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Abstract The Lie group SU(2) endowed with its canonical subriemannian structure
appears as a three-dimensional model of a positively curved subelliptic space. The goal of
this work is to study the subelliptic heat kernel on it and some related functional inequalities.

Keywords Gradient estimate - Heat kernel - Log-Sobolev inequality - Poincaré inequality -
SU(2) - Sublaplacian

Contents
I Introduction . . . . . .. ... ... 648
2 Preliminarieson SU(2) . . . . . . . . e e e e 649
3 The subelliptic heat kernel on SU(2) . . . . . . . . .. .. 650
3.1 Spectral decomposition of the heatkernel . . . . . ... ... ... .. ... . . ... 650
3.2 Integral representation of the heatkernel . . . . . .. .. ... ... ... ... ... ... .. 652
3.3 Asymptotics of the heat kernel in small times . . . . . ... ... ... .. ... ....... 656
4 Gradient bounds for the heat kernel measure . . . . ... ... ... ... ... .0 L. 661
4.1 Afirstgradientbound . . . . . ... L 662
4.2 Li-Yautypeinequality . . . . . . . . . . . e 663
4.3 The reverse spectral gap inequality . . . . . . . . .. ... L L Lo Lo 665
44 LP gradientbounds . . . . . . . . ... 668
44.1 Long-timebehavior . . . . . . . . ... L 668
4.4.2 Short-time behavior . . . . . ... ... L L 670

F. Baudoin ()
Department of Mathematics, Purdue University, West Lafayette, IN, USA
e-mail: fbaudoin@math.purdue.edu

M. Bonnefont

Institut de Mathématiques de Toulouse, Université de Toulouse, Toulouse, France
e-mail: bonnefon @math.ups-tlse.fr

@ Springer



648 F. Baudoin, M. Bonnefont

1 Introduction

The goal of this work is to study in details the heat kernel and some related functional inequa-
lities in one of the simplest sub-elliptic models after the Heisenberg group: the Lie group
SU(2) endowed with its canonical subriemannian structure (coming from the Hopf fibration
S? > S3, see [25]). In the classification of three-dimensional homogeneous subriemannian
structures (see page 22 in [15]) the role played by this group could be compared to the role
played by the sphere in Riemannian geometry: It should be a three-dimensional model of a
compact positively curved subriemannian space.

In the flat three-dimensional subelliptic model, that is the Heisenberg group, the subel-
liptic heat kernel is quite well understood. In his celebrated paper [14], Gaveau gave a
useful integral representation and deduced from it small times asymptotics. Since, nume-
rous papers have been devoted to the study of this kernel (see for instance [9,22] and the
references therein). In the case of SU(2), we will see that a quite similar study can be
made: we will obtain an integral representation of the heat kernel and will deduce from
it the small times asymptotics. These asymptotics give, in particular, a way to compute
explicitly the Carnot—Carathéodory distance associated to the subriemannian structure of
SU2).

On the other hand, recent works have started to study gradient estimates for subelliptic
semigroups (see for instance [5,13,22,24]). From the point of view of partial differential
equations (see [4,21]), gradient estimates had proved to be a very efficient tool for the
control of the rate of convergence to equilibrium, quantitative estimates on the regulariza-
tion properties of heat kernels, functional inequalities such as Poincaré, logarithmic Soboleyv,
Gaussian isoperimetric inequalities for heat kernel measures, etc. When dealing with linear
heat equations, those gradient estimates often rely on the control of the intrinsic Ricci cur-
vature associated to the generator of the heat equation (Bakry—Emery criterion, see [2]).
Those methods basically require some form of ellipticity of the generator and fail in typical
subelliptic situations, like for instance in the Heisenberg group (see [5]). From the point
of view of geometry, these gradient estimates are interesting, because they should contain
information on the curvature of the space. For instance, in Riemannian geometry (see [3,31]),
the functional inequality ||Ve'® f||? < e=2'e'2(||V f]1?) is equivalent to the lower bound
Rice > p, where Rice denotes the Ricci curvature. In subriemannian geometry there is no
real analogue of Ricci curvature; for instance, in Lott—Villani—Sturm sense (see [23,28,29]),
the Ricci curvature of the simplest subelliptic model, the Heisenberg group, is —oo (see
[17]). However, we will show in this paper that we obtain exponential decays for the long-
time behaviour of gradient estimates of the subelliptic semigroup on the model space SU(2)
and controls on the small-time behaviour. Nevertheless, as it appears from our methods, the
exponential decays we obtain are optimal but are mainly consequences of spectral proper-
ties, so that we do not really rely on any notion of intrinsic Ricci curvature excepted in
the Li-Yau type estimate that we obtain. In the future, we hope to extend those methods to
cover more general situations and to make the link with more geometrically oriented works
like for instance [27], where a Bonnet-Myers type theorem is obtained in a hypoelliptic
situation.

So, finally, this work is mainly divided into two parts. In a first part (Sect. 3), we will study
the subelliptic heat kernel on SU(2). We provide its spectral decomposition, prove an integral
representation of it and compute its small times asymptotics. In the second part (Sect. 4) we
will focus on gradient estimates, using the previous results.
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 649

2 Preliminaries on SU(2)

In what follows, we consider the Lie group SU(2), i.e., the group of 2 x 2, complex, unitary
matrices of determinant 1. Its Lie algebra su(2) consists of 2 x 2, complex, skew-adjoint
matrices of trace 0. A basis of su(2) is formed by the Pauli matrices:

0 1 0 i i 0
() )G

for which the following relationships hold
[Z,X]1=2Y, [X.,Y]=2Z, [Y,Z]=2X. 2.1

We denote X, Y, Z the left invariant vector fields on SU(2) corresponding to the Pauli
matrices. The Laplace-Beltrami operator for the bi-invariant Riemannian structure of
SUQ2) ~§?is

A=X?+Y*+ 7%
It is in the center of the universal enveloping algebra of the vector fields X, Y, Z. In the
sequel, we shall mainly be interested in the operator

L=X>+Y%

According to the relations (2.1) and due to Hérmander’s theorem, £ is subelliptic but not
elliptic so that the associated geometry is not Riemannian but only subriemannian.
Associated to £, there is a notion of distance given

3(g1, g2) = sup{| f(g1) — f(g2) I}
fec

where C is the set of smooth maps SU(2) — R that satisfy (Xf)> 4+ (Yf)?> < 1. This
distance is the Carnot-Carathéodory distance. Via Chow’s theorem, it can also be defined as
the minimal length of horizontal curves joining two given points (see Chapter 3 of [7]).

