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Abstract We study the boundary regularity of solutions of elliptic operators in divergence
form with C0,α coefficients or operators which are small perturbations of the Laplacian in
non-smooth domains. We show that, as in the case of the Laplacian, there exists a close
relationship between the regularity of the corresponding elliptic measure and the geometry
of the domain.

Keywords Reifenberg flat domain · Chord arc domain · Elliptic measure

Mathematics Subject Classification (2000) 35J25 · 31B05

1 Introduction

The basic aim of this paper is to study the relationship between the elliptic measure of oper-
ators in divergence form with C0,α coefficients or operators which are small perturbations of
the Laplacian, and the geometry of the boundary of the domain. We concentrate on domains
whose boundary is locally flat, where this notion will be understood in a weak sense. Let
� ⊂ R

n+1 be an open set. Loosely speaking we say that ∂� is locally flat if locally it
can be well approximated by affine spaces. In particular, such domains are non-tangentially
accessible (NTA) and therefore their elliptic measure ω is doubling (see [12,13]).

We prove that if ∂� is well approximated by n-planes in the Hausdorff distance sense then
the doubling constant of the elliptic measure of divergence form operators with Hölder coef-
ficients, ω, asymptotically approaches the doubling constant of the n-dimensional Lebesgue
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16 E. Milakis, T. Toro

measure. If moreover the unit normal vector to ∂� has small (resp. vanishing) mean oscilla-
tion, then the logarithm of the corresponding elliptic kernel has small (resp. vanishing) mean
oscillation.

In [4], Dahlberg showed that if � is Lipschitz domain then the harmonic measure and
the surface measure are mutually absolutely continuous. In addition the Poisson kernel is
a B2 weight with respect to the surface measure to the boundary, which implies that the
logarithm of the Poisson kernel is a function of bounded mean oscillation with respect to the
surface measure on ∂� (i.e it is in B M O(∂�)). Jerison and Kenig [12], showed that if � is
a C1 domain then the logarithm of the Poisson kernel is in V M O(∂�). In the case when the
boundary is locally flat, Kenig and Toro gave a full description of the relation between the
harmonic measure of the domain and the geometry of its boundary (see [15]). More precisely
if � ⊂ R

n+1 is an open connected Reifenberg flat domain with vanishing constant then the
harmonic measure behaves asymptotically like the Euclidean measure. If � is a chord arc
domain with vanishing constant then the logarithm of the Poisson kernel has vanishing mean
oscillation (i.e. it is in V M O(∂�)).

The regularity of the elliptic kernel for divergence form operators which are perturbations
of the Laplacian on Lipschitz domains has been studied by several authors. Dahlberg [5],
showed that if the difference between the coefficients of an elliptic, divergence form operator
L , and the Laplacian satisfies a Carleson condition with vanishing trace then the correspond-
ing elliptic kernel is a B2 weight with respect to surface measure. In [9], Fefferman, Kenig
and Pipher studied the case when the same Carleson condition is satisfied but without the
smallness assumption. In that case, the elliptic measure of L is an A∞ weight with respect to
surface measure. In [7] Escauriaza proved that on a C1 domain if the difference between the
coefficients of L and the Laplacian satisfies a Carleson condition with vanishing trace then
the logarithm of the elliptic kernel is in V M O(∂�).

In this paper we extend the results of [15] to more general uniformly elliptic operators in
divergence form. In Sect. 2 we present the preliminaries, define the two classes of operators
we intend to study and state our main results. In Sect. 3 we prove that the elliptic measure of
a divergence form elliptic operator with Hölder coefficients on a Reifenberg flat domain with
vanishing constant is asymptotically optimally doubling. The proofs in this section follow the
arguments presented in [15]. In Sect. 4 we show that, in a chord arc domain with vanishing
constant, the logarithm of the corresponding elliptic kernel is in V M O . In Sect. 4, we also
extend some of the results in [9] to chord arc domains with small constant. A natural ques-
tion is whether Escauriaza’s result (see [7]) generalizes to chord arc domains with vanishing
constant. We expect this to be the case.

2 Preliminaries and results

In this section we recall some definitions and state our main results. First we introduce
the class of Reifenberg flat domains, which are domains whose boundary can be well
approximated by planes. In particular Lipschitz domains with small constant are Reifenberg
flat.

Definition 2.1 Let � ⊂ R
n+1 be a bounded domain, we say that ∂� separates R

n+1 if there
exist δ > 0, and R > 0 such that for each Q ∈ ∂�, there exist an n-dimensional plane
L(Q, R) containing Q and a choice of unit normal vector to L(Q, R), nQ,R satisfying

T +(Q, R) = {X = (x, t) = x + tnQ,R ∈ B(Q, R) : x ∈ L(Q, R), t > 2δR} ⊂ �, (2.1)
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Divergence form operators in Reifenberg flat domains 17

and

T −(Q, R)={X =(x, t)= x + tnQ,R ∈ B(Q, R) : x ∈ L(Q, R), t < −2δR} ⊂ �c. (2.2)

Here B(Q, R) denotes the (n + 1)-dimensional ball of radius R and center Q.

Definition 2.2 Let � ⊂ R
n+1, δ > 0, R > 0. We say that � is a (δ, R)-Reifenberg flat

domain if ∂� separates R
n+1, and for each Q ∈ ∂�, and for every r ∈ (0, R] there exists an

n-dimensional plane L(Q, r) containing Q such that

1

r
D[∂� ∩ B(Q, r), L(Q, r) ∩ B(Q, r)] ≤ δ (2.3)

where D denotes the Hausdorff distance.

We denote by

θ(r) = sup
Q∈∂�

inf
L

{
1

r
D[∂� ∩ B(Q, r), L ∩ B(Q, r)]

}
, (2.4)

where the infimum is taken over all n-planes containing Q.

Definition 2.3 Let � ⊂ R
n+1, we say that � is a Reifenberg flat domain with vanishing

constant if it is (δ, R)-Reifenberg flat for some δ > 0 and R > 0, and

lim sup
r→0

θ(r) = 0. (2.5)

Note that definitions 2.1 and 2.2 are only significant for δ > 0 small. Thus when talking
about (δ, R)-Reifenberg flat domains we assume that δ is small enough. In particular, we
assume that δ is small enough so that if � is a (δ, R) Reifenberg flat domain it is also an
NTA domain (see [15]).

Definition 2.4 Let � ⊂ R
n+1. We say that � is a chord arc domain (CAD) if � is an NTA

set of locally finite perimeter such that there exists C > 1 so that for r ∈ (0, diam �) and
Q ∈ ∂�

C−1rn ≤ σ(B(Q, r)) ≤ Crn . (2.6)

Here σ = Hn ∂� and Hn denotes the n-dimensional Hausdorff measure.

Definition 2.5 Let � ⊂ R
n+1, δ > 0 and R > 0. We say that � is a (δ, R)-chord arc domain

(CAD) if � is a set of locally finite perimeter such that

sup
0<r≤R

θ(r) ≤ δ (2.7)

and

σ(B(Q, r)) ≤ (1 + δ)ωnrn ∀Q ∈ ∂� and ∀r ∈ (0, R]. (2.8)

Here ωn is the volume of the n-dimensional unit ball in R
n .

Definition 2.6 Let � ⊂ R
n+1, we say that � is a chord arc domain with vanishing constant

if it is a (δ, R)-CAD for some δ > 0 and R > 0,

lim supr→0θ(r) = 0 (2.9)

and

lim
r→0

sup
Q∈∂�

σ(B(Q, r))

ωnrn
= 1. (2.10)

123



18 E. Milakis, T. Toro

For the purpose of this paper we assume that � ⊂ R
n+1 is a bounded domain. We consider

elliptic operators L of the form

Lu = div(A(X)∇u) (2.11)

defined in the domain � with symmetric coefficient matrix A(X) = (ai j (X)) and such that
there are λ,	 > 0 satisfying

λ|ξ |2 ≤
n+1∑

i, j=1

ai j (X)ξiξ j ≤ 	|ξ |2 (2.12)

for all X ∈ � and ξ ∈ R
n+1.

We say that a function u in � is a solution to Lu = 0 in � provided that u ∈ W 1,2
loc (�)

and for all φ ∈ C∞
c (�) ∫

�

〈A(x)∇u,∇φ〉dx = 0.

A domain � is called regular for the operator L , if for every g ∈ C(∂�), the generalized
solution of the classical Dirichlet problem with boundary data g is a function u ∈ C(�).

Definition 2.7 Let � be a regular domain for L as above and g ∈ C(∂�). For X ∈ �

consider the linear functional g → u(X) on C(∂�), where u is the generalized solution of
the classical Dirichlet problem with boundary data g. By the Riesz representation theorem,
there exists a family of regular Borel probability measures {ωX

L }X∈� such that

u(X) =
∫
∂�

g(Q)dωX
L (Q).

For X ∈ �, ωX
L is called the L-elliptic measure of � with pole X . When no confusion arises,

we will omit the reference to L and simply called it as the elliptic measure.

To state our results we introduce two classes of operators.
We say that elliptic operator L ∈ L(λ,	, α) if it satisfies (2.11), (2.12) and the modulus

of continuity of the corresponding matrix is given, up to the boundary, by

w(r) = sup
|X−Y |≤r

|A(X) − A(Y )| ≤ c0rα (2.13)

for some α ∈ (0, 1], that is A ∈ Cα(�). Without loss of generality we assume that A is
defined in R

n+1 since A can be extended to a new matrix in the following way. If we start
with A ∈ Cα(�) then there exists an open set U such that � ⊂ U and A ∈ Cα(U ). Consider
now a smooth function φ ∈ C∞

c (Rn+1) which is equal to 1 in � and 0 outside U . We then
extend A to B = φ A + (1 − φ)I in � which gives that B ∈ Cα(Rn+1) and B = A in �.

