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1 Introduction

1.1

The nilpotent blocks over an algebraically closed field of characteristic p > 0 were introduced
in [2] as a translation for blocks of the well-known Frobenius Criterion on p-nilpotency for
finite groups. They correspond to the simplest situation with respect to the so-called fusion
inside a defect group, and the structure of the source algebras of the nilpotent blocks deter-
mined in [9] confirms that these blocks represent indeed the easiest possible situation.

1.2

However, when the field of coefficients is not algebraically closed, together with Fan Yun
we have seen in [3] that, in the general situation, the structure of the source algebra of a
block which, after a suitable scalar extension, decomposes in a sum of nilpotent blocks—a
structure that we determine in [3]—need not be so simple.

1.3

At that time, we already knew some examples of a similar fact in group extensions, namely
that a non-nilpotent block of a normal subgroup H of a finite group G may decompose in
a sum of nilpotent blocks of G. In this case, we also have been able to describe the source
algebra structure, which is quite similar to (but easier than) the structure described in [3].
With a big delay, we explain this result here.
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116 L. Puig

1.4

Actually, this phenomenon is perhaps better described by saying that a normal sub-block of
a nilpotent block need not be nilpotent. However, the normal sub-blocks of nilpotent blocks
are quite special: they are basically Morita equivalent [15, §7] to the corresponding block
of their inertial subgroup. Then, as a matter of fact, a normal sub-block of such a block still
fulfills the same condition.

1.5

Thus, let us call inertial block any block of a finite group that is basically Morita equiva-
lent [15, §7] to the corresponding block of its inertial subgroup; as a matter of fact, in [12,
Corollaire 3.6], we already exhibit a large family of inertial blocks; see also [14, Appendix].
The main purpose of this paper is to prove that a normal sub-block of an inertial block is
again an inertial block. Since a nilpotent block is basically Morita equivalent to its defect
group [9, Theorem 1.6 and (1.8.1)], and the corresponding block of its inertial subgroup is
also nilpotent, a nilpotent block is, in particular, an inertial block and thus, our main result
applies.

2 Quoted results and inertial blocks

2.1

Throughout this paper p is a fixed prime number, k an algebraically closed field of charac-
teristic p and O a complete discrete valuation ring of characteristic zero having the residue
field k. Let G be a finite group; following Green [5], a G-algebra is a torsion-free O-algebra
A of finite O-rank endowed with a G-action; we say that A is primitive if the unity element
is primitive in AG . A G-algebra homomorphism from A to another G-algebra A′ is a not
necessarily unitary algebra homomorphism f : A→ A′ compatible with the G-actions. We
say that f is an embedding whenever

Ker( f ) = {0} and Im ( f ) = f (1A)A
′ f (1A), (2.1.1)

and that f is a strict semicovering if f is unitary, the radical J (A) of A contains Ker( f )
and, for any p-subgroup P of G, J (A′P ) contains f (J (AP )) and f (i) is primitive in A′P
for any primitive idempotent i of AP [6, §3].

2.2

Recall that, for any subgroup H of G, a point α of H on A is an (AH )∗-conjugacy class of
primitive idempotents of AH and the pair Hα is a pointed group on A [7, 1.1]; if H = {1},
we simply say that α is a point of A. For any i ∈ α, i Ai has an evident structure of H -algebra
and we denote by Aα one of these mutually (AH )∗-conjugate H -algebras and by A(Hα)
the simple quotient of AH determined by α; we call multiplicity of α the square root of the
dimension of A(Hα). If f : A→ A′ is a G-algebra homomorphism and α′ a point of H on
A′, we call multiplicity m( f )α

′
α of f at (α, α′) the dimension of the image of f (i)A′H i ′ in

A′(Hα′) for i ∈ α and i ′ ∈ α′; we still consider the H -algebra A′α = f (i)A′ f (i) together
with the unitary H -algebra homomorphism induced by f and the embedding of H -algebras

Aα −→ A′α ←− A′α′ . (2.2.1)
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Nilpotent extensions of blocks 117

A second pointed group Kβ on A is contained in Hα if K ⊂ H and, for any i ∈ α, there is
j ∈ β such that [7, 1.1]

i j = j = j i; (2.2.2)

then, it is clear that the (AK )∗-conjugation induces K -algebra embeddings

f αβ : Aβ −→ ResH
K (Aα). (2.2.3)

2.3

Following Broué, for any p-subgroup P of G we consider the Brauer quotient and the Brauer
homomorphism [1, 1.2]

BrA
P : AP −→ A(P) = AP

/∑
Q

AP
Q , (2.3.1)

where Q runs over the set of proper subgroups of P , and call local any point γ of P
on A not contained in Ker(BrA

P ) [7, 1.1]. Recall that a local pointed group Pγ contained

in Hα is maximal if and only if BrP (α) ⊂ A(Pγ )
NH (Pγ )
P [7, Proposition 1.3] and then the

P-algebra Aγ—called a source algebra of Aα—is Morita equivalent to Aα [17, 6.10]; more-
over, the maximal local pointed groups Pγ contained in Hα—called the defect pointed groups
of Hα—are mutually H-conjugate [7, Theorem 1.2].

2.4

Let us say that A is a p-permutation G-algebra if a Sylow p-subgroup of G stabilizes a
basis of A [1, 1.1]. In this case, recall that if P is a p-subgroup of G and Q a normal subgroup
of P then the corresponding Brauer homomorphisms induce a k-algebra isomorphism [1,
Proposition 1.5]

(A(Q)) (P/Q) ∼= A(P); (2.4.1)

moreover, choosing a point α of G on A, we call Brauer (α,G)-pair any pair (P, eA) formed
by a p-subgroup P of G such that BrA

P (α) 	= {0} and by a primitive idempotent eA of the
center Z(A(P)) of A(P) such that

eA · BrA
P (α) 	= {0}; (2.4.2)

note that any local pointed group Qδ on A contained in Gα determines a Brauer (α,G)-pair
(Q, f A) fulfilling f A · BrA

Q(δ) 	= {0}.
2.5

Then, it follows from Theorem 1.8 in [1] that the inclusion between the local pointed groups
on A induces an inclusion between the Brauer (α,G)-pairs; explicitly, if (P, eA) and (Q, f A)

are two Brauer (α,G)-pairs then we have

(Q, f A) ⊂ (P, eA) (2.5.1)

whenever there are local pointed groups Pγ and Qδ on A fulfilling

Qδ ⊂ Pγ ⊂ Gα, f A · BrA
Q(δ) 	= {0} and eA · BrA

P (γ ) 	= {0}. (2.5.2)
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118 L. Puig

Actually, according to the same result, for any p-subgroup P of G, any primitive idempotent
eA of Z(A(P)) fulfilling eA · BrA

P (α) 	= {0} and any subgroup Q of P , there is a unique
primitive idempotent f A of Z(A(Q)) fulfilling

eA · BrA
P (α) 	= {0} and (Q, f A) ⊂ (P, eA). (2.5.3)

Once again, the maximal Brauer (α,G)-pairs are pairwise G-conjugate [1, Theorem 1.14].

