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Abstract There is a well-known correspondence between infinite trees and ultrametric
spaces which can be interpreted as an equivalence of categories and comes from considering
the end space of the tree. In this equivalence, uniformly continuous maps between the end
spaces are translated to some classes of coarse maps (or even classes of metrically proper
Lipschitz maps) between the trees.
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1 Introduction

This paper is mainly inspired by a recent, interesting and beautiful one due to Hughes [4]
but it is also motivated by [8] where a complete ultrametric was defined on the sets of shape
morphisms between compacta.

In [8] it was proved that every shape morphism induces a uniformly continuous map
between the corresponding ultrametric spaces of shape morphisms which are, in particular,
complete and bounded as metric spaces. Moreover Hughes established some categorical
equivalences for some classes of ultrametric spaces and local similarity equivalences to
certain categories of geodesically complete rooted R-trees and certain equivalence classes of
isometries at infinity.
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584 Á. Martínez-Pérez, M. A. Morón

In view of that, it is natural for us to ask for a description of uniform types (the classification
by means of uniform homeomorphism) of end spaces of geodesically complete rooted R-trees
in terms of some geometrical properties of the trees.

To answer these questions is the aim of this paper and we find herein that the bounded
coarse geometry, see [10,11], of R-trees is an adequate framework to do that.

Also, we would like to point out some important differences between this paper and
Hughes’s. First of all we treat different, although related, categories:

The morphisms in every category of ultrametric spaces used in [4] are isomorphisms
for the topological category of ultrametric spaces, i.e. they are always homeomorphisms,
while in this paper we get results for the whole category of complete bounded ultrametric
spaces and uniformly continuous maps between them (not only for uniformly continuous
homeomorphism).

But above all, we get an explicit formula to construct a non-expansive map between two
trees that induces a given uniformly continuous function between the corresponding end
spaces. To obtain this formula we use a procedure described by Borsuk [3], to find a suitable
modulus of continuity associated to a uniformly continuous function. This is the way in which
we pass from the total disconnectedness of ultrametric spaces to the strong connectivity of
any ray in the tree.

Our main results in this paper can be summarized as follows:
The category of complete ultrametric spaces with diameter bounded above by 1 and

uniformly continuous maps between them is isomorphic to any of the following categories:

(1) Geodesically complete rooted R-trees and rooted metrically proper homotopy classes
of metrically proper continuous maps between them.

(2) Geodesically complete rooted R-trees and rooted coarse homotopy classes of coarse
continuous maps between them.

(3) Geodesically complete rooted R-trees and rooted metrically proper non-expansive
homotopy classes of metrically proper non-expansive continuous maps between them.

We finish this paper recovering, as a consequence of our constructions, the classical relation
between the proper homotopy type of a locally finite simplicial tree and the topological type
of its Freudenthal end space, see [1].

Although our main source of information on R-trees is Hughes’s paper [4], it must be
also recommended the classical book [12] of Serre and the survey [2] of Bestvina for more
information and to go further, let us say that in [7], Morgan treats a generalization of R-trees
called �-trees. Moreover, in [5], Hughes and Ranicki treat applications of ends, not only
ends of trees, to topology.

2 Trees

We are going to recall some basic properties on trees mainly extracted from [4].

Definition 2.1 A real tree or R-tree is a metric space (T, d) that is uniquely arcwise connec-
ted and ∀ x, y ∈ T the unique arc from x to y, denoted [x, y], is isometric to the subinterval
[0, d(x, y)] of R.

Lemma 2.2 If T is an R-tree and v,w, z ∈ T then there exists x ∈ T such that [v,w] ∩
[v, z] = [v, x].
Definition 2.3 A rooted R-tree, (T, v), is an R-tree (T, d) and a point v ∈ T called the root.
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Uniformly continuous maps between ends of R-trees 585

Fig. 1 The Cantor tree

Fig. 2 Non-locally finite tree

Definition 2.4 A rooted R-tree is geodesically complete if every isometric embedding f :
[0, t] → T, t > 0 with f (0) = v extends to an isometric embedding F : [0,∞) → T . In
that case we say that [v, f (t)] can be extended to a geodesic ray.

Remark 2.5 The single point v is a trivial rooted geodesically complete R-tree.

Notation If (T, v) is a rooted R-tree and x ∈ T , let ‖x‖ = d(v, x),

B(v, r) = {x ∈ T | ‖x‖ < r}
B̄(v, r) = {x ∈ T | ‖x‖ ≤ r}

∂ B(v, r) = {x ∈ T | ‖x‖ = r}
Notation For any pair of metric spaces, X ≈ Y will denote that X, Y are isometric.

Example 2.6 Cantor tree. Assume that each edge of the tree has length 1 (Fig. 1).

Example 2.7 {(a, b) ∈ R
2 | a ≥ 0 and b = 0, b = a or b = a

2n with n ∈ N}
For any two points collinear with the origin assume the euclidian metric, de, and if the

points x ,y are not collinear with the origin define d(x, y) = de(x, v) + de(v, y) (Fig. 2).

Example 2.8 Consider (R2, O), for any two points collinear with the origin assume the
euclidian metric and for any two points x, y non-collinear with the origin define d(x, y) =
de(x, O) + de(O, y) (Fig. 3).
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586 Á. Martínez-Pérez, M. A. Morón

Fig. 3 R-tree with a branching
point of uncountable order

Definition 2.9 If c is any point of the rooted R-tree (T, v), the subtree of (T, v) determined
by c is:

Tc = {x ∈ T | c ∈ [v, x]}.
Also, let

T i
c = Tc\{c} = {x ∈ T | c ∈ [v, x] and x 
= c}.

Lemma 2.10 If (T, v) is a geodesically complete rooted R-tree, Tc the subtree induced by
any point c and x ∈ (T, v) such that x 
∈ Tc then ∀ y ∈ Tc d(x, y) = d(x, c) + d(c, y).

Proof It suffices to show that c ∈ [x, y]. Lemma 2.2 implies that there exists z ∈ (T, v)

such that [v, x] ∩ [v, y] = [v, z] and we start with x 
∈ Tc, that is, c 
∈ [v, x]; in particular,
c 
∈ [v, z] and c ∈ [z, y]. It is clear that [x, y] = [x, z] ∪ [z, y] and thus c ∈ [x, y]. �

Lemma 2.11 Let (T, v) a geodesically complete rooted R-tree, Tc the subtree induced by c
and x ∈ (T, v) such that x 
∈ Tc then d(x, Tc) = d(x, c).

Proof It follows immediately from 2.10. �

Lemma 2.12 If c is any point of a geodesically complete rooted R-tree (T, v) then Tc is
closed.

Proof Let x 
∈ Tc and ε = d(x, Tc) = d(x, c) > 0. By 2.10, B(x, ε) ∩ Tc = ∅. Hence T \Tc

is open. �

Lemma 2.13 If c is any point of a geodesically complete rooted R-tree (T, v) then T i

c is
open.

Proof Let x ∈ T i
c (c ∈ [v, x] and x 
= c) and ε = d(x, c) > 0. Then B(x, ε) ⊂ T i

c and
hence T i

c is open. �

Lemma 2.14 If F : [0,∞) → (T, v) is an isometric embedding such that F(0) = v, then
∀ t0 ∈ [0,∞) F[t0,∞) ⊂ TF(t0).

Proof Clearly ∀ t > t0, F(t0) must be in [v, F(t)]. Hence F(t) ∈ TF(t0). �

Lemma 2.15 Let c ∈ (T, v) a geodesically complete rooted R-tree, then Tc is also a geode-
sically complete rooted R-tree.
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Uniformly continuous maps between ends of R-trees 587

Proof Tc is a metric space since it is a subset of a metric space. It is clear that any point in Tc

is connected with c by an arc; therefore any two points in Tc are connected by an arc which
is obviously unique, since Tc is a subset of (T, v) which is uniquely arcwise connected.

We take c as the root of Tc.
Let f : [0, t0] → Tc any isometric embedding such that f (0) = c. Then, consider

the isometric embedding f ′ : [0, t0 + ‖c‖] → T such that f ′(0) = v, f ′(‖c‖) = c and
f ′(t + ‖c‖) = f (t). The map f ′ extends f and, by definition of geodesically complete,
there exists an isometric embedding F ′[0,∞) → T such that F ′ extends f ′. F ′(‖c‖) = c
and by Lemma 2.14 F ′[‖c‖,∞) ⊂ Tc. If we define F(t) := F ′(t + ‖c‖) it is readily seen
that F : [0,∞) → Tc is an isometric embedding and extends f in Tc. �

Definition 2.16 A cut set for a geodesically complete rooted R-tree (T, v) is a subset C of
(T, v) such that v 
∈ C and for every isometric embedding F : [0,∞) → T with F(0) = v

there exists a unique t0 > 0 such that F(t0) ∈ C .

Example 2.17 ∂ B(v, r) with r > 0 is a cut set for (T, v).