An elliptic operator Lu = div(A(X)∇u) defined on a chord arc domain � ⊂ R
n+1 is a

perturbation of the Laplacian for the purposes of this paper if the deviation function

a(X) = sup{|Id − A(Y)| : Y ∈ B(X, δ(X)/2)} (2.14)

where δ(X) is the distance of X to ∂�, satisfies the following Carleson measure property:
there exists C > 0 such that

sup
0<r<diam�

sup
Q∈∂�

⎧⎪⎨
⎪⎩

1

σ(B(Q, r))

∫
B(Q,r)∩�

a2(X)

δ(X)
d X

⎫⎪⎬
⎪⎭ ≤ C, (2.15)
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Divergence form operators in Reifenberg flat domains 19

where σ = Hn ∂�. Note that in this case L = � on ∂� and therefore by letting L = �

in �c we may assume that L is an elliptic operator in R
n+1.

We now state some of our results:

Theorem 2.8 Let � ⊂ R
n+1 be a Reifenberg flat domain with vanishing constant, let L ∈

L(λ,	, α) and let ω be its elliptic measure. Then for all τ ∈ (0, 1),

lim
ρ→0

inf
Q∈∂�

ω(B(Q, τρ))

ω(B(Q, ρ))
= lim

ρ→0
sup

Q∈∂�

ω(B(Q, τρ))

ω(B(Q, ρ))
= τ n .

In Sect. 4 we show that if � is a chord arc domain with vanishing constant and L ∈
L(λ,	, α) then ω ∈ A∞(dσ). Furthermore we obtain the following results.

Theorem 2.9 Given ε > 0, and θ > 0 there exists δ > 0 such that if L ∈ L(λ,	, α) and
� ⊂ R

n+1 is a (δ, R)-CAD there exists r0 > 0, so that for any Q ∈ ∂� and r < r0, if
k(Q) = dω

dσ
(Q) denotes the elliptic kernel of L, then

⎛
⎜⎝ −

∫
B(Q,r)

k1+βdσ

⎞
⎟⎠

1
(1+β)

≤ (1 + ε) −
∫

B(Q,r)

kdσ,

for any β ∈ (0, 1/θ).

Theorem 2.10 Let � ⊂ R
n+1 be a chord arc domain with vanishing constant. Assume that

L ∈ L(λ,	, α). Then log k ∈ V M O(∂�).

We now recall some of the results concerning the regularity of the elliptic measure of
perturbation operators in Lipschitz domains. The results in the literature are more general
than those quoted below.

Theorem 2.11 [5] Let � = B(0, 1). If a is as in (2.14),

h(Q, r) =

⎧⎪⎨
⎪⎩

1

σ(B(Q, r))

∫
B(Q,r)∩�

a2(X)

δ(X)
d X

⎫⎪⎬
⎪⎭ (2.16)

and

lim
r→0

sup
|Q|=1

h(Q, r) = 0.

Then the elliptic kernel of L, k = dω/dσ ∈ Bq(dσ) for all q > 1.

In [8], Fefferman made the first step toward removing the smallness condition of h(Q, r)

in Theorem 2.11 by defining an appropriate quantity A(Q).

Theorem 2.12 [8] Let � = B(0, 1). Let �(Q) denote a non-tangential cone with vertex Q
and

A(Q) =
⎛
⎜⎝

∫
�(Q)

a2(X)

δn(X)
d X

⎞
⎟⎠

1/2

,

where a is as in (2.14). If ‖A‖L∞ ≤ C then ω ∈ A∞(dσ).
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The main results in [5] and in [8] are proved using a differential inequality for a family of
harmonic measures introduced by Dahlberg. In [9], Fefferman, Kenig and Pipher presented
a new direct proof of these results without the use of this differential inequality.

Theorem 2.13 [9] Let � be a Lipschitz domain. Let L be such that (2.15) holds then ω ∈
A∞(dσ).

In this paper we generalize Theorem 2.13 to chord arc domains with small constant.

Theorem 2.14 Let � be a chord arc domain. Let L be such that (2.15) holds. There exists
δ(n) > 0 such that if � ⊂ R

n+1 is a (δ, R)−CAD with 0 < δ ≤ δ(n) then ω ∈ A∞(dσ).

The various constants that will appear in the sequel may vary from formula to formula,
although for simplicity we use the same letter(s). If we do not give any explicit dependence
for a constant, we mean that it depends only on the usual parameters such as ellipticity con-
stants, NTA constants and character of the domain and dimension. Moreover throughout the
paper we shall use the notation a � b to mean that there is a constant c > 0 such that ca ≤ b.
Similarly a � b means that a � b and b � a.

Next we recall the main theorems about the boundary behavior of L-elliptic functions in
NTA domains for uniformly elliptic divergence form operators L with bounded measurable
coefficients. We refer the reader to [13] for the definitions and more details regarding elliptic
operators of divergence form defined in NTA domains.

Lemma 2.15 Let � be an NTA domain. If Lu = 0 in � ∩ B(Q, 2r) with 0 < 2r < R,
u ≥ 0 and vanishes continuously on ∂� ∩ B(Q, 2r) then there exists β > 0 such that for all
Q ∈ ∂� and for X ∈ � ∩ B(Q, r),

u(X) ≤ C

( |X − Q|
r

)β

sup{u(Y ) : Y ∈ ∂ B(Q, 2r) ∩ �}.

Lemma 2.16 Let � be an NTA domain, Q ∈ ∂�, and 0 < 2r < R. If u ≥ 0, Lu = 0 in �

and u vanishes continuously on ∂� ∩ B(Q, 2r), then

u(Y ) ≤ Cu(A(Q, r)),

for all Y ∈ B(Q, r) ∩ �. Here C only depends on the NTA constants.

Lemma 2.17 Let � be an NTA domain, Q ∈ ∂�, 0 < 2r < R, and X ∈ �\B(Q, 2r). Then

C−1 <
ωX (B(Q, r))

rn−1|G(A(Q, r), X)| < C,

where G(A(Q, r), X) is the L−Green function of � with pole X, and ωX is the corresponding
elliptic measure.

Lemma 2.18 Let � be an NTA domain with constants M > 1 and R > 0, Q ∈ ∂�,
0 < 2r < R, and X ∈ �\B(Q, 2Mr). Then for s ∈ [0, r ]

ωX (B(Q, 2s)) ≤ CωX (B(Q, s)),

where C only depends on the NTA constants of �.
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Divergence form operators in Reifenberg flat domains 21

Lemma 2.19 Let � be an NTA domain, and 0 < Mr < R. Suppose that u, v vanish con-
tinuously on ∂� ∩ B(Q, Mr) for some Q ∈ ∂�, u, v ≥ 0 and Lu = Lv = 0 in �. Then
there exists a constant C > 1 (only depending on the NTA constants) such that for all
X ∈ B(Q, r) ∩ �,

C−1 u(A(Q, r))

v(A(Q, r))
≤ u(X)

v(X)
≤ C

u(A(Q, r))

v(A(Q, r))
.

Theorem 2.20 Let � be an NTA domain. There exists a number γ ∈ (0, 1), such that for
all Q ∈ ∂�, 0 < 2r < R, and all u, v ≥ 0 satisfying Lu = Lv = 0 in � ∩ B(Q, 2r)

and which vanish continuously on ∂� ∩ B(Q, 2r), the function u(X)
v(X)

is Hölder continuous

of order γ on � ∩ B(Q, r). In particular, for every Q ∈ ∂�, limX→Q
u(X)
v(X)

exists, and for
X, Y ∈ � ∩ B(Q, r),∣∣∣∣u(X)

v(X)
− u(Y )

v(Y )

∣∣∣∣ ≤ C
u(A(Q, r))

v(A(Q, r))

( |X − Y |
r

)γ

.

We finish this section by recalling a result concerning the regularity of elliptic measure on
Lipschitz domains, as well as some doubling properties of the elliptic measure of a cylinder.
Let H ⊂ R

n+1 be an open half space, for M > 1, s > 0, and Q0 ∈ ∂ H = L we denote by

C+(Q0, Ms) =
{
(x, t) ∈ R

n+1 : x ∈ ∂ H ; |x − Q0| ≤ Ms√
n + 1

, |t | ≤ Ms√
n + 1

}
∩ H,

the cylinder with basis B(Q0, Ms/
√

n + 1) ∩ ∂ H and height Ms/
√

n + 1 contained in H .
Note that C+(Q0, Ms) ⊂ B(Q0, Ms).

Lemma 2.21 Given ε > 0 and L ∈ L(λ,	, α) there exists M0 = M0(n, ε, α) > 1, so that
if M ≥ M0, and if ω denotes the L-elliptic measure of C+(Q0, Ms) as defined above, then
for Q1, Q2 ∈ �(Q0, s) = ∂ H ∩ B(Q0, s), and r1, r2 ∈ (0, s]

(1 − ε)

(
r1

r2

)n

≤ ωX (�(Q1, r1))

ωX (�(Q2, r2))
≤ (1 + ε)

(
r1

r2

)n

, (2.17)

as long as X = (x, t) ∈ ∂C+(Q0, Ms/2) ∩ C+(Q0, Ms).