2.6

Here, we are specially interested in the G-algebras A endowed with a group homomorphism
ρ : G → A∗ inducing the action of G on A, called G-interior algebras; in this case, for any
pointed group Hα on A, Aα = i Ai has a structure of H-interior algebra mapping y ∈ H on
ρ(y)i = iρ(y); moreover, setting x · a · y = ρ(x)aρ(y) for any a ∈ A and any x, y ∈ G,
a G-interior algebra homomorphism from A to another G-interior algebra A′ is a G-algebra
homomorphism f : A→ A′ fulfilling

f (x · a · y) = x · f (a) · y. (2.6.1)

2.7

In particular, if Hα and Kβ are two pointed groups on A, we say that an injective group
homomorphism ϕ : K → H is an A- f usion f rom Kβ to Hα whenever there is a K -interior
algebra embedding

fϕ : Aβ −→ ResH
K (Aα) (2.7.1)

such that the inclusion Aβ ⊂ A and the composition of fϕ̂ with the inclusion Aα ⊂ A are
A∗-conjugate; we denote by FA(Kβ, Hα) the set of H -conjugacy classes of A-fusions from
Kβ to Hα and, as usual, we write FA(Hα) instead of FA(Hα, Hα). If Aα = i Ai for i ∈ α, it
follows from [8, Corollary 2.13] that we have a group homomorphism

FA(Hα) −→ NA∗α (H · i)
/

H · (AH
α )
∗ (2.7.2)

and then we consider the k∗-group F̂A(Hα) defined by the pull-back

FA(Hα) −→ NA∗α (H · i)
/

H · (AH
α )
∗

↑ ↑
F̂A(Hα) −→ NA∗α (H · i)

/
H ·

(
i + J (AH

α )
)
. (2.7.3)

2.8

Recall that, for any subgroup H of G and any H -interior algebra B, the induced G-interior
algebra is the induced bimodule

IndG
H (B) = k∗G ⊗k∗H B ⊗k∗H k∗G, (2.8.1)

endowed with the distributive product defined by the formula

(x ⊗ b ⊗ y)(x ′ ⊗ b′ ⊗ y′) =
⎧⎨
⎩

x ⊗ b.yx ′.b′ ⊗ y′ if yx ′ ∈ H

0 otherwise
(2.8.2)
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Nilpotent extensions of blocks 119

where x, y, x ′, y′ ∈ G and b, b′ ∈ B, and with the structural homomorphism

G −→ IndG
H (B) (2.8.3)

mapping x ∈ G on the element

∑
y

xy ⊗ 1B ⊗ y−1 =
∑

y

y ⊗ 1B ⊗ y−1x (2.8.4)

where y ∈ G runs over a set of representatives for G/H .

2.9

Obviously, the groupalgebra OG is a p-permutation G-interior algebra and, for any primitive
idempotent b of Z(OG)—called an O-block of G—the conjugacy class α = {b} is a point of
G on OG. Moreover, for any p-subgroup P of G, the Brauer homomorphism BrP = BrkG

P
induces a k-algebra isomorphism [10, 2.8.4]

kCG(P) ∼= (OG)(P); (2.9.1)

thus, up to identification throughout this isomorphism, in a Brauer ({b},G)-pair (P, e) as
defined above—called Brauer (b,G)-pair from now on—e is nothing but a k-block of CG(P)
such that eBrP (b) 	= 0. Setting

C̄G(P) = CG(P)/Z(P), (2.9.2)

recall that the image ē of e in kC̄G(P) is a k-block of C̄G(P) and that the Brauer First Main
Theorem affirms that (P, e) is maximal if and only if the k-algebra kC̄G(P)ē is simple and
the inertial quotient

E = NG(P, e)/P · CG(P) (2.9.3)

is a p′-group [17, Theorem 10.14].

2.10

For any p-subgroup P of G and any subgroup H of NG(P) containing P ·CG(P), we have

BrP

(
(OG)H

)
= (OG)(P)H (2.10.1)

and therefore any k-block e of CG(P) determines a unique point β of H on OG (cf. 2.2)
such that Hβ contains Pγ for a local point γ of P on OG fulfilling [9, Lemma 3.9]

e · BrP (γ ) 	= {0}. (2.10.2)

Recall that, if Q is a subgroup of P such that CG(Q) ⊂ H then the k-blocks of CG(Q) =
CH (Q) determined by (P, e) from G and from H coincide [1, Theorem 1.8]. Note that if P
is normal in G then the kernel of the obvious k-algebra homomorphism kG → k(G/P) is
contained in the radical J (kG) and contains Ker(BrP ); thus, in this case, isomorphism 2.9.1
implies that any point of P on kG is local.
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2.11

Moreover, for any local pointed group Pγ on OG, the action of NG(Pγ ) on the simple algebra
(OG)(Pγ ) (cf. 2.2) determines a central k∗-extension or, equivalently, a k∗-group N̂G(Pγ )
[10, §5] and it is clear that the Brauer homomorphism BrP determines a NG(Pγ )-stable injec-
tive group homomorphism from CG(P) to N̂G(Pγ ). Then, up to a suitable identification, we
set

EG(Pγ ) = NG(Pγ )/P · CG(P) and ÊG(Pγ ) = N̂G(Pγ )/P · CG(P); (2.11.1)

recall that from [8, Theorem 3.1] and [10, Proposition 6.12] we obtain a canonical k∗-group
isomorphism (cf. 2.7.3)

ÊG(Pγ )
◦ ∼= F̂OG(Pγ ). (2.11.2)

2.12

In particular, a maximal local pointed group Pγ on OGb determines a k-block e of CG(P),
which is still a k-block of the group

N = NG(Pγ ) = NG(P, e), (2.12.1)

called the inertial subgroup of b, and also determines a unique point ν of N on OGb such that
Pγ ⊂ Nν (cf. 2.10); obviously, we have E = EG(Pγ ) (cf. 2.9.3), Pγ is still a defect pointed
group of Nν and (P, e) is a maximal Brauer (ê, N )-pair, where ê denotes the O-block of N
lifting e. As above, N acts on the simple k-algebra (cf. 2.9)

kC̄G(P)ē ∼= (OG)(Pγ ) (2.12.2)

and therefore we get k∗-groups N̂ and Ê◦ = ÊG(Pγ ).

2.13

Moreover, since E is a p′-group, it follows from [17, Lemma 14.10] that the short exact
sequence

1 −→ P/Z(P) −→ N/CG(P) −→ E −→ 1 (2.13.1)

splits and that all the splitings are conjugate to each other; thus, any spliting determines an
action of E on P and it is easily checked that the semidirect products

L = P � E and L̂ = P � Ê (2.13.2)

do not depend on our choice. At this point, it follows from [10, Proposition 14.6] that the
source algebra of the block ê of N is isomorphic to the P-interior algebra O∗ L̂ , and therefore
it follows from [3, Proposition 4.10] that the multiplication in OGb by a suitable idempotent
	 ∈ ν determines an injective unitary P-interior algebra homomorphism

O∗ L̂ −→ (OG)γ . (2.13.3)

2.14

On the other hand, a Dade P-algebra over O is a p-permutation P-algebra S which is a full
matrix algebra over O and fulfills S(P) 	= {0} [11, 1.3]. For any subgroup Q of P , setting
N̄P (Q) = NP (Q)/Q we have (cf. 2.4.1)
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(S(Q))
(
N̄P (Q)

) ∼= S (NP (Q)) (2.14.1)

and therefore ResP
Q(S) is a Dade Q-algebra; moreover, it follows from [11, 1.8] that the

Brauer quotient S(Q) is a Dade N̄P (Q)-algebra; thus, Q has a unique local point on S. In
particular, if S is primitive (cf. 2.1) then S(P) ∼= k and therefore we have

dim(S) ≡ 1 (mod p), (2.14.2)

so that the action of P on S can be lifted to a unique group homomorphism from P to the
kernel of the determinant detS over S; at this point, it follows from [11, 3.13] that the action
of P on S always can be lifted to a well-determined P-interior algebra structure for S.

2.15

Recall that a block b of G is called nilpotent whenever the quotients NG(Q, f )/CG(Q) are
p-groups for all the Brauer (b,G)-pairs (Q, f ) [2, Definition 1.1]; by the main result in [9],
the block b is nilpotent if and only if, for a maximal local pointed group Pγ on OGb, P
stabilizes a unitary primitive Dade P-subalgebra S of (OGb)γ fulfilling

(OGb)γ = S P ∼= S ⊗O OP (2.15.1)

where we denote by S P the obvious O-algebra
⊕

u∈P Su and, for the right-hand isomor-
phism, we consider the well-determined P-interior algebra structure for S.