To study £, we will use the cylindric coordinates introduced in [11]:

. cos(r)el? sin(r)ei(e_Z)
(r,0,z) > exp(rcos8X +rsinfY)exp(zZ2) = ,

—sin(r)e 107D cos(r)ei*
with
n
0<r< 7 0€[0,2n], zel[-mm]

Simple but tedious computations show that in these coordinates, the left-regular represen-
tation sends the matrices X, Y and Z to the left-invariant vector fields:

a a 1 d
X = cos(—6 4+ 2z) — +sin(—60 + 2z) { tanr — + [ tanr + — 1,
ar 0z tanr J 96

ad ad 1 d
Y = —sin(2z — ) — 2z —60) |t — t —1,
sin(2z )ar + cos(2z )(anraz+(anr+tanr) 89)

d
Z = —
0z

’
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650 F. Baudoin, M. Bonnefont

and that the bi-invariant normalized Haar measure reads:

1
du = o) sin 2rdrdfdz

Remark 2.1 The right regular representation sends the matrices X, ¥ and Z to the right-
invariant vector fields

X 92 +sin6 (t 9 + (¢t L)2o
= cosf — + sin anr — anr — —— | —
or 0z tanr J 060

N . 0 0 1 d
Y =sinf— —cosf {tanr— + | tanr — — ).
ar 0z tanr J 06
2= 400
9z 90
We therefore obtain
L=X>+7?
2 P 5 82 5 82 5 82
= 52 + 2 cotan ZrE + (2 + — + tan r) W—i—tan rg—i—Z(l + tan” r) 3239

and
A=X>4Y>4+27°
82
=—+4+L
0z2

Note that £ commutes with % and with ()87

3 The subelliptic heat kernel on SU(2)

By hypoellipticity, the heat semigroup P; = ¢'“ admits a smooth kernel with respect to the
Haar measure p of SU(2). Our goal in this section will be to derive various representations
of this kernel and to get precise asymptotics in small times.

3.1 Spectral decomposition of the heat kernel

Since £ commutes with % that vanishes at 0, we deduce that the heat kernel (issued from
the identity) of P, = '~ only depends on (r, z). It will be denoted by p; (r, z).
We first obtain the spectral decomposition of p;(r, z):

Proposition 3.1 Fort >0,0<r < %, z € [-m, 7]

+00 400

pt(r’ Z) — z Z(2k+ | n | +l)ef(4k(k+|n‘+1)+2|l’l|)tel'ﬂz(COSr)‘i‘l‘P]?slnl(cos 2},),
n=—00 k=0
where
k k
ol (=D L( Inl (1 — x2)t
B = i omt e (070 =20 )

is a Jacobi polynomial.
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 651

Proof Since the points (r, 6, z) and (r, 8, z + 27) are the same, we can define p, (r, z) for all
z € R and it is 27 -periodic. The idea is then to expand p; (r, z) as a Fourier series in z:

+00
pi(r,0) = D €M d,(t,r)
n=-—00

Since p;(r, z) satisfies the partial differential equation,

ap;
L — o,
a1 Pt
we obtain for ®,, the following equation
ad, %P P
"= " +2cotan 2r —= — n? tanzrd),,
ot ar? ar

and look for a solution under the form
@, (t,r) = e M (cosr)" g, (t, cos 2r).
We get:

dgn
at

= 4G, (gn)

where
G = (=) 4 (= @4 )
=1-x9)— n| — nl)x)—
" 9x2 dx
It is well-known that eigenvectors of G, are the Jacobi polynomials:
(—l)k dk

0,|n|
P = =
© )= R o dxk

((1 + 0l - xz)k)
In fact we have
gn(P]?"ﬂ‘)(x) =—k(k+n+ I)P]?,\n\(x)

So we are finally led to put

400 +00
pi(r,z) = Z Zock,ne_(4k(k+‘"|+1)+2|"|)tei"2(cos r)'"'P,?""‘(cos 2r)

n=—00 k=0

for some ay ,, where the o , will be determined by the initial condition at time 0.

Clearly p, satisfies the equation % = Lp; and, by using the fact that (P,? ’W)kzo is an
orthogonal basis of L2([—1, 1], (1 +x)"ldu) with || P21 = 527 we easily check

that for a smooth f

7 2

1

o / / pi(rs 2) f(r, 2) sin@r)drdz =10 £(0,0)
0 0

as soon as ag , = 2k 4 |n| + 1. m]

Remark 3.2 By using the representation theory of SU(2), a similar spectral decomposition is
given in [8]. Nevertheless, for the sake of completeness, we included this elementary proof.
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652 F. Baudoin, M. Bonnefont

3.2 Integral representation of the heat kernel

We now provide an integral representation of p; based on the following formula:

that stems from the commutation between A and %. Since A is the Laplace—Beltrami operator
on the three-dimensional sphere which has a well-known heat kernel, it will lead to an
expression of p;.

