section of A if and only if for any open subset U ′ ⊆ U and
any adapted morphism γ : V → U ′, the reflexive pull-back has at most logarithmic poles
along Dγ , and no other poles elsewhere, i.e.

γ [∗](σ ) ∈ �
(

V, Sym[d] �p
V (log Dγ )

)
. (3.5.1)

Explanation 3.6 Inclusion (3.5.1) of Definition 3.5 can also be expressed as follows. If
E ⊂ V is any irreducible Weil divisor which dominates a component of �D�, then γ ∗(σ )

may have at most logarithmic poles along E . If E does not dominate a component of �D�,
then γ ∗(σ ) may not have any poles along E .

Remark 3.7 Definition 3.5 remains invariant if we remove arbitrary small sets from U ′. It is
therefore immediate that the sheaf Sym[d]

C �
p
X (log D) is torsion free and normal as a sheaf

of OX -modules, cf. [13, Def. 1.1.11 on p. 150]. Once we have seen in Corollary 3.14 that
Sym[d]

C �
p
X (log D) is also coherent, this will imply that it is in fact reflexive.

3.3 C-differentials in local coordinates

It is sometimes useful to represent C-differentials explicitly in local coordinates. The follow-
ing computations yields several results which will be needed later on.

Computation 3.8 Let (X, D) be a C-pair as in Definition 2.2. Let Di ⊆ D be a component,
let x ∈ Di be a smooth point, and let U ⊆ X be an open neighborhood of x with an adapted
system of coordinates as in Definition 2.3. Finally, consider a section

σ := f (z1, . . . , zn)

za
1

· (dz1)
m1 · (dz2)

m2 · · · (dzn)mn ∈ �
(

U, Sym[d] �1
X (∗�D�)

)
,

where d =∑mi and f ∈ OU is a holomorphic function that does not vanish along Di ∩U =
{z1 = 0}. We aim to express Condition (3.5.1) in this context. To this end, after possibly
replacing U by one of its open subsets, let γ : V → U be any adapted morphism, and E ⊂ V
any divisor that dominates Di ∩ U .

If Di appears in D with C-multiplicity ni = ∞, it is a standard fact that γ [∗](σ ) has
logarithmic poles along E if and only if σ has logarithmic poles along Di , see e.g. [5,
Cor. 2.12.1]. Condition (3.5.1) therefore says that σ is a section of Sym[d]

C �1
X (log D) if and

only if a ≤ m1.
If Di appears in D with C-multiplicity ni < ∞, then E appears in γ ∗(Di ) with multiplicity

ni . The reflexive pull-back γ [∗](σ ) is thus a rational section of the sheaf Sym[d] �1
V (log Dγ )

whose pole order along E is precisely

P(σ, Di ) := ni · a − (ni − 1) · m1. (3.8.1)

We obtain from Condition (3.5.1) that σ is a section of Sym[d]
C �1

X (log D) if and only if
P(σ, Di ) ≤ 0.
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Computation 3.9 In the setup of Computation 3.8, if τ is an arbitrary section of(
Sym[d] �1

X

)
(∗�D�), write τ locally as

τ :=
∑

m1...mn

fm1...mn (z1, . . . , zn)

z
am1 ...mn
1

· (dz1)
m1 · (dz2)

m2 · · · (dzn)mn

︸ ︷︷ ︸
=: σm1 ...mn

,

where the functions fm1...mn are either constantly zero, or do not vanish along Di ∩U . Again,
we aim to formulate Condition (3.5.1) for the section τ . Choose an adapted covering γ and
a divisor E as in Computation 3.8.

If Di appears in D with C-multiplicity ni = ∞, it is again clear that γ [∗](τ ) has log-
arithmic poles along E if and only if τ has logarithmic poles along Di . Condition (3.5.1)
therefore says that τ is a section of Sym[d]

C �1
X (log D) if and only if am1...mn ≤ m1 for all

multi-indices m1, . . . , mn with fm1...mn �≡ 0.
If Di appears in D with C-multiplicity ni < ∞, set

P(τ, Di ) = max
{

P(σm1...mn , Di ) | fm1...mn �≡ 0
}
,

where the P(σm1...mn , Di ) are the numbers defined in Eq. (3.8.1) above. It is then clear that
the reflexive pull-back γ [∗](τ ) is a rational section of the sheaf Sym[d] �1

V (log Dγ ) whose
pole order along E is precisely P(τ, Di ). Again, we obtain from Condition (3.5.1) that τ is
a section of Sym[d]

C �1
X (log D) if and only if P(τ, Di ) ≤ 0.

Observation 3.10 Using the convention that ni −1
ni

= 1 if ni = ∞, Computation 3.9 gives

the following set of generators for Sym[d]
C �1

U (log D) near the point x ,
⎛

⎜
⎝

1

z
�m1· ni −1

ni
�

1

· (dz1)
m1 · (dz2)

m2 · · · (dzn)mn

⎞

⎟
⎠
∑

m j =d.

Thus, it follows from Definition 2.3 that the sheaf Sym[d]
C �1

X (log D) is locally free wher-
ever the pair (X, �D�) is snc. In particular, it is locally free in codimension one. Since it is
normal, we also see that

Sym[d]
C �1

X (log D) ⊆ Sym[d] �1
X (log�D�). (3.10.1)

In the case d = 1, we obtain additionally that Sym[1]
C
(
�1

X (log D)
) = �

[1]
X (log�D�).

Observation 3.11 In Computation 3.9, if ni < ∞, the number P(τ, Di ) depends only on
the section τ and on the component Di , but not on the choice of adapted coordinates, or on
the choice of the adapted morphism γ .

Observation 3.12 In Computation 3.9, if ni < ∞ and if the number P(τ, Di ) is non-positive,
then γ [∗](τ ) is a section of the sheaf Sym[d] �1

V (log Dγ ) that vanishes along E precisely
with multiplicity −P(τ, Di ).

3.4 Consequences of the local computation

Computations 3.8 and 3.9 have several immediate consequences which we note for future
reference. It is not very hard to see that the computations and observations of Sect. 3.3 also
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hold for sections in Sym[d]
C �

p
X (log D), for all numbers p. The consequences of Computa-

tion 3.8 which we draw in this section also hold for all p, and are stated in that generality. To
keep the paper reasonably sized, we leave it to the reader to make the analogous computations
in case p �= 1.

3.4.1 Inclusions, reflexivity

In complete analogy to Inclusion (3.10.1) above, we can view the sheaf of C-differentials
as a subsheaf of the logarithmic differentials, for any p. In Corollary 3.14, we apply this
inclusion to prove reflexivity of the sheaf of C-differentials.

Corollary 3.13 (Inclusion of C-differentials into logarithmic differentials) There exists an
inclusion Sym[d]

C �
p
X (log D) ⊆ Sym[d] �p

X (log�D�). ��

Corollary 3.14 (Reflexivity of C-differentials) The sheaf Sym[d]
C �

p
X (log D) is a coherent,

reflexive sheaf of OX -modules, locally free wherever the pair (X, �D�) is snc.

Proof Corollary 3.13 represents F := Sym[d]
C �

p
X (log D) as a subsheaf of the coherent

sheaf G := Sym[d] �p
X (log�D�). We have also seen in Observation 3.10 that F is locally

free wherever that pair (X, �D�) is snc. In particular it is locally free on an open subset
U ⊆ X whose complement has codimension ≥ 2. In this setting, it follows from the clas-
sical extension theorem of coherent sheaves, [7, I. Thm. 9.4.7], that there exists a coherent
subsheaf F ′ ⊆ G whose restriction to U agrees with F . Since F is normal, and since the
complement of U is small, we have F = (F ′)∗∗. ��

3.4.2 Independence of P(τ, Di ) on choices, definition of defect divisors

The independence of the numbers P(τ, Di ) on the choice of a particular open set and an
adapted morphism allows us to define a “defect divisor” that measures additional fractional
positivity along a C-differential. In Sect. 4.2, we will extend this notion to sheaves of differ-
entials. Our starting point is the following Corollary, which summarizes Observations 3.11
and 3.12.