2.16

Now, with the notation in 2.12 above, we say that the block b of G is inertial if it is basically
Morita equivalent [15, 7.3] to the corresponding block ê of the inertial subgroup N of b or,
equivalently, if there is a primitive Dade P-algebra S such that we have a P-interior algebra
embedding [15, Theorem 6.9 and Corollary 7.4]

(OG)γ −→ S ⊗O O∗ L̂. (2.16.1)

Note that, in this case, in fact we have a P-interior algebra isomorphism

(OG)γ ∼= S ⊗O O∗ L̂ (2.16.2)

and the Dade P-algebra S is uniquely determined; indeed, the uniqueness of S follows from
[19, Lemma 4.5] and it is easily checked that

(S ⊗O O∗ L̂)(P) ∼= S(P)⊗k (O∗ L̂)(P) ∼= k Z(P) (2.16.3)

and that the kernel of the Brauer homomorphism BrS⊗OO∗ L̂
P is contained in the radical of

S ⊗O O∗ L̂ , so that this P-interior algebra is also primitive.

3 Normal sub-blocks of inertial blocks

3.1

Let G be a finite group, b an O-block of G and (P, e) a maximal Brauer (b,G)-pair (cf. 2.9).
Let us say that an O-block c of a normal subgroup H of G is a normal sub-block of b if we
have cb 	= 0; we are interested in the relationship between the source algebras of b and c,
specially in the case where b is inertial.
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122 L. Puig

3.2

Note that we have bTrG
Gc
(c) = b where Gc denotes the stabilizer of c in G; since we know

that eBrP (b) 	= 0 (cf. 2.9), up to modifying our choice of (P, e) we may assume that P sta-
bilizes c; then, considering the G-stable semisimple k-subalgebra

∑
x O · bcx of OG, where

x ∈ G runs over a set of representatives for G/Gc, it follows from [19, Proposition 3.5] that
bc is an O-block of Gc and that P remains a defect p-subgroup of this block, and then from
[19, Proposition 3.2] that we have

OGb ∼= IndG
Gc
(OGc bc), (3.2.1)

so that the source algebras of the O-block b of G and of the block bc of Gc are isomorphic.

3.3

Thus, from now on we assume that G fixes c, so that we have bc = b. Then, note that
α = {c} is a point of G on OH (cf. 2.2), so that, choosing a block eH of CH (P) such that
eH e 	= 0, (P, eH ) is a Brauer (α,G)-pair (cf. 2.4 and 2.9.1) and it follows from the proof of
[18, Proposition 15.9] that we may choose a maximal Brauer (c, H)-pair (Q, f

H
) fulfilling

(Q, f
H
) ⊂ (P, eH ), Q = H ∩ P and eBrP ( f

H
) 	= 0. (3.3.1)

Now, denote by γ G and δ the respective local points of P and Q on OG and OH determined
by e and f

H
; as above, let us denote by F the inertial quotient of c; that is to say, we set

(cf. 2.9 and 2.11)

F = EH (Qδ) = FOH (Qδ) and F̂ = ÊH (Qδ)
◦ ∼= F̂OH (Qδ). (3.3.2)

3.4

Since we have eBrP ( f
H
) 	= 0 and f

H
is P-stable, from the obvious commutative diagram

(OH)(Q) −→ (OG)(Q)
∪ ∪

(OH)(Q)P −→ (OG)(Q)P

↓ ↓
(OH)(P) −→ (OG)(P)

(3.4.1)

we get a local point δ
G

of Q on OG such that the multiplicity mδ
G

δ of the inclusion (OH)Q ⊂
(OG)Q at (δ, δ

G
) (cf. 2.2) is not zero and Q

δ
G is contained in P

γ
G ; similarly, we get a local

point γ of P on OH fulfilling

mγ G
γ 	= 0 and Qδ ⊂ Pγ . (3.4.2)

At this point, the following commutative diagram (cf. 2.2.1)

ResP
Q(OH)γ −→ ResP

Q(OG)γ
↗ ↗ ↑

(OH)δ −→ (OG)δ ResP
Q(OG)

γ
G

↑ ↗
(OG)

δ
G

, (3.4.3)
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where all the Q-interior algebra homomorphisms but the horizontal ones are embeddings,
already provides some relationship between the source algebras of b and c (cf. 2.2).

3.5

If Rε is a local pointed group on OH , we set

CG(Rε) = CG(R) ∩ NG(Rε) and EG(Rε) = NG(Rε)/R · CG(Rε) (3.5.1)

and denote by b(ε) the block of CH (R) determined by ε, and by b̄(ε) the image of b(ε)
in kC̄H (R) = k(CH (R)/Z(R)); recall that we have a canonical C̄G(R)-interior algebra
isomorphism [19, Proposition 3.2]

kC̄G(R)TrC̄G (R)
C̄G (Rε)

(
b̄(ε)

) ∼= IndC̄G (R)
C̄G (Rε)

(
kC̄G(Rε)b̄(ε)

)
. (3.5.2)

Moreover, note that if εG is a local point of R on OG such that mεG
ε 	= 0 then we have

EG(RεG ) ⊂ EG(Rε); (3.5.3)

indeed, the restriction to CH (R) of a simple kCG(R)-module determined by εG is semisimple
(cf. 2.9.1) and therefore CG(R) acts transitively on the set of local points ε′ of R on OH
such that mεG

ε′ 	= 0, so that we have

NG(RεG ) ⊂ CG(R) · NG(Rε). (3.5.4)

Then, we also consider EH (RεG ) = EH (Rε) ∩ EG(RεG ).

3.6

Since (Q, f
H
) is a maximal Brauer (c, H)-pair, we have (cf. 2.12.2)

kC̄H (Q) f̄
H ∼= (OH)(Qδ) (3.6.1)

and, according to the very definition of the k∗-group N̂G(Qδ), we also have a k∗-group
homomorphism

N̂G(Qδ) −→
(

kC̄H (Q) f̄
H
)∗ ; (3.6.2)

then, denoting by ĈG(Qδ) the corresponding k∗-subgroup of N̂G(Qδ) and setting

Z = CG(Qδ)/CH (Q) and Ẑ = ĈG(Qδ)/CH (Q), (3.6.3)

it follows from [19, Theorem 3.7] that we have a canonical C̄G(Qδ)-interior algebra isomor-
phism

kC̄G(Qδ) f̄
H ∼= kC̄H (Q) f̄

H ⊗k (k∗ Ẑ)◦. (3.6.4)

Now, this isomorphism and the corresponding isomorphism 3.5.2 determine a k-algebra
isomorphism

Z
(
kC̄G(Q)

)
TrC̄G (Q)

C̄G (Qδ)

(
f̄

H
) ∼= Z(k∗ Ẑ), (3.6.5)

and induce a bijection between the set of local points δG of Q on OGb such that mδG
δ 	= 0

and the set of points of the k-algebra (k∗ Ẑ)◦b̂δ where we denote by B̄rQ(b) the image of
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124 L. Puig

BrQ(b) in kC̄G(Q) and by b̂δ the image of B̄rQ(b)TrC̄G (Q)
C̄G (Qδ)

( f̄
H
) in the right-hand member

of isomorphism 3.6.5.

Proposition 3.7 With the the notation above, the idempotent b̂δ is primitive in Z(k∗ Ẑ)EG (Qδ).
In particular, if EG(Qδ) acts trivially on Ẑ then P

γ
G contains Q

δ
G for any local point δ

G
of

Q on OGb such that mδ
G

δ 	= 0.