Let us consider on the interval [—1, 1] the second order differential operator

d? d
=(1—-x})— —3x—.
J=-x )dx2 Y dx
For m > 0, let Uy, denotes the Chebyshev polynomial of the second kind:
i 1
U, (cos x) = Snom+ Dx
sin x
and
+00
() = D (m+ De™" ", (1), x e [-1 1] (3.2)
m=0

It is known that if f is a smooth function [—1, 1] — R, then

1
7N = E/qtu)f(x)(l —xH)dx,

T
—1

Lemma 3.3 If f is a smooth function SU(2) — R, then fort > 0,

L
22w

(e’Af)(O) = #///q,(cosrcosz)f(r,@,z) sin 2rdrd6@dz

0 0 —m

Proof An easy calculation shows that the function ¢, (cos r cos z) solves the heat equation

d
3 (g (cosrcosz)) = A(g:(cosr cosz)).

Now we have to check the initial condition. We must show
1 /22w
o / /q,(cosr cosz) f(r,z)sin2rdrdz —;—0 f(0,0)
T
0 0

Since we will make the following change of variables:

I = COSF COSZ
v = COSrsinz

we take the function f of the form f(r, z) = g(cosr cosz)h(cosr sinz). The new domain
is D = {(x, y), x2+ y2 < 1} and the Jacobian determinant is % sin 2r. So
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 653

27
/ q:(cosr cos z)g(cosr cos z)h(cosr sin z) sin 2rdrdz
r:O z=0

%//qz(u)g(u)h(v)dudv

D

1 (1_u2)l/2
1
= / / h()dv | g, (w)gw)du
1 7(17,42)1/2
We may rewrite it as

1

2
= / g 1) (1 —u®)'Pdu
b4
-1
where [ is the continuous function
L—u2)1/2
/ fi(l_uu)z)l/z h(v)dv
(u) = g(u) W
Now, since ¢; is the heat kernel of a diffusion issued of 1 with respect to the measure
%(1 —u) 24y and 1 is continuous, the last quantity is converging towards /(1) = g(1)h(0) =
£ (0, 0) and the lemma is proved. ]

Remark 3.4 The previous lemma shows that if p is the Riemannian distance from 0, then in
our cylindric coordinates, we have

COS 0 = COSr COS Z.

From the previous proposition, we can now derive an expression for p; in terms of g;.
Let us first describe some properties of g, that will be useful in the sequel. From the
Poisson summation formula, we obtain that for 6 € R:

| 2
q:(cos6) = \/ﬁf v 2(9 + 2kn)e’(6+i/t{ :
412 Sin ez

t g 2 > ee k6 sinh &z
e GO e

These expressions show that g;(cos 6) admits an analytic extension for 8 € C. We moreover
obtain precise estimates:

o lete>0,forx e (—1+¢,1]andz > 0O:

ﬁ@t arcosx (arcosx)
q:(x) = Tﬁe (14 Ry(t,x)), 3.3)
12 — X

" . . _&
where for some positive constants C1 and C depending only in¢, | Ri(¢,x) |[< Cie” 7.
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654 F. Baudoin, M. Bonnefont

e Forx e|[l,4o0)andt > 0O:

me! arcoshx (arcoshv)?
o) = YL A0Sy gl ). (3.4)
4r2 /x2—1

.. _C
where for some positive constants C3 and Cy, | R2(t, x) |< Cze™ 7 .

Proposition 3.5 We have fort > 0, r € [0,7/2), z € [-7, 7],

_ (y+in)?

| +00
(I”,Z)=7/e ar (cosr cosh y)d
Pt Jant qr y)ay
—00

Proof Let

+00

1 _ (_v+i:)2

h(r,z) = Tim e~ @ g,(cosrcoshy)dy;
—0o0

the integral being well defined thanks to the estimates on g;. By using the fact that

,Vz )
d e w 92 e

ot Gt | W At

and
a
3 (g:(cosrcosz)) = A(gs(cosrcosz)),

a double integration by parts with respect to the variable y shows that

Let us now check the initial condition. Let f(r, z) = ¢'*?

function. We have

g(r) where A € R and g is a smooth

b4
7 2w

T

1

— hi(r, 2) £ (r, 2) sin 2rdrdfdz = ¢ (' g) (0),

472
0 0 —m

so that we obtain the required result. O

We are now in position to collect some properties of p;.

Proposition 3.6 For A € C, ReA > 0,r € [0, 7/2), z € [—7, 7],

+00 +00 d
/ p:(r, Z)e_t_%dt = / Y
5 ., 82 (cosh V2 4+ 4) — cosr cos(z + iy))

Proof We have

100 “+00 400
/ % prtr. e dr = // =5 g (cosr cos(z + i) d
e 1 pr,2)e = e ar g SRV A
Z t
Var | Vi

0 —0o0
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 655

We now compute

+o0
e 1 cosrcos(z +1y))——
/ qi y \/;

by using the symbolic calculus on differential operators (it can be made rigorous with 3.2).

+00 ) +o0 )
Vi Vi
0 0
_ VT oV Y24/ AFT
V=A+1
But from Taylor [30, pp. 95],
1 o~ VY A =AFT 1
v-A+1 472 (coshx/y2+4)\—cosrcosz)

which implies the result. o

If we fix, r € [0, 7/2), z € [—m, ], we observe that it possible to find 6 (r, z) € R, such that
forA € C,Rer > 0and y € R,

cosh/y2 4+ 4\ = cosr cos(z +iy) = Rer < 0(r, 2),

where we use the principal branch of the square root. By inverting the last Laplace transform
of the previous proposition, we therefore get:

Corollary 3.7 We have fort > 0, r € [0,7/2), z € [—7m, 7], and y > 0(r, 2),

y+ioco  +oo X
eirdydX

e[
oot
' 16im312 cosh /y2 4+ 41 — cosr cos(z + iy)

A=y —ioco y=—00

From Proposition 3.6, we also deduce:
Proposition 3.8 The Green function of the operator —L + 1 is given by

1

G@r,z) = 5— .
87w /1 —2cosrcosz+ cos?r
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656 F. Baudoin, M. Bonnefont

Proof Letus assume r # 0, z # 0. In that case the Laplace transform of Proposition 3.6 can
be extended to A = 0 and we have:

+00

oo = [ a
r,z) =
¢ 872 (cosh y — cosr cos(z + iy))

—0o0

+00

dy
- / 872 ((1 — cosrcosz) cosh y — i cosr sin z sinh y)

—0o0
“+00

_ 1 1 / dy
872 /T —2cosrcosz + cos? r coshy
o0

1 1

g\/l —2cosrcosz 4 cos?r

3.3 Asymptotics of the heat kernel in small times

The goal of this section is to obtain the precise asymptotics of the heat kernel when ¢ — 0.
We start with the points of the form (0, z) that lie on the cut-locus of 0.