Proof After rescaling we may assume without loss of generality that Ms = 1, ri ∈ (0, 1/M],
for i = 1, 2. First let us examine the case when X = (x, t) ∈ ∂C+(Q0, 1/2), with t ≥
1/(2κ

√
n + 1) and κ > 2 to be chosen later. If ωX denotes the L-elliptic measure then

ωX (�(Q1, r1)) =
∫

�(Q1,r1)

〈A(Q)∇Q G(Q, X), ν〉dσ(Q)

or

ωX (�(Q1, r1)) ≤
∫

�(Q1,r1)

|〈A(Q)∇Q G(Q, X), ν〉 − 〈A(Q0)∇Q G(Q0, X), ν〉|dσ(Q)

+〈A(Q0)∇Q G(Q0, X), ν〉rn
1 (2.18)

where ν denotes the inward unit normal to H at Q ∈ ∂ H . By the Hopf maximum principle
(see [2,11]) there exists a constant Ck = Ck(n, λ,	, κ) > 0 such that

〈A(Q0)∇Q G(Q0, X), ν〉 ≥ Ck > 0.
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Moreover from the C1,α regularity up to the boundary [10], we estimate the first term of
(2.18) to obtain

ωX (�(Q1, r1)) ≤ (
1 + Crα

1

)
rn

1 〈A(Q0)∇Q G(Q0, X), ν〉
where C = C(n, λ,	, κ). In a similar way, using the appropriate representation we have

ωX (�(Q2, r2)) ≥ (
1 − Crα

2

)
rn

2 〈A(Q0)∇Q G(Q0, X), ν〉
provided that �(Qi , ri ) ⊂ �(Q0, 2/M). Since r1, r2 < 1/M , we conclude that

ωX (�(Q1, r1))

ωX (�(Q2, r2))
≤

(
1 + C/Mα

1 − C/Mα

)(
r1

r2

)n

and

ωX (�(Q1, r1))

ωX (�(Q2, r2))
≥

(
1 − C/Mα

1 + C/Mα

)(
r1

r2

)n

provided that M is large enough.
Now if X = (x, t) ∈ ∂C+(Q0, 1/2), and t ≤ 1/2κ

√
n + 1, ωX (�(Q1, r1)) and

ωX (�(Q2, r2)) vanish on B((x, 0), 1/4
√

n + 1) ∩ ∂ H and are non negative in C+(Q0, 1).
Applying Theorem 2.20 we have that for κ > 8,
∣∣∣∣∣
ωX (�(Q1, r1))

ωX (�(Q2, r2))
− ω(x,1/2κ

√
n+1)(�(Q1, r1))

ω(x,1/2κ
√

n+1)(�(Q2, r2))

∣∣∣∣∣ ≤ C
ω(x,1/16

√
n+1)(�(Q1, r1))

ω(x,1/16
√

n+1)(�(Q2, r2))

(
1

κ

)α

.

On the other hand our new reference points (x, 1/2κ
√

n + 1) and (x, 1/16
√

n + 1) fall into
the first case as described above, since κ > 8. Thus

(
1 − C

(
1

κ

)α)(
1 − C/Mα

1 + C/Mα

)(
r1

r2

)n

≤ ωX (�(Q1, r1))

ωX (�(Q2, r2))
≤

(
1 + C

(
1

κ

)α)

×
(

1 + C/Mα

1 − C/Mα

)(
r1

r2

)n

.

To finish the proof, for a given ε > 0 choose κ > 8 such that (1 − C(1/κ)α) ≥ √
1 − ε, and

(1 + C(1/κ)α) ≤ √
1 + ε. Next for that selection of κ choose M0 > 2 large enough so that

for M ≥ M0,

√
1 − ε ≤ 1 − C/Mα

1 + C/Mα
≤ 1 + C/Mα

1 − C/Mα
≤ √

1 + ε.

3 Optimal doubling on Reifenberg flat domains

As seen in Lemma 2.18, for L ∈ L(λ,	, α), the L-elliptic measure of an NTA domain is
a doubling measure on ∂�. In the present section we prove that for such L , the L-elliptic
measure of a Reifenberg flat domain � ⊂ R

n+1 with vanishing constant, behaves asymptot-
ically like the Euclidean measure in R

n . Using the terminology introduced by M. Korey (see
[16]) we say that the L-elliptic measure of a Reifenberg flat domain with vanishing constant
is asymptotically optimally doubling.
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Divergence form operators in Reifenberg flat domains 23

Theorem 3.1 Given ε > 0, for L ∈ L(λ,	, α), there exists M(n, ε, α) > 1, so that if
M ≥ M(n, ε, α) there exists δ(ε, α, M, r/s) = δ > 0 such that, for 0 < r ≤ s ≤ R/M and
any (δ, R)-Reifenberg flat domain � ⊂ R

n+1 we have:

(1 − ε)
(r

s

)n ≤ ωX (B(Q1, r))

ωX (B(Q2, s))
≤ (1 + ε)

(r

s

)n
,

where Q1, Q2 ∈ ∂� ∩ B(Q0, s) for some Q0 ∈ ∂�, X ∈ �, and |X − Q0| ≥ Ms.

Corollary 3.2 Let � ⊂ R
n+1 be a Reifenberg flat domain with vanishing constant, and

L ∈ L(λ,	, α). Then for any X ∈ � and τ ∈ (0, 1)

lim
ρ→0

inf
Q∈∂�

ωX (∂� ∩ B(Q, τρ))

ωX (∂� ∩ B(Q, ρ))
= lim

ρ→0
sup

Q∈∂�

ωX (∂� ∩ B(Q, τρ))

ωX (∂� ∩ B(Q, ρ))
= τ n .

The main idea of the proof is to compare the elliptic measure of a Reifenberg flat domain
with the elliptic measure of an appropriate cylinder. In order to do this we need to introduce
some extra notation.

Let � ⊂ R
n+1 be a (δ, R)-Reifenberg flat domain, with δ ≤ δ0. Let M > 1 be a large

number to be determined later, let s > 0 be so that Ms ≤ R. There exists an n-dimensional
plane L(Q0, Ms) containing Q0 and such that

1

Ms
D[∂� ∩ B(Q0, Ms), L(Q0, Ms) ∩ B(Q0, Ms)] ≤ δ,

T +(Q0, Ms) ⊂ � and T −(Q0, Ms) ⊂ �c.

In particular if we define for r = Ms or r = Ms/2

�̃(Q0, Ms)=� ∩
{
(x, t) ∈ R

n+1 : x ∈ L(Q0, Ms), |x − Q0|≤ Ms√
n + 1

,|t | ≤ Ms√
n + 1

}
,

C+(Q0, r)=
{
(x, t) ∈ R

n+1 : x ∈ L(Q0, Ms), |x − Q0| ≤ r√
n + 1

,2δr ≤ t ≤ r √
n + 1

}
,

C−(Q0, r)=
{
(x, t) ∈ R

n+1 : x ∈ L(Q0, Ms), |x − Q0|≤ r√
n + 1

, −2δr ≤ t ≤ r√
n + 1

}

and

C(Q0, Ms/2)=
{
(x, t)∈R

n+1 : x ∈L(Q0, Ms), |x − Q0|≤ Ms

2
√

n + 1
,|t |≤ Ms

2
√

n + 1

}
,

then

C+(Q0, Ms) ⊂ �̃(Q0, Ms) ⊂ C−(Q0, Ms), and C+(Q0, Ms) ⊂ T +(Q0, Ms).

Note that the Hausdorff distance between C+(Q0, Ms) and C−(Q0, Ms) is 4δMs. Besides if
nMs,Q0 denotes the unit normal to L(Q0, Ms) chosen with the appropriate orientation, then

A(Q0, Ms) = Q0 + Ms

4
√

n + 1
nMs,Q0 ∈ C+(Q0, Ms/2),

for δ small enough

B

(
A(Q0, Ms),

Ms

8
√

n + 1

)
⊂ C+(Q0, Ms/2)
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and

dist

[
B

(
A(Q0, Ms),

Ms

8
√

n + 1

)
, ∂C+(Q0, Ms/2)

]
≥ Ms

16
√

n + 1
.

Remark 3.3 If � denotes the orthogonal projection from R
n+1 onto L(Q0, Ms) then

�(�̃(Q0, Ms)) =
{

x ∈ L(Q0, Ms) : |x − Q0| ≤ Ms√
n + 1

}
.

Next we introduce the sets which arise from the intersection of ∂�̃(Ms, Q0) and cylinders
having direction nMs,Q0 . We denote by

�(Q0, s)=
{
(x, t)∈R

n+1 : x ∈L(Q0, Ms), |x−Q0|≤s, |t |≤ Ms√
n + 1

}
∩ ∂�̃(Q0, Ms)

and by

�(Q, r)=
{
(x, t)∈R

n+1 : x ∈L(Q0, Ms), |x−�(Q)|≤r, |t |≤ Mr√
n + 1

}
∩∂�̃(Q0, Ms),

for Q ∈ �(Q0, s) and r > 0 small enough so that �(Q, r) ⊂ �(Q0, s). In particular if
r = τ s for some τ ∈ (4δM, 1), then

�

⎛
⎝Q, r

√
1 −

(
2δM

τ

)2
⎞
⎠ ⊂ ∂� ∩ B(Q, r) ⊂ �(Q, r). (3.1)

If τ is relatively large with respect to 2δM , the projections of these 3 sets on L(Q0, Ms)
have almost the same area. In fact recall that |�(�(Q, r))| = ωnrn .

Let us denote by ω̃ the elliptic measure of �̃(Ms, Q0) and by ω± the elliptic measures of
C±(Q0, Ms).