Proposition 2.18 Given a cut set C for (T, v), the connected components of T (C) := {x ∈
T | [v, x]∩C 
= ∅} (that is, the part of (T, v) not between the root and the cut set) are exactly
the subtrees {Tc}c∈C .

Proof T (C) = ∪c∈C Tc and we know that Tc is always connected (as it is in fact arcwise
connected). Let’s see that for any c0 ∈ C , the connected component of c0 in T (C) is Tc0 .

If we remove from the tree any point x ∈ (T, v) we disconnect the tree in two subsets: T i
x

and T \Tx which are open sets in (T, v), as we saw in Lemmas 2.12 and 2.13, and it is easy
to verify that T i

x is closed in T \{x}. (Note that T i
x need not be connected but we may remark

that T i
x is a union of connected components of an open set and these are open since (T, v) is

locally connected).
Let c′ ∈ C such that c′ 
= c0 and w ∈ (T, v) such that [v, c0] ∩ [v, c′] = [v,w]. Consider

x ∈ [w, c0] such that x 
= c0 and by definition of cut set it is clear that x 
∈ T (C) and
T i

x ∩ T (C) is a clopen set in T (C) that contains Tc0 and T i
x ∩ Tc′ = ∅. The intersection

of all the clopen sets that contain Tc0 (we already know that Tc0 is connected) is the quasi-
component of Tc0 , which contains the connected component and does not intersect any other
subtree Tc′ induced by any other point of the cut set. Hence, the connected component of c0

is exactly Tc0 . �

Remark 2.19 If we consider in (T, v) the cut set C := ∂ B(v, r) with r > 0, then T (C) is
exactly T \B(v, r).

3 Metrically proper maps between trees

Main concepts in this section are taken from [10,11]. Note that herein it is used the convention
that a map need not be continuous. When continuity is required we will write it explicitly.

Definition 3.1 A map f between two metric spaces X, X ′ is metrically proper if for any
bounded set A in X ′, f −1(A) is bounded in X .

Definition 3.2 A map between two rooted R-trees, f : (T, v) → (T ′, w), is said to be
rooted if f (v) = w.
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588 Á. Martínez-Pérez, M. A. Morón

To avoid repeating the expression: rooted, continuous and metrically proper map we define
metrically proper between trees as follows.

Definition 3.3 A map f between two rooted R-trees is metrically proper between trees if it
is rooted, metrically proper and continuous.

Remark 3.4 If f : (T, v) → (T ′, w) is a metrically proper map between trees, then:

∀ M > 0 ∃ NM, f > 0 such that f −1(B(w, M)) ⊂ B(v, NM, f ).

This is equivalent to saying that f (T \B(v, NM, f )) ⊂ T ′\B(w, M).

Proposition 3.5 If f : (T, v) → (T ′, w) is a metrically proper map between trees, and M >

0 and N > 0 are such that f −1(B(w, M)) ⊂ B(v, N ), then for any c ∈ ∂ B(v, N ) there
exists a unique c′ ∈ ∂ B(w, M) such that f (Tc) ⊂ T ′

c′ .

Proof If f −1(B(w, M)) ⊂ B(v, N ) then f (T \B(v, N )) ⊂ T ′\B(w, M). The map f sends
connected components of T \B(v, N ) into connected components of T ′\B(w, M); in parti-
cular, ∀ c ∈ ∂ B(v, N ) f (Tc) ⊂ T ′\B(w, M). As it is a continuous image of a connected
set is clearly contained in one of the connected components of T ′\B(w, M) and those are,
as we saw in Propositions 2.17 and 2.18, the subtrees determined by points of the cut set
∂ B(w, M). �


Equivalence relation on metrically proper maps between trees. In this paragraph we intro-
duce an equivalence relation on the maps defined between trees. The resulting equivalence
classes will be the morphisms of the category T whose objets are geodesically complete
rooted R-trees. The interest of this relation is that two maps will be in the same class if and
only if they induce the same map between the end spaces (that will be uniformly continuous
as we shall see). This allows us to establish the one-to-one correspondence of the morphisms
in the equivalence of categories.

We define this equivalence relation in two steps: first we put it in terms of the behavior of
the maps on the complement of closed balls centered at the root. Later, we prove that these
classes are related to some natural concept of homotopy between metrically proper maps.

Let M > 0, N > 0 be such that f (T \B(v, N )) ⊂ T ′\B(w, M). For any c ∈ ∂ B(v, N )

let Tc be the subtree determined by c. By Proposition 3.5, there is a unique c′ ∈ ∂ B(w, M)

such that f (Tc) ⊂ T ′
c′ . This allows us to consider the families TN := {Tc | c ∈ ∂ B(v, N )}

and T ′
M := {T ′

c′ | c′ ∈ ∂ B(w, M)} and a map fTN : TN −→ T ′
M given by fTN (Tc) = T ′

c′ if
and only if f (Tc) ⊂ T ′

c′ .

Remark 3.6 This map can be defined for all N > NM, f since ∀ d ∈ ∂ B(v, N ) there exists a
unique c ∈ ∂ B(v, NM, f ) such that Td ⊂ Tc, and obviously

f (Td) ⊂ f (Tc) ⊂ T ′
c′ ⇒ fTN ′ (Td) = T ′

c′ .

Given f, f ′ : (T, v) → (T ′, w) two metrically proper maps between trees, then by f ∼ f ′
we understand the following

∀ M > 0, ∃ NM, f, f ′ > 0 such that ∀ N > NM, f, f ′ fTN = f ′
TN

. (1)

Proposition 3.7 ∼ defines an equivalence relation.

Proof It is obviously reflexive and symmetric.
Transitive: If f ∼ f ′ and f ′ ∼ f ′′ then there exist constants NM, f, f ′ and NM, f ′, f ′′ such
that ∀ N > NM, f, f ′ fTN = f ′

TN
and ∀ N > NM, f ′, f ′′ f ′

TN
= f ′′

TN
. Hence, for every

N > max{NM, f, f ′ , NM, f ′, f ′′ } fTN = f ′′
TN

and f ∼ f ′′. �
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Uniformly continuous maps between ends of R-trees 589

Definition 3.8 If f, g : X → T are two continuous maps from any topological space X to
a tree T then the shortest path homotopy of f to g is a homotopy H : X × I → T of f
to g such that if jx : [0, d( f (x), g(x))] → [ f (x), g(x)] is the isometric embedding of the
subinterval [0, d( f (x), g(x))] ⊂ R into T whose image is the shortest path between f (x)

and g(x) then H(x, t) = jx (t · d( f (x), g(x))) ∀ t ∈ I ∀ x ∈ X .

Lemma 3.9 If f, g : X → T are two continuous maps from any topological space (X,τ )

to an R-tree T , then there is a shortest path homotopy H : X × I → T of f to g.

Proof It suffices to prove that H with the definition above is continuous. Consider (x0, t0) ∈
X × I . The continuity of f and g implies that ∀ ε > 0 there exists U ∈ τ with x0 ∈ U such
that f (U ) ⊂ B( f (x0),

ε
2 ) and g(U ) ⊂ B(g(x0),

ε
2 ) where B(., γ ) is the corresponding ball

in the R-tree T . It is immediate to check that this implies that H(U, t0) ⊂ B(H(x0, t0),
ε
2 ).

Let K be such that d( f (x), g(x)) < K ∀ x ∈ U . Then, H(U, B(t0,
ε

2K )) ⊂ B(H(x0, t0), ε)
and H is continuous. Clearly, H0 ≡ f and H1 ≡ g. �

Definition 3.10 Given f, f ′ : (T, v) → (T ′, w) two metrically proper maps between trees,
we say that H : T × I → T ′ is a rooted metrically proper homotopy of f to f ′ if H is
continuous, H0 ≡ f , H1 ≡ f ′, H(v, t) = w ∀ t ∈ I and ∀ M > 0, ∃ N > 0 such that
H−1(B(v, M)) ⊂ B(v, N ) × I . In this case we say that f, f ′ are rooted metrically properly
homotopic, denoted by f �Mp f ′.

Definition 3.11 Two trees (T, v), (T ′, w) are said to be rooted metrically properly homotopy
equivalent, (T, v) �Mp (T ′, w), if there exist two metrically proper maps between trees
f : T → T ′ and f ′ : T ′ → T such that f ◦ f ′ �Mp idT ′ and f ′ ◦ f �Mp idT .

Proposition 3.12 f ∼ f ′ if and only if f �Mp f ′.