Proposition 3.9 Fort > 0and z € [0, ),

72e! _ope:2 Z —k<k+tl)”2 (2k + 1) + 2ke™ % @t2km)
e

Pt (Oa Z) = 2 e 4 2
u (1+eBemn)
therefore, whent — 0,
7T2€t _2ni722 _C
pi(0,2) = proai (1 +O0(e 7 ))

Proof Let z € (0, w]. We have

| +00 5
0,2) = — / ™ gy (cosh(y — i2)))dy,
Pt Jant qt y y
—00
But
me' (y—iz—2ikm)?
gi(cosh(y — iz)) = *C v D (y—iz—2ikme @
4¢3 sinh(y —iz) £
and for k € Z, from the residue theorem,
2o i i 2 — & (z42km)
/ y — iz— 21'k7t e,%(ﬁzm)dy _ 27T2€(z+2k71) ~het et o) 2k + 1) + 2ke 2% .
. sinh(y —iz) (1 + ef%(eran))2
The result easily follows. O

We now come to points (r, z) that do not lie on the cut-locus, that is » % 0.
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T
> 2

2
r 1 JTe T
pe(r, 0) ~ ——/ ER
sinr V1 —rcotanr 443

Proof Wefixr € (0, %) From the proposition 3.5 and due to the estimates on g; we get:

Proposition 3.10 Forr € (O ), when t — 0,

1
pi(r, 0) ~10 27 (N1(0) £ L2(0)),

where
2 - 2
_ y?+Grcos(eosrcoshy)? - arcos(cos r cosh y)
Ji(t) = / e & >—ay
1 V1 —cos?rcosh? y
cosh y< cosr
and
2 N )2
_ y2—(arcosh(cosr cosh )2 arcosh(cos r cosh y)
Jo(t) = / e a . dy.
Vcos?rcosh? y — 1
cosh y> 1

cosr

We now analyze the two above integrals in small times thanks to the Laplace method and
show that J>(¢) can be omitted.

. 1 1
On the interval [—arcosh o arcosh ocr

], the function
fly) = y2 + (arcos(cos r cosh y))2
has a unique minimum which is attained at y = 0 and, at this point:
f"(0) = 2(1 — rcotanr).
Therefore, thanks to the Laplace method

4t

2

_r-

Ji(t) ~0 e F — _—
sinr V 1 — rcotanr

We now analyze the second integral. On (—oo, —arcosh Cols r) U (arcosh Cols = —l—oo), the func-
tion

g(y) = y* — (arcosh(cos r cosh y))2,

has no minimum. Therefore, from the Laplace method J>(¢) is negligible with respect to
Ji(t) whent — 0. ]

The previous proposition can be extended by the same method when z # 0. If we fix
re (0, %) ,Z € [—m, m], then the function

f(y) = (y —iz)?> + (arcos(cos r cosh y))2,

defined on the strip | Re(y) |< arcosh Cols r

unique solution in [—, 7] to the equation:

has a critical point at ;6 (r, z) where 0(r, z) is the

arcos(cos 0 (r, z) cosr)

O(r,z) —z =cosrsinb(r, z) .
V1 —cos?rcos26(r, z)
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658 F. Baudoin, M. Bonnefont

Indeed, with u = cosr cos 0

arcos(cos 0 cosr) ) _ sin? r | u(r, z)arcosu(r, z)
A/1 — cos? r cos? 0 1 —u(r, z)? V1 —u?(r, z)

which is positive. So this last function is bijective from [—, 7] on itself.
We observe that at the point §(r, z), f”(i0(r, z)) is a positive real number:

"o sin? r u(r, z)arcosu(r, z)
o(r, =2 11—
frao(r, 2)) 1—u(r, Z)Z ( /1 — uz(r, 2)

where u(r, z) = cosr cos@(r, z). By the same method than in the previous proposition, we
obtain:

0
— |6 —cosrsinf
20

Proposition 3.11 Letr € (0, %),z € [-m, 7]. Whent — 0,

_09—%an?r
1 arccosu(r,z)  «/me 4?60
pe(r,z) ~ —— 3
sinr 1— u(r,z)arcosu(r,z) 4¢2

1=u?(r,z)

Remark 3.12 According to Léandre results [19] and [20] (see also [18]), the previous asymp-
totics give a way to compute the sub-Riemannian distance from 0 to the point (r, 8, z) € SU(2)
by computing lim;_, o —4¢ In p;(r, z). This distance does not depend on the variable 6 and
shall be denoted by d(r, z).

e Forzel|—m, o],
d*(0,z) =27 | z | —Z°

e Forzel[—m ] re (O, %)

O(r, z) — 2)* tan?r

d? r,z) =
r.2) sin20(r, 7)

In particular, d? (r,0) = r2,
We can observe that the subriemannian diameter of SU(2) is thus 7 2.

To conclude this section on the asymptotics in small times, we show that after a convenient
scaling, the heat kernel of SU(2) uniformly (on compact sets) converges to the heat kernel
of the Heisenberg group. This scaling is related to the fact that dilation of SU(2) leads to the
Heisenberg group (see for instance [26] and its extension [12]).