Proof Since Q = H ∩ P , for any a ∈ (OG)P it is easily checked that

BrQ

(
TrG

P (a)
)
= TrNG (Q)

P

(
BrQ(a)

)
(3.7.1)

and, in particular, we have BrQ
(
(OG)GP

) ∼= kCG(Q)
NG (Q)
P (cf. 2.9.1); consequently, since

the idempotent b ∈ (OG)GP is primitive in Z(OG), setting EG(Q) = NG(Q)
/(

Q ·
CG(Q)

)
,BrQ(b) is still primitive in [17, Proposition 3.23]

kCG(Q)
NG (Q) = Z (kCG(Q))

EG (Q) , (3.7.2)

which amounts to saying that NG(Q) acts transitively over the set of k-blocks of CG(Q)
involved in BrQ(b); hence, since any k-block of CG(Q)maps on a k-block of C̄G(Q) (cf. 2.9),
B̄rQ(b) is also primitive in Z(kC̄G(Q))EG (Q) and then, it suffices to apply isomorphism 3.6.5.

On the other hand, identifying (OG)(Q) with kCG(Q) (cf. 2.9.1), it is easily checked
that BrQ((OG)P ) = kCG(Q)P and therefore, for any i ∈ γ G , the idempotent BrQ(i) is
primitive in kCG(Q)P [17, Proposition 3.23]; thus, since the canonical P-algebra homomor-
phism kCG(Q)→ kC̄G(Q) is a strict semicovering [16, Theorem 2.9], it follows from [6,
Proposition 3.15] that the image B̄rQ(i) of BrQ(i) in kC̄G(Q)P remains a primitive idempo-
tent and that, denoting by γ̄ G the point of P on kC̄G(Q) determined by B̄rQ(i), Pγ̄ G remains
a maximal local pointed group on kC̄G(Q).

Moreover, since P fixes f
H

(cf. 3.3), we may choose i ∈ γ G fulfilling BrQ(i) =
BrQ(i) f

H
; in this case, it follows from isomorphism 3.5.2 and from [19, Proposition 3.5]

that B̄rQ(i) is a primitive idempotent of (kC̄G(Qδ) f̄
H
)P and that Pγ̄ G is also a maximal

local pointed group on kC̄G(Qδ) f̄
H

.
But, it follows from isomorphism 3.6.4 that we have(

kC̄G(Qδ) f̄
H
)
(P) ∼=

(
kC̄H (Q) f̄

H
)
(P)⊗k (k∗ Ẑ)◦(P) (3.7.3)

and therefore, since evidently ib = i , Pγ̄ G determines a maximal local pointed group P ˆ̄γG

on (k∗ Ẑ)◦b̂δ [9, Theorem 5.3]; moreover, if EG(Qδ) acts trivially on Ẑ then b̂δ is a block
of Ẑ and therefore all the maximal local pointed groups on (k∗ Ẑ)◦b̂δ are mutually conjugate
(cf. 2.5). Then, any idempotent ˆ̄ı ∈ ˆ̄γ G has a nontrivial image in all the simple quotient of
(k∗ Ẑ)◦ (cf. 2.2.2); now, the last statement follows from 3.6. ��

Proposition 3.8 Let δG be a local point of Q on OG such that mδ
G

δ 	= 0. The commutator

in N̂G(Qδ)/Q · CH (Q) induces a group homomorphism

� : F −→ Hom(Z , k∗) (3.8.1)

and Ker(�) is contained in EH (Qδ
G ). In particular, EH (Qδ

G ) is normal in F, F/EH (Qδ
G )

is an Abelian p′-group and, denoting by K̂ δ and K̂ δ
G

the respective converse images in
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ĈG(Qδ) of the fixed points of F and EH (Qδ
G ) over Ẑ , we have the exact sequence

1 −→ K̂ δ −→ K̂ δ
G −→ Hom

(
F/EH (Qδ

G ), k∗
)
−→ 1. (3.8.2)

Proof It is quite clear that F and Z are normal subgroups of the quotient NG(Qδ)/Q ·CH (Q)
and therefore their converse images F̂ and Ẑ in the quotient N̂G(Qδ)/Q · CH (Q) still nor-
malizes each other; but, since we have

NH (Qδ) ∩ CG(Qδ) = CH (Q), (3.8.3)

their commutator is contained in k∗; hence, indentifying Hom(Z , k∗) with the group of the
automorphisms of the k∗-group Ẑ which act trivially on Z , we easily get homomorphism
3.8.1.

In particular, Ker(�) acts trivially on the k∗-group Ẑ and therefore, since its action
is compatible with the bijection in 3.6 above, it is contained in EH (Qδ

G ); hence, since the
p′-group Hom(Z , k∗) is Abelian, EH (Qδ

G ) is normal in EH (Qδ) (cf. 3.5.3) and F/EH (Qδ
G )

is Abelian.
Symmetrically, the commutator in N̂G(Qδ)/Q · CH (Q) also induces surjective group

homomorphisms

ĈG(Qδ) −→ Hom
(
F/Ker(�), k∗

)
ĈG(Qδ) −→ Hom

(
EH (Qδ

G )/Ker(�), k∗
)

(3.8.4)

and it is quite clear that the kernels, respectively, coincide with K̂ δ and K̂ δ
G

; consequently,
the kernel of the surjective group homomorphism

ĈG(Qδ)/K̂ δ −→ ĈG(Qδ)/K̂ δ
G

(3.8.5)

is canonically isomorphic to Hom(F/EH (Qδ
G ), k∗). We are done.

3.9

Assume that b is an inertial block of G or, equivalently, that there is a primitive Dade P-alge-
bra S such that, with the notation in 2.13 above, we have a P-interior algebra isomorphism

(OG)γ G ∼= S ⊗O O∗ L̂ (3.9.1)

where we consider S endowed with the unique P-interior algebra structure fulfilling
detS(P) = {1} (cf. 2.14). In this case, it follows from [6, Lemma 1.17] and [8, Proposi-
tion 2.14 and Theorem 3.1] that

E = FOG(Pγ G ) = FS(P{1S}) ∩ FO∗ L̂(P{1L̂ }) (3.9.2)

and, in particular, that S is E-stable [8, Proposition 2.18]. Moreover, since we have a
P-interior algebra embedding (cf. 2.14)

O −→ EndO(S) ∼= S◦ ⊗O S, (3.9.3)

we still have a P-interior algebra embedding

O∗ L̂ −→ S◦ ⊗O (OG)γ G . (3.9.4)
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3.10

Conversely, always with the notation in 2.13, assume that S is an E-stable Dade P-algebra
or, equivalently, that E is contained in FS(Pπ ) where π denotes the unique local point of P
on S (cf. 2.14); since we have [9, Proposition 5.9]

FS(Pπ ) ∩ FOG(Pγ G ) ⊂ FS◦⊗OOG(Pπ×γ G ) (3.10.1)

where π × γ G denotes the local point of P on S◦ ⊗O OG determined by π and γ G [9,
Proposition 5.6], and we still have [18, Theorem 9.21]

F̂S(Pπ ) ∼= k∗ × FS(Pπ ), (3.10.2)

it follows from [9, proposition 5.11] that the k∗-group Ê is isomorphic to a k∗-subgroup of
F̂S◦⊗OOG(Pπ×γ G ); then, since E is a p′-group, it follows from [10, Proposition 7.4] that
there is an injective unitary P-interior algebra homomorphism

O∗ L̂ −→ (S◦ ⊗O OG)π×γ G (3.10.3)

and, in particular, we have

|P||E | ≤ rankO(S◦ ⊗O OG)π×γ G . (3.10.4)

��
Proposition 3.11 With the notation above, the block b is inertial if and only if there is an
E-stable Dade P-algebra S such that

rankO
(
S◦ ⊗O OG

)
π×γ G = |P||E | (3.11.1)

Proof If b is inertial then the equality 3.11.1 follows from the existence of embedding 3.9.4.
��

Conversely, we claim that if equality 3.11.1 holds then the corresponding homomor-
phism 3.10.3 is an isomorphism; indeed, since this homomorphism is injective and we have
rankO(O∗ L̂) = |P||E |, it suffices to prove that the reduction to k of homomorphism 3.10.3
remains injective; but, it also follows from [10, Proposition 7.4] that, setting k S = k ⊗O S,
there is an injective unitary P-interior algebra homomorphism

k∗ L̂ −→
(

k S◦ ⊗k kG
)
π̄×γ̄ G

, (3.11.2)

where π̄ and γ̄ G denote the respective images ofπ and γ G in k S◦ and kG, which is a conjugate
of the reduction to k of homomorphism 3.10.3.