Corollary and Definition 3.15 Let (X, D) be a C-pair and σ a section of(
Sym[d] �p

X

)
(∗�D�). Further, consider an open set U ⊆ X and an adapted morphism

γ : V → U. If Di ⊆ D is an irreducible component that intersects U and has finite C-multi-
plicity and if E ⊂ V is any divisor that dominates Di ∩ U, then γ [∗](σ ) is a rational section
of Sym[d] �p

V (log Dγ ) whose pole order P(σ, Di ) along E depends only on σ and on the
component Di ⊆ D, but not on the choice of U, the morphism γ or the particular divisor
that dominates Di .

The section σ is in �
(

U, Sym[d]
C �

p
X (log D)

)
if and only if P(σ, Di ) ≤ 0 for all compo-

nents Di ⊆ D with finite C-multiplicity. ��

Corollary 3.16 To check the conditions spelled out in Definition 3.5, it suffices to consider
a single covering by open sets (Uα)α∈A and for each Uα a single adapted morphism. ��

Using the numbers P defined in 3.15, we define the defect divisor of a C-differential.
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Definition 3.17 (Defect divisor of a C-differential) If (X, D) is a C-pair, D =∑ ni −1
ni

· Di

and σ a section of Sym[d]
C �

p
X (log D), consider the following Q-Weil divisor,

R(σ ) :=
∑

Di ⊆D with ni <∞

−P(σ, Di )

ni
· Di .

We call R(σ ) the defect divisor of the section σ .

Remark 3.18 The defect divisor R(σ ) is always effective. If two sections σ and τ of
Sym[d]

C �
p
X (log D) differ only by multiplication with a nowhere-vanishing function, their

defect divisors R(σ ) and R(τ ) agree.

3.4.3 The symmetric algebra of C-differentials

The special form of the generators for Sym[d]
C
(
�

p
U (log D)

)
found in Observation 3.10 makes

it possible to interpret a tensor product of symmetric C-differentials as a C-differential. More
precisely, we obtain the following multiplication morphisms.

Corollary 3.19 Since �a�+�b� ≤ �a+b� for any pair of numbers a and b, the multiplication
morphisms of symmetric differentials extend to multiplication morphisms of symmetric C-
differentials. More precisely, given any two numbers d1, d2 ∈ N, we obtain sheaf morphisms

Sym[d1]
C �

p
X (log D) ⊗ Sym[d2]

C �
p
X (log D) → Sym[d1+d2]

C �
p
X (log D)

Symd1
(

Sym[d2]
C �

p
X (log D)

)
→ Sym[d1·d2]

C �
p
X (log D)

that agree outside of supp(D) with the usual multiplication maps. ��
We obtain a symmetric algebra of C-differentials, which will allow us to define a variant

of the Kodaira–Iitaka dimension for sheaves of C-differentials in Sect. 4.

Corollary 3.20 (Symmetric algebra of C-differentials) With the multiplication morphisms
of Corollary 3.19, the direct sum

⊕
d≥0 Sym[d]

C �
p
X (log D) is a sheaf of OX -algebras. ��

3.4.4 Behavior under subadapted morphisms

Equation (3.8.1) immediately shows that the pull-back of C-differentials under subadapted
morphisms also become regular logarithmic differentials.

Corollary 3.21 (Behaviour under subadapted morphisms) Let (X, D) be a C-pair and
γ : Y → X a subadapted morphism. Similar to the setup of Definition 3.5, the natural
pull-back morphism of differential forms extends to a morphism γ [∗] Sym[d]

C �
p
X (log D) →

Sym[d] �p
Y (log Dγ ). ��

3.4.5 A criterion for Sym[m]
C �

p
X (log D)|F to be anti-nef

In Remark 2.16 we considered the standard conormal sequence of adapted differentials for a
smooth curve F ⊂ X . The following proposition gives a criterion for Sym[m]

C �
p
X (log D)|F

to be anti-nef, and will be an essential ingredient in the proof of Theorem 1.5.

Proposition 3.22 Let F ⊂ X be a smooth curve and assume that the following holds.
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(3.22.1) The pair (X, �D�) is snc along F, and F intersects supp(D) transversely.
(3.22.2) The normal bundle NF/X is nef.
(3.22.3) The Q-divisor −(K F + D|F ) is nef.

If m ∈ N+ is any number and 1 ≤ p ≤ dim X, then Sym[m]
C �

p
X (log D)|F is anti-nef.

Proof To start, observe that Condition (3.22.1) guarantees that Sym[m]
C �

p
X (log D)|F is

locally free along F . Let H ⊂ X be a general hyperplane, and γ : Y → X be a cyclic
adapted cover with extra branching along H . Let Dγ and Hγ be the divisors defined in Nota-
tions 2.8 and 2.10. Further, we consider the curve F̃ := γ −1(F). Observe that F̃ is smooth,
that Y is smooth along F̃ , and that F̃ intersects Dγ ∪ Hγ transversely.

Since a sheaf is anti-nef if its pull-back under a finite map is anti-nef, it suffices to show
that

γ ∗ (Sym[m]
C �

p
X (log D)|F

)
⊆ Symm (�p

Y (log Dγ )adpt|F̃

)

is anti-nef. Since subsheaves and tensor powers of anti-nef sheaves are anti-nef, it suffices
to see that �1

Y (log Dγ )adpt|F̃ is anti-nef. For that, recall the generalized conormal sequence
of Remark 2.16, which presents �1

Y (log Dγ )adpt|F̃ as an extension of two bundles, both of
which are anti-nef by assumption. ��

4 Sheaves of C-differentials and their Kodaira–Iitaka dimensions

Following [2] closely, we define a variant of the Kodaira–Iitaka dimension for sheaves of
C-differentials in Sect. 4.1, where we also generalize the notion of “special” to C-pairs.
In Sect. 4.2 we introduce the defect divisor of a sheaf, which helps in the computation of
Kodaira–Iitaka dimensions.

Throughout the present Sect. 4, we consider a C-pair (X, D) as in Definition 2.2 and let
F be a reflexive sheaf of symmetric C-differentials with inclusion

ι : F ↪→ Sym[d]
C �

p
X (log D).

We assume that F is saturated in Sym[d]
C �

p
X (log D), i.e., that the cokernel of ι is torsion

free.

4.1 Kodaira–Iitaka dimensions and special C-pairs

The usual definition of Kodaira–Iitaka dimension considers reflexive tensor powers of a given
reflexive sheaf of rank one. In our setup, where F is a reflexive sheaf of symmetric C-dif-
ferentials, we aim to detect the fractional positivity encoded in the C-pair by saturating the
tensor product in Sym[m·d]

C �
p
X (log D) before considering sections. The following notation

is useful in the description of the process.

Notation 4.1 (C-product sheaves, cf. [2, Sect. 2.6]) Given a number m ∈ N+, Corollary 3.19
asserts that there exists a non-vanishing inclusion ιm : Sym[m] F ↪→ Sym[m·d]

C �
p
X (log D).

Let Sym[m]
C F be the saturation of the image, i.e., the kernel of the associated map

Sym[m·d]
C �

p
X (log D) → coker(ιm)

/
tor.
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We call Sym[m]
C F the C-product of F . There are inclusions

Sym[m] F ↪→ Sym[m]
C F ↪→ Sym[m·d]

C �
p
X (log D).

Remark 4.2 The C-product Sym[m]
C F is a saturated subsheaf of a reflexive sheaf and there-

fore itself reflexive, by Proposition 3.2. If rank F = 1, this implies that the restriction of
Sym[m]

C F to the smooth locus of X is locally free, [13, Lem. 1.1.15 on p. 154].

Definition 4.3 (C-Kodaira–Iitaka dimension, cf. [2, Sect. 2.7]) If X is projective and
rank F = 1, we consider the set

M :=
{

m ∈ N

∣
∣
∣ h0
(

X, Sym[m]
C F

)
> 0
}
.

If M = ∅, we say that the sheaf F has C-Kodaira–Iitaka dimension minus infinity,
κC(F ) = −∞. Otherwise, by Remark 4.2, the restriction of Sym[m]

C F to the smooth locus
of X is locally free, and we consider the natural rational mapping

φm : X ��� P

(
H0
(

X, Sym[m]
C F

)∨)
, for each m ∈ M.

Define the C-Kodaira–Iitaka dimension as

κC(F ) = max
m∈M

{
dim φm(X)

}
.

Remark 4.4 If D = ∅, or if (X, D) is a logarithmic pair, it is clear from the construction
and from the saturatedness assumption that Sym[m]

C F ∼= Sym[m] F for all m, and that the
C-Kodaira–Iitaka dimension of F therefore equals the regular Kodaira–Iitaka dimension,
κC(F ) = κ(F ).