Let us first recall some basic properties of the three-dimensional Heisenberg group (see
by, e.g., [5,7] and the references therein): H can be represented as R endowed with the
polynomial group law:

(x1, y1, 21) (%2, ¥2, 22) = (X1 + X2, y1 + y2, 21 + 22 + X1y2 — X2)1)-

The left invariant vector fields read in cylindric coordinates (x = r cos6, y = r sin6):

~ 9 sing o 9
X =coso— -7 % _ L nol (3.5)
or r 060 0z
P o singL 8090 1 os0d (3.6)
= SIinov— —_— COSt0 — .
Yy r a0 Y
7= 0 3.7
Tz '
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 659

And the following equalities hold
[X,Y]=2Z, [X,Z]=[Y,Z]=0.
We denote
L=X*+712
Due to Gaveau’s formula (see [14,16]), with respect to the Lebesgue measure rdrdfdz the
heat kernel associated to the semigroup (i’,)tzo = (e’E),Zo writes

1 +oo N R
irz r
h : — -5 7chotanhktdk' 3.8
1, 2) 1672 / ¢ Snhart (3.8)
—00

By using the explicit formula for p, we can prove:
Proposition 3.13 Uniformly on compact sets of R>¢ x R.
lim £, (V/1r, 12) = 271 (7, 2)
Proof Let K be a compact of R>g x R and ¢t > 0 sufficiently small so that (77, 1z) €

[0, 5] x [, ] forall (r, 2) € K.
According to Proposition 3.5 we have

3/2 (y+it:)2
2 p(Vir, 1z7) = r g, (cos /tr cosh y)dy.

The idea is now to use the estimates (3.3) and (3.4) and to study the two integrals:

5 2) / _ (y+z‘rz)2+arccof<cos Vireoshy) arccos(cos /17 cosh y)

1 r,z) = e 1
1 V1 = cos2 /tr cosh? y
coshy< Py
and
(y+itz)2 —arccosh? (cos +/7r cosh y) arccosh(cos +/¢r cosh

Dt r,z) = / e a (cos vt y)d

Vcos? /ir cosh? y — 1

cosh y>

1
cos /1r

It is easily seen that for some constant C > 0, uniformly on K,

12
|J1(t, r,2)| < Ce' & /tr.

Therefore Ji (¢, r, z) goes uniformly to O on K.
Let us now turn to the integral J>(z,r, z) and let us show that, uniformly, J>(t, r, 7)
converges to 272h, (r, 2).

ivz !
Let ¢ > 0. Let us observe that |e 2 e~ }C"ta“hy

rz.
Note also that for all 1 < u# < cosh(y/2),

| is less than ye™ for big y and all

(Y=arcosh®u ) arcoshu _2
ar _— 8
u? —1

e
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660 F. Baudoin, M. Bonnefont

and for all cosh(y/2) < u < cosh(y)

'Z—HI'COS 2H
— (pzaeoshu arcoshu - v/2 '
u2 —1 ~ sinhy/2

The last three quantities are integrable and do not depend on r, z, so we can find y; > 0 so
that

vz _r? y
e e r ycotanhy dy <.
sinh y
[yI=y1

and

_ (yrirz)? —arceosh? (cos Vir coshy) arccosh(cos /7 cosh y)
4t

e
Vcos? \/tr cosh? y — 1

[YI=y1

T ycolanh y y

Now we study the behavior of our integrals for small y. |eiy7Z e~ <1 is less than 1

_ (y+itz)2—arcro:h2(cos J/1r cosh y) . i
for small y and e a arceosh(cos v/ir cosh ¥)) ¢ Jegs than e for small y.

A/cos? \/ir cosh? y—1
Thus, as before there exists 0 < yg such that

= ’7 yeotanhy Y

ele dy <e.
sinh y
[yI=yo
and
_ (+itz)?—arecosh? (cos v/ir cosh y) arccosh(cos /7 cosh y))
e 4 dy <e¢
Vcos? /ircosh? y — 1

arccosh(ﬁ)ﬁ\ﬂi)’o

Letyp <y <y and 0 < u < coshy — 1 by the Taylor-Lagrange development formula we
have the following equality
1 ¥ u?
u— —.
sinh y sinh3/2§ 2

arccosh(coshy —u) =y —

for some y €larccosh(coshy — u), y[. By applying this to cos+/trcoshy = coshy —
tr? cosh y + O(¢2r*) cosh y, we get

arccosh(cos v/fr cosh y) = y — trzcotanhy + 0*rh (cotanhy + cosh? yL)

sinh3/2

for some j €Jarcosh(cos +/r cosh y), y[. So

arccosh?(cos v/7r cosh y)= y —tr ycotanhy+0(t2r4) (ycotanhy+y cosh? y%)
y

and
ritn)2 2 ; vz
ei()+tu) arccosgl:/ (cos \/1r cosh y) _ e%e }colanh\e“T
1+ 0% ycotanhy + ycosh2 %
nh3/2 ¥
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Finally, using also Taylor Lagrange development formula at order 1 we obtain

arccosh(cos /17 cosh y) Y tr? ( 1 2)3 cosh )7)

= — — —cosh(y) | — — - z
Jeos? /ircosh?y —1  sinhy 2 sinh? § sinh?

for some 9 eJarcosh(cos /17 cosh y), y[.

So finally, we see we can pass uniformly to the limit under the integral for yo < |y| < y;
and obtain our proposition. O
4 Gradient bounds for the heat kernel measure
In this section, our main goal will be to quantify the regularization property of the semigroup
P, = ¢'“: We shall mainly be concerned with bounds for (X P; f)> + (Y P, f)>.