Now, embedding 3.9.3 and the structural embedding

(S◦ ⊗O OG)π×γ G −→ S◦ ⊗O (OG)γ G (3.11.3)

determine P-interior algebra embeddings

S ⊗O (S◦ ⊗O OG)π×γ G −→ S ⊗O S◦ ⊗O (OG)γ G

�‖ �⏐
S ⊗O O∗ L̂ (OG)γ G

; (3.11.4)

thus, since P has a unique local point on S ⊗ S◦ ⊗O (OG)γ G [9, Theorem 5.3], we get a
P-interior algebra embedding

(OG)γ G −→ S ⊗O O∗ L̂ (3.11.5)

which proves that b is inertial. We are done.
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3.12

With the notation above, assume that the block b is inertial; then, denoting by χ the unique

local point of Q on S (cf. 2.14) and by δ
G

a local point of Q on OGb such that mδ
G

δ 	= 0, there

is a unique local point δ̂
L

of Q on O∗ L̂ such that isomorphism 3.9.1 induces a Q-interior
algebra embedding [9, Proposition 5.6]

(OG)
δ

G −→ Sχ ⊗O (O∗ L̂)δ̂L ; (3.12.1)

but, the image of Q in (Sχ )∗ need not be contained in the kernel of the corresponding deter-
minant map. Note that, as above, it follows from this embedding and from [6, Lemma 1.17]
and [8, Proposition 2.14 and Theorem 3.1] that

EG(Qδ
G ) = FOG(Qδ

G ) = FS(Qχ ) ∩ FO∗ L̂(Q δ̂
L ), (3.12.2)

so that the Dade Q-algebra Sχ is EG(Qδ
G )-stable; as in 2.13 above, let us consider the

corresponding semidirect products

M = Q � F and M̂ = Q � F̂ . (3.12.3)

We are ready to state our main result.

Theorem 3.13 With the notation above, assume that the block b of G is inertial. Then, there
is a Q-interior algebra isomorphism

(OH)δ ∼= Sχ ⊗O O∗M̂ (3.13.1)

and, in particular, the block c of H is inertial too.

Proof We argue by induction on |G/H |; in particular, if H ′ is a proper normal subgroup of
G which properly contains H , it suffices to choose a block c′ of H ′ fulfilling c′b 	= 0 to get
c′c 	= 0 and the induction hypothesis successively proves that the block c′ of H ′ is inertial
and then that the block c is inertial too; moreover, setting Q′ = H ′ ∩ P , the corresponding
Dade Q′-algebra comes from S and therefore the final Dade Q-algebra also comes from S.
Consequently, since G fixes c, it follows from the Frattini argument that we have (cf. 2.3)

G = H · NG(Qδ) (3.13.2)

and therefore we may assume that either CG(Qδ) ⊂ H or G = H · CG(Qδ).

Firstly assume that CG(Qδ) ⊂ H ; in this case, it follows from [18, Proposition 15.10] that
b = c; moreover, since CG(Qδ) = CH (Q), it follows from 3.6 above that Q has a unique

local point δ
G

on OGb such that mδ
G

δ 	= 0, and from isomorphism 3.6.4 that we have

(OH)(Qδ) ∼= kC̄H (Q) f̄
H ∼= kC̄G(Qδ) f̄

H ; (3.13.3)

in particular, NG(Qδ) normalizes Q
δ

G and therefore the inclusion 3.5.3 becomes an equality

EG(Qδ
G ) = EG(Qδ); (3.13.4)

thus, since F is obviously contained in EG(Qδ), Sχ is F-stable too. Consequently, according
to Proposition 3.11, it suffices to prove that

rankO(S◦χ ⊗O OH)χ×δ = |Q||F |. (3.13.5)
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As in 3.12 above, the P-interior algebra embedding 3.9.4 induces a Q-interior algebra
embedding [9, Theorem 5.3]

(O∗ L̂)δ̂L −→ S◦χ ⊗O (OG)δG (3.13.6)

and it suffices to apply again [6, Lemma 1.17] and [8, Proposition 2.14 and Theorem 3.1] to
get

EL(Q δ̂
L ) = FO∗ L̂(Q δ̂

L ) = FS(Qχ ) ∩ FOG(Qδ
G ), (3.13.7)

so that we obtain

EL(Q δ̂
L ) = EG(Qδ

G ) ⊂ FS(Qχ ). (3.13.8)

In particular, it follows from [8, Proposition 2.12] that for any x ∈ NG(Qδ) there is
sx ∈ (Sχ )∗ fulfilling

sx · u = ux · sx (3.13.9)

for any u ∈ Q, and therefore, choosing a set of representatives X ⊂ NG(Qδ) for G/H
(cf. 3.13.2), we get an OQ-bimodule direct sum decomposition

S◦χ ⊗O OG =
⊕
x∈X

(sx ⊗ x)(S◦χ ⊗O OH). (3.13.10)

But, for any x ∈ NG(Qδ), the element sx ⊗ x normalizes the image of Q in S◦χ ⊗O OH
and it is clear that it also normalizes the local point χ × δ of Q on this Q-interior algebra;
more precisely, if Sχ = 	S	 for 	 ∈ χ and (OH)δ = j (OH) j for j ∈ δ, there is j ′ ∈ χ × δ
such that [9, Proposition 5.6]

j ′(	⊗ j) = j ′ = (	⊗ j) j ′; (3.13.11)

thus, for any x ∈ NG(Qδ) the idempotent j ′sx⊗x still belongs to χ × δ and therefore there is
an inversible element ax in (S◦χ ⊗O OH)Q fulfilling

j ′sx⊗x = j ′ax , (3.13.12)

so that we get the new OQ-bimodule direct sum decomposition

j ′(S◦ ⊗O OG) j ′ =
⊕
x∈X

(sx ⊗ x)(ax )
−1 j ′(S◦ ⊗O OH) j ′. (3.13.13)

Moreover, the equality in 3.13.8 forces the group EG(Qδ) = EG(Qδ
G ) to have a normal

Sylow p-subgroup and therefore, since we are assuming that CG(Qδ) ⊂ H , it follows from
equality 3.13.2 that the quotient G/H also has a normal Sylow p-subgroup. At this point,
arguing by induction, we may assume that G/H is either a p-group or a p′−group.

Firstly assume that G/H is a p-group or, equivalently, that G = H ·P [9, Lemma 3.10]; in
this case, it follows from [6, Proposition 6.2] that the inclusion homomorphism OH → OG
is a strict semicovering of Q-interior algebras (cf. 2.1) and, in particular, we have δ ⊂ δG

since mδ
G

δ 	= 0; similarly, since for any subgroup R of Q we have [9, Proposition 5.6]

(S◦ ⊗O OH)(R) ∼= S(R)◦ ⊗k (OH)(R)
(3.13.14)

(S◦ ⊗O OG)(R) ∼= S(R)◦ ⊗k (OG)(R),
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it follows from [6, Theorem 3.16] that the corresponding Q-interior algebra homomorphism
S◦ ⊗O OH → S◦ ⊗O OG is also a strict semicovering and, in particular, we have χ × δ ⊂
χ × δG

, so that j ′ belongs to χ × δG
.