Remark 4.5 (Invariance of κC under C-products) Using Remark 4.4, standard arguments

show that if X is projective, then κC(F ) = κC
(

Sym[m]
C F

)
for all positive m.

Warning 4.6 Unlike the standard Kodaira–Iitaka dimension, the C-Kodaira–Iitaka dimension
is defined only for subsheaves of Sym[d]

C �
p
X (log D). Its value is generally not an invariant

of the sheaf alone and will often depend on the embedding.

Using the C-Kodaira–Iitaka dimension instead of the standard definition, we have the
following immediate generalization of Definition 1.2, which agrees with the old definition
if (X, D) is a logarithmic pair.

Definition 4.7 (Special C-pairs, cf. [2, Def. 4.18 and Thm. 7.5]) A C-pair (X, D) is spe-
cial if κC(F ) < p for any number 1 ≤ p ≤ dim X and any saturated rank-one sheaf
F ⊆ Sym[1]

C �
p
X (log D).

4.2 Defect divisors for sheaves of C-differentials

If rank F = 1, then F |Xreg is locally free. If U1 and U2 ⊆ Xreg are open subsets of the smooth
locus and if σi ∈ � (Ui , F ) are generators of F |Ui , this implies that σ1|U1∩U2 and σ2|U1∩U2

differ only by multiplication with a nowhere-vanishing function. In particular, Remark 3.18
asserts that the defect divisors R(σ1) and R(σ2) agree on the overlap U1 ∩U2. The following
definition therefore makes sense.
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Definition 4.8 (Defect divisor and C-divisor class of a sheaf of differentials) If rank F = 1,
let RF be the unique Q-Weil divisor on X such that for any open set U ⊆ Xreg, and any
generator σ ∈ � (U, F ), we have RF ∩ U = R(σ ). We call RF the defect divisor of the
sheaf F .

Recall that there exists, up to linear equivalence, a unique Weil divisor W such that
F = OX (W ). Let Div(F ) ∈ Cl(X) be the associated element of the divisor class group.
If X is Q-factorial, we define the C-divisor class of the sheaf F , written DivC(F ), as the
Q-linear equivalence class given by DivC(F ) := Div(F ) + RF .

Remark 4.9 (Pull-back of defect divisor under adapted morphisms) In the setup of Defini-
tion 4.8, if U ⊆ X is any open set and γ : V → U any adapted morphism, it is clear from
the definition that γ ∗(RF ) is an integral Weil divisor on V .

Remark 4.10 (Characterization of the defect divisor) In the setup of Definition 4.8, if U ⊆ X
is any open set and γ : V → U is any adapted morphism, Definition 3.5 of C-differentials
asserts that there exists an inclusion

i : γ [∗](F ) ↪→ Sym[d] �p
V (log Dγ )

which factors into a sequence of inclusions,

γ [∗](F ) �� (γ ∗(F ) ⊗ OV (γ ∗ RF ))∗∗ j �� Sym[d] �p
V (log Dγ ), (4.10.1)

where the cokernel of j is torsion free in codimension one. The defect divisor RF is uniquely
determined by this property.

We next show that the defect divisor behaves nicely under C-products.

Proposition 4.11 (Behaviour under C-products) In the setup of Definition 4.8, if m ∈ N+ is
any number, we have

Sym[m]
C F =

(
F [m] ⊗ OX (�m · RF �)

)∗∗
(4.11.1)

RSym[m]
C F

= m · RF − �m · RF �
︸ ︷︷ ︸

=:Q
(4.11.2)

Proof Let U ⊆ X be any open set, and γ : V → U any finite adapted morphism. Then there
exist open setsU ◦ ⊆ U∩Xreg and V ◦ ⊆ γ −1(U ◦)with codimU U\U ◦ = codimV V \V ◦ ≥ 2
such that both the sheaf �

p
V (log Dγ ) and the cokernel of the injection

j : γ ∗(F ) ⊗ OV ◦
(
γ ∗ RF

)
↪→ Symd �

p
V (log Dγ )

are locally free on V ◦. Taking mth symmetric products, the inclusion j yields an inclusion
of sheaves on V ◦,

jm : Symm (γ ∗(F ) ⊗ OV ◦
(
γ ∗ RF

))

︸ ︷︷ ︸
=: A

↪→ Symm·d �
p
V (log Dγ ), (4.11.3)

with locally free cokernel. On V ◦ and U ◦, respectively, the domain A of the map jm can
then be written as follows.
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A ∼= Symm (γ ∗(F )
)⊗ OV ◦

(
m · γ ∗ RF

)

∼= γ ∗ (F m)⊗ OV ◦
(
γ ∗(m · RF )

)

∼= γ ∗ (F m ⊗ OU◦(�m · RF �))⊗ OV ◦
(
γ ∗Q
)

(4.11.4)

where Q is the Q-divisor defined in (4.11.2) above. Since Q is effective, Inclusion (4.11.3)
gives an inclusion of locally free sheaves on U ◦,

F m ⊗ OU◦(�m · RF �) ⊆ Sym[m]
C F .

In particular, there exists an effective Cartier divisor P such that

F m ⊗ OU◦(�m · RF �) ⊗ OU◦(P) = Sym[m]
C F .

Thus

γ ∗ (F m ⊗ OU◦(�m · RF �) ⊗ OU◦(P)
) ⊆ Symm·d �

p
V (log Dγ ).

But since the cokernel of jm is locally free, Eq. (4.11.4) implies that γ ∗(P) ≤ γ ∗(Q).
Since �Q� = 0, this is possible if and only if P = 0. This shows Assertion (4.11.1). Asser-
tion (4.11.2) then follows from the characterization of the defect divisor given in Remark 4.10,
Eq. (4.11.4) and again from the fact that the cokernel of jm is locally free. ��

As an immediate corollary, we can relate the C-Kodaira–Iitaka dimension of a rank one
subsheaf of Sym[d]

C �
p
X (log D) to the standard Kodaira–Iitaka dimension.

Corollary 4.12 In the setup of Definition 4.8, if m ∈ N+ is any number, and γ : Y → X
any adapted morphism, then there exists a sequence of inclusions as follows:

γ [∗]
(

Sym[m]
C F

)
�� Sym[m] (γ ∗(F ) ⊗ OY (γ ∗ RF )) �� Sym[m·d] �p

Y (log Dγ ).

If X is projective and if γ is proper, then κC(F ) ≤ κ
(
(γ ∗(F ) ⊗ OY (γ ∗ RF ))∗∗).

Proof Substitute Equations (4.11.1) and (4.11.2) of Proposition 4.11 into the Sequence
(4.10.1) to obtain the sequence of inclusions. The inequality of Kodaira–Iitaka dimensions
follows immediately from the definition of κC and from the first inclusion. ��

The following fact is another immediate consequence of Proposition 4.11 and of
Remark 4.5.

Corollary 4.13 If X is projective, and if m ∈ N+ is any number such that m · RF is an
integral divisor, then κC(F ) = κ (m · DivC(F )). ��

5 The C-pair associated with a fibration

If (Y, D) is a logarithmic pair, and π : Y → Z a fibration, we aim to describe the max-
imal divisor � on Z such that C-differentials of the pair (Z ,�) pull back to logarithmic
differentials on (Y, D). Once � is found, we will see in Proposition 5.7 that any section
in Sym[m] �p

Y (log D) which generically comes from Z is really the pull-back of a globally
defined C-differential from downstairs. The construction of � is originally found in slightly
higher generality in [2, Sect. 3.1], where the C-pair (Z ,�) is called the base orbifolde of
the fibration. This section contains a short review of the construction, as well as detailed and
self-contained proofs of all results required later.
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In order to keep the technical apparatus reasonably small, we restrict ourselves to loga-
rithmic pairs in this section, which is the case we need to handle in the proof of Theorem 1.5.
The definitions and results of this section can be generalized in a straightforward manner to
the case of arbitrary C-pairs.

5.1 Definition of the C-base

The following setup is maintained throughout the present Sect. 5.

Setup 5.1 Let (Y, D) be a logarithmic pair, and π : Y → Z a proper, surjective morphism
with connected fibers to a normal space.