We shall often make use of the following notations (see [1,3]): We set for f, g smooth
functions,

2I(f, 8) = L(fg) — fLg —gLSf
and
2I0(f, 8) = LI(f, &) —T'(f, L&) —T'(g, Lf).
In the present setting,
L(f. )= X)H?+ X f)?

and

1
Da(f, ) = (X2 + (V2% + 5 (XY + YX) )2 +2(Zf)* +4T(f, f)
—4(X[)YZf) + 4V F)XZf). 4.9)

In particular, if f is a smooth function that only depends on the variables » and z, we obtain

ar\> ar\>
r'(f, f):(a—{) +tan2r(£> ,

2 2 2 2
I f 2 (af
4
t PR —_—
+an r(azl) tostr (az)
N 4 af 2+4tanr af\ [ 0%f 2tanr (Of\ (9% f
sin?2r \ Or cos2r \ 9z ) \oroz cos2r \ or 072
21\ L 2 F 2 ary 1 af 927\
== tan® r —5 — — 2 =+t .
(arZ) +(an "92 " sin2r ar) + (coszr8z+ anraraz)

Thus, as an interesting consequence, if f is a smooth function that only depends on the
variables r and z, I'>2(f, f) > 0.

and

AN 2, (3
o f, f) = (ﬁ) + 2tan”r (8r8z)
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4.1 A first gradient bound

Proposition 4.1 Let f : SU(2) — R be a smooth function. Fort > 0 and g € SU(2),

2
(P f. Pf)(g) < AG) / Pdp - / Fdu
SUQ) sUQ)
where

19 ,
AW =—7— dp.
O==2% / Prép

SU©2)

Proof By left invariance, it is enough to prove this inequality at ¢ = 0. We can moreover
assume that fSU(z) fdp = 0.1If we denote by X and Y the right invariant vector fields, then
we have:

T(P f, P f)(0) = (XP: £)*(0) + (Y P, £)*(0)
(PX £)*0) + (PY £)*(0)

/ per, )X f(r,0,2dp | + / pi(r, )Y f(r.0,2)dp
SU(2) SU(2)
2 2

/ Xp(r, ) f(r,0,20du | + / Ypi(r,2) f(r, 0, 2)dp
SU(2) SU(2)

Now, let us observe that since p; does not depend on 6, we have

~ A 1
/ (Xp)idp = / (th)zduzi / C(ps, pdp,

SU(2) SU(2) SU@2)
and
/ XPI?Pth =0.
SU®)

Therefore, from Cauchy—Schwarz inequality, we conclude that:

1
DO f PO < 5 / C(pr. pr)dp / Fdp.
SUQ2) SUQ2)

which is the required inequality because:

19
/F(pz,pz)du=— / perrdu=—55 / pidu

SU(2) SU2) SU@2)

We now study the constant A(t).
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The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds 663

Proposition 4.2 We have the following properties:
e Aisdecreasing;
2
o AW ~o0
o A~ poo de .

Proof Let us first show that C is decreasing. We have:

A = - / Ca(pr. po)d.
SUQ)

Since p; only depends on (r, z), T'2(p;, ps) > 0 and thus A’(¢) < 0.
We can now observe that, due to the semigroup property,

pidu = p2(0)
SU?2)
But from Proposition 3.1 and 3.9,

+00  +oo
p:(0) = Z Z(2k+ |n | +l)e—(4k(k+\n\+l)+2|n|)t

n=—00 k=0

x2

72! wisnr? (2k 4 1) + 2ke= 2
LS

T 42 2\ 2
keZ (1_;’_6*%)

which implies the expected result. O

4.2 Li-Yau type inequality

We now provide a Li-Yau type estimate for the heat semigroup. The inequality we obtain is
an improvement in the specific case of SU(2) of the Cao-Yau gradient estimate for subelliptic
operators that was obtained in [10]. The idea of the method that is used to prove Theorem 4.3
is due to Bakry and was given to the authors during personal discussions; It is close to [6].
We have the following inequality:

Theorem 4.3 For all o > 2, for every positive function f andt > 0,

3a—1 2t)£Ptf t 30{—1+(3a—1)21

t 2
F(lnPtf)-i-&(ZlHPrf)E( Pf o a-1 =2 t

oa—1 o

Proof We fix a positive function f and ¢ > 0 and all the following computations are made
at a given point x € SU(2).
For0 <s <t let

Qi(s) = Ps((Pr—s HT(In P f))

and

D2(s) = Ps(P—s f)(ZIn Pr_s f)?).

Straightforward, but heavy, computations show that

@1 (s) = 2Ps((Pr—s /)T2(In Pr—s f))
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664 F. Baudoin, M. Bonnefont

and
D5(s) = 2P ((P—s /)T (ZIn Pi_ f)).

Now, thanks to the Cauchy—Schwarz inequality, the expression 4.9, shows that for every
A > 0, and every smooth function g,

1 2
Ta(g) > 5(‘g)2 +2(Zg)* + (4 - X) T'(g) — 2AT(Zg).

We therefore obtain the following differential inequality

D (5) = Ps((P—s f)(LIn Pr_y [)?) + 4D (s) + (8 - ;) D1(s) — 22 D)(s).

We now have that for every y € R,
(LI Pros f)* = 2y LIn Py f =y,
and

LP_f T(Psf)
Posf (P f)?

LInP_sf =

Thus, for every . > 0 and every y € R,
4

D) (s) > (8 - 2)/) D (s) +4Po(s) — 2P5(s) + 2y LP f — Y2 P, f.

Let now b a positive decreasing function on the time interval [0, ¢). By choosing in the
previous inequality

b
A=-2—
b/
and
1 b/ b//
=_(8+2—+—).
4 2( + b+b/)
we get

1 Lo b 1 boob"\?
— VD +bDy ) = b (842 + = )cPf— (842> +—) Pf).
(4 ' 2)— 4((+b+b’) 2 4(+b+b/) ’f)

Integrating the previous inequality from O to ¢ with the function b(s) = (t — 5)%, @ > 2,
gives the expected result. O

Remark 4.4 Of course, by the same method, we obtain a Li-Yau type inequality for the heat
kernel p;(r, z) itself.
Remark 4.5 Interestingly, we can obtain an exponential decay in the previous inequality.