Proof Suppose f ∼ f ′. ∀ n ∈ N let tn > 0 such that f (T \B(v, tn)) ⊂ T ′\B(w, n) and
f ′(T \B(v, tn)) ⊂ T ′\B(w, n). Without loss of generality suppose tn+1 > tn +1. If f ∼ f ′,
by Proposition 3.5, ∀ c ∈ ∂ B(v, tn) there exists a unique point c′ in ∂ B(w, n) such that the
image under either f or f ′ of Tc is contained in T ′

c′ .
By 3.9, if we consider the shortest path homotopy of f to f ′ it remains to check that this

homotopy is metrically proper. It suffices to show that ∀ tn and ∀ t ∈[0, 1] Ht (T \B(v, tn))⊂
T ′\B(w, n). Given x ∈T \B(v, tn) we know that f (x)∈T ′\B(w, n) and f ′(x)∈T ′\B(w, n)

and also, by the meaning of the relation defined, there exists a unique c′ ∈ ∂ B(w, n) such
that f (x) ∈ T ′

c′ and f ′(x) ∈ T ′
c′ . As we saw in Remark 2.15, T ′

c′ is an R-tree, so there
exists an arc in that tree from f (x) to f ′(x) and, since T is uniquely arcwise connected, this
arc must be contained in T ′

c′ . Hence the homotopy restricted to T \B(v, tn) is contained in
T ′\B(w, n).

Conversely, let f , f ′ : (T, v) → (T ′, w) be metrically proper maps between trees and
H : T × I → T ′ a rooted metrically proper homotopy of f to f ′. Let M > 0, N > 0 such
that Ht (T \B(v, N )) ⊂ T ′\B(w, M) ∀ t ∈ I . For any c ∈ ∂ B(v, N ) and c′ ∈ ∂ B(w, M)

such that f (Tc) ⊂ T ′
c′ it is clear that H(Tc × I ) ⊂ T ′

c′ (as it is the continuous image of a
connected set into T ′\B(w, M)); in particular (if t=1) f ′(Tc)⊂T ′

c′ and hence, f ∼ f ′. �

Remark 3.13 This implies that �Mp defines an equivalence relation.

Notation For any metrically proper map between trees f , let [ f ]Mp be the class of all
metrically proper maps between trees metrically properly homotopic to f . Some places in
section 7 where the context is clear this class will be simply denoted by [ f ].
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590 Á. Martínez-Pérez, M. A. Morón

4 The end space of a tree

In this section we define the functor ξ on the objects of the categories, from trees to ultrametric
spaces, following step by step [4].

Definition 4.1 If (X, d) is a metric space and d(x, y) ≤ max{d(x, z), d(z, y)} for all
x, y, z ∈ X , then d is an ultrametric and (X, d) is an ultrametric space.

Elementary properties of ultrametric spaces can be found in [9].

Definition 4.2 The end space of a rooted R-tree (T, v) is given by:
end(T, v) = {F : [0,∞) → T | F(0) = v and F is an isometric embedding}.

For F, G ∈ end(T, v), define:

du(F, G) =
{

0 if F = G,
e−t0 if F 
= G and t0 = sup{t ≥ 0 | F(t) = G(t)}.

Note that since T is uniquely arcwise connected:

{t ≥ 0 | F(t) = G(t)} =
{[0,∞) if F = G,

[0, t0] if F 
= G.

Proposition 4.3 If (T, v) is a rooted R-tree, then (end(T, v), du) is a complete ultrametric
space of diameter ≤1.

Remark 4.4 Abusing of the notation, we sometimes identify the element of the end space with
its image on the tree. This will be usually called branch. Also, for non-geodesically complete
R-trees, we also use branch to call any rooted non-extendable isometric embedding, making
distinction between finite and infinite branches.

Proposition 4.5 For any x ∈ (T, v), a geodesically complete rooted R-tree, there exists
F ∈ end(T, v) and t ∈ [0,∞) such that F(t) = x (in fact, t = ‖x‖).

Proof The unique arc [v, x] is isometric to the interval [0, d(v, x)] = [0, ‖x‖]. If f :
[0, ‖x‖] → [v, x] is an isometry with f (0) = v, by 2.4, it extends to an isometric immersion
F (an element of the end space of the tree) and clearly F(‖x‖) = x . �


5 The tree of an ultrametric space

We follow again [4] to define the functor η from ultrametric spaces to trees.

Definition 5.1 Let U a complete ultrametric space with diameter ≤1 and define:

TU := U × [0,∞)

∼
with (α, t) ∼ (β, t ′) if and only if t = t ′ and α, β ∈ U such that d(α, β) ≤ e−t .

Given two points in TU represented by equivalence classes [x, t], [y, s]with (x, t), (y, s) ∈
U × [0,∞) define a metric on TU by:

D([x, t], [y, s]) =
{ |t − s| if x = y,

t + s − 2 min{−ln(d(x, y)), t, s} if x 
= y.
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Uniformly continuous maps between ends of R-trees 591

Remark 5.2 Instead of defining the tree as in [4] for any ultrametric space of finite diameter
we restrict ourselves to ultrametric spaces of diameter ≤1. We define the root to be [(x, 0)]
and thus the ultrametric space is isometric to the end space of the tree.

The next two propositions are in [4].

Proposition 5.3 D is a metric on TU .

Proposition 5.4 (TU , D) is a geodesically complete rooted R-tree.

Proposition 5.5 U ≈ end(TU ).

Proof Consider the map γ : U → end(TU ) which sends each α ∈ U to the isometric
embedding fα : [0,∞) → TU such that fα(t) = (α, t) (clearly fα ∈ end(TU )).

Given α, β ∈ U let d0 := d(α, β). Then (α, t) = (β, t) on [0,−ln(d0)] and, in the end
space, d( fα, fβ) = eln(d0) = d0 and hence γ is an isometry. It is immediate to see that it is
surjective by the completeness of U . �


6 Constructing the functors

6.1 Maps between trees induced by a uniformly continuous map between the end spaces

The purpose in this section is to show how to construct a map between trees from a uniformly
continuous map between their end spaces.

For this purpose, we are going to use the following.

Definition 6.1.1 A function γ : [0,∞) −→ [0,∞) is called a modulus of continuity if γ is
non-decreasing, continuous at 0 and γ (0) = 0.

If f : (X1, d1) → (X2, d2) is a map between two metric spaces and (X2, d2) is bounded,
let

γ f (δ) := sup
x,y∈X1 | d1(x,y)≤δ

{d2( f (x), f (y))}. (2)

Lemma 6.1.2 Consider (X1, d1), (X2, d2) two metric spaces with X2 bounded and let
f : X1 → X2 be a uniformly continuous map. Then γ f : [0,∞) → [0,∞) is a modu-
lus of continuity such that ∀ x, y ∈ X1 d2( f (x), f (y)) ≤ γ f (d1(x, y)).

Proof γ f is well-defined since X2 is bounded, and it is immediate to see that it is non-
decreasing and γ f (0) = 0. It remains to check the continuity at 0. Since f is uniformly
continuous, ∀ ε > 0 ∃ δ > 0 such that if d(x, y) < δ then d( f (x), f (y)) < ε. Therefore,
∀ δ′ < δ γ f (δ

′) ≤ ε, and hence,

lim
δ→0

γ f (δ) = 0.

�

To define the map between the trees we need the modulus of continuity to be continuous in

order to pass from the total disconnectedness of ultrametric spaces to the strong connectivity
of the tree. In fact, to define the functor and to prove the equivalence of categories, 7.6, it
would suffice to show that given a uniformly continuous map between the end spaces, there
exists a continuous modulus of continuity holding the condition of Lemma 6.1.2.
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Nevertheless, considering the function γ f shown in (2) in certain examples, the construc-
tion of the function (4) may give us an analytic expression of this map between the trees as
we shall see later on in 6.1.15.

First, since the spaces we are considering are of diameter bounded by 1, we restrict the map
γ f to a map from the unit interval to itself. Then, following the construction of Borsuk [3],
we take something similar to a convex hull of the image to make it continuous and concave.

Let us recall the definition of concave function.

Definition 6.1.3 A real-valued function f defined on a convex set C is called concave if for
any pair of points x ,y in C and any t ∈ [0, 1], we have

f (t x + (1 − t)y) ≥ t f (x) + (1 − t) f (y).

If f : X1 → X2 is a uniformly continuous map and X1, X2 have diameter ≤1 let
� f : [0, 1] → [0, 1] be a function such that � f (1) = 1 and � f (t) = γ f (t) ∀ t ∈ [0, 1).

Remark 6.1.4 Similarly to 6.1.2, � f is non-decreasing, continuous at 0, � f (0) = 0 and
∀ x, y ∈ X1 d2( f (x), f (y)) ≤ � f (d1(x, y)).

For every x ∈ [0, 1] let �(x) denote the set of ordered pairs (x1, x2) such that x1, x2 ∈
[0, 1], x1 < x2 and x ∈ [x1, x2]. For any x ∈ [x1, x2] there exists a unique t ∈ [0, 1] such
that x = t x1 + (1 − t)x2. Then, let

� f,x1,x2(x) := t� f (x1) + (1 − t)� f (x2). (3)

Finally, this allows us to construct the following function which is the key to construct
the map between the trees:

λ f (x) := sup
x1,x2∈�(x)

� f,x1,x2(x). (4)

Remark 6.1.5 Note that by definition λ f (x) ≥ � f (x) ∀ x ∈ [0,∞).