Notation 5.2 (Log discriminant locus) The log discriminant locus S ⊂ Z is the smallest
closed set S such that π is smooth away from S, and such that for any point z ∈ Z\S, the
fiber Yz := π−1(z) is not contained in D, and the scheme-theoretic intersection Yz ∩ D is an
snc divisor in Yz . We decompose

S = Sdiv ∪ Ssmall,

where Sdiv is a divisor, and codimZ Ssmall ≥ 2. The divisor Sdiv is always understood to be
reduced.

Construction and Definition 5.3 (C-base of the fibration, cf. [2, Def 3.2]) Let Sdiv = ⋃i �i

be the decomposition into irreducible components. We aim to attach multiplicities ai ∈ Q≥0

to the components �i , in order to define a C-divisor � :=∑i ai · �i .
To this end, let Z◦ ⊆ Z be the maximal open subset such that π is equidimensional over

Z◦. Set Y ◦ := π−1(Z◦), and observe that all components �i intersect Z◦ non-trivially. In
particular, none of the divisors �◦

i := �i ∩ Z◦ is empty. Given one component �i , the
preimage π−1(�◦

i ) has support of pure codimension one in Y ◦, with decomposition into
irreducible components

supp
(
π−1(�◦

i )
) =
⋃

j

E◦
i, j .

If for the given index i , all E◦
i, j are contained in D, set ai := 1. Otherwise, set

bi := min{multiplicity of E◦
i, j in π−1(�◦

i ) | E◦
i, j �⊂ D} and ai := bi − 1

bi
.

We obtain a divisor � :=∑i ai · �i with supp(�) ⊆ Sdiv. We call the C-pair (Z ,�) the
C-base of the fibration π .

The notion of the C-base of a fibration is not very useful unless the fibration and the spaces
have further properties, cf. Remark 5.5.2 below. We will therefore maintain the following
assumptions throughout the remainder of the current Sect. 5.

Assumption 5.4 In Setup 5.1, assume additionally that the following holds.

(5.4.1) The pair (Y, D) is snc. In particular, Y is smooth.
(5.4.2) The pair (Z , Sdiv) is snc. In particular, Z is smooth.
(5.4.3) Every irreducible divisor E ⊂ Y with codimZ π(E) ≥ 2 is contained in D.
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5.2 The pull-back map for C-differentials and sheaves

Assumptions 5.4 guarantee that C-differentials on (Z ,�) can be pulled back to logarithmic
differentials on (Y, D). In fact, a slightly stronger statement holds.

Proposition 5.5 Under the Assumptions 5.4, decompose the divisor D = Dh ∪ Dv into the
“horizontal” components Dh that dominate Z and the “vertical” components Dv that do
not. With � as in Construction 5.3, the pull-back morphism of differentials extends to a map2

dπm : π [∗] (Sym[m]
C �

p
Z (log �)

)
→ Sym[m] �p

Y (log Dv) (5.5.1)

for all numbers m and p.

Remark 5.5.2 For Proposition 5.5, it is essential to assume that the pair (Z , Sdiv) is snc. For
an instructive example, let Z be a singular space, π : Y → Z a log desingulariazion of Z , let
D be the π-exceptional locus, and take m = 1 and p = dim Z . In this setting, the assertion
of Proposition 5.5 holds if and only if the pair (Z ,∅) is log canonical —this is actually the
definition of log canonicity. We refer to [5,6] for more general results in this context.

Proof of Proposition 5.5 Let U ⊆ Z be an open set and let σ ∈ �
(

U, Sym[m]
C �

p
Z (log �)

)

be any section. Its pull-back π [∗](σ ) then gives a rational section of the sheaf
Sym[m] �p

Y (log Dv), possibly with poles along the codimension-one components of π−1(S).
We need to show that π [∗](σ ) does in fact not have any poles. To this end, let E ⊆ π−1(S)

be any irreducible component with codimY E = 1. We will show π [∗](σ ) does not have any
poles along E .

If E ⊆ Dv , note that

σ ∈ �
(

U, Sym[m]
C �

p
Z (log �)

)
⊆ �
(

U, Sym[m] �p
Z (log Sdiv)

)
.

Away from the small set in Y ◦ where
(
Y, supp π−1(Sdiv)

)
is not snc, the usual pull-

back morphism for logarithmic differentials, π∗ (�p
Z (log Sdiv)

)→ �
p
Y

(
log supp π−1(Sdiv)

)

shows that π [∗](σ ) has at most logarithmic poles along E . In particular, π [∗](σ ) does not
have any poles along E as a section of Sym[m] �p

Y (log Dv).
It remains to consider the case where E �⊂ Dv . In this case, Assumptions 5.4 guarantee

that E dominates a component of Sdiv. For simplicity of notation, we may remove from Z all
other irreducible components of S, and also the small set where π is not equidimensional.
We can then assume without loss of generality that S = π(E), and that the restricted mor-
phism π |Y\D is surjective and equidimensional. By construction of �, the morphism π |Y\D

is then subadapted, in the sense of Definition 2.7. In particular, Corollary 3.21 shows that
(π |Y\D)[∗](σ ) is a section of Sym[m] �p

Y\D without any poles along E ∩ (Y\D). ��
As an immediate corollary we see that the C-base of the fibration π is special if the

logarithmic pair (Y, D) is special.

Corollary 5.6 Under the Assumptions 5.4, if the logarithmic pair (Y, D) is special in
the sense of Definition 1.2, then the C-pair (Z ,�) is special in the generalized sense of
Definition 4.7. ��
2 Since �

p
Y (log Dv) is locally free, we could write Symm �

p
Y (log Dv) instead of the more complicated

Sym[m] �
p
Y (log Dv). We have chosen to keep the square brackets throughout in order to be consistent with

the notation used in the remainder of this paper.
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5.3 The push-forward map for C-differentials and sheaves

To properly formulate the assumption that a section in Sym[m] �p
Y (log D) comes from Z

“generically”, consider the sheaf B ⊆ Sym[m] �p
Y (log D), defined to be the saturation of the

image of the map dπm introduced in (5.5.1). The following proposition then says that any
section in B comes from a globally defined section on Z .

Proposition 5.7 Under the Assumptions 5.4, if B ⊆ Sym[m] �p
Y (log D) is the saturation of

the image of the map dπm introduced in (5.5.1), then the natural injection

ι : Sym[m]
C �

p
Z (log �) → π∗(B)

is isomorphic for all numbers m and p.

Remark 5.7.1 Since the morphism π is log smooth over Z◦ := Z\S, the standard sequence
of logarithmic differentials on the preimage set Y ◦ := π−1(Z◦),

0 �� π∗ (�1
Z

) |Y ◦
dπ |Y◦ �� �1

Y (log D)|Y ◦ �� �1
Y/Z |Y ◦ ⊗ OY ◦(D) �� 0,

shows that the cokernel of dπ |Y ◦ is torsion free on Y ◦ and that the image of dπ |Y ◦ is satu-
rated in �1

Y (log D)|Y ◦ . By [8, II, Ex. 5.16], the same holds for p-forms and their symmetric

products. By Proposition 3.3, the sheaves B and π [∗]
(

Sym[m]
C �

p
Z (log �)

)
therefore agree

along Y ◦.

Proof Since Sym[m]
C �

p
Z (log �) is reflexive and π∗(B) is the push-forward of a torsion-free

sheaf, hence torsion free, it suffices to prove surjectivity of ι away from any given small set.
We can therefore assume without loss of generality throughout the proof that π is equidi-
mensional and that Ssmall = ∅.

Let U ⊆ Z be any open set and let σ ∈ � (U, π∗(B)) be any section. By Remark 5.7.1,

the sheaves B and π∗
(

Sym[m]
C �

p
Z (log �)

)
agree along π−1(U ∩ Z◦). Since π∗(OY ) = OZ ,

the section σ therefore induces a section

σ ′ ∈ �
(

U ∩ Z◦, Sym[m]
C �

p
Z (log �)

)
.

The sections σ and σ ′ define saturated subsheaves

A ⊆ B|π−1(U ) and A ′ ⊆ Sym[m]
C �

p
Z (log �)|U ,

together with an inclusion dπm : π∗(A ′) → A . We need to show that the obvious injective
map

dπm : �
(
U, A ′)→ �

(
π−1(U ), A

)
(5.7.2)

is surjective.
As in Construction 5.3, decompose Sdiv = ∪�i into irreducible components. For any given

index i , let Ei, j ⊂ Y be those divisors that dominate �i . Observe that Sym[m] �p
Y (log D)

and Sym[m]
C �

p
Z (log �) are both locally free. In particular, the saturated subsheaves A and

A ′ are reflexive of rank one, hence invertible, [13, Lem. 1.1.15], and there exist non-negative
numbers ci, j such that

A ∼= π∗(A ′) ⊗ OY
(∑

ci, j Ei, j
)
.
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With this notation, surjectivity of (5.7.2) is an immediate consequence of the following
claim.