. . _ 8 _8t—9\¥ . .
Indeed, if we use the function b(s) = e T (1—e % ) , o« > 2, 1in the previous proof,

then we obtain that for every o > 2,1 > 0,
8¢

rd Pf)+3(1 _T)(Zl PR <6(—14 - fa s
n —(l—e 3% n -1+ — _
! 2 o= 3a) a—21_ %

EEY UL RIS L
3 ) o — 1 P f
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As a direct corollary of the Li-Yau type inequality of Theorem 4.3, we classically deduce
(by integrating along geodesics) the following Harnack type inequality: There exist positive
constant A; and A; such that for0 < #; < < 1 and g, g2 € SUQ2)

A o
puls (1) R (4.10)
Prn(g2) — \1

where 8(g1, g2) denotes the Carnot-Caratheodory distance from g to g».
As another corollary we can also prove the following global estimate:

Proposition 4.6 There exists a constant C > 0 such that fort € (0,1), r € [0,7/2], z €
[—7, 7],

ST p)n <C (d(rt’ 9, %) ,

where d(r, 7) denotes the Carnot Carathéodory distance from O to the point with cylindric
coordinates (r, 0, 7).

Proof In what follows, we fix t € (0, 1). Let
¢ (s) = Py(pr—s In p;—s)
so that
¢'(s) = Ps(pr—sT(In pr—y))
and
¢"(s) = Py(pi—sT2(In p;—y)).

Since p; only depends on (r, z) we have ['y(In p;—;) > 0 and therefore ¢”(s) > 0. By
integrating the last inequality from O to /2, we obtain

I3
3
/ [ /
/(b (s)ds > 5(15 ()
0
that is
2
pI(lnpy) < 7 (Pz/2 (Pz/2 In Pz/2) —prln Pt) .

We finally estimate P; 2 (pt/z In p;/z) — p¢ In p; by using first In p; 2 (r, z) < In p;/4(0) and
then the Harnack inequality (4.10):

2
n P4 gc(d(“) +1).
pt(rvz) t

4.3 The reverse spectral gap inequality

As in the Heisengroup case (see [5]), we can easily obtain a reverse Poincare inequality with
a sharp constant for the subelliptic heat kernel measure on SU(2).
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Proposition 4.7 Let f : SU(2) — R be a smooth function. Fort > 0 and g € SU(2),
L(P.f, P )(g) < C) (P f2(2) — (P f)*(2))

where

19
C([):—EE / prInpidp.

SU(2)

Proof By left invariance, it is enough to prove this inequality at g = 0. If X and Y are the
right invariant vector fields (see Remark 2.1), then, as seen before, we have:
2 2
resnnO = [ fneoseade| +f [ Pneoseade
SU(2) SUQ©)
Since p; does not depend on 6, we have

Xpi)? Y pi)? 1 [ T(p,
/ ( II:t) dy = / (Y pr) du =~ / (P pt)du,
t t

P 2 Pt
SU?2) SU(?2) SU(2)

and

XpY
/gjlﬁguzg

Pt
sUQR)

Therefore, from Cauchy—Schwarz inequality, we conclude that:

1 I'(pr,
s rnO <5 [ e o)
t

SUQ)
which is the required inequality because:
U'(pt, pr) 3
/AJZQ%M=/Iﬂmmmwu=—/nmmwdu=—*/ﬁmmww

Pr dt
SUQ2) SU(2) SU((2) SUQ2)

m}

Remark 4.8 Due to the use of the Cauchy—Schwarz inequality in the previous proof, we see
that the previous inequality is sharp.

We now study the constant

19
Ct) = ——— In p;du.
) 2 / pelnpdp

SUQ)
Proposition 4.9 We have the following properties:

o C isdecreasing;
o C(t) ~o ks
o C(1) ~isto0 de .
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Proof Let us first show that C is decreasing. After some computations, we obtain:

C'()=- / o(n py, In py)prd .
SUQ2)

But now, let us observe that p; only depends on (7, z). Therefore I'z(In p;, In p;) > 0 and
thus C’(¢) < 0.

We now study C(¢z) when t — 0. The idea is that, asymptotically when ¢t — 0, the
constant C(¢) has to behave like the best constant of the reverse spectral gap inequality on
the Heisenberg group (see the Sect. 3.3.). From [5], this constant is known to be 1/z.

We have:

t
o =3 / T In py, In pod

SU2)

2
/ s n \[rpz(«fr t2)I'(In py, In p,)(Vtr, tz)drdz

T
3

|
i \S\“

Now, by using the result of Section 3.3., we easily obtain that the following convergences
hold

in2./7
lim IS/Z%I%(«/{E tz) = 2why(r, 2)r

r—

lim /0(In pr. In PO tz2) = (X Inh)2(r, 2) + (¥ Inh)2(r, 2),
—

where h;(r, z), X and Y are defined in Sect. 3.3 (see 3.8, 3.5, 3.6). Moreover, thanks to
Proposition 4.6, there exists a constant C > 0 such that

tT(In p;, In p)(Vir1z) <C, 1t €(0,1).
We can therefore apply a dominated convergence to obtain:
1 - -
lim 1C(1) = 5 / hi(r, 2) ((X Inh)*(r,2) + (FIn k), z)) rdrdfdz.
—
R3

This last expression is equal to 1, according to [5].
We finally turn to the analysis of C(¢) when t — +o00. For that, we use the expression

L'(ps,
(pr pt)du

1
C(t) ==
2 Pt

SUQ2)
and the spectral decomposition of Proposition 3.1 to get that uniformly on SU(2),
T(prs Pr) ~t 400 166 T (cos r cos z, cOs F cOs 2)
Therefore,

C(t) ~t00 8¢~ H / I'(cosr cos z, cosr cos z)du,
SUQ)
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and we compute

1
/ I'(cosrcosz,cosrcosz)du = >
SuU(2)

to conclude. ]

4.4 LP gradient bounds

The goal of this section is to prove the following gradient bounds:

Theorem 4.10 Let p > 1. There exists a constant C,, > 1 such that for any smooth f :
SU(2) — R and any g € SU(2)

VIR PD@ = Cpe (PT L NE@) " 120,

Remark 4.11 Let f(r,6,z) = cosrcosz. In that case, £Lf = —2f and T'(f, f) = sin®r.
Therefore the exponential decay e~ is optimal and moreover:

<=

sinr < Cp P (sinr)?