Lemma 3.4 Given ε > 0, for L ∈ L(λ,	, α), there exists M(n, ε, α) > 1 such that if
M ≥ M(n, ε, α) there exists δ(ε, α, M, r/s) = δ > 0 so that if � is a (δ, R)-Reifen-
berg flat domain, then for 0 < r ≤ s ≤ R/M, Q0, Q ∈ ∂�, B(Q, r) ⊂ B(Q0, s), and
X ∈ ∂C(Q0, Ms/2) ∩ C+(Q0, Ms),

(1 − ε)ωX+(�+(Q+, r)) ≤ ω̃X (∂� ∩ B(Q, r)) ≤ (1 + ε)ωX−(�−(Q−, r)) (3.2)

where Q± = �(Q) ± 2δMsnMs,Q0 , and �±(Q±, r) = B(Q±, r) ∩ ∂C±(Q0, Ms).

Proof The basic idea is to compare the appropriate solutions of Lu = 0 in C±(Ms, Q0) and
�̃(Ms, Q0) in order to apply the maximum principle. Since Lemmata 2.15 and 2.21 are valid
we may adapt the proof of Lemma 4.1 in [15].

The following lemma gives the opposite estimate when the pole is far away from the
boundary.

Lemma 3.5 Given ε > 0, for L ∈ L(λ,	, α), there exists M(n, ε, α) > 1, so that if M ≥
M(n, ε, α) for κ > 2 there exists δ(ε, α, M, κ, r/s) = δ > 0 such that if � is a (δ, R)-Rei-
fenberg flat domain, then for 0 < r ≤ s ≤ R/M, Q0 ∈ ∂�, Q ∈ ∂�, B(Q, r) ⊂ B(Q0, s),
and X = (x, t) ∈ ∂C(Q0, Ms/2) ∩ C+(Q0, Ms), with t ≥ Ms/κ

√
n + 1,

(1 − ε)ωX−(�−(Q−, r)) ≤ ω̃X (B(Q, r)) ≤ (1 + ε)ωX+(�+(r, Q+)). (3.3)

where Q± = �(Q) ± 2δMsnMs,Q0 , and �±(Q±, r) = B(Q±, r) ∩ ∂C±(Q0, Ms).
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Proof Let ε′ = ε′(ε) > 0 to be chosen later. We first prove that, for M > 2 there exists
0 < δ(ε, M, κ, r/s) so that

ωX−(�−(Q−, r)) ≤ 1 + ε′

1 − ε′ ω
X+(�+(Q+, r)). (3.4)

Let us first show how to obtain (3.3) from (3.4). Choose M large as in Lemma 3.4. Denote
δ′ := δ(ε′, M, r/s) the constant in that lemma. Then for δ ≤ min{δ′, δ(ε′, M, κ, r/s)},
inequality (3.2) holds with ε′ instead of ε. Combining (3.2) and (3.4) we obtain

(1 − ε′)2

1 + ε′ ωX−(�−(Q−, r)) ≤ ω̃X (B(Q, r)) ≤ (1 + ε′)2

1 − ε′ ωX+(�+(Q+, r)).

Choosing ε′ > 0 so that 1 − ε ≤ (1 − ε′)2/(1 + ε′) and (1 + ε′)2/(1 − ε′) ≤ 1 + ε we obtain
inequality (3.3).

Now we continue with the proof of (3.4). Recall that C+(Q0, Ms) ⊂ �̃(Q0, Ms) ⊂
C−(Q0, Ms). Assume that δ ≤ δ′ and define

u1(x, t) = ω
(x,t)
− (�−(Q−, r)) for (x, t) ∈ C−(Q0, Ms),

and

u2(x, t) = ω
(x,t)
+ (�+(Q+, r)) for (x, t) ∈ C+(Q0, Ms).

We compare u1(x, t − 4δMs) and u2(x, t) for (x, t) ∈ ∂C+(Q0, Ms). First note that if
t = 2δMs or |x −Q0| = Ms/

√
n + 1 then u1(x, t −4δMs) = u2(x, t). Indeed, if t = 2δMs

then u1(x, t − 4δMs) vanishes for |x − �(Q)| ≥ r and it is equal to one otherwise. The
function u2 has the same behavior. When |x − Q0| = Ms/

√
n + 1 >> r both functions

vanish.
Since C−(Q0, Ms) is an NTA domain, u1 is non negative on C−(Q0, Ms) and u1(x, t) = 0

for

(x, t) ∈ ∂C−(Q0, Ms) ∩
{
(x, t) ∈ R

n+1 : t >
3Ms

4
√

n + 1

}
,

we apply Lemma 2.15 to get

u1

(
x,

Ms√
n + 1

− 4δMs

)
≤ K1δ

β

where K1 depends on the NTA constants of C−(Q0, Ms). Now consider a bounded function
v(x, t) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lv(x, t) = 0, in C+(Q0, Ms)

v(x, t) = 0, on t = 2δMs

v(x, t) = 1, on t = Ms/
√

n + 1

v(x, t) ≥ 0, on |x − Q0| = Ms/
√

n + 1.

Therefore for (x, t) ∈ ∂C+(Q0, Ms)

u1(x, t − 4δMs) ≤ u2(x, t) + K1v(x, t)δβ . (3.5)
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By the maximum principle inequality (3.5) holds for all (x, t) ∈ C+(Q0, Ms). Let

R = C+(Q0, Ms) ∩
{
(x, t) ∈ R

n+1 : x ∈ L(Q0, Ms), |x − Q0| ≤ Ms√
n + 1

(1 − 1/κ) ,

Ms

κ
√

n + 1
≤ t ≤ Ms√

n + 1

(
1 − 1

κ

)}
.

From the Hopf maximum principle and Harnack’s inequality for δ small enough and for
Y ∈ R

u2(Y ) ≥ K2 = K2(n, λ,	, κ, τ, M).

Choosing δ > 0 even smaller we have K1v(x, t)δβ ≤ K1Cδβ ≤ ε′K2, therefore for (x, t) ∈
R we obtain

u1(x, t − 4δMs) ≤ (1 + ε′)u2(x, t). (3.6)

Applying classical interior estimates (see [10, Chap. 8]) we conclude that there exists β > 0
such that for δ > 0 small enough and for (x, t) ∈ R,

u1(x, t − 4δMs) ≥ (1 − C(δκ)β)u1(x, t) ≥ (1 − ε′)u1(x, t). (3.7)

Combining (3.6) and (3.7) we have

u1(x, t) ≤ 1 + ε′

1 − ε′ u2(x, t)

for (x, t) ∈ R and the proof is concluded.

The next theorem is an immediate consequence of Lemmata 3.4 and 3.5. We refer the
reader to Theorem 4.2 of [15] for the details of the proof.

Theorem 3.6 Given ε > 0 for L ∈ L(λ,	, α), there exists M(n, ε, α) > 1, so that if
M ≥ M(n, ε, α) there exists δ(ε, M, r/s) = δ > 0 such that for any (δ, R)-Reifenberg flat
domain � ⊂ R

n+1, and 0 < r ≤ s ≤ R/M we have

(1 − ε)
(r

s

)n ≤ ω̃X (B(Q1, r))

ω̃X (B(Q2, s))
≤ (1 + ε)

(r

s

)n
,

where Q1, Q2 ∈ ∂� ∩ B(Q0, s) for some Q0 ∈ ∂�, X ∈ �̃(Q0, Ms)\C(Q0, Ms/2). Here
ω̃ denotes the elliptic measure of �̃(Ms, Q0).

We now show that as long as X ∈ �̃(Q0, Ms) is far away from Q0, ω̃X (E)/ω̃X (E ′) and
ωX (E)/ωX (E ′) are comparable, whenever E, E ′ ⊂ ∂� ∩ B(Q, 2s).

Lemma 3.7 Given ε > 0, τ ∈ (0, 1) for L ∈ L(λ,	, α), there exists M(n, ε, α) > 0 such
that for M ≥ M(n, ε, α) there exists δ = δ(ε, M, τ ) > 0 such that if � is (δ, R)-Reifen-
berg flat domain, 0 < r < s ≤ R/M, Q0 ∈ ∂�, Q ∈ ∂�, B(Q, r) ⊂ B(Q0, S) and
X ∈ �̃(Q0, Ms)\C(Q0, Ms/2), then

(1 + ε)−1 lim
Y→Q

G̃(X, Y )

G(X, Y )
≤ dω̃X (Q)

dωX (Q)
≤ (1 + ε) lim

Y→Q

G̃(X, Y )

G(X, Y )
.

Here ω (resp. ω̃) denotes the elliptic measure of � (resp. �̃(Q0, Ms)) with pole at X, and
G (resp. G̃) denotes the Green’s functions of � (resp. �̃(Q0, Ms)).
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Proof The Lebesgue differentiation theorem for Radon measures, ensures that, for ω-almost
every Q ∈ ∂� ∩ B(Q0, 2s)

dω̃X

dωX
(Q) = lim

r→0

ω̃X (B(Q, r))

ωX (B(Q, r))
. (3.8)

Consider a smooth function �r such that �r = 1 on B(Q, r), spt(�r ) ⊂ B(Q, 2r), |∇�r | ≤
C
r and |D2�r | ≤ C

r2 . Let ur satisfy Lur = 0 in � and ur = �r on ∂�. Let ũr satisfy Lũr = 0

in �̃(Ms, Q0) and ũr = �r on ∂�̃(Q0, Ms). Then

ur (X) =
∫
∂�

�r (Q)dωX (Q) = −
∫
�

〈A(Y )∇G(X, Y ),∇�r 〉dY

ũr (X) =
∫

∂�̃(Q0,Ms)

�r (Q)dω̃X (Q) = −
∫

�̃(Q0,Ms)

〈A(Y )∇G̃(X, Y ),∇�r 〉dY.

An argument similar to the one used to prove the Lebesgue differentiation theorem ensures
that

dω̃X

dωX
(Q) = lim

r→0

ũr (X)

ur (X)
. (3.9)

Let A(Q) = AQ , then
∫
�

〈A(Y )∇G(X, Y ),∇�r 〉dY =
∫
�

〈∇G(X, Y ), AQ∇�r 〉dY

+
∫
�

〈(A(Y ) − AQ)∇G(X, Y ),∇�r 〉dY.