Claim 5.7.3 For any index i with �i ∩U �= ∅, there exists an index j such that Ei, j appears
in π∗(Sdiv) with multiplicity strictly larger than ci, j .

Application of Claim 5.7.3. Assume that Claim 5.7.3 holds true. We can view σ ′ as a
C-differential with poles along the �i ,

σ ′ ∈ �
(

U,
(

Sym[m]
C �

p
Z (log �)

)
⊗ OZ (mi�i )

)
.

We need to show that all numbers mi are zero. Observe that the section σ can be seen as
a rational section in π∗(A ′) whose pole order along any component Ei, j is at least mi times
the multiplicity of Ei, j in π∗(�i ). With Claim 5.7.3, this is possible if and only if mi = 0
for all indices i . In particular, σ lies in the image of the map (5.7.2). Proposition 5.7 is thus
shown once Claim 5.7.3 is established.

Proof of Claim 5.7.3. To prove Claim 5.7.3, let any index i be given.
If ai = 1, let j be any other index. By definition of ai , the divisor Ei, j is then contained

in D. Let y ∈ Y be a general point of Ei, j and set z := π(y). Claim 5.7.3 then reduces to the
standard fact that near z and y, respectively, the pull-back of a local generator of �

p
Z (log �i )

gives a non-vanishing section in �
p
Y (log Ei, j ). It follows that ci, j = 0 for all j , proving

Claim 5.7.3 in this case.
If ai < 1, then there exists an index j such that Ei, j �⊂ D, such that bi is the multiplicity

of Ei, j in π∗(�i ), and ai = bi −1
bi

. As above, let y ∈ Y be a general point of Ei, j and set
z := π(y). Thus, if we set

U ◦ := U\
⋃

i ′ �=i

�i ′ and V ◦ := π−1(U ◦)\
⋃

j ′ �= j

Ei, j ′ ,

then y ∈ V ◦, z ∈ U ◦, and the morphism π◦ := π |V ◦ is adapted. Now, if the claim was false
and bi ≤ ci, j , we obtain a morphism

(π◦)∗(A ′ ⊗ OU◦(�i )) → A |V ◦ ⊆ Sym[m] �p
V ◦(log D).

By Definition 3.5 of C-differentials and by Corollary 3.16, this says that A ′ ⊗ OU◦(�i )

is a subsheaf of Sym[m]
C �

p
U◦(log �), contradicting the assumption that A ′ is saturated in

Sym[m]
C �

p
U◦(log �). ��

We end this section with a discussion of push-forward properties of subsheaves of B.
Given a saturated subsheaf A ⊆ B of rank one on Y , with non-negative Kodaira–Iitaka
dimension, we can construct a reflexive rank one subsheaf AZ ⊆ Sym[m]

C �
p
Z (log �) on the

base of the fibration, whose C-Kodaira–Iitaka dimension agrees with the standard Kodaira–
Iitaka dimension of A . This sheaf will be used in the proof of Theorem 1.5.

Corollary 5.8 In the setup of Proposition 5.7, let A ⊆ B be a saturated subsheaf of rank one
with κ(A ) ≥ 0. Then there exists a saturated, reflexive subsheaf AZ ⊆ Sym[m]

C �
p
Z (log �)

of rank one such that dπm (π∗(AZ )) ⊆ A and κC(AZ ) = κ(A ).

Proof If F ⊂ Y is a general π -fiber, Remark 5.7.1 implies that the restriction B|F is trivial.
Since a tensor product of the restriction A |F ⊆ B|F has a non-trivial section by assumption,
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this implies that A |F is also trivial. In particular, the sheaf π∗(A ) is generically of rank one.
Consider the inclusion

π∗(A ) ⊆ π∗(B) ∼= Sym[m]
C �

p
Z (log �)

and let AZ be the saturation of π∗(A ) in Sym[m]
C �

p
Z (log �). It is clear that dπm (π∗(AZ )) ⊆

A holds generically, and since A is saturated, this inclusion will hold everywhere.
It remains to show that κC(AZ ) = κ(A ). The inequality κC(AZ ) ≤ κ(A ) is clear. To

prove that κC(AZ ) ≥ κ(A ), note that if m′ is any number, if B′ is the saturation of the image

dπm·m′ : π∗ (Sym[m·m′]
C �

p
Z (log �)

)
→ Sym[m·m′] �p

Y (log Dv)

and σ ∈ �
(

Y, A ⊗m′)
any section, then the inclusion A ⊗m′ ⊆ B′ shows that σ

induces a section σ ′ ∈ �
(

Z , Sym[m]
C �

p
Z (log �)

)
which, away from Sdiv, lies in A [m′]

Z ⊆
Sym[m]

C �
p
Z (log �). It follows that σ ′ is a section in the saturation of A [m′]

Z which, by defi-

nition, is precisely Sym[m′]
C AZ . In summary, we obtain an injection

�
(

Y, A ⊗m′)→ �
(

Z , Sym[m′]
C AZ

)
.

This shows the equality of Kodaira–Iitaka dimensions. ��

PART II. FRACTIONAL POSITIVITY

6 The slope filtration for C-differentials

The results of the following two sections are new to the best of our knowledge. In this section
we discuss a weak variant of the Harder–Narasimhan filtration that works on sheaves of
C-differentials and takes the extra fractional positivity of these sheaves into account.

If X is a normal polarized variety, F a reflexive sheaf with slope μ(F ) ≤ 0 and A ⊂ F
a subsheaf with positive slope, it is clear that the maximally destabilizing subsheaf of F is
a proper subsheaf of positive slope. In particular, there exists a number p < rank F , and a
rank-one subsheaf B ⊂∧[p] F that is likewise of positive slope μ(B) > 0. The following
proposition gives a similar, but slightly stronger result when F is replaced with the sheaf of
C-differentials.

Proposition 6.1 Let (X, D) be a C-pair of dimension n, as in Definition 2.2. Assume that X
is projective and Q-factorial, and let A be an ample Cartier divisor. If (K X + D).An−1 ≤ 0
and if there exists a number m and a reflexive sheaf A ⊆ Sym[m]

C �1
X (log D) of rank one

with c1(A ).An−1 > 0, then there exists a number p < dim X and reflexive sheaf B ⊂
Sym[1]

C �
p
X (log D) of rank one with DivC(B).An−1 > 0.

Proof Let H ⊂ X be a general hyperplane section, and γ : Y → X an adapted cover with
extra branching along H and cyclic Galois group G, as in Proposition 2.9. We use Nota-
tion 2.10 throughout the proof. Further, let H1,Y , . . . , Hn−1,Y ∈ |γ ∗ A| be general elements,
and consider the associated complete intersection curve

CY := H1,Y ∩ · · · ∩ Hn−1,Y .

Since Proposition 6.1 remains invariant if we replace A with a positive multiple, we may
assume without loss of generality that the Mehta-Ramanathan theorem [4, Thm. 1.2] holds
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for CY , i.e. that taking the Harder–Narasimhan filtration of the sheaf �
[1]
Y (log Dγ )adpt of

adapted differentials commutes with restriction to CY .
Recall from Remark 2.15 that

c1

(
�

[1]
Y (log Dγ )adpt

)
= c1
(
γ ∗(K X + D)

)
.

In particular, we have that c1

(
�

[1]
Y (log Dγ )adpt

)
.CY = γ ∗ ((K X + D).An−1

) ≤ 0. On

the other hand, it follows immediately from the definition of C-differentials that there exists
an inclusion

γ [∗](A ) ↪→ Sym[m] �[1]
Y (log Dγ )adpt.

By assumption, we have that c1
(
γ [∗](A )

)
.CY = γ ∗ (c1(A ).An−1

)
> 0. In particular,

it follows that the vector bundle �
[1]
Y (log Dγ )adpt|CY has negative degree, but is not anti-

nef. Thus, the maximally destabilizing subsheaf CY ⊂ �
[1]
Y (log Dγ )adpt has positive slope,

c1(CY ).CY > 0. It follows that p := rank CY < dim Y = dim X , and that BY := det CY is
a reflexive subsheaf BY ⊂ �

[p]
Y (log Dγ )adpt of rank one and positive slope.