Proposition 6.1.6 λ f (0) = 0, λ f (1) = 1 and λ f (x) is increasing, concave and uniformly
continuous.

Proof Clearly λ f (0) = � f (0) = 0 and λ f (1) = � f (1) = 1. It is immediate to see that it is
increasing since � f is, and concave obviously by construction. The proof that it is continuous
at 0 is similar to the analogous result in [3]. �


Hence, from a uniformly continuous map f between two metric spaces U1, U2 with
diameter(Ui ) ≤ 1, we get a map λ f : [0, 1] → [0, 1] uniformly continuous, concave and
non-decreasing with λ f (0) = 0, λ f (1) = 1 and by Remark 6.1.5:

∀ x, y ∈ U1 d( f (x), f (y)) ≤ λ f (d(x, y)). (5)

Using this map we are now in position to induce, from a uniformly continuous map f
between two complete ultrametric spaces of diameter ≤1, a map between the corresponding
trees. As we saw in 5.5, we can identify these ultrametric spaces with the end spaces of
their trees. Given a uniformly continuous map f : U1 → U2, by abuse of notation, consider
f : end(TU1 , v) → end(TU2 , w) in the canonical way.

Let (T, v), (T ′, w) be two geodesically complete rooted R-trees and f : end(T, v) →
end(T ′, w) a uniformly continuous map. Our purpose is to prove that the formula

f̂ (x) = f (F)
(−ln(λ f (e

−t ))
)
. (6)
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where x = F(t) with F ∈ end(T, v), t ∈ [0,∞) and ln represents the natural logarithm,
defines a non-expansive metrically proper map between the trees.

The following fact is obvious:

Lemma 6.1.7 If f : end(TU1 , v) → end(TU2 , w) is uniformly continuous and λ f is defined
as in (4), then −ln(λ f (e−t )) is non-decreasing.

Remark 6.1.8 Moreover, if d0 = min{d > 0| λ f (d) = 1}, then λ f is strictly increasing on
[0, d0] since it is concave, and hence, it is immediate to check that −ln(λ f (e−t )) is strictly
increasing for t on [−ln(do),∞).

Remark 6.1.9 Note that

lim
δ→0

λ f (δ) = 0 ⇒ lim
t→∞

(−ln(λ f (e
−t ))

) = ∞.

Now we are going to verify that the map f̃ is well-defined and then we shall study its
properties.

Proposition 6.1.10 Let (T, v), (T ′w) be two geodesically complete rooted R-trees and sup-
pose that f : end(T, v) → end(T ′, w) is a uniformly continuous map. Then, the formula in
(6) defines a map between the trees.

Proof We need to prove that each point in (T, v) has a unique image.
Let x ∈ (T, v), F, G ∈ end(T, v) and t0, t1 ∈ [0,∞) such that F(t0) = x = G(t1). As

we saw in 5.1, necessarily t0 = t1 and F(t) = G(t) ∀ t ∈ [0, t0]. Then, d(F, G) ≤ e−t0 and
by (5), d( f (F), f (G)) ≤ λ f (e−t0).

Since d( f (F), f (G)) = e−sup{s≥0/ f (F)(s)= f (G)(s)} ≤λ f (e−t0) ⇔ sup{s ≥0 | f (F)(s) =
f (G)(s)} ≥ −ln(λ f (e−t0)) it is clear that, in particular, f (F)

(−ln(λ f (e−t0))
) = f (G)(−ln(λ f (e−t0))

)
. Thus, the image by f̂ does not depend on the representative and it is

well-defined. �

Definition 6.1.11 A map between two metric spaces f : X → Y is Lipschitz of constant C
if for any pair of points x, x ′ ∈ X , d( f (x), f (x ′)) ≤ C · d(x, x ′). If C = 1 the map is called
non-expansive.

Proposition 6.1.12 If f is a uniformly continuous map between the end spaces, then f̂ is
non-expansive.

Proof Given x, x ′ ∈ (T, v), we are going to prove that d( f̂ (x), f̂ (x ′)) ≤ d(x, x ′):
Case I. If the points are in the same branch of the tree.
Then, there exists F ∈ end(T, v) such that x = F(t0) and x ′ = F(t1), suppose t1 > t0,

and hence d(x, x ′) = t1 − t0.
The images are f (F)

(−ln(λ f (e−t0))
)

and f (F)
(−ln(λ f (e−t1))

)
and it is clear that

d( f̂ (x), f̂ (x ′)) =
∣∣∣ − ln

(
λ f (e

−t0)
) − (−ln

(
λ f (e

−t1)
)) ∣∣∣.

We can avoid the absolute value, since λ f : [0, 1] → [0, 1] is non-decreasing:

t1 > t0 ⇒ e−t1 < e−t0 ⇒ λ f (e
−t1) ≤ λ f (e

−t0) ⇒ ln(λ f (e
−t1)) ≤ ln(λ f (e

−t0)).

Hence,
d( f̂ (x), f̂ (x ′)) = ln(λ f (e

−t1)) − ln(λ f (e
−t0)). (7)
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Fig. 4 The function λ f is
concave

The concavity of λ f will allow us to relate this distance with t1 − t0. The idea is that if
we have two points on the line y = K x, y1 = K x1, y2 = K x2, the difference between the
logarithms only depends on the proportion between x1 and x2 since ln(K x1) − ln(K x2) =
ln( K x1

K x2
) = ln( x1

x2
) and in our case, this proportion between two points in the image of λ f

may be bounded using the line which joins the (0, 0) with the first point since λ f is concave
(see Fig. 4).

Since λ f : [0, 1] → [0, 1] is concave and e−t1 < e−t0 , we have that λ f (e−t0) ≤
e−t0

e−t1
λ f (e−t1). Then, since the natural logarithm is an increasing function, substituting in

(7) we finally obtain that

d( f̂ (x), f̂ (x ′)) ≤ ln

(
e−t0

e−t1
λ f (e

−t1)

)
− ln(λ f (e

−t1)) = ln(et1−t0) = t1 − t0 = d(x, x ′).

Case II. Suppose that x, x ′ are not in the same branch. Then there exist F, G ∈ end(T, v)

and t0, t1 ∈ R such that x = F(t0), x ′ = G(t1); also let t2 = sup{s| F(s) = G(s)}. Then
t2 ≤ t0, t1 (otherwise x and x ′ would be in the same branch) and d(x, x ′) = t0 −t2 +t1−t2 =
d(x, y) + d(y, x ′) with y = F(t2) = G(t2).

Thus, f̂ (F(t2)) = f̂ (y) = f̂ (G(t2)) and by case I, we can see that d( f̂ (x), f̂ (x ′)) ≤
d( f̂ (x), f̂ (y)) + d( f̂ (y), f̂ (x ′)) ≤ d(x, y) + d(y, x ′) = d(x, x ′). �

Remark 6.1.13 Being Lipschitz, the induced map f̂ is uniformly continuous.

Now we are going to prove:

Proposition 6.1.14 If f is a uniformly continuous map between the end spaces, then f̂ is
metrically proper between trees.

Proof We have already proved the continuity.
Rooted. We assumed λ f (1) = 1 and the image of the root will be the image of F(0) for any
F ∈ end(T, v). Thus

f̂ (v) = f̂ (F(0)) = f (F)
(−ln(λ f (e

0))
) = f (F)(0) = w.

Metrically proper. We need to show that ∀ M >0 ∃ NM, f >0 such that f̂ −1(B(w, M))⊂
B(v, NM, f ). (This is equivalent to saying that the inverse image of bounded sets is bounded).

f̂ −1(B(w, M)) = {x ∈ T | − ln(λ f (e−‖x‖)) < M}. By Remark 6.1.7, we know that
−ln(λ f (e−t )) is non-decreasing, and by Remark 6.1.9 it is clear that ∃ NM, f > 0 such that
∀ t ≥ NM, f − ln(λ f (e−t )) > M , and hence, f̂ −1(B(w, M)) ⊂ B(v, NM, f ). �
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Uniformly continuous maps between ends of R-trees 595

Fig. 5 f̂ : (T, v) → (T ′, w) induced by a map f between the ends

Fig. 6 The resulting λ f

Now we present some examples to illustrate the above construction and we will show how
coarse category naturally appears.

Example 6.1.15 Let f : end(T, v) → end(T ′, w) for the trees in Fig. 5 with t ′0 < t0 and
such that f (Fi ) = F ′

i for i = 1, 2 or 3.

A modulus of continuity can be defined as in Lemma 6.1.2

� f (δ) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if δ < e−t1 ,

e−t1 if e−t1 ≤ δ < e−t0 ,

e−t ′0 if e−t0 ≤ δ < 1,

1 if 1 ≤ δ.

Now, if we construct λ f as in (4), we have (Fig. 6)

λ f (δ) :=

⎧⎪⎨
⎪⎩

e−t ′0
e−t0

· δ if δ < e−t0 ,

�e−t0 ,1(δ) if e−t0 ≤ δ < 1,

1 if 1 ≤ δ.