We estimate the last term by appealing (2.13), Hölder’s inequality, a boundary Cacciopoli
estimate (see [13, Lemma 1.21]) and Lemma 2.16,∣∣∣∣∣∣

∫
�

〈(A(Y ) − AQ)∇G(X, Y ),∇�r 〉dY

∣∣∣∣∣∣

≤ Crα

⎛
⎜⎝

∫
B(Q,2r)

|∇G|2dY

⎞
⎟⎠

1/2 ⎛
⎜⎝

∫
B(Q,2r)

|∇�r |2dY

⎞
⎟⎠

1/2

≤ Crα 1

r
rn/2rn/2

(∫
B(Q,2r)

|∇G|2dY

)1/2

≤ Crαrn−2
(∫

B(Q,4r)

G2dY

)1/2

≤ Crn−2+αG(A(Q, r), X).

To estimate the first term on the right hand side note that∫
�

〈∇G(X, Y ), AQ∇�r 〉dY =
∫
�

div(G AQ∇�r )dY −
∫
�

Gdiv(AQ∇�r )dY

123



28 E. Milakis, T. Toro

thus

∣∣∣∣∣∣ur (X) −
∫
�

G(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣ ≤ Crn−2+αG(A(Q, r))

+
∣∣∣∣∣∣
∫
�

div(G(X, Y )AQ∇�r )dY

∣∣∣∣∣∣ . (3.10)

Note also that

∣∣∣∣∣∣
∫
�

div(G(X, Y )AQ∇�r )dY

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

�̃(Q0,Ms)

div(G(X, Y )AQ,∇�r )dY

∣∣∣∣∣∣∣
.

If F = �̃(Q0, Ms)\C+(Q0, Ms) then

∫

�̃(Q0,Ms)

div(G(X, Y )AQ∇�r )dY =
∫

C+(Q0,Ms)

div(G(X, Y )AQ∇�r )dY

+
∫
F

div(G(X, Y )AQ∇�r )dY

and

∣∣∣∣∣∣∣
∫

C+(Q0,Ms)

div(G(X, Y )AQ∇�r )dY

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

∫
{

t= Msδ√
n+1

}
〈G(X, Y )AQ∇�r , en〉d S

∣∣∣∣∣∣∣∣∣
≤ C sup

Y∈B(Q,2r)∩
{

t= Msδ√
n+1

}
1

r
rn−1G(X, Y )

≤ C

(
Msδ

r

)β

G(A(Q, r), X)rn−2.

Now

∣∣∣∣∣∣
∫
F

G(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣ ≤ C sup
F∩B(Q,2r)

G(X, Y ) · σ(F ∩ B(Q, 2r))
1

r2

≤ C

(
Msδ

r

)β

G(A(Q, r), X)
1

r2 rn−1 Msδ

= C

(
Msδ

r

)β+1

G(A(Q, r), X)rn−2.
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In a similar way,∣∣∣∣∣∣
∫
F

〈AQ∇�r ,∇G〉dY

∣∣∣∣∣∣ ≤ C
1

r

∫
F∩B(Q,2r)

|∇G|dY

≤ C
1

r

⎛
⎜⎝

∫
B(Q,2r)

|∇G|2dY

⎞
⎟⎠

1/2

(Hn(F ∩ B(Q, 2r))
)1/2

≤ C
rn/2

r2 G(A(Q, r), X)(Msδrn−1)1/2

= Crn−2G(A(Q, r), X)

(
Msδ

r

)1/2

.

Therefore ∫

�̃(Q0,Ms)

div(G(X, Y )AQ∇�r )dY ≤ C

(
Msδ

r

)β

G(A(Q, r), X)rn−2

for η = min
{
β, 1

2

}
. We use this estimate in (3.10),∣∣∣∣∣∣ur (X) −

∫
�

G(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣ ≤ Crn+α−2G(A(Q, r), X)

+C

(
Msδ

r

)η

G(A(Q, r), X)rn−2.

Note that a similar estimate holds for ũr (X) in terms of G̃. Next we write∫

�̃(Q0,Ms)

G̃(X, Y )div(AQ∇�r )dY =
∫

�̃(Q0,Ms)

G̃(X, Y )

G(X, Y )
G(X, Y )div(AQ∇�r )dY

=
∫

�̃(Q0,Ms)

(
G̃(X, Y )

G(X, Y )
− l(Q)

)
G(X, Y )div(AQ∇�r )dY

+ l(Q)

∫

�̃(Q0,Ms)

G(X, Y )div(AQ∇�r )dY

where

l(Q) = lim
Y→Q

G̃(X, Y )

G(X, Y )
.

We now choose τ s ≤ r < s and

1

Mγ
< ε′

where ε′ = ε′(ε). Then we choose δ such that(
δM

τ

)η

< ε′.

123



30 E. Milakis, T. Toro

Combining the estimates above with Theorem 2.20 we have

|̃ur (X) − l(Q)ur (X)|

≤
∣∣∣∣∣∣̃ur (X) −

∫
�

G̃(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∫
�

G̃(X, Y )div(AQ∇�r )dY − l(Q)

∫
�

G(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣

+l(Q)

∣∣∣∣∣∣ur (X) −
∫
�

G(X, Y )div(AQ∇�r )dY

∣∣∣∣∣∣
� rn+α−2G̃(A(Q, r), X) + ε′rn−2G̃(A(Q, r), X)

+l(Q)rn+α−2G(A(Q, r), X) + ε′l(Q)rn−2G(A(Q, r), X)

+
( r

Ms

)γ

l(Q)

(
δMs

r

)β+1

rn−2G(A(Q, r), X)

� rn−2G(A(Q, r), X)

{
(rα + ε′) G̃(A(Q, r), X)

G(A(Q, r), X)
+ (rα + ε′)l(Q)

}

� ur (X)

{
(rα + ε′) G̃(A(Q, r), X)

G(A(Q, r), X)
+ (rα + ε′)l(Q)

}
(3.11)

since by the maximum principle

rn−2G(A(Q, r), X) � ωX (B(Q, r)) � ur (X).

Furthermore since

lim
r→0

G̃(A(Q, r), X)

G(A(Q, r), X)
= l(Q) then

∣∣∣∣ ũr (X)

ur (X)
− l(Q)

∣∣∣∣ � εl(Q).

We conclude the proof by combining (3.9), (3.11) and choosing ε′ in terms of ε.

Corollary 3.8 Given ε > 0, for L ∈ L(λ,	, α), there exists M(n, ε, α) > 1 so that if
M ≥ M(n, ε, α) there exists δ(n, α, ε, M) > 0, such that if � ⊂ R

n+1 is a (δ, R)-Reifen-
berg flat domain with δ ∈ (0, δ(n, ε)], Q0 ∈ ∂�, 0 < s ≤ R/M, E, E ′ ⊂ ∂� ∩ B(Q0, 2s),
and X ∈ �̃(Q0, Ms)\C(Q0, Ms/2) then

(1 − ε)
ω̃X (E)

ω̃X (E ′)
≤ ωX (E)

ωX (E ′)
≤ (1 + ε)

ω̃X (E)

ω̃X (E ′)
.

Proof We choose ε′ to depend on ε such that Lemma 3.7 is satisfied. From Theorem 2.20
we have

|�(Q0) − �(Q)| ≤ C
G̃(X, A(Q0, Ms))

G(X, A(Q0, Ms))

( |Q − Q0|
Ms

)γ

for Q ∈ ∂� ∩ B(Q0, 2s). In addition Lemma 2.19 guarantees that there exists a constant
C > 1 so that

C−1�(Q0) ≤ G̃(X, A(Q0, Ms))

G(X, A(Q0, Ms))
≤ C�(Q0).
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Hence (
1 − C

Mγ

)
�(Q0) ≤ �(Q) ≤

(
1 + C

Mγ

)
�(Q0).

Since

ω̃X (E)=
∫
E

dω̃X

dωX
(Q)dωX (Q)≤(1+ε′)

∫
E

�(Q)dωX (Q)≤(1+ε′)
(

1+ C

Mγ

)
l(Q0)ω

X (E)

and

ω̃X (E) ≥ (1 + ε′)−1
(

1 − C

Mγ

)
l(Q0)ω

X (E)

we have that

(1 + ε′)−2 1 − (C/Mγ )

1 + (C/Mγ )
· ωX (E)

ωX (E ′)
≤ ω̃X (E)

ω̃X (E ′)
≤ (1 + ε′)2 1 + (C/Mγ )

1 − (C/Mγ )
· ωX (E)

ωX (E ′)
.

Choosing M and ε′ appropriately we conclude the proof of Corollary 3.8.

Proof of Theorem 3.1 For ε′ = ε′(ε), let M(n, ε′, α) > 1 be as in Theorem 3.6 and Corollary
3.8. For M ≥ M(n, ε′, α) there exists δ(n, ε′, α, r/s, M) > 0 so that if � is a (δ, R) Reifen-
berg flat domain with δ ≤ δ(n, ε′, r/s, M) then Theorem 3.6, Lemma 3.7 and Corollary 3.8
hold. Namely for 0 < r ≤ s ≤ R/M we have that

(1 − ε′)
(r

s

)n ≤ ω̃X (B(Q1, r))

ω̃X (B(Q2, r))
≤ (1 + ε′)

(r

s

)n
,

where Q1, Q2 ∈ ∂� ∩ B(Q0, s) for some Q0 ∈ ∂�, X ∈ �̃(Q0, Ms)\C(Q0, Ms/2).
Moreover

(1 − ε′) ω̃
X (B(Q1, r))

ω̃X (B(Q2, s))
≤ ωX (B(Q1, r))

ωX (B(Q2, s))
≤ (1 + ε′) ω̃

X (B(Q1, r))

ω̃X (B(Q2, s))
.