As a next step, we will construct a sheaf B ⊂ Sym[1]
C �

p
X (log D) on X . To this end,

observe that the line bundle OY (γ ∗ A) is invariant under the action of the cyclic Galois group
G on the Picard group. Since the sheaf �

[p]
Y (log Dγ )adpt is also stable under the action of

G, it follows immediately from the uniqueness of the maximally destabilizing sheaf that CY

and BY are likewise G-stable. If we set X◦ := Xreg\ supp(D), then

�
[1]
Y (log Dγ )adpt|γ −1(X◦) = γ [∗] (Sym[1]

C �1
Y (log D)|X◦

)
.

Using the G-invariance of BY we obtain a sheaf on X◦, say B◦ ⊂ Sym[1]
C �

p
X (log D)|X◦ ,

such that γ [∗](B◦) = BY |γ −1(X◦). Let B be the maximal extension3 of B◦ in

Sym[1]
C �

p
X (log D), i.e., the kernel of the natural map

Sym[1]
C �

p
X (log D) → Sym[1]

C �
p
X (log D)|γ −1(X◦)

/
B◦.

It is then clear that B is reflexive of rank one. In particular, B is locally free wherever X
is smooth.

It remains to show that DivC(B).An−1 > 0. To this end, recall from Remark 4.10 that
there is an inclusion

(
γ ∗(B) ⊗ OY (γ ∗ RB)

)∗∗
↪→ �

[p]
Y (log Dγ ) (6.1.1)

whose cokernel is torsion free in codimension one. Since the left hand side of (6.1.1) agrees
with BY generically, reflexivity then implies that

BY ∼= (γ ∗(B) ⊗ OY (γ ∗ RB)
)∗∗

. (6.1.2)

We observe that the sheaf BY is locally free along the general curve CY because the con-
struction of BY does not depend on the choice of CY . The Isomorphism (6.1.2) then implies
the following:

3 We refer to [7, I.9.4] for a general discussion of the maximal extension, or prolongement canonique of
subsheaves.
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γ ∗ (DivC(B).An−1) = γ ∗ ((c1(B) + c1(RB)).An−1) Def. of DivC

= c1(BY ).
(
γ ∗(A)

)n−1 Isom. (6.1.2)

= c1(BY ).CY > 0. Choice ofCY

It follows that DivC(B).An−1 > 0, as claimed. ��

7 Bogomolov–Sommese vanishing for C-pairs

In this section we generalize the classical Bogomolov–Sommese Vanishing Theorem 1.1
to sheaves of C-differentials on C-pairs with log canonical singularities. To do so, we must
restrict ourselves to the case where X is a projective, Q-factorial, and dim X ≤ 3. The restric-
tion on the dimension is necessary to apply the Bogomolov–Sommese vanishing theorem for
log canonical threefold pairs4, [5, Thm. 1.4].

Proposition 7.1 (Bogomolov–Sommese vanishing for three-dimensional C-pairs) Let (X, D)

be a C-pair, as in Definition 2.2. Assume that X is projective and Q-factorial, that dim X ≤ 3
and that the pair (X, D) is log canonical. If 1 ≤ p ≤ dim X is any number and if A ⊆
Sym[1]

C �
p
X (log D) is a reflexive sheaf of rank one, then κC(A ) ≤ p.

Proof Let A ⊆ Sym[1]
C �

p
X (log D) be any given reflexive sheaf of rank one. In order to show

that κC(A ) ≤ p, let H ⊂ X be a general hyperplane section, and let γ : Y → X be an
adapted cover with extra branching along H and cyclic Galois group G, as in Proposition 2.9.

As a first step, we show that the pair (Y, Dγ ) is log canonical. Since H is general,
[12, 5.17] implies that

discrep(X, D + H) = min{0, discrep(X, D)}.
Since (X, D) is log canonical, discrep(X, D + H) ≥ −1, so (X, D + H) is also log

canonical. By [12, 2.27], the pair
(
X, D + N−1

N H
)

is then log canonical as well, where N
is the least common multiple of those C-multiplicities that are not infinity, as in Proposi-
tion 2.9. Next, recall from Lemma 2.11 that the log canonical divisor of (Y, Dγ ) is expressed
as follows,

KY + Dγ = γ ∗(K X + D) + (N − 1) · Hγ = γ ∗
(

K X + D + N − 1

N
H

)
.

Then since (X, D + N−1
N H) is log canonical, so is (Y, Dγ ), [12, 5.20].

As a next step, recall from Remark 4.9 that the pull-back γ ∗(RA ) of the defect divisor is
an integral divisor on Y , and consider the sheaf

B := (γ ∗(A ) ⊗ OY (γ ∗ RA )
)∗∗

.

We have seen in Corollary 4.12 that κ(B) ≥ κC(A ), and that there exists an inclusion

B ↪→ Sym[1] �p
Y (log Dγ ) = �

[p]
Y (log Dγ ).

If we show that B is Q-Cartier, then the Bogomolov–Sommese Vanishing Theorem for
log canonical threefold pairs, [5, Thm. 1.4], applies to show that κ(B) ≤ p. This will yield
the claim. To show that B is Q-Cartier, recall that X is Q-factorial. Since X is normal, and

4 Building on the results of this paper, a stronger version of the Bogomolov–Sommese vanishing theorem has
meanwhile been shown for C-pairs of arbitrary dimension, [6, Sect. 7].
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A is reflexive of rank one, there exists a divisor D on X such that A ∼= OX (D). It follows
that

B ∼= OY
(
γ ∗(D + RA )

)
.

Since a suitable multiple of the Q-divisor D+ RA is Cartier, it follows that B is Q-Cartier,
as claimed. This ends the proof. ��

Combining Propositions 6.1 and 7.1, we obtain a useful criterion that can be used to show
that Q-Fano C-pairs (X, D) with ample anticanonical class −(K X + D) have Picard number
ρ(X) > 1. This will be an essential ingredient in the proof of Theorem 1.5.

Corollary 7.2 Let (X, D) be a C-pair, as in Definition 2.2. Assume that X is projective and
Q-factorial, that dim X = n ≤ 3 and that the pair (X, D) is log canonical. Let A be an
ample Cartier divisor. If (K X + D).An−1 ≤ 0 and if there exists a number m and a reflexive
sheaf A ⊆ Sym[m]

C �1
X (log D) of rank one with c1(A ).An−1 > 0, then ρ(X) > 1.

Proof Suppose to the contrary that ρ(X) = 1. Given A ⊆ Sym[m]
C �1

X (log D) of rank

one with c1(A ).An−1 > 0, let B ⊂ Sym[1]
C �

p
X (log D) be the reflexive rank one sheaf

constructed in Proposition 6.1, where p < n. The assumptions that ρ(X) = 1 and X is
Q-factorial imply that B is Q-Cartier and a Q-ample sheaf of p-forms. In particular, by
Corollary 4.13, κC(B) = n. But by Proposition 7.1, we know that κC(B) ≤ p < n, a
contradiction. It follows that ρ(X) > 1. ��

PART III. PROOF OF CAMPANA’S CONJECTURE IN DIMENSION 3

8 Setup for the proof of Theorem 1.5

We prove Theorem 1.5 in the remainder of the paper. The following assumptions are main-
tained throughout the proof.

Assumption 8.1 Let f ◦ : X◦ → Y ◦ be a smooth projective family of canonically polar-
ized manifolds of relative dimension n, over a smooth quasi-projective base of dimension
dim Y ◦ ≤ 3. We assume that the family is not isotrivial, Var( f ◦) > 0, and let μ : Y ◦ → M

be the associated map to the coarse moduli space, whose existence is shown, e.g. in [14,
Thm. 1.11]. Arguing by contradiction, we assume that Y ◦ is a special variety.

Remark 8.2 Since Y ◦ is special, it is not of log-general type. By [11, Thm. 1.1], this already
implies that the variation of f ◦ cannot be maximal, i.e., Var( f ◦) < dim Y ◦.

We also fix a smooth projective compactification Y of Y ◦ such that D := Y\Y ◦ is a
divisor with simple normal crossings. Furthermore, we fix a compactification M of M and
let μ(0) : Y ��� M be the associated rational map.