1
which implies, by letting # — oo, C, > (1 + g) v,

Remark 4.12 'We conjecture that the inequality still holds true for p = 1.
4.4.1 Long-time behavior

We first study the long-time behavior I'(P; f, P; f). For that we will rely on a commutation
between the complex gradient and the semigroup P; (such a type of commutation involving a
Folland—Stein type operator has already been used in the Heisenberg group to study gradient
estimates, see [5]).

The Lie algebra structure relations lead to:

X+iY)L=(L—-4Z+4)(X+iY), (4.11)
which leads to the formal commutation:
(X 4+iY)P, = ! L4V (X 4 jy).
In what follows we give a precise analytical sense to the previous commutation.

Remark 4.13 We can observe that the constant that appears in the commutation is positive,
which is quite striking because we expect an exponential decay. Nevertheless, as we will see
below e’ (L=42) gives a decay e~® against complex gradients.

Lemma 4.14 Lett > 0 and r > 0. The function
1 1

(1 —cos re"Z—Z’)2 - (1 — cos re‘iz_zf)2

z—> pi(r,2) —

admits an analytic continuation on {z € C, | Imz |< —Incosr + 6t}. The function
z— p(r,2)

is therefore meromorphic on {z € C, | Imz |< —Incosr + 6t} with double poles at —i (— In
cosr + 2t) and i (—Incosr + 2t).
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Proof This is an easy consequence of the spectral decomposition of p;:

+00 400
pi(r,z) = z Z(2k+ | n | +1)e” GkEFInIFD+2ID1 pinz (g r)‘"‘P,?’lnl(cos 2r).

n=—00 k=0

Let us know observe thatif k =0 andn <0,
(X +iY)e™ (cos )" PO (cos 2r) = 0.
If, fort > 0,r >0,z € C—{—i(—Incosr + 2¢r)}, | Imz |< — Incosr + 6¢, we denote
1

*
pi(r,2) = pi(r,z) — : ;
' 1 — cos re=iz=21)?

we have therefore

X +iY)p: = (X +iY)p}.
Combining this with (4.11) leads to:
Proposition 4.15 If f : SU(2) — R is a smooth function, then

(X +iY)P f(0) = e / piryz+4iny (X +iY)f(r,0,2du, t>0.
H
And, as a corollary:

Corollary 4.16 There exists ty > 0 and A > 0 such that for any smooth f : SUQ2) — R,

VTP f, P )0) < Ae™* P\JT(f, )(0), t=>10.
Proof We denote

F(r,z +4it
o) = sup sup LPLLZFHOL
ref0,53]zel-m 7] pi(r, 2)

Since,

py (r.z + 4it)
+00
=D (n+ e e (cosr)"

n=1
+00 400 )
4 Z Z(Zk_'_ | n | +1)67(4k(k+|n|+1)+2\n\)telnzefélm‘(COS r)ln‘P]?’lnl(COS 2,.)

n=—o0 k=1
there exists 7o > 0 and A > 0, such that for r > 19,
*
0
CD(I)S |P;()| SAe—sf
1= 1—p(0) |

and the proof is complete. O

)

Remark 4.17 The above function ®(¢) explodes when t — 0.
pi(r,z+4it)
pe(r,2)
where R is big enoughand X ; denotes the Carnot Carathéodory ball with radius R./t.By
a partition of unity similar to [5], this would imply that Theorem 4.10 also holds for p = 1.

Remark 4.18 We conjecture that the ratio SUPy. 2¢5, ;7 is bounded when ¢ — O,
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4.4.2 Short-time behavior

We now conclude the proof of Theorem 4.10, by showing that the inequality does not explode
when t — 0. We shall use here the commutation between left-invariant and right invariant
vector fields. It relies on the following lemma:

Lemma 4.19 Letr g > 1. The limit
lim [ (sin2r)/T(In pr.In p) (r. ) pr (. 2)dps
t—
SU2)
is finite.

Proof The proof is similar to the proof of the second point of Proposition 4.9.: By scaling
and a dominated convergence argument based on Proposition 4.6., we obtain:

li
t—0
SU(2)

~ ~ /2
=2q/rqh1(r, ) ((Xlnhl)z(r, O+ FInh)2e, z))q rdrdédz,

R3

m / (sin 27T (In py. In p)3 (. 2 pr (r. Vs

which is finite, due to known results on the Heisenberg group (see [5]). O

‘We can now deduce:

Proposition 4.20 Let p > 1. There exists a constant A, > 0 such that for any smooth
f:SU®R) — Randany g € SU(2)

VRS PD@© = 4y (PTG DE@) e 0.1,

Proof Due to the fact that the right-invariant vector fields X, ¥ commute with £, we get
(XP/)(O0) = (PX[)(O)

and
(Y P f)(©0) = (PY f)(0).

Now, X, Y, Z form a basis at each point, there exist therefore smooth functions such that:

X =Q X+ QoY+ Q32
Y = 01X + QoY + Q37

By using [X, Y] = 2Z and integrating by parts, we obtain

1 1
(XPf)0) = / (Ql,mz + EY(QMPI)) (Xf)+ (91,217; - EX(QMPr)) Y f)dpu
SUQ)

and

1 1
Y P f)(0) = / (92,1Pt + EY(Qz’3pt)) (Xf)+ (Qz,zpz - EX(Q2,3Pr)) YfHdu.
SU(_2)
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We

easily compute

Q3 =sinf sin2r

and
Q3 = —cosfsin2r.
By using Holder’s inequality the expected result follows from Lemma 4.19. O
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