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Abstract We classify the solutions to the equation (−�)mu = (2m − 1)!e2mu on R
2m

giving rise to a metric g = e2u gR2m with finite total Q-curvature in terms of analytic and
geometric properties. The analytic conditions involve the growth rate of u and the asymptotic
behaviour of �u at infinity. As a consequence we give a geometric characterization in terms
of the scalar curvature of the metric e2u gR2m at infinity, and we observe that the pull-back of
this metric to S2m via the stereographic projection can be extended to a smooth Riemannian
metric if and only if it is round.

1 Introduction and statement of the main theorems

The study of the Paneitz operators has