9 Viehweg–Zuo sheaves on (Y, D)

9.1 Existence of differentials coming from the moduli space

Under the assumptions spelled out in Sect. 8, Viehweg and Zuo have shown in [15,
Thm. 1.4(i)] that Y ◦ carries many logarithmic pluri-differentials. More precisely, they
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prove the fundamental result that there exists a number m > 0 and an invertible sheaf
A ⊆ Symm �1

Y (log D) whose Kodaira–Iitaka dimension is at least the variation of the
family, κ(A ) ≥ Var( f ◦).

We recall a refinement of Viehweg and Zuo’s theorem which asserts that the
“Viehweg–Zuo sheaf” A really comes from the coarse moduli space M. To formulate this
result precisely, we use the following notation.

Notation 9.1 Consider the subsheaf B ⊆ �1
Y (log D), defined on presheaf level as follows: if

U ⊂ Y is any open set and σ ∈ �
(
U, �1

Y (log D)
)

any section, then σ ∈ � (U, B) if and only
if the restriction σ |U ′ is in the image of the differential map dμ|U ′ : μ∗ (�1

M

) |U ′ → �1
U ′ ,

where U ′ ⊆ U ∩ Y ◦ is the open subset where the moduli map μ has maximal rank.

Remark 9.2 By construction, it is clear that the sheaf B is a saturated subsheaf of �1
Y (log D).

We say that B is the saturation of Image(dμ) in �1
Y (log D).

The refinement of Viehweg–Zuo’s result is then formulated as follows.

Theorem 9.3 (Existence of differentials coming from the moduli space, [9, Thm. 1.5]) There
exists a number m > 0 and an invertible subsheaf A ⊆ Symm B whose Kodaira–Iitaka
dimension is at least the variation of the family, κ(A ) ≥ Var( f ◦). ��
9.2 Pushing down Viehweg–Zuo sheaves

In the course of the proof, we will often need to compare Viehweg–Zuo sheaves on different
birational models of a given pair. The following elementary lemma shows that Viehweg–Zuo
sheaves can be pushed down to minimal models, and that the Kodaira–Iitaka dimension does
not decrease in the process.

Lemma 9.4 Let (Z ,�) be a C-pair and A ⊆ Sym[m]
C �

p
Z (log �) a reflexive rank one sheaf

for some m, p > 0. Let λ : Z ��� Z ′ be a birational map whose inverse image does not
contract any divisor. If Z ′ is normal and �′ is the cycle-theoretic image of �, then there
exists a reflexive rank one sheaf A ′ ⊆ Sym[m]

C �
p
Z ′(log �′) with κC(A ′) ≥ κC(A ).

Remark 9.4.1 Since λ is birational, it is clear that any number which appears as a coefficient
in the divisor �′, also appears as a coefficient in �. Consequently, (Z ′,�′) is again a C-pair.

Proof of Lemma 9.4 The assumption that λ−1 does not contract any divisor and the nor-
mality of Z ′ guarantee that λ−1 : Z ′ ��� Z is a well-defined embedding over an open
subset U ⊆ Z ′ whose complement Z

′ := Z ′\U has codimension codimZ ′ Z
′ ≥ 2,

cf. Zariski’s main theorem [8, V 5.2]. In particular, �′|U = (λ−1|U
)−1

(�). Let ι : U ↪→ Z ′

denote the inclusion and set A ′ := ι∗
(
(λ−1|U )∗A

)
. Since codimZ ′ Z

′ ≥ 2, the sheaf A ′
is reflexive and agrees with A on the open set where λ−1 is an isomorphism. By reflex-
ivity, we obtain an inclusion of sheaves, A ′ ⊆ Sym[m]

C �1
Z ′(log �′). Likewise, we obtain

that Sym[d]
C A ′ ∼= ι∗

(
(λ−1|U )∗ Sym[d]

C A
)

for all d > 0. This gives h0
(

Z ′, Sym[d]
C A ′

)
≥

h0
(

Z , Sym[d]
C A
)

for all d , hence κC(A ′) ≥ κC(A ). ��

As an immediate corollary, we get that the property of being special is inherited by pre-
images of birational morphisms of pairs.
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Corollary 9.5 Let (Z ,�) be a C-pair, and let λ : Z ��� Z ′ be a birational morphism whose
inverse does not contract a divisor. Assume that Z ′ is normal, and let �′ be the cycle-theoretic
image of �. If the C-pair (Z ′,�′) is special in the sense of Definition 4.7, and if E ⊂ Z is
any λ-exceptional effective Q-divisor such that (Z ,� + E) is a C-pair, then (Z ,� + E) is
also special.

Proof Let A ⊆ Sym[1]
C �

p
Z (log � + E) be a reflexive rank one sheaf for some p > 0.

Then by Lemma 9.4, there exists a reflexive rank one sheaf A ′ ⊆ Sym[m]
C �

p
Z ′(log �′) with

κC(A ′) ≥ κC(A ). But since (Z ′,�′) is special, we have that p > κC(A ′) ≥ κC(A ). ��

10 Simplification: factorization of the moduli map

In order to simplify the setup of the proof, we aim to replace the pair (Y, D) with a pair that
is somewhat easier to manage. To this end, we will now construct a commutative diagram of
morphisms between normal varieties,

Y

μ(0)
moduli

map
���
�
� Y (1)

α1��

μ(1)
conn.
fibers

��

Y (2)
α2��

μ(2) equidim.
fibers

��

Y (3)
α3��

μ(3) equidim.
fibers��

Y (4)
α4��

μ(4)��
M Z (1)

β1

�� Z (2)
β2

�� Z (3),
β3

discr. locus
becomes snc

��

where β2, β3 and all αi are birational morphisms, and where Z (3) and Y (4) are smooth.

10.1 Construction of μ(1) and Z (1)

If necessary, blow up Y outside of Y ◦, in order to obtain a variety Y (1) which is smooth and
where the associated map Y (1) ��� M becomes a morphism. The factorization via a normal
space Z (1) is then obtained by Stein factorization.

10.2 Construction of Z (2) and Y (2)

The map μ(1) induces a natural, generically injective map from Z (1) into the Chow variety
of Y (1),

γ : Z (1) ��� Chow
(

Y (1)
)

, z �→ (μ(1))−1(z).

Consider a blow-up β2 : Z (2) → Z (1) such that the composition γ ◦ β2 : Z (2) ���
Chow

(
Y (1)
)

becomes a morphism and such that Z (2) is smooth. Let Y (2) be the normali-
zation of the pull-back of the universal family over Chow

(
Y (1)
)
. Since the normalization

morphism is finite, the fiber dimension does not change, and the resulting map μ(2) will have
connected fibers, all of pure dimension dim Y (2) − dim Z (2).

10.3 Construction of Z (3) and Y (3)

Set D(2) := supp
(
α−1

1 ◦ α−1
2 (D)

)
. Decompose D(2) into “horizontal” components that

dominate Z (2) and “vertical” components that do not,

D(2) := D(2,h) ∪ D(2,v),
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and set DZ := μ(2)(D(2,v)). Further, let �(2) ⊂ Z (2) be the discriminant locus of μ(2).
Recall from Notation 5.2 that this is the smallest closed subset such that μ(2) is smooth over
Z (2)\�(2), and such that the scheme-theoretic intersection D(2) ∩ (μ(2))−1(z) is a proper snc
divisor in the fiber (μ(2))−1(z), for all z ∈ Z (2)\�(2). Let β3 : Z (3) → Z (2) be a blow-up
such that Z (3) is smooth, and the preimages β−1

3 (�(2)), β−1
3 (DZ ) and β−1

3 (�(2) ∪ DZ ) are
all divisors with snc support. Let Y (3) be the normalization of Y (2) ×Z (2) Z (3). The induced
morphism μ(3) will again have connected, equidimensional fibers of pure dimension. Finally,
set �(3) := supp β−1

3 (�(2) ∪ DZ ).

10.4 Construction of Y (4)

Set D(3) := supp(α1 ◦ α2 ◦ α3)
−1(D), let α4 : Y (4) → Y (3) be a log resolution of the pair(

Y (3), D(3)
)

and set D(4) := α−1
4

(
D(3)
)
.

10.5 Extension of the boundary

If α := α1◦α3◦α3◦α4, we obtain a birational morphism α : Y (4) → Y where D = α∗(D(4)).
The obvious fiber product yields a family of canonically polarized varieties over Y (4)\D(4)

such that μ(4) factors the moduli map, and such that the associated map Z (3) → M is
generically finite.