Therefore for ε′ > 0 so that 1 − ε ≤ (1 − ε′)2 and (1 + ε′)2 ≤ 1 + ε, and X ∈ � ∩
∂ B(Q0, Ms/2)

(1 − ε)
(r

s

)n
ωX (B(Q2, s)) ≤ ωX (B(Q1, r)) ≤ (1 + ε)

(r

s

)n
ωX (B(Q2, s)).

The maximum principle guarantees that for all X ∈ �\B(Ms/2, Q0)

(1 − ε)
(r

s

)n ≤ ωX (B(Q1, r))

ωX (B(Q2, s))
≤ (1 + ε)

(r

s

)n
.

4 Regularity on chord arc domains

In this section we prove that on a chord arc domain with small enough constant if L is either
in L(λ,	, α) or if it is a perturbation of the Laplacian then the elliptic measure is an A∞
weight with respect to surface measure. In the case that � is a chord arc domain with van-
ishing constant and L ∈ L(λ,	, α) we show that the logarithm of elliptic kernel (i.e. the
density of the elliptic measure with respect to the surface measure) is in VMO. A key step
in these proofs is Semmes’ Decomposition for chord arc domains with small constant (see
[15, Theorem 2.2]).
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Let � be a (δ, R)-CAD for δ small enough so Theorem 2.2 in [15] holds. Let P ∈ ∂�

and let r > 0 small enough so the construction in Lemma 5.1 in [15] goes through. In this
case there exist two Lipschitz functions h+ and h− defined in L(P, r) such that h− ≤ h+
and ‖∇h±‖∞ ≤ η where η � δ1/4. Let

�+ = {(x, t) ∈ R
n+1 : x ∈ L(P, r), t > h+(x)}

and

�− = {(x, t) ∈ R
n+1 : x ∈ L(P, r), t > h−(x)}.

As in Lemma 5.1 in [15] the graphs �± of h± approximate ∂� in C(P, r) from above and
below respectively, in the sense that

D
[
�± ∩ B(P, r); ∂� ∩ B(P, r)

] ≤ ηr and σ(�+ ∩ �− ∩ B(P, r))

≥ (1 − c1 exp{−c2/η}) ωnrn (4.1)

where c1, c2 are positive constants as in [15, Theorem 2.2]. Moreover

�+ ∩ C(P, r) ⊂ � ∩ C(P, r) ⊂ �− ∩ C(P, r).

Lemma 4.1 Let L ∈ L(λ,	, α). There exists δ(n) > 0 such that if � ⊂ R
n+1 is a

(δ, R)−CAD with 0 < δ ≤ δ(n) and X ∈ � then ωX ∈ A∞(dσ) where σ = Hn ∂�.

Proof Choose δ(n) > 0 such that Semmes decomposition applies � as in Lemma 5.1 in [15].
For X ∈ � let d = dist(X, ∂�) and ωX = ω. Let 0 < r ≤ min{R/2, d/4}. For P ∈ ∂� let
� = ∂�∩ B(P, r) and A = A(P, r) be the non-tangential interior point of �∩C(P, 2r). We
may assume that �+ ∩C(P, 2r) ⊂ �∩C(P, 2r). We denote by ω+ be the L-elliptic measure
of �+ ∩ C(P, 2r). Since for E ⊂ �, ωA(E) � ω(E)/ω(�). It is enough to prove that for
α′ ∈ (0, 1) small, there exists β ∈ (0, 1) so that if ωA(E) < α′ then σ(E)/σ (�) < β.

Assume that ωA(E) < α′. We decompose E as in Lemma 5.2 of [15], E = E1 ∪ E2 where
E1 = E ∩ ∂�+ and E2 = E\∂�+. By the maximum principle ωA+(E1) ≤ ωA(E) < α′. We
write

σ(E)

σ (�)
= σ(E1)

σ (�)
+ σ(E2)

σ (�)
. (4.2)

Since �+ is a Lipschitz domain, ω+ ∈ A∞(dσ+) so there are positive constants θ , C1, C2

such that

C1

(
σ+(E1)

σ+(�+)

)1/θ

≤ ω+(E1)

ω+(�+)
≤ C2

(
σ+(E1)

σ+(�+)

)θ

where �+ = ∂� ∩ B(�(P), h+(�(P)), r
√

1 + η2) and σ+ denotes the surface measure of
∂�+. Therefore the first term of (4.2) is estimated by

σ(E1)

σ (�)
≤ σ+(E1)

σ+(�+)
· σ+(�+)

σ (�)
� α′θ (1 + η2)(n+1)/2(1 + η).

Finally the second term of (4.2) is controlled using the Semmes’ Decomposition estimate for
chord arc domains with small constant (see [15, Theorem 2.2]). That is,

σ(E2)

σ (�)
≤ c1 exp(−c2/η)ωnrn

σ(�)
� (1 + η) exp(−c2/η).

Gathering all the estimates and choosing α′ > 0 and δ > 0 small enough, since η � δ1/4 we
conclude that σ(E)/σ (�) < β < 1.
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An immediate consequence of Lemma 4.1 is the following Corollary.

Corollary 4.2 Let L ∈ L(λ,	, α). There exist δ(n, λ,	) = δ0 > 0, µ > 0 and β > 0 such
that if � ⊂ R

n+1 is a (δ, R)-CAD with 0 < δ ≤ δ0, for X ∈ �, � = ∂� ∩ B(Q, s) with
Q ∈ ∂�, s ≤ min{dist(X, ∂�)/4, R/4}, and E ⊂ � is a measurable set then

ωX (E)

ωX (�)
≤ c

(
σ(E)

σ (�)

)2µ

.

Moreover if kX = dωX/dσ then
⎛
⎝ 1

σ(�)

∫
�

k1+2β
X dσ

⎞
⎠

1/1+2β

≤ c
1

σ(�)

∫
�

kX dσ

where c > 1 denotes a constant that depends only on n, λ,	.

The next theorem states that the density satisfies a reverse Hölder inequality with optimal
constant. The proof is very similar to the proof of Theorem 5.2 in [15], which we can adopt
in our case due to the C0,α regularity of the coefficients. Here we present only the main steps
of the proof.

Theorem 4.3 Let L ∈ L(λ,	, α). Given ε > 0, and N > 0 there exists δ0 = δ(ε, N , λ,

	, n) > 0 such that if � ⊂ R
n+1 is a (δ, R)-CAD with δ ∈ (0, δ0) there exists γ =

γ (ε, N , λ,	, α) > 0, so that for any surface ball B ⊂ ∂� with radius s ≤ γ /2, if X ∈ �

with dist(X, ∂�) ≥ N, and kX (Q) = k(Q) = dωX

dσ
(Q) then

⎛
⎝ 1

σ(B)

∫
B

k1+βdσ

⎞
⎠

1/1+β

≤ (1 + ε)
1

σ(B)

∫
B

kdσ,

where β > 0.

Proof We intend to apply Semmes decomposition in the set �(Q0, r) = B(Q0, r) ∩ ∂�

with r = Ms for M >> 1 large enough.
Let X ∈ ∂C(Q0, r/2)∩�+ ⊂ �̃(Q0, Ms) and �̃(Q0, Ms) = �∩C(Q0, Ms). We denote

by ω the elliptic measure of � with pole at X , by ω̃ the elliptic measure of �̃(Q0, Ms)
with pole at X , by ω̃− the elliptic measure of �− ∩ C(Q0, Ms) with pole X and by ω−
the elliptic measure of �− with pole X . Moreover we denote by k−(Q) = dω−/dσ−,
k̃−(Q) = dω̃−/dσ−.

We need to estimate∫
�

k1+βdσ =
∫

�\∂�−
k1+βdσ +

∫
�∩∂�−

k1+βdσ. (4.3)

To estimate the first term of (4.3), we apply Semmes decomposition to get

σ(�\∂�−) ≤ C1 exp

(
−C2

η

)
ωn(Ms)n

or

σ(�\∂�−)

σ (�)
≤ 2C1 exp

(
−C2

η

)
Mn
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where η � δ1/4. Applying Corollary 4.2 and choosing δ > 0 small enough we conclude that

1

σ(�)

∫
�\∂�−

k1+βdσ ≤ 1

σ(�)

⎛
⎜⎝

∫
�\∂�−

k1+2βdσ

⎞
⎟⎠

1+β
1+2β

σ (�\∂�−)
β

1+2β

≤ K

(
σ(�\∂�−)

σ (�)

) β
1+2β

⎛
⎝ 1

σ(�)

∫
�

k1+βdσ

⎞
⎠

1+β

≤ K

(
2C1 exp

(
−C2

δ

)
Mn

) β
1+2β

⎛
⎝ 1

σ(�)

∫
�

k1+βdσ

⎞
⎠

1+β

≤ ε′
⎛
⎝ 1

σ(�)

∫
�

k1+βdσ

⎞
⎠

1+β

.

In order to estimate the second term of (4.3), we need to show that

k(Q) ≤ (1 + ε′)6k−(Q)
ωX (�)

ωX−(�−)
(4.4)

for every X ∈ ∂C(Ms/2, Q0) ∩ �, where k and k− denote the elliptic kernel with pole X ,
�− = B((�(Q0), h−(�(Q0))), s) ∩ ∂�− and Q ∈ � ∩ �−.