But, since Q
δ

G ⊂ P
γ

G (cf. 3.4), it is easily checked that Q
χ×δG ⊂ P

π×γ G , where as
above π is the unique local point of P on S, and therefore we get the Q-interior algebra
embedding (cf. embeddings 2.2.3 and 3.9.4)

(S◦ ⊗O OG)
χ×δG −→ ResP

Q(S
◦ ⊗O OG)

π×γ G ∼= ResP
Q(O∗ L̂); (3.13.15)

in particular, it follows from equality 3.13.13 that we have

|X | rankO (S◦χ ⊗O OH)χ×δ ≤ |L|. (3.13.16)

Moreover, we have |X | = |G/H | = |P/Q| and, since CP (Q) ⊂ Q, it follows from [4, Ch.
5, Theorem 3.4] that E ⊂ L acts faithfully on Q = H ∩ P; in particular, δ̂

L
is the unique

local point of Q on O∗ L̂ (actually, we have δ̂
L = {1O∗ L̂

}) and therefore, since (cf. 3.13.4
and 3.13.8)

EL(Q δ̂L ) = EG(QδG ) = EG(Qδ) ⊃ F (3.13.17)

and EG(Qδ)/F is a p-group, the p′-group E is actually isomorphic to F .
Consequently, it follows from the inequalities 3.10.4 and 3.13.16 that

|F ||Q| ≤ rankO(S◦χ ⊗O OH)χ×δ ≤ |L|/|X | = |F ||Q| (3.13.18)

which forces equality in 3.13.6.
Secondly assume that G/H is a p′-group; in this case, we have Q = P , δ = γ and

δ
G = γ G

; in particular, since we are assuming that

CG(Qδ) ⊂ H and EG(Qδ
G ) = EG(Qδ), (3.13.19)

we actually get

|X | = |G/H | = |EG(Pγ G )|/|EH (Qδ)| = |E |/|F |. (3.13.20)

Moreover, we claim that, as above, the idempotent j ′ remains primitive in (S ⊗O OG)P 1,
so that it belongs to π × γ G ; indeed, setting

A′ = j ′(S◦ ⊗O OG) j ′ and B ′ = j ′(S◦ ⊗O OH) j ′, (3.13.21)

let i ′ be a primitive idempotent of A′P such that BrP (i ′) 	= 0; in particular, i ′ belongs to
π × γ G and we may assume that

i ′A′i ′ = (S◦ ⊗O OG)
π×γ G ∼= O∗ L̂. (3.13.22)

It is clear that the multiplication by B ′ on the left and the action of P by conjugation
endows A′ with a B ′P-module structure and, since the idempotent j ′ is primitive in B ′P ,
equality 3.13.13 provides a direct sum decomposition of A′ in indecomposable B ′P-modules.
More explicitly, note that B ′ is an indecomposable B ′P-module since we have EndB′P (B ′) =
B ′P ; but, for any x ∈ X , the inversible element

a′x = (sx ⊗ x)(ax )
−1 j ′ (3.13.23)

1 The corresponding argument has been forgotten in [18] at the end of the proof of Proposition 15.19!
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of A′ together with the action of x on P determine an automorphism gx of B ′P; thus, equality
3.13.13 provides the following direct sum decomposition on indecomposable B ′P-modules

A′ ∼=
⊕
x∈X

Resgx (B
′). (3.13.24)

Moreover, we claim that the B ′P-modules Resgx (B
′) and Resgx ′ (B

′) for x, x ′ ∈ X are
isomorphic if and only if x = x ′; indeed, a B ′P-module isomorphism

Resgx (B
′) ∼= Resgx ′ (B

′) (3.13.25)

is necessarily determined by the multiplication on the right by an inversible element b′ of B ′
fulfilling

(xux−1) · b′ = b′ · (x ′ux ′−1) (3.13.26)

or, equivalently, (u · j ′)b′ = uxx ′−1 · j ′ for any u ∈ P , which amounts to saying that the
automorphism of P determined by the conjugation by x ′x−1 is a B ′-fusion from Pγ to Pγ
[8, Proposition 2.12]; but, once again from [6, Lemma 1.17] and [8, Proposition 2.14 and
Theorem 3.1] we get

FA′(Pγ G ) = EG(Pγ G ) = E and FB′(Pγ ) = EH (Pγ ); (3.13.27)

hence our claim now follows from equalities 3.13.20.
On the other hand, it is clear that A′i ′ is a direct summand of the B ′P-module A′ and

therefore there is x ∈ X such that Resgx (B
′) is a direct summand of the B ′P-module A′i ′;

but, it follows from [8, Proposition 2.14] that we have

Fi ′A′i ′(Pγ G ) = FA′(Pγ G ) = E (3.13.28)

and therefore, once again applying [8, Proposition 2.12], for any y ∈ NG(Pγ G ) there is an

inversible element c′y in A′ fulfilling

c′y(u · i ′)(c′y)−1 = yuy−1 · i ′ (3.13.29)

for any u ∈ P; then, for any x ′ ∈ X , it is clear that A′i ′ = A′i ′c′
x−1x ′ has a direct summand

isomorphic to Resgx ′ (B
′), which forces the equality of the O-ranks of A′i ′ and A′, so that

A′i ′ = A′ and i ′ = j ′, which proves our claim. Consequently, it follows from the equalities
3.13.13 and 3.13.20 that

rankO (S◦χ ⊗O OH)χ×δ = |L|/|X | = |F ||Q|, (3.13.30)

so that equality holds in 3.13.6.
From now on, we assume that H · CG(Qδ) = G; in particular, CG(Q) stabilizes δ, we

have EG(Qδ) = EH (Qδ) = F and we can choose the set of representatives X for G/H
contained in CG(Q) so that this time we get the OQ-bimodule direct sum decomposition

S◦χ ⊗O OG =
⊕
x∈X

(1S ⊗ x)(S◦χ ⊗O OH). (3.13.31)

Since any z ∈ CG(Q) stabilizes δ choosing again 	 ∈ χ, j ∈ δ and j ′ ∈ χ × δ such that [9,
Proposition 5.6]

j ′(	⊗ j) = j ′ = (	⊗ j) j ′, (3.13.32)
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there is an inversible element az in (OH)Q fulfilling j z = jaz ; consequently, with the
notation above, from these choices and equality 3.13.31 we have

A′ =
⊕
x∈X

(1S ⊗ x(ax )
−1)B ′. (3.13.33)

As in Proposition 3.8, denote by K̂ δ the converse image in ĈG(Q) of the fixed points of
F in Ẑ and by K δ the k∗-quotient K̂ δ/k∗ of K̂ δ; since K̂ δ is a normal k∗-subgroup of
ĈG(Q), H · K δ is a normal subgroup of G and therefore, arguing by induction, we may
assume that it coincides with H or with G.

Firstly assume that H ·K δ = G; in this case, since we have K δ = CG(Q), F acts trivially

on Ẑ and we have F = EH (Qδ
G ) for any local point δ

G
of Q on OGb such that mδ

G

δ 	= 0,
so that Sχ is F-stable (cf. 3.12.2); consequently, according to Proposition 3.11, once again
it suffices to prove that

rankO(S◦χ ⊗O OH)χ×δ = |Q||F |. (3.13.34)

For any z ∈ CG(Q), the element z(az)
−1 stabilizes j (OH) j = (OH)δ and actually it

induces a Q-interior algebra automorphism gz of the source algebra (OH)δ ; but, symmetri-
cally, CG(Q) acts trivially on [8, Proposition 2.14 and Theorem 3.1]

F̂ = ÊH (Qδ)
◦ ∼= F̂(OH)δ (Qδ); (3.13.35)

hence, it follows from [10, Proposition 14.9] that gz is an inner automorphism and therefore,
up to modifying our choice of az , we may assume that z(az)

−1 centralizes (OH)δ ; then, for
any x ∈ X the element 1S ⊗ x(ax )

−1 centralizes

B ′ = j ′(S◦ ⊗O OH) j ′ (3.13.36)

and therefore, denoting by C the centralizer of B ′ in A′, it follows from equality 3.13.33 that
we have

A′ = C ⊗Z(B′) B ′; (3.13.37)

in particular, we get A′Q = C ⊗Z(B′) B ′Q which induces a k-algebra isomorphism
[10, 14.5.1]

A′(Q) ∼= C ⊗Z(B′) k Z(Q) (3.13.38)

and then it follows from isomorphism 3.6.4 that

k ⊗Z(B′) C ∼= (k∗ Ẑ)◦. (3.13.39)

At this point, for any local point δ
G

of Q on OGb such that mδ
G

δ 	= 0, it follows
from Proposition 3.7 that Q

δ
G ⊂ P

γ
G , so that Q

χ×δG ⊂ P
π×γ G [9, Proposition 5.6] and

therefore χ × δG
is also a local point of Q on the P-interior algebra (cf. embedding 3.9.4)

(S◦ ⊗O OG)
π×γ G ∼= O∗ L̂; (3.13.40)

actually, since NG(P) normalizes Q = H ∩ P, Q is normal in L and therefore all the points
of Q on O∗ L̂ are local (cf. 2.10). In conclusion, since {1L } is the unique point of P on O∗ L̂ ,
isomorphism 3.13.40 induces a bijective correspondence between the sets of local points of
Q on

j ′(S◦ ⊗O OGb) j ′ = A′(1⊗ b) (3.13.41)
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and on O∗ L̂; moreover, note that if two local points χ × δG
and χ × εG of Q on the left-

hand member of 3.13.40 correspond to two local points δ̂
G

and ε̂G of Q on O∗ L̂ , choosing
suitable j

G ∈ δG
, k

G ∈ εG , ĵ
G ∈ δ̂G

and k̂
G ∈ ε̂G , from isomorphism 3.13.40 we still get an

OQ-bimodule isomorphism

j
G

A′kG ∼= ĵG
(O∗ L̂)k̂

G
. (3.13.42)

Consequently, since we have A′Q = C ⊗Z(B′) B ′Q and C is a free Z(B ′)-module, for

suitable primitive idempotents j̄
G

and k̄
G

of C we have (cf. 3.13.37 and 3.13.38)

dim
(

k ⊗Z(B′) (j̄
G

Ck̄
G
)
)

rankO(B ′) = rankO
(
ĵ

G
(O∗ L̂)k̂

G
)

(3.13.43)
dim

(
k ⊗Z(B′) (j̄

G
Ck̄

G
)
)
= rankk Z(Q)

(
ĵ

G
(O∗ L̂)k̂

G
)
(Q);

thus, since the respective multiplicities (cf. 2.2) of points δ̂
G

and BrO∗ L̂
Q (δ̂

G
) of Q on O∗ L̂

and on (O∗ L̂)(Q) ∼= k∗CL̂(Q) coincide with each other, we finally get

|L| = rankO(O∗ L̂) = |C̄L(Q)| rankO(B ′). (3.13.44)

But, according to 3.5.4, NG(Pγ G ) normalizes γ which determines f
H

(cf. 3.3.1) and

therefore γ determines the unique local point δ of Q on OH associated with f
H

; thus,
NG(Pγ G ) is contained in NG(Qδ) which acts trivially on Ẑ , and therefore NG(Pγ G ) stabi-

lizes all the local points δ
G

of Q on OGb fulfilling mδ
G

δ 	= 0 (cf. 3.6); hence, it follows from

isomorphism 3.13.40 above that, denoting by δ̂
G

the point of Q on O∗ L̂ determined by δ
G

,
L normalizes Q

δ̂
G ; in particular, we have

F = EG(Qδ) = EG(Qδ
G ) = F(OG)

γ
G (Qδ

G )

(3.13.45)= EL(Q δ̂
G ) = L/Q · CL(Q)

and therefore from equality 3.13.44 we get

|F ||Q| = |L|/|C̄L(Q)| = rankO(B ′), (3.13.46)

which proves that c is inertial.
Finally, assume that K δ = CH (Q); in this case, since the commutator in N̂G(Qδ)

/(
Q ·

CH (Q)
)

induces a group isomorphism

ĈG(Qδ)/K̂ δ ∼= Hom
(
F/Ker(�), k∗

)
, (3.13.47)

the quotient G/H is an Abelian p′-group and, in particular, we have P = Q. But, since with
our choices above we still have (cf. 3.13.33)

(OG)δ = j (OG) j =
⊕
x∈X

x(ax )
−1(OH)δ (3.13.48)

where the element x(ax )
−1 determines a Q-interior algebra automorphism of (OH)δ , it

suffices to consider the k∗-group

Û =
⋃
x∈X

x(ax )
−1

(
(OH)Q

δ

)∗
(3.13.49)
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to get the Q-interior algebra (OG)δ as the crossed product [3, 1.6]

(OG)δ ∼= (OH)δ ⊗((OH)Q
δ )
∗ Û . (3.13.50)

Then, since G/H is a p′-group, denoting by U the k∗-quotient of Û it follows from [10,
Proposition 4.6] that the exact sequence

1 −→ j + J
(
(OH)Q

δ

)
−→ U −→ G/H −→ 1 (3.13.51)

is split and therefore, for a suitable central k∗-extension ̂G/H of G/H , we still get an evident
Q-interior algebra isomorphism

(OG)δ ∼= (OH)δ ⊗k∗ ̂G/H ; (3.13.52)

at this point, it suffices to compute the Brauer quotients at Q of both members to get

k ⊗k Z(Q) (OG)δ(Q) ∼= k∗̂G/H (3.13.53)

and therefore, comparing this k-algebra isomorphism with isomorphism 3.6.4, we obtain a
Q-interior algebra isomorphism

(OG)δ ∼= (OH)δ ⊗k∗ Ẑ◦ (3.13.54)

for a suitable action of Z over (OH)δ defined, up to inner automorphisms of the Q-interior
algebra (OH)δ , by the group homomorphism

Z −→ Autk∗
(

ÊH (Qδ)
)

(3.13.55)

induced by the commutator in N̂G(Qδ)
/(

Q · CH (Q)
)

[10, Proposition 14.9].
Similarly, considering the trivial action of Z over S, we also obtain the Q-interior algebra

isomorphism

S◦ ⊗O (OG)δ ∼=
(
S◦ ⊗O (OH)δ

)⊗k∗ Ẑ◦; (3.13.56)

since χ × δ is the unique local point of Q on S◦ ⊗O (OH)δ , we have j ′z̄ = j ′bz̄ for a suit-
able inversible element bz̄ in (S◦ ⊗O (OH)δ)

Q ; hence, arguing as above, we finally obtain
a Q-interior algebra isomorphism

(S◦ ⊗O OG)χ×δ ∼= (S◦ ⊗O OH)χ×δ ⊗k∗ Ẑ◦. (3.13.57)

Moreover, since the k-algebra k∗ Ẑ is now semisimple, for any pair of primitive idem-
potents ı̂ and ı̂ ′ of O∗ Ẑ we have ı̂(O∗ Ẑ)ı̂ ′ = O or {0}, and, since O∗ Ẑ is contained in
(S◦ ⊗O OG)χ×δ ⊂ S◦ ⊗O OG, in the first case from isomorphism 3.13.56 we get

rankO
(
ı̂(S◦ ⊗O OG)ı̂ ′

) ≤ rankO(S◦ ⊗O OH)χ×δ; (3.13.58)

hence, since isomorphism 3.13.57 implies that

rankO(S◦ ⊗O OG)χ×δ = rankO(S◦ ⊗O OH)χ×δ |Z |, (3.13.59)

all the inequalities 3.13.58 are actually equalities and, in particular, we get (cf. embed-
ding 3.9.4)

|L| = rankO(S◦ ⊗O OG)
π×γ G = rankO(S◦ ⊗O OH)χ×δ (3.13.60)
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since P = Q and π × γ G = χ × δG
(cf. 3.4). Consequently, according to Proposition 3.11,

it suffices to prove that S is F-stable.
On the other hand, it follows from Proposition 3.7 that F acts transitively over the set

of primitive idempotents of Z(k∗ Ẑ) b̂δ; but, since k∗ Ẑ is semisimple, this set is canonically
isomorphic to the set of points of this k-algebra (cf. 2.2), so that F acts transitively over the

set of local points δ
G

of Q on OGb fulfilling mδ
G

δ 	= 0 (cf. 3.6). More precisely, choosing

δ
G = γ G

and denoting by K̂ δ
G

the converse image in ĈG(Q) of the fixed points of EH (Qδ
G )

in Ẑ and by K δ
G

the k∗-quotient of K̂ δ
G

, as above H · K δ
G

is a normal subgroup of G and

therefore, arguing by induction, we may assume that either CH (Q) = K δ
G

or G = H ·K δ
G

.
In the first case, it follows from Proposition 3.8 that

F = EH (Qδ
G ) ⊂ EG(Qδ

G ) = E (3.13.61)

so that S is indeed F-stable (cf. 3.9). In the second case, since we have (cf. Proposition 3.8)

F/EH (Qδ
G ) ∼= K δ

G

/K δ ∼= G/H ∼= Z , (3.13.62)

the number of points of O∗ Ẑ coincides with its O-rank which forces the k∗-group isomor-
phism Ẑ ∼= k∗ × Z ; in particular, isomorphism 3.13.54 becomes the Q-interior algebra
isomorphism

(OG)δ ∼= (OH)δ Z =
⊕
z∈Z

(OH)δ · z (3.13.63)

and therefore we have (OG)Q
δ
∼= (OH)Q

δ Z .
Thus, since Q = P , we may assume that the image i of 1

|Z |
∑

z∈Z z in (OG)δ ⊂ OG

belongs to δ
G = γ G

and then we get (cf. 3.9.1)

S ⊗O O∗ L̂ ∼= i(OG)i ∼= (OH)Z
δ . (3.13.64)

But, it follows from [10, Proposition 7.4] that there is a unique j + J
(
(OH)Q

δ

)
-conjugacy

class of k∗-group homomorphisms

α̂ : Q � F̂ −→ ((OH)δ)
∗ (3.13.65)

mapping u ∈ Q on u · j ; then, since Z is a p′-group, it follows from [3, Lemma 3.3
and Proposition 3.5] that we can choose α in such a way that Z normalizes α(F̂) and then
we have [Z , α(F̂)] ⊂ k∗ In this case, α(F̂) stabilizes (OH)Z

δ and therefore, throughout
isomorphism 3.13.64, F acts on S ⊗O O∗ L̂ normalizing the structural image of Q; hence,
F acts on

S ⊗O O∗ L̂
/

J (S ⊗O O∗ L̂) ∼= S ⊗O k∗ Ê (3.13.66)

stabilizing the simple k-subalgebra S⊗O k and the image of Q inside; finally, it follows from
[11, 1.5.2] that S is also F-stable. We are done.
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4 Normal sub-blocks of nilpotent blocks

4.1

With the notation of sect. 3, assume now that the block b of G is nilpotent; since we already
know that (OG)γ ∼= S ⊗O OP for a suitable Dade P-algebra S [9, Main Theorem], the
block b is also inertial and therefore we already have proved that the normal sub-block c of
H is inertial too; let us show with the following example—as a matter of fact, the example
which has motivated this note—that the block c need not be nilpotent.

Example 4.2 Let F be a finite field of characteristic different from p, q the cardinal of F and
E a field extension of F of degre n 	= 1; denoting by �n the n-th cyclotomic polynomial,
assume that p divides�n(q) but not q − 1, that�n(q) and q − 1 have a nontrivial common
divisor r—which has to be a prime number2 —and that n is a power of r . For instance, the
triple (p, q, n) could be (3, 5, 2), (5, 3, 4), (7, 4, 3) . . .

Set G = GLF(E) and H = SLF(E), and, respectively, denote by T and by W the images
in G of the multiplicative group of E and of the Galois group of the extension E/F; since p
does not divide q − 1, T ∩ H contains the Sylow p-subgroup P of T and, since p divides
�n(q), we have

CG(P) = T and NG(P) = T � W ; (4.2.1)

consequently, since W acts regularly on the set of generators of a Sylow r -subgroup of T ,
a generator ϕ of the Sylow r -subgroup of Hom(T,C∗) determines a local point γ of P on
OG such that

NG(Pγ ) = T = CG(P) (4.2.2)

and, by the Brauer First Main Theorem, Pγ is a defect pointed group of a block b of G which,
according to [13, Proposition 5.2], is nilpotent by equality 4.2.2.

On the other hand, since r divides q−1, the restrictionψ of ϕ to the intersection T ∩H =
CH (P) has an order strictly smaller than ϕ and therefore, since we clearly have

NH (P)/CH (P) ∼= W, (4.2.3)

r divides |NH (Pδ)/CH (P)| where δ denotes the local point of P on OH determined by ψ ;
once again by the Brauer First Main Theorem, Pδ is a defect pointed group of a block c of
H , which is clearly a normal sub-block of the block b of G and it is not nilpotent since r
divides |NH (Pδ)/CH (P)|.
Corollary 4.3 A block c of a finite group H is a normal sub-block of a nilpotent block b of
a finite group G only if it is inertial and has an Abelian inertial quotient.

Proof We already have proved that c has to be inertial. For the second statement, we borrow
the notation of Proposition 3.8; on the one hand, since the block b is nilpotent, we know that
EG(Qδ

G ) is a p-group; on the other hand, it follows from this proposition that EH (Qδ
G ) is

a normal subgroup of F and that F/EH (Qδ
G ) is Abelian; since the inertial quotient F is a

p′-group, we have EH (Qδ
G ) = {1} and F is Abelian. We are done. ��

2 We thank Marc Cabanes for this remark.
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Remark 4.4 Conversely, if P is a finite p-group and E a finite Abelian p′-group acting faith-
fully on P , the unique block of L̂ = P � Ê for any central k∗-extension of E is a normal
sub-block of a nilpotent block of a finite group obtained as follows. Setting

Z = Hom(E, k∗), (4.4.1)

it is clear that Z acts faithfully on Ê fixing the k∗-quotient E ; thus, the semidirect product
Ê � Z still acts on P and we finally consider the semidirect product

M̂ = P � (Ê � Z) = L̂ � Z . (4.4.2)

Then, we clearly have

(O∗M̂)(P) ∼= k (Z(P)× Z) (4.4.3)

and therefore any group homomorphism ε : Z → k∗ determines a local point of P on
O∗M̂—still noted ε; but E acts on k Z , regularly permuting the set of its points; hence, we
get

NM̂ (Pε) = k∗ × P × Z . (4.4.4)

and therefore Pε is a defect pointed group of the nilpotent block {1O∗ M̂
} of M̂ .
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