To simplify the argumentation further and to define a meaningful C-base of the fibration
μ(4), we will now extend the boundary D(4) slightly. To this end, let

E (4) ⊆ (μ(4))−1(�(3))

be the union of the irreducible components E ′ ⊆ (μ(4))−1(�(3)) which are α4-excep-
tional and not contained in D(4). By definition of log-resolution, the logarithmic pair(
Y (4), D(4) + E (4)

)
is snc, and Corollary 9.5 asserts that the pair is special.

Remark 10.1 Since μ(3) is equidimensional, any α4-exceptional divisor is also μ(4)-excep-
tional. By construction of E (4), this implies that any μ(4)-exceptional divisor is contained in
D(4) + E (4).

10.6 Summary, simplification

Replacing (Y, D) by the pair (Y (4), D(4) + E (4)), if necessary, we can assume without loss
of generality for the remainder of the proof that the following holds.

(10.1.1) The moduli map μ◦ : Y ◦ → M extends to a morphism μ : Y → M.
(10.1.2) There exists a morphism π : Y → Z to a smooth variety Z of positive dimension

which factors the moduli map as follows

Y
π

conn. fibers
��

μ

��
Z

generically finite
�� M.

(10.1.3) If E ⊂ Y is a divisor with codimZ π(E) ≥ 2, then E ⊆ D.
(10.1.4) There exists an snc divisor �red ⊂ Z such that for any point z ∈ Z\�red, the fiber

Yz := π−1(z) is smooth, not contained in D, and the scheme-theoretic intersection
Yz ∩ D is a reduced snc divisor in Yz .

Remark 10.2 Condition (10.1.4) guarantees that the codimension-one part of the discrimi-
nant locus of π is an snc divisor in Z . Together with Remark 10.1 or Condition (10.1.3),
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this implies that the morphism π satisfies the Assumptions of 5.4, which guarantee the
existence of a C-base with good pull-back and push-forward properties for C-differentials.
We are therefore free to use the results of Sects. 5.2 and 5.3 in our setting.

11 Proof of Theorem 1.5

Let (Z ,�) be the C-base of the fibration π , as constructed in Sect. 5, Construction 5.3, and
note that dim Z ≤ 2. By construction, it is clear that supp(�) ⊆ �red, where �red ⊂ Z
is the divisor introduced in Sect. 10.6 above. In particular, the divisor � has snc support,
and the pair (Z ,�) is dlt, [12, Cor. 2.35 and Def. 2.37]. Since the logarithmic pair (Y, D) is
special by assumption, Corollary 5.6 implies that (Z ,�) is a special C-pair in the sense of
Definition 4.7.

Next, let B ⊆ �1
Y (log D) be the sheaf introduced in Notation 9.1 above. By Theorem 9.3

there exists an invertible, saturated sheaf

A ⊆ Symm B ⊆ Symm �1
Y (log D)

with κ(A ) ≥ Var( f ◦) = dim Z . Since Z is generically finite over M, the sheaf B is also
the saturation of the image of

dπ : π∗(�1
Z ) → �1

Y (log D).

Corollary 5.8 thus asserts that A descends to a reflexive subsheaf AZ ⊆ Sym[m]
C �1

Z (log �)

of rank one, with κC(AZ ) = dim Z .

11.1 Case: dim Z = 1.

Since Z is a curve, Sym[m]
C �1

Z (log �) is of rank one and therefore equals AZ . Recall from

Remark 4.5 that this asserts that κC
(

Sym[1]
C �1

Z (log �)
)

= 1, contradicting the fact that the

C-pair (Z ,�) is special. This ends the proof in case dim Z = 1.

11.2 Case: dim Z = 2.

Applying the the minimal model program to the dlt pair (Z ,�), we obtain a birational mor-
phism5 λ : Z → Zλ. Set �λ := λ∗(�), and recall that Zλ is Q-factorial, that the pair
(Zλ,�λ) is dlt and that it does not admit divisorial contractions.

Let Aλ ⊂ Sym[m]
C �1

Zλ
(log �λ) be the Viehweg–Zuo sheaf associated to AZ ⊂

Sym[m]
C �1

Z (log �), as given by Lemma 9.4, and note that κC(Aλ) = dim Z = 2. For
convenience of argumentation, we consider the possibilities for κ(K Z + �) separately.

11.2.1 Sub-case: κ(K Z + �) = −∞

In this case, the pair (Zλ,�λ) is either Q-Fano and has Picard number ρ(Zλ) = 1, or
(Zλ,�λ) admits an extremal contraction of fiber type and has the structure of a proper Mori
fiber space.

5 Since Z is a surface, the minimal model program does not involve flips.
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The case ρ(Zλ) = 1, however, is ruled out by Corollary 7.2: if ρ(Zλ) = 1, then K Zλ +�λ

is anti-ample. If A ⊂ Zλ is a general hyperplane section, this gives (K Zλ + �λ).A < 0.
Corollary 7.2 then asserts that ρ(Zλ) > 1, contrary to our assumption.

We thus obtain that ρ(Zλ) > 1, and that there exists a fiber-type contraction π : Zλ → B,
where B is a curve. If F is a general fiber of π , then F � P1, F is entirely contained in
the snc locus of (Zλ,�λ), and F intersects �λ transversely. Since the normal bundle NF/Zλ

is trivial and −(K F + �λ|F ) is nef, Proposition 3.22 asserts that Sym[m′]
C �1

Zλ
(log �λ)|F is

anti-nef, for all numbers m′ ∈ N+. It follows that

Sym[m′]
C Aλ|F ⊂ Sym[m′·m]

C �1
Zλ

(log �λ)|F

is a subsheaf of an anti-nef bundle, hence anti-nef for all m′ ∈ N+. This clearly contradicts
κC(Aλ) = dim Z = 2.

11.2.2 Sub-case: κ(K Z + �) = 0

In this case, the classical Abundance Theorem [12, Sect. 3.13] asserts that there exists a
number n ∈ N+ such that

OZλ

(
n · (K Zλ + �λ)

) ∼= OZλ . (11.0.1)

If the boundary divisor �λ is empty, then the C-pair (Zλ,�λ) is a logarithmic pair for
trivial reasons, and [11, Prop. 9.1] implies that κ(Aλ) ≤ 0, a contradiction. It follows that
�λ is not empty.

For sufficiently small ε0 ∈ Q+, we can therefore consider the dlt pair (Zλ, (1 − ε0)�λ).
Equation (11.0.1) implies that − (K Zλ + (1 − ε0)�λ

)
is Q-effective. In particular, we have

that κ
(
K Zλ + (1 − ε0)�λ

) = −∞. We can therefore run the minimal model program of
the pair (Zλ, (1 − ε0)�λ), in order to obtain a birational morphism μ : Zλ → Zμ to a
normal, Q-factorial variety. Set �μ := μ∗(�λ). As before, Lemma 9.4 gives the existence
of a Viehweg–Zuo sheaf Aμ ⊆ Symm

C �1
Zμ

(log �μ) with κC(Aμ) = 2.
To continue, observe that the map μ is also a minimal model program of the pair (Zλ, (1−

ε)�λ), for any sufficiently small number ε ∈ Q. In particular, the pair
(
Zμ, (1 − ε)�μ

)
is dlt

for all ε, its Kodaira dimension is κ
(
K Zμ + (1 − ε)�μ

) = −∞, and the pair (Zμ,�μ) is
hence dlc [11, 9.4], in particular log canonical. In this setting, the arguments of the previous
Sect. 11.2.1 apply verbatim.

11.2.3 Sub-case: κ(K Z + �) > 0

The Abundance Theorem guarantees the existence of a regular Iitaka-fibration π : Zλ → B,
such that K Zλ +�λ is trivial on the general fiber F . The same argumentation as in Sect. 11.2.1

applies to show that Sym[m′]
C Aλ is anti-nef for all m′ ∈ N+, contradicting κC(Aλ) = dim Z =

2. This finishes the proof in the case dim Z = 2 and ends the proof of Theorem 1.5. ��
Acknowledgments Conjecture 1.4 was brought to our attention by Frédéric Campana during the 2007
Levico conference in Algebraic Geometry. We would like to thank him for a number of discussions on the
subject.
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