The proof of (4.4) follows the same guidelines as the corresponding proof in [15]. We
include the proof in the case that the pole is far from the boundary in order to illustrate which
results need to be used in this case. We refer the reader to [15] for the proof of the case when
the pole is close to the boundary.

Let X = (x, t) with t ≥ Ms/κ
√

n + 1. Let G0 ⊂ � ∩ ∂�− be the set of density points
of � ∩ ∂�−.

By Lebesgue density theorem

∫
�∩∂�−

k1+βdσ =
∫

G0

k1+βdσ

and applying Corollary 4.2 for Q ∈ G0, we have

lim
�0↓Q

ω(�0 ∩ ∂�−)

ω(�0)
= 1,

and

k(Q) = lim
�0↓Q

ω(�0)

σ (�0)
= lim

�0↓Q

ω(�0 ∩ ∂�−)

σ (�0)

where �0 is a surface ball centered at Q and contained in �. Let F = �0 ∩ ∂�− and apply
the maximum principle to obtain

ω̃(F)

ω̃(�)
≤ ω̃−(F)

ω̃−(�−)
· ω̃−(�−)

ω̃(�)
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where

1 − ε′ ≤ ω̃−(�−)

ω̃(�)
≤ 1 + ε′

since Lemmata 3.4 and 3.5 are valid. Now using Corollary 3.8 we obtain

ω(F)

ω(�)
≤ (1 + ε′)3 ω−(F)

ω−(�−)

and

ω(F)

σ (�0)
≤ (1 + ε′)3 ω−(F)

σ−(�−
0 )

σ−(�−
0 )

σ (�0)

ω(�)

ω−(�−)

where �−
0 is a surface ball in ∂�− centered at Q and with the same radius as �0. Using

the fact that ∂�− is a Lipschitz graph with small constant we conclude that for δ > 0 small
enough,

ω(F)

σ (�0)
≤ (1 + ε′)5 ω−(F)

σ−(�−
0 )

ω(�)

ω−(�−)
≤ (1 + ε′)5 ω−(�−

0 )

σ−(�−
0 )

ω(�)

ω−(�−)
.

Therefore letting �0 ↓ Q we conclude that

k(Q) ≤ (1 + ε′)5 ω(�)

ω−(�−)
k−(Q).

The proof of the case when the pole is close to the boundary uses Theorem 2.20 and the
ideas of the proof of Theorem 4.2 in [15].

Next we estimate the second term in (4.3). For X ∈ ∂C(Q0, Ms/2) ∩ �,

1

σ(�)

∫
G0

k1+βdσ ≤
[
(1 + ε′)6 ω(�)

ω−(�−)

]1+β 1

σ(�)

∫
G0

k1+β
− dσ

≤ (1 + ε′)
[
(1 + ε′)6 ω(�)

ω−(�−)

]1+β 1

σ−(�−)

∫
�−

k1+β
− dσ−

≤ (1 + ε′)
[
(1 + ε′)7 ω(�)

ω−(�−)

]1+β

⎛
⎜⎝ 1

σ−(�−)

∫
�−

k−dσ−

⎞
⎟⎠

1+β

≤ (1 + ε′)(1 + ε′)8(1+β)

⎛
⎝ 1

σ(�)

∫
�

kdσ

⎞
⎠

1+β

.

Combining all the estimates above and choosing ε′ in term of ε we have that

⎛
⎝ 1

σ(B)

∫
B

k1+βdσ

⎞
⎠

1/1+β

≤ (1 + ε)
1

σ(B)

∫
B

kdσ.
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The regularity result is a consequence of the following corollary.

Corollary 4.4 Let L ∈ L(λ,	, α). Given ε > 0, and N > 0 there exists δ0 = δ(ε, N , λ,

	, n) > 0 such that if � ⊂ R
n+1 is a (δ, R)-CAD with δ ∈ (0, δ0) there exists γ =

γ (ε, N , R, λ,	,w) > 0, so that for any surface ball B ⊂ ∂� with radius s ≤ γ /2, if

X ∈ � with dist(X, ∂�) ≥ N, and kX (Q) = k(Q) = dωX

dσ
(Q), then

1

σ(B)

∫
B

∣∣∣∣∣∣log k −
⎛
⎝ 1

σ(B)

∫
B

log kdσ

⎞
⎠
∣∣∣∣∣∣ dσ ≤ ε.

Proof We will use Sarason’s lemma and John–Niremberg’s inequality in the following man-
ner. Let ε′(ε) > 0 to be determined later. For ε′ and N let δ and γ be as in Theorem 4.3 and
dν = (

∫
�

kdσ)−1kdσ . From Hölder’s inequality we have

∫
B

k1−βdσ ≤
⎛
⎝∫

B

k1+βdσ

⎞
⎠

1−β/1+β

σ (B)2β/1+β .

Hence for ε′ small enough

∫
B

kβdν

∫
B

k−βdν ≤
⎛
⎝ 1

σ(B)

∫
B

kdσ

⎞
⎠

−2 ⎛
⎝ 1

σ(B)

∫
B

k1+βdσ

⎞
⎠

2/1+β

≤ 1 + 3ε′.

Applying now Sarason’s lemma (see [17]) together with John–Nirenberg’s inequality guar-
antees that for p ∈ [1,∞), if s ≤ γ /8,

⎛
⎝ 1

ω(B)

∫
B

| log k − cB |pdω

⎞
⎠

1/p

≤ C p

β
ε′1/3

,

where cB = 1/ω(B)
∫

B log kdω. From the theory of A∞-weights we have for some p large
enough

⎛
⎝∫

B

k−1/p−1

⎞
⎠

p−1

≤ C
σ(B)p

ω(B)
.

Thus applying Hölder’s inequality we have

1

σ(B)

∫
B

| log k − cB |dσ ≤ C

⎛
⎝ 1

ω(B)

∫
B

| log k − cB |pdω

⎞
⎠

1/p

≤ C(β, p)ε′1/3
.

Choosing ε′ so that C(β, p)ε′1/3 ≤ ε/2 we conclude that for a surface ball B with radius
s ≤ γ /8

1

σ(B)

∫
B

| log k −
⎛
⎝ 1

σ(B)

∫
B

log kdσ

⎞
⎠ |dσ ≤ ε.

Corollary 4.5 Let L ∈ L(λ,	, α). Let � ⊂ R
n+1 be a chord arc domain with vanishing

constant. Then for any X ∈ �, log kX ∈ V M O(∂�).
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We now concentrate in the case when L is perturbation of the Laplacian, i.e we assume
that (2.15) holds. The crucial step in the proof of Theorem 2.14 is to compare the L-elliptic
measures of the Lipschitz domains �± we constructed above.

Lemma 4.6 Let L be a uniformly elliptic operator in divergence form satisfying the assump-
tions of Theorem 2.14. Let �± be defined as above. Then there exists θ > 0 such that for
Q ∈ ∂� and s > 0 if E ⊂ �+ ∩ �− ∩ B(Q, s)

ω−(E)

ω−(�−)
≤ C

(
ω+(E)

ω+(�+)

)θ

(4.5)

where �± = B(Q±, s) with Q± = (�(Q), h±(�(Q))) and � is the projection in L(P, r).
Here ω± denote the L-harmonic measures of �± ∩ C(P, 2r) with pole outside B(P, r).

Proof The proof will follow the lines of Main Lemma in [6]. Let G ⊂ �+ ∩ �− ∩ B(P, r)

and denote by Q± = (q, h±(q)). If X = (x, xn+1) then

dist(X, �±) � |xn+1 − h±(x)|
and for q such that h+(q) �= h−(q)

h+(q) − h−(q) � dist(Q+, �−) � dist(Q−, �+). (4.6)

We proceed by constructing a Whitney decomposition of R
n+1\G. Extract a subfamily {Q−

i }
such that �−\G ⊂ ∪Q−

i . By (4.6) note that dist(Q−
i , �+) � diam Q−

i . Since Lip(h+) ≤ η

and η << 1 there exist a family {Q+
i } obtained by vertical translations from {Q−

i } and such
that Q− ∈ Q−

i if and only if Q+ ∈ Q+
i . Furthermore

diam Q−
i = diam Q+

i � dist(Q+
i , �−) � dist(Q−

i , �+)

and �+\G ⊂ ∪Q+
i .

We can find Q∗
i such that 2Q−

i ∪ 2Q+
i ⊂ Q∗

i and diam Q∗
i � diam Q±

i . Next we define
the measure µ for F ⊂ �− ∩ B(P, r) by

µ(F) = ω+(F ∩ G) +
∑

i

ω−(F ∩ Q−
i )

ω−(Q∗
i )

ω+(Q∗
i ).

We will prove the following claim.

Claim If Q ∈ �− and B(Q, s) ⊂ B(P, r) for F ⊂ �− ∩ B(P, r) then

µ(F)

µ(B(Q, s))
�

ω−(F)

ω−(B(Q, s))
(4.7)

and

µ(B(P, r)) � 1. (4.8)

From the claim, using the real variable lemma of Coifman and Fefferman (see [3]) we con-
clude (4.5).

Proof of Claim Let Q ∈ �− ∩ B(P, r) and 0 < s ≤ r. If for all i , Q−
i ∩ B(Q, s/2) = ∅

then B(Q, s/2) ⊂ G, Q ∈ �+ and by the doubling property of ω+

µ(B(Q, s)) ≥ ω+(B(Q, s/2) ∩ G) = ω+(B(Q, s/2)) � ω+(B(Q, s)).
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If there exists an i such that Q−
i ∩ B(Q, s/2) �= ∅ by the doubling property of ω+

µ(B(Q, s)) � ω+(B(Q, s) ∩ G) +
∑

Qi ∩B(Q,s/2)�=∅
ω+(Q∗

i ).

Moreover, if Q ∈ �+ ∩ �−, and Qi ∩ B(Q, s/2) �= ∅ for some i ,

µ(B(Q, s)) � ω+(B(Q, s) ∩ G) + ω+(B(Q, s/2)\G) � ω+(B(Q, s/2)).

Now if Q /∈ �+, Q = Q− ∈ Q−
i (for the same i as above) and Q+ ∈ Q+

i . In addition

B(Q+, s/4) ∩ �+\G ⊂ ∪2Q+
i and Q−

i ∩ B(Q, s/2) �= ∅
since for (x, h+(x)) ∈ B(Q+, s/4) ∩ �+\G,

|(x, h+(x)) − (q, h−(q))| ≤ |(x, h−(x)) − (x, h+(x))| + |(x, h−(x)) − (q, h−(q))|
� diam Q−

i + s/4 + ηs/4.

Thus
∑

ω+(Q∗
i ) � ω+(B(Q+, s/4)\G) with Q−

i ∩ B(Q, s/2) �= ∅ and

µ(B(Q, s)) � ω+(B(Q, s) ∩ G) + ω+(B(Q+, s/4)\G)

for Q ∈ �−\�+.
Now if B(Q, s/(2 × 106)) ∩ G = ∅, for all X = (x, h+(x)) = (x, h−(x)) we have

|(q, h−(q)) − (x, h−(x))| > s/(2 × 106).

Hence if |q − x | < s/(2 × 106) then

|x − q| ≥ s

2 × 106 − ηs

2 × 106

and for η small enough

|(q, h+(q)) − (x, h+(x))| ≥ |x − q| − ηs/(2 × 106) ≥ s

4 × 106 .

Thus by the doubling property of ω+,

µ(B(Q, s)) ≥ ω+(B(Q+, s/(4 × 106))) � ω+(B(Q+, cs) � ω+(B(Q, cs)).

On the other hand, if B(Q, s/(2 × 106)) ∩ G �= ∅, then B(Q+, s/4) ⊂ B(Q, s) and again
by the doubling property of ω+

µ(B(Q, s)) ≥ ω+(B(Q+, s/4)) � ω+(B(Q, cs)).

Thus, in any case we have shown that

µ(B(Q, s)) � ω+(B(Q+, s/4)) � ω+(B(Q, cs)). (4.9)

Let Q ∈ �− ∩ B(P, r), B(Q, s) ⊂ B(P, r) and consider two cases.

Case 1 For every i , Q−
i ∩ B(Q, s) �= 0 and diam Q−

i ≤ 100s.
Then, B(Q, Cs) ∩ �+ �= ∅. For simplicity, let A = A+(Q+, Cs) = A−(Q−, Cs) the

non-tangential points of �± at Q± at radius Cs. Since Q−
i ∩ B(Q, s) �= 0, the distance of

Q = Q− to Q−
i is less or equal to s and 2Q−

i ⊂ B(Q, Cs), so Q∗
i ⊂ B(Q, Cs) and using

the Carleson estimate in [1] we have

ωA±(Q∗
i )

ωA±(B(Q, Cs))
� ω±(Q∗

i )

ω±(B(Q, Cs))
(4.10)
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and

ωA−(F ∩ Q−
i )

ωA−(B(Q, Cs))
� ω−(F ∩ Q−

i )

ω−(B(Q, Cs))
. (4.11)

Similarly

ωA+(F ∩ G)

ωA+(B(Q, Cs))
� ω+(F ∩ G)

ω+(B(Q, Cs))
. (4.12)

Recall that ωA±(B(Q, Cs)) � 1 thus (4.11) and (4.12) become

ωA−(F ∩ Q−
i ) � ω−(F ∩ Q−

i )

ω−(B(Q, Cs))
(4.13)

and

ωA+(F ∩ G) � ω+(F ∩ G)

ω+(B(Q, Cs))
. (4.14)

In addition, since ω+ is a doubling measure,

ωA+(Q∗
i ) � ωA+(Q+

i ). (4.15)

If Z ∈ Q+
i , then ωZ−(Q∗

i ) � 1 = ωZ+(Q+
i ). For Z ∈ ∂(�+ ∩ B(P, Cr))\Q+

i , ωZ−(Q∗
i ) ≥ 0

and ωZ+(Q+
i ) = 0. Therefore by the maximum principle for Z ∈ ∂(�+ ∩ B(P, Cr))

ωZ+(Q+
i ) � ωZ−(Q∗

i ). (4.16)

From (4.15), (4.16) we deduce that,

ωA+(Q∗
i ) � ωA−(Q∗

i ). (4.17)

Thus, by (4.9), (4.10), (4.11), (4.13) and (4.17) we have

µ(F)

µ(B(Q, s))
�

ω−(F ∩ G) + ∑
i

ω−(F∩Q−
i )

ω−(Q∗
i )

ω+(Q∗
i )

ω+(B(Q, Cs))

� ωA+(F ∩ G) +
∑

i

ωA−(F ∩ Q−
i )

ωA−(Q∗
i )

ωA+(Q∗
i )

� ωA−(F ∩ G) +
∑

i

ωA−(F ∩ Q−
i )

� ωA−(F)

�
ω−(F)

ω−(B(Q, s))
.

Case 2 Suppose there exists Q−
i such that Q−

i ∩ B(Q, s) �= ∅ and diam Q−
i > 100s. This

implies B(Q, s) ∩ G = ∅ and B(Q, s) ⊂ Q∗
i .

If Q−
l ∩ B(Q, s) �= ∅, then, dist(Q−

i , Q−
l ) ≤ 2s, with diam Q−

i � diam Q−
l . Since ω−

and ω+ are doubling measures and Q∗
i , Q∗

l have large overlaps, ω±(Q∗
i ) � ω±(Q∗

l ). Thus
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for F ⊂ B(Q, s)

µ(F) =
∑

i

ω−(F ∩ Q−
i )

ω−(Q∗
i )

ω+(Q∗
i )

� ω+(Q∗
l )

ω−(Q∗
l )

∑
i

ω−(F ∩ Q−
i )

� ω+(Q∗
l )

ω−(Q∗
l )

ω−(F)

and similarly

µ(B(Q, s)) � ω+(Q∗
l )

ω−(Q∗
l )

ω(B(Q, s))

which yields

µ(F)

µ(B(Q, s))
� ω−(F)

ω−(B(Q, s))
.

This concludes the proof of (4.7) in the claim. To prove (4.8) recall that by (4.1)

σ(�+ ∩ �− ∩ B(P, r)) ≥ (1 − c1 exp{−c2/η}) rnωn .

Hence by the doubling property of ω+

µ(B(P, r)) ≥ ω+(B(P, r) ∩ G) � ω+(B(P, r)) � 1.

Clearly by the doubling character of ω+ we also have that µ(B(P, r)) � 1.

Proof of Theorem 2.14 Choose δ(n) > 0 such that Semmes decomposition applies � as in
Lemma 5.1 in [15]. For X ∈ � let d = dist(X, ∂�) and ωX = ω. Let 0 < r ≤ min{R/2.d/4}.
For P ∈ ∂� let � = ∂� ∩ B(P, r) and A = A(P, r) be the non-tangential interior point
of � ∩ C(P, 2r). We may assume that �+ ∩ C(P, 2r) ⊂ � ∩ C(P, 2r). We denote by ω+
be the L-elliptic measure of �+ ∩ C(P, 2r). Since for E ⊂ �, ωA(E) � ω(E)/ω(�) It is
enough to prove that for α ∈ (0, 1) small, there exists β ∈ (0, 1) so that if ωA(E) < α then
σ(E)/σ (�) < β.

Assume that ωA(E) < α. We decompose E as in Lemma 5.2 of [15], E = E1 ∪ E2 where
E1 = E ∩ ∂�+ and E2 = E\∂�+. By the maximum principle ωA+(E1) ≤ ωA(E) < α. We
write

σ(E)

σ (�)
= σ(E1)

σ (�)
+ σ(E2)

σ (�)
(4.18)

In this case we do not know if ω+ ∈ A∞(dσ+). On the other hand since �− is a Lipschitz
domain and L (extended to be the Laplacian in �c) is a perturbation of the Laplacian satis-
fying (2.15) we know that ω− ∈ A∞(dσ−) by Theorem 2.13. Therefore there are positive
constants γ , C1, C2 such that

C1

(
σ−(E1)

σ−(�−)

)1/γ

≤ ω−(E1)

ω−(�−)
≤ C2

(
σ−(E1)

σ−(�−)

)γ

(4.19)
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where �− = ∂� ∩ B(�(P), h−(�(P)), r
√

1 + η2) and σ− denotes the surface measure of
∂�−. The first term of (4.18) is estimated combining (4.19) and Lemma 4.6,

σ(E1)

σ (�)
≤ σ−(E1)

σ−(�−)

σ−(�−)

σ (�)

�
(

ω−(E1)

ω−(�−)

)γ
σ−(�−)

σ (�)

�
(

ω+(E1)

ω+(�+)

)θ ′
σ−(�−)

σ (�)

� αθ ′
(1 + η2)n+1/2(1 + η) (4.20)

where θ ′ = θ ′(θ, γ ). Finally the second term of (4.18) is controlled using the Semmes’
Decomposition estimate for chord arc domains with small constant (see [15, Theorem 2.2]).
That is,

σ(E2)

σ (�)
≤ c1 exp(−c2/η)ωnrn

σ(�)
� (1 + η) exp(−c2/η). (4.21)

Combining (4.20) and (4.21), and choosing α > 0 and δ > 0 small enough(recall η � δ1/4)
we conclude that σ(E)/σ (�) < β < 1.
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