It can be readily seen that f̂ is Lipschitz of constant < 1 from Fi [0, t0] to F ′
i [0, t ′0] and

an isometry between Fi [t0,∞) and Fi [t ′0,∞) for i = 1, 2 or 3 with f̂ (Fi (t0)) = F ′
i (t

′
0) and

f̂ (Fj (t1)) = F ′
j (t1 − t0 + t ′0) ∈ F ′

j (t
′
0, t1) for j = 2, 3. Thus, f is a non-expansive map.

Definition 6.1.16 A map f : X1 → X2 between two metric spaces is bornologous if for
every R > 0 there is S > 0 such that for any two points x, x ′ ∈ X1 with d(x, x ′) < R,
d( f (x), f (x ′)) < S.
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Fig. 7 A metrically proper map between the trees which is not proper

Definition 6.1.17 A map is coarse if it is metrically proper and bornologous.

Lemma 6.1.18 If f is a uniformly continuous map between end spaces, then the induced
map between the trees, f̂ , is coarse.

Proof We have already seen that it is metrically proper and since f̂ is Lipschitz of constant
1 it suffices to consider R = S. �

Definition 6.1.19 A map is proper if the inverse image of any compact set is compact.

The following example shows that f̂ need not be proper.
Counterexample. Let U a ultrametric space consisting of a countable family, non-finite, of
points {xn}n∈N with d(xi , x j ) = d1 ∀ i 
= j and another point, {y} with d(y, xi ) = d0 ∀ i ,
suppose d0 > d1, and let U ′ a similar family of points {x ′

n}n∈N with distance d1 among them
and another point, {y′} with d(y′, x ′

i ) = d ′
0 and d ′

0 > d0. Both spaces are uniformly discrete
and the map f which sends y to y′, and xi to x ′

i is obviously uniformly continuous. Now

we can find a compact set K in TU ′ such that its inverse image under f̂ : TU → TU ′ is not
compact.

Consider t0 = −ln(d0), t ′0 = −ln(d ′
0) and t1 = −ln(d1). The induced trees are as shown

in Fig. 7.
Let K = B̄(w, t1) which is obviously compact, we can see that f̂ −1(K ) is not compact.
The image by f̂ of the arc [v, xi (t0)] ≈ [0, t0] will be [w, x ′

i (t
′
0)] ≈ [0, t ′0] (with t ′0 < t0).

By concavity of λ f , ∀ t > t0 e−t < e−t0 ⇒ λ f (e−t ) ≥ e−t

e−t0
λ f (e−t0) ⇒ −ln(λ f (e−t )) ≤

−ln(et0−t · λ f (e−t0)) = t − t0 + t ′0. If ε = t0 − t ′0 > 0 then f̂ (B(v, t)) ⊂ B(w, t − ε); in
particular B(v, t1 + ε) ⊂ f̂ −1(B(w, t1)), and so the inverse image by f̂ of K is a closed
ball about v of radius greater than t1, and since TU is not locally compact at t1, this set is not
compact.

6.2 Uniformly continuous map between end spaces induced by a metrically proper map
between trees

In this subsection we treat some kind of opposite correspondence, to that of the previous one.

Proposition 6.2.1 If (T, v) and (T ′, w) are two geodesically complete rooted R-trees and
f : (T, v) → (T ′, w) is a metrically proper map between trees, then for each F ∈ end(T, v)

there exists a unique G ∈ end(T ′, w) such that G[0,∞) ⊂ im
(

f̂ (F[0,∞))
)

. Thus, f

induces a map between the end spaces of the trees.
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Fig. 8 Uniqueness

Proof Existence. Let F ∈end(T, v). By 3.4, ∀ n ∈N, ∃ tn > 0 such that f̂ −1(B(w, n))⊂
B(v, tn). By Proposition 3.5, there exists a unique c′

n ∈ ∂ B(w, n) such that f
(
TF(tn)

) ⊂ T ′
c′

n
.

Define G : [0,∞) → T such that G|[0,n] ≡ [w, c′
n] ∀ n ∈ N. It is clear that G is

well-defined, G ∈ end(T, v) and G[0,∞) ⊂ im
(

f̂ (F[0,∞))
)

proving the existence.

Uniqueness: Let H ∈ end(T ′, w) with H 
= G and let d(H, G) = d0 > 0. We are going to
show that H [0,∞) cannot be contained in the image of F[0,∞) by f (Fig. 8).

Let M > −ln(d0). As we know, ∃ NM, f > 0 such that f̂ −1(B(w, M)) ⊂ B(v, N ). By
Proposition 3.5 there exists a unique c′

M ∈ ∂ B(w, M) such that f
(
TF(N )

) ⊂ T ′
c′

M
and it is

clear that c′
M = G(M) but since M > −ln(d0) = sup{s/G(s) = H(s)} then H(M) 
= c′

M

and f̂ (F[N ,∞)) ∩ H [0,∞) = ∅.
Moreover (T, v), (T ′, w) are metric spaces and f̂ is continuous. Hence f̂ (F[0, N ]) is the

continuous image of a compact set and so it is compact in a metric space and it is bounded.
Therefore H [0,∞) 
⊂ f̂ (F[0, N ]).

Thus, H [0,∞) 
⊂ f̂ (F[0,∞)) and G is unique. �

If f : (T, v) → (T ′, w) is a metrically proper map between trees, let us denote by

f̃ : end(T, v) → end(T ′, w) the map constructed in the previous proposition. Thus f̃ (F) =
G ∈ end(T ′, w) where G[0,∞) ⊂ f (F[0,∞)).

Proposition 6.2.2 f̃ is uniformly continuous.

Proof Let ε > 0. Then there exists δ > 0 such that f −1(B(w,−lnε)) ⊂ B(v,−lnδ) ⇒
f (T \B(v,−lnδ)) ⊂ T ′\B(w,−lnε). Once again, the idea of 3.5.

Consider two branches F, G ∈ end(T, v) with d(F, G) ≤ δ, this is, F(t) = G(t) on
[0,−lnδ]. If c = F(−lnδ) = G(−lnδ) then f (c) ∈ T ′\B(w,−lnε) and f̃ (F) = f̃ (G) at
least on [0,−lnε]. Therefore, d( f̂ (F), f̂ (G)) ≤ ε and f̃ is uniformly continuous. �

Proposition 6.2.3 If f, f ′ : (T, v) → (T ′, w′) are two metrically proper maps between
trees, then f ∼ f ′ if and only if f̃ = f̃ ′. Where ∼ represents the relation defined in (1).

Proof Suppose f ∼ f ′ and f̃ 
= f̃ ′ (i.e. f and f ′ do not induce the same map between the
end spaces). Then, there exists some F ∈ end(T, v) such that f̃ (F) = G 
= H = f̃ ′(F). If
M > −ln(d(G, H)) > 0, since f, f ′ are metrically proper, there exists some NM, f, f ′ > 0
such that f −1(B(w, M)) ⊂ B(v, NM, f, f ′) and f ′−1(B(w, M)) ⊂ B(v, NM, f, f ′). Then,
∀ N > NM, f, f ′ , let c = F(N ) ∈ ∂ B(v, N ) and by 6.2.1 fTN (Tc) = T ′

G(M) 
= T ′
H(M) =

f ′
TN

(Tc) which are different because M > −ln(d(G, H)). This is a contradiction with
f ∼ f ′.

Conversely, suppose that f and f ′ induce the same map between the end spaces. Since
they are metrically proper, see 3.4, ∀ M > 0 ∃ NM, f > 0 such that f (T \B(v, NM, f )) ⊂
T ′\B(w, M) and ∃ NM, f ′ > 0 such that f (T \B(v, NM, f ′)) ⊂ T ′\B(w, M). If NM, f, f ′ :=
max{(NM, f , NM, f ′)} then ∀ N > NM, f, f ′ , we have two maps as we saw in 3.6.

fTN , f ′
TN

: TN −→ T ′
M .
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Fig. 9 A surjective metrically proper map between the trees which induces a non-surjective map between the
ends

Since the induced map between the end spaces is the same, ∀ F ∈ end(T, v) there exists
a unique G ∈ end(T ′, w) such that f̃ (F) = G = f̃ ′(F). Consider TF(N ) the subtree of
T \B(v, N ). It is clear that the image of F[N ,∞) whether by f or f ′ must be contained in
T ′

G(M) since G[0,∞) is contained in the image of F[0,∞). Thus fTN (TF(N )) = T ′
G(M) =

f ′
TN

(TF(N )) and f ∼ f ′. �

This, together with 3.12 gives the following.

Corollary 6.2.4 If f, f ′ : (T, v) → (T ′, w′) are two metrically proper maps between trees,
then f �Mp f ′ if and only if f̃ = f̃ ′.

Corollary 6.2.5 In any class of metrically proper maps between trees there is a representative
which is non-expansive.

Given f : (T, v) → (T ′, w′) a surjective metrically proper map between trees, the
question arises whether the induced map between the end spaces is also surjective. It need
not be as the following example shows.

Counterexample. Consider the trees shown in Fig. 9.
Let

f (Fn(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F ′
0(t) if t ∈ [

0, 1
4

]
,

F ′
0

( 1
4 + (4n − 1)

(
t − 1

4

))
if t ∈ [ 1

4 , 1
2

]
,

F ′
0(2n(1 − t)) if t ∈ ( 1

2 , 1
]
,

F ′
n(t − 1) if t ∈ (1,∞),

and

f (G(t)) = G ′(t).

The map f is clearly rooted, continuous, surjective and metrically proper but if we consider
the induced map between the end spaces we find that F ′

0 is not contained in the image of any
branch of T .

7 Equivalence of categories

Consider the categories,
T : Geodesically complete rooted R-trees and rooted metrically proper homotopy classes

of metrically proper maps between trees.

123



Uniformly continuous maps between ends of R-trees 599

U : Complete ultrametric spaces of diameter ≤1 and uniformly continuous maps.
Define the functors,
ξ : T −→ U such that ξ(T, v) = end(T, v) for any geodesically complete rooted R-tree

and ξ([ f ]Mp) = f̃ for any rooted metrically proper homotopy class of a metrically proper
map between trees.

η : U −→ T such that η(U ) = TU for any complete ultrametric space of diameter ≤1
and η( f ) = [ f̂ ]Mp for any uniformly continuous map.

Proposition 7.1 ξ : T −→ U is a functor.

Proof ξ(id(T,v)) = idend(T,v) is obvious.
If [ f ] : (T, v) → (S, w), [g] : (S, w) → (R, z) represent classes of metrically proper

maps between trees then

ξ([g] ◦ [ f ]) = ξ([g]) ◦ ξ([ f ]).
By 6.2.1, the induced maps between the end spaces are clearly the same. �

Proposition 7.2 η : U −→ T is a functor.

Proof η(idU ) = η(idend(TU )) = idTU is obvious.
If f : U1 → U2, and g : U2 → U3 are uniformly continuous maps then

η(g ◦ f ) = η(g) ◦ η( f ).

This follows immediately from 6.2.3 since the maps between the end spaces are the same.
�


To prove the equivalence of the categories we use the following lemma from [6].

Definition 7.3 A functor S : A → C between two categories is full if for every pair of
objects a, a′ in A and every morphism g : S(a) → S(a′) in C , there exists a morphism
f : a → a with g = S( f ).

Definition 7.4 A functor S : A → C between two categories is faithful if for every pair
of objects a, a′ in A and every pair of morphisms f1, f2 : a → a′ in A, the equality
S( f1) = S( f2) : S(a) → S(a′) implies that f1 = f2.

Lemma 7.5 Let S : A → C be a functor between two categories. S is an equivalence of
categories if and only if S is f ull, f ai th f ul and each object c ∈ C is isomorphic to S(a)

for some object a ∈ A.

Theorem 7.6 (Main theorem) ξ : T −→ U is an equivalence of categories.

Proof ξ is full. This is immediate since for every morphism f ∈ U , f = ξ( f̂ )).
ξ is faithful. This follows immediately from Proposition 6.2.3.
It remains to check that ∀ U ∈ U ∃ T ∈ T such that ξ(T ) ≈ U . As we saw in 5.3,

ξ(TU ) ≈ U , finishing the proof. �

Corollary 7.7 Two geodesically complete rooted R-trees are rooted metrically proper homo-
topy equivalent if and only if their end spaces are uniformly homeomorphic.

The following example illustrates the importance of asking the map between the trees to
be metrically proper.
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Fig. 10 A homeomorphism between the trees which does not induce a map between the ends

Example 7.8 A homeomorphism between the trees need not induce a map between the ends.

Consider (T, v), (T ′, w) the geodesically complete rooted R-trees shown in Fig. 10.
We can easily define a homeomorphism between these trees. Let f be such that f (G[n −

1, n]) = F ′
n([1 − 1

2n−1 , 1 − 1
2n ]) linearly ∀ n ∈ N, and an isometry on the rest (the vertical

lines) with f (Fn) = F ′
n ∀ n ∈ N. Then it is obviously a homeomorphism but clearly not

uniform since f −1 is not uniformly continuous.

Since f is a non-expansive map, f −1 is metrically proper and hence, it induces a map˜f −1

from end(T ′, w) to end(T, v) which is uniformly continuous but f is not metrically proper
(for example f −1(B(w, 1)) is not bounded) and it does not induce any map from end(T, v)

to end(T ′, w) since f (G) is not geodesically complete.
f is bornologous but it is not coarse (fails to be metrically proper) and f −1 is not borno-

logous.

Example 7.9 We can define also a homeomorphism f between two rooted geodesically
complete R-trees such that f̃ is a non-uniform homeomorphism between the end spaces.

Consider the trees (T, v) and (T ′, w) in Fig. 11. (T, v) has branches {Fi }∞i=1 such that
Fi ∩ Fj = {v}, and ∀ i there are branches {Fi,k}∞k=1 such that Fi,k = Fi on [0, k]. (T ′, w) is
quite similar but ∀ i the branches {F ′

i,k}∞k=1 are such that F ′
i,k = F ′

i on [0, k
i ] ∀ k ≤ i and

F ′
i,k = F ′

i on [0, k − i] ∀ k > i .
Define f : (T, v) → (T ′, w) such that f (Fi (t)) = F ′

i (
t
i ) ∀ t ∈ [0, i] and f (Fi (t)) =

F ′
i (t − i +1) ∀ t ∈ [i,∞) ∀ i ∈ N, and also f (Fi,k(t) = F ′

i,k(t − i + k
i ) ∀ t ∈ [i,∞), ∀ k ≤ i

and f (Fi,k(t) = F ′
i,k(t − i) ∀ t ∈ [i,∞), ∀ k > i . Hence, the induced map between the end

spaces f̃ : end(T, v) → end(T ′, w) is f̃ (Fi ) = F ′
i and f̃ (Fi,k) = F ′

i,k ∀ i, k ∈ N. It is easy

to verify that f̃ is a homeomorphism but this homeomorphism is not uniform. Let ε < e−1,
and ∀ δ > 0 let Nδ > 0 such that e−i < δ ∀ i ≥ N . Then, ∀ i > Nδ d(Fi , Fi,i ) = e−i < δ

and d( f̃ (Fi ), f̃ (Fi,i )) = d(F ′
i , F ′

i,i ) = e−1 > ε.

Define g := ˜f −1. Then it easy to check that g is uniformly continuous and the induced
map ĝ is such that ĝ|F ′[0,∞) → F[0,∞) is an isometric embedding ∀ F ′ ∈ end(T ′, w).

Nevertheless, the end spaces of these trees are in fact uniformly homeomorphic, and
hence, as it has been proved, there are f : (T, v) → (T ′, w), and f ′ : (T ′, w) → (T, v)

metrically proper maps between trees such that f ◦ f ′ �Mp idT ′ and f ′ ◦ f �Mp idT . Let
us define f : (T, v) → (T ′, w) such that f (F[0, 1]) = w ∀ F ∈ end(T, v), f (Fi (t)) =
F ′

i (t − 1) ∀ t ∈ [1,∞), ∀ i ∈ N, f (Fi,k(t)) = Fi,k+i−1(t − 1) ∀ t ∈ [1,∞), ∀ k≥2 and
finally f (Fi ·(i−1)

2 +k,1) = F ′
i,k ∀ k ≤ i , ∀ i ∈ N. The induced map f̃ between the end spaces

is a uniform homeomorphism and therefore, if h = f̃ −1, it suffices to define f ′ := ĥ.
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Fig. 11 A homeomorphism between the trees which induces a non-uniform homeomorphism between the
ends

8 Lipschitz maps and coarse maps between trees

Lemma 8.1 If x1, x2, y1, y2 ∈ R, then for any t ∈ [0, 1],
d(t x1 + (1 − t)x2, t y1 + (1 − t)y2) ≤ max{d(x1, y1), d(x2, y2)}.

Proof d(t x1 + (1 − t)x2, t y1 + (1 − t)y2) = |t x1 + (1 − t)x2 − [t y1 +
(1 − t)y2]| = |t (x1 − y1) + (1 − t)(x2 − y2)| ≤ t · |x1 − y1| + (1 − t) · |x2 − y2| ≤
max{d(x1, y1), d(x2, y2)}. �

Lemma 8.2 If f ,g : T → T ′ are two metrically proper maps between trees and H :
T × I → T ′ is the shortest path homotopy of f to g, then for any two points x, y ∈ T ,

d(Ht (x), Ht (y)) ≤ max{d( f (x), f (y)), d(g(x), g(y))}.
Proof Suppose d( f (x), f (y))<d(g(x), g(y)). If for some t ∈ I d(Ht (x), Ht (y))>d(g(x),

g(y)) then there must be some t0 > t ∈ I such that d(Ht0(x), Ht0(y)) = d(g(x), g(y)). So
let us assume d( f (x), f (y)) = d(g(x), g(y)) = d0 and it suffices to show that in this case
the condition is satisfied.

Now if we show that in this conditions there is always some ε > 0 such that for any
0 < t < ε or 1 − ε < t < 1 d(Ht (x), Ht (y)) ≤ d0, then we have that this happens for any
t in an open set of I and by continuity of the metric, this will be also a closed set of I and
hence, d(Ht (x), Ht (y)) ≤ d0 ∀ t ∈ I .

Now to prove the lemma it suffices to distinguish the following cases.
Case 1. If there is an arc on the tree containing f (x), f (y), g(x) and g(y), then we can

apply Lemma 8.1.
Case 2. If there is an arc containing three of the points (and no one containing all). Consider

the subtree given by the points and the minimal paths between them. In this subtree there is
a unique point, b, of order 3 and either f (x), f (y) or g(x), g(y) are border points. Let us
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602 Á. Martínez-Pérez, M. A. Morón

suppose f (x), f (y) are in the border. If δ < min{d( f (x), b), d( f (y), b)}, defining ε := δ
d0

it is immediate to check that d(Ht (x), Ht (y)) ≤ d0 ∀ t < ε.
Case 3. If there is no arc containing three of the points. In this case, the subtree has

f (x), f (y), g(x), g(y) as border points and there are either one or two branching points
different from { f (x), f (y), g(x), g(y)}: two points of order three or one point of order four.
Let δ less than the distance from any of the border points to a branching point. Thus, defining
ε := δ

d0
it is immediate that d(Ht (x), Ht (y)) ≤ d0 ∀ t < ε. �


Definition 8.3 Two maps are rooted metrically proper non-expansive homotopic, f �L f ′,
if there exists H : T × I → T ′ a rooted metrically proper homotopy of f to f ′ such that Ht

is non-expansive for every t ∈ I .

Definition 8.4 Two maps are rooted coarse homotopic, f �C f ′ if there exists H :
T × I → T ′ a rooted (metrically proper) homotopy of f to f ′ such that Ht is coarse
for every t ∈ I . Being metrically proper is already supposed by definition of coarse.

The next propositions follow immediately from the lemma and Proposition 6.2.3.

Proposition 8.5 If f , f ′ : T → T ′ are two non-expansive metrically proper maps between
trees, then f̃ = f̃ ′ if and only if f �L f ′.
Corollary 8.6 There is an equivalence of categories between U and the category of geodesi-
cally complete rooted R-trees with rooted metrically proper non-expansive homotopy classes
of non-expansive, metrically proper maps between trees.

Corollary 8.7 Two geodesically complete rooted R-trees are rooted metrically proper non-
expansive homotopy equivalent if and only if their end spaces are uniformly homeomorphic.

Corollary 8.8 There is an equivalence of categories between U and the category of geode-
sically complete rooted R-trees with rooted coarse homotopy classes of rooted, coarse and
continuous maps.

Corollary 8.9 Two geodesically complete rooted R-trees are rooted coarse homotopy equi-
valent if and only if their end spaces are uniformly homeomorphic.

Proposition 8.10 If f , f ′ : T → T ′ are two coarse metrically proper maps between trees,
then f̃ = f̃ ′ if and only if f �C f ′.
Corollary 8.11 There is an equivalence of categories between U and the category of geode-
sically complete rooted R-trees with coarse, (metrically proper) homotopy classes of coarse,
(metrically proper) maps between trees.

Corollary 8.12 If f : T → T ′ is a metrically proper map between trees, then there exists a
rooted continuous metrically proper non-expansive map f ′ : T → T ′ such that f �Mp f ′.
Corollary 8.13 If f : T → T ′ is a rooted continuous coarse map between trees, then there
exists a rooted continuous metrically proper non-expansive map f ′ : T → T ′ such that
f �C f ′.

9 Freudenthal ends and classical results

This work allows us to give some new proofs of already known results and to look at them
from a new perspective. We also extend in this section the field of our study to include some
considerations about non-rooted and non-geodesically complete trees and how can we use
or adapt our tools with them.

123



Uniformly continuous maps between ends of R-trees 603

Pruning the tree When we have a non-geodesically complete rooted R-tree and we are only
interested in the geodesically complete branches we can prune the rest as follows.

Theorem 9.1 If (T, v) is a rooted R-tree then, there exists (T∞, v) ⊂ (T, v) a unique
geodesically complete subtree that is maximal.

Proof Using Zorn’s lemma. Consider (Tgc,≤) with Tgc geodesically complete subtrees of
(T, v) containing the root, and T1 ≤ T2 ⇔ T1 ⊂ T2. This is an ordered structure.

It is not empty since the root is a trivial geodesically complete subtree.
To prove that every chain of (Tgc,≤) admits an upper bound TM it suffices to show that

the union of elements of the chain is also a geodesically complete subtree of (T, v). It is a
subset of the tree where every point is arcwise connected to the root and hence it is obviously
a subtree. Let f : [0, t] → TM , t > 0 any isometric embedding such that f (0) = v, then
there exists an element T0 in the chain such than f (t) ∈ T0 ⇒ f [0, t] ∈ T0 and f extends to
an isometric embedding f̃ : [0,∞) → T0 ⊂ TM , and hence, TM is geodesically complete.

Then, by Zorn’s lemma (Tgc,≤) possesses a maximal element.
The union of two elements of (Tgc,≤) is also a geodesically complete subtree and hence,

the maximal element (T∞, v) is unique. �

Lemma 9.2 If the metric of (T∞, v) is proper then it is a deformation retract of (T, v).

Proof Since the metric is proper, for any x ∈ T \T∞ there is a point y ∈ T∞ such that
d(x, T∞) = d(x, y) and it is unique since the tree is uniquely arcwise connected. Let
r : T → T∞ such that r(x) = y ∀ x ∈ T \T∞ and the identity on T∞. Then r is a retraction
and the shortest path homotopy makes the deformation retract. �


Proper homotopies and Freudenthal ends

Definition 9.3 Two proper maps f, g : X → Y are properly homotopic f �p g in the usual
sense if there exists a homotopy H : X × I → Y of f to g such that H is proper.

Definition 9.4 X, Y are of the same proper homotopy type or properly homotopy equivalent
in the usual sense if there exist two proper maps f : X → Y and g : Y → X such that
g ◦ f �p I dX and f ◦ g �p I dY .

Notation �R P means properly homotopic such that the proper maps and the homotopy are
rooted, and �p is the usual sense of proper homotopy equivalence.

Lemma 9.5 Let S1, S2 two locally finite simplicial trees and consider any two points x1 ∈
S1, x2 ∈ S2. Then (S1, x1) �R P (S2, x2) if and only if S1 �p S2.

Proof The only if part is clear since it is a particular case.
The other part is rather technical. Consider f : S1 → S2 and g : S2 → S1 proper maps

and proper homotopies H1 of g ◦ f to I dS1 and H2 of f ◦ g to I dS2 . First we construct two
rooted proper maps ’near’ f and g. Consider the unique arc in S2 [x2, f (x1)] and, in order
to define the rooted proper map from S1 to S2, we are going to send this arc with a proper
homotopy to the root x2 and to pull somehow the rest of the tree after it.

Since [x2, f (x1)] is compact and the tree is locally finite, there are finitely many vertices
v1, . . . , vn in this arc. Let us denote also f (x1) = v0. The tree is locally compact, hence
consider B(vi , εi ) compact neighborhoods of vi with i = 0, . . . , n (we may assume that they
are disjoint).
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Fig. 12 The homotopy sends
[x2, f (x1)] to x2 and [v, y] to
[x2, y]

We define a homotopy H that sends [x2, f (x1)] to x2 (Fig. 12), that for each point
y ∈ Tvi ∩ ∂ B(vi , εi ), with y 
∈ [x2, f (x1)], goes linearly from the arcs [vi , y] to [x2, y],
and it is the identity for every t on the rest. If x ∈ [x2, f (x1)] and jx : [0, d(x2, x)] →
[x2, x] is an isometry with jx (0) = x then let H(x, t) = jx (t · d(x2, x)). If x ∈ Tvi ∩
B(vi , εi ) such that x 
∈ [x2, f (x1)], then for jx : [0, d(x2, x)] → [x2, x] an isometry

such that jx (0) = x let H(x, t) = jx
(

t ·
[

d(vi ,x2)+εi
εi

(εi − d(x, vi )) − (εi − d(x, v))
])

=
jx

(
t · d(vi ,x2)

εi
(εi − d(x, v))

)
.

It is easy to check that H(vi × I ) = [x2, vi ] with H(vi , 0) = vi and H(vi , 1) = x2, and
∀ y ∈ ∂ B(vi , εi ) ∩ Tvi with y 
∈ [x2, f (x1)] H(y, t) = y ∀ t . H(x, t) = x on the rest of
the tree. This map is continuous. To see that it is proper first consider K0 := [x2, f (x1)] ∪
(

n∪
i=1

B(vi , εi )) which is a compact subset of the tree S2, and hence K0 × I is a compact subset

of S2 × I . For any compact set K ∈ S2, H−1(K ) is a closed (since H is continuous) subset
of the compact set K0 ∪ K . Thus, H is proper.

Clearly f (x) = H(x, 0) and let f̃ (x) := H(x, 1). The map f̃ is proper, f̃ (x1) = x2 (it
is rooted) and f �p f̃ .

We do the same for g : S2 → S1 and we get a rooted proper map g̃ : (S2, x2) → (S1, x1)

such that g �p g̃.
Hence we have a proper homotopy H1 of g̃ ◦ f̃ to I dS1 (conversely H2 of f̃ ◦ g̃ to I dS2 )

such that H1(x1, 0) = x1 = H1(x1, 1).
To finish the proof we need this homotopy to be rooted.
Since γ is compact and S1 is locally finite, and hence locally compact, let ε > 0 such that

B̄(x1, ε) is compact. Then consider H̃ : S1 × I → S1 such that H̃(x, t) = H(x, t) ∀ (x, t) ∈
(S1\B(x1, ε)) × I and ∀ (x, t) ∈ S1 × {0, 1}, and in the rest of the domain we change H to
make it rooted. To do this, the points H(x1, t) must be sent to x1 and pull the image of the
points in B(x1, ε) to keep continuity. Also, notice that H0 and H1 must not change. Therefore,
let us define dt = d(H(x1, t), x1) to change the homotopy at each level proportionally.

Consider, for each (x, t) ∈ B(x1, ε) × I ,

dx,t := min

{(
1 − d(x, x1)

ε

)
· dt , d(x1, H(x, t))

}

and for the isometric embedding jx,t : [0, d(x1, H(x, t))] → [x1, H(x, t)] with jx,t (0) =
H(x, t) let

H̃(x, t) = jx,t (dx,t ).

It is immediate to check that this makes H̃ a rooted homotopy of g̃ ◦ f̃ to I dS1 .
It remains to see that it is proper but for any compact set K ∈ S1, H̃−1(K ) ⊂ H−1(K ) ∪

B̄(x1, ε) and then H̃ is also proper.
The same works with H2 and we finally obtain that (S1, x1) �R P (S2, x2). �

We can now give another proof of the following corollary in [1].

Proposition 9.6 Two locally finite simplicial trees are properly homotopy equivalent (in the
usual sense) if and only if their Freudenthal ends are homeomorphic.
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Proof Let S1, S2 two simplicial, locally finite trees. Let v ∈ S1 and w ∈ S2 any two points,
hence (S1, v) and (S2, w) are two rooted trees, and by Lemma 9.5 (S1, v) �R P (S2, w) if
and only if S1 �p S2.

We can change the metric on the simplices and assume length 1 for each simplex. Then
we have two homeomorphic copies of the simplicial rooted trees (S′

1, v) ∼= (S1, v) and
(S′

2, w) ∼= (S2, w) (in particular (S′
1, v) �R P (S1, v) and (S′

2, w) �R P (S2, w)), such that
the non-compact branches are geodesically complete.

The metrics on (S′
1, v) and (S′

2, w) are proper. It suffices to check that any closed ball
centered at the root is compact and this can be easily done by induction on the radius. Since
the trees are locally finite and the distance between two vertices is at least 1, the closed ball
B(v, 1) (similarly B(w, 1)) is a finite union of compact sets (isometric to the subinterval
[0, 1] in R). Let B(v, n) a finite union of compact sets, ∂ B(v, n) is a finite number of vertices
and, since the trees are locally finite and the distance between two vertices is at least 1,
B(v, n + 1) is also a finite union of compact sets. Thus every closed ball centered at the root
is compact.

(S′
1, v) and (S′

2, w) are proper length spaces, and by the Hopf–Rinow theorem for metric
spaces, see [10], (S′

1, v) and (S′
2, w) are complete and locally compact.

Now consider the maximal geodesically complete subtrees (T1, v) and (T2, w) of (S′
1, v)

and (S′
2, w) (Note that these are empty sets if and only if (S1, v) and (S2, w) are compact).

These trees are locally finite, complete, geodesically complete and their metrics are proper.
We can now find a proper homotopy equivalence between the pruned tree Ti and S′

i . The
retractions ri : (S′

i , v) → (Ti , v), i = 1, 2, such that ri (x) = y with d(x, Ti ) = d(x, y)

defined in Lemma 9.2 are proper maps since after the change of metric the bounded branches
are compact and the tree is supposed to be locally finite. Clearly this retraction and the
inclusion give us rooted proper homotopy equivalences between the trees, (S′

1, v) �R P

(T1, v) and (S′
2, w) �R P (T2, w). Thus

(S1, v) �R P (T1, v) and (S2, w) �R P (T2, w)

It is well known, see for example 9.20 in [1], that since S′
i are locally finite simplicial

trees, end(T1, v) = Fr(S′
1, v) = Fr(S1) and end(T2, w) = Fr(S′2, w) = Fr(S2) and, by

7.7, end(T1, v) ∼= end(T2, w) ⇔ (T1, v) �Mp (T2, w). If the metric is proper (T1, v) �Mp

(T2, w) ⇔ (T1, v) �R P (T2, w) and hence Fr(S1) ∼= Fr(S2) ⇔ (T1, v) �R P (T2, w).
Thus, Fr(S1) ∼= Fr(S2) ⇔ (S1, v) �R P (S2, w) ⇔ S1 �p S2. �

There is also an immediate proof of the following corollary in [4].

Proposition 9.7 Two geodesically complete rooted R-trees, (T, v) and (S, w), are rooted
isometric if and only if end(T, v) and end(S, w) are isometric.

Proof If there is an isometry between the trees then the induced map between their end
spaces is clearly an isometry.

Let f : end(T, v) → end(S, w) be an isometry between the end spaces. Then, to
induce the map between the trees we can take the identity as modulus of continuity. If
λ f = I d[0,1] then f (F)(−ln(λ f (e−t ))) = f (F)(t)∀ F ∈ end(T, v)∀ t ∈ [0,∞) and
the map restricted to the branches is an isometry. Consider any two points in different
branches x = F(t), y = G(t ′) with −ln(d(F, G)) < t, t ′. Since the end spaces are iso-
metric, the distance between two branches is the same between their images and hence
d( f̂ (x), f̂ (y)) = t + t ′ − 2(−ln(d( f (F), f (G)))) = t + t ′ − 2(−ln(d(F, G))) = d(x, y)

and f̂ is an isometry between the trees. �
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Non-rooted maps between the trees If the map is not rooted we can extend the idea of the
rooted case and define how a non-rooted metrically proper map induces a map between the
end spaces.

Let f : (T, v) → (T ′, w) be any metrically proper (non-rooted) map between two
geodesically complete rooted R-trees. Then ∀ M > 0 ∃ N > 0 such that f (B(v, N )) ⊂
B( f (v), M). If d0 := d(w, f (v)), hence f (B(v, N )) ⊂ B(w, M +d0) and this is equivalent
to f −1(T ′\B(w, M + d0)) ⊂ T \ f (B(v, N )). Now we can induce a uniformly continuous
map between the end spaces almost like in 6.2.1, since for each branch F ∈ (T, v) there is a
unique branch F ′ ∈ (T ′, w) such that F ′[d0,∞) ⊂ f (F) and so we define f̃ : end(T, v) →
(T ′, w) such that f̃ (F) = F ′.

The results then are not so strong, as an example of this we can give the following
proposition.

Proposition 9.8 An isometry (non-rooted) f : (T, v) → (S, w) between two geodesically
complete rooted R-trees, induces a bi-Lipschitz homeomorphism between end(T, v) and
end(S, w).

Proof Let f : (T, v) → (S, w) be a non-rooted isometry. Consider F, G any two branches in
end(T, v) and let x ∈ T such that F[0,∞) ∩ G[0,∞) = [v, x] ≈ [0,−ln(d(F, G))] ⊂ R.
Then f (F[0,∞)) ∩ f (G[0,∞)) = [ f (v), f (x)] ≈ [0,−ln(d(F, G))] ⊂ R since f is
an isometry. If d0 = d(w, f (v)), hence f̃ (F) =: F ′ and f̃ (G) =: G ′ coincide at least
on [0,−ln(d(F, G)) − d0] and at most on [0,−ln(d(F, G)) + d0] and so, eln(d(F,G))−d0 ≤
d(F ′, G ′) ≤ eln(d(F,G))+d0 , this is, e−d0 ·d(F, G) ≤ d(F ′, G ′) ≤ ed0 ·d(F, G) and therefore
f̃ is bi-Lipschitz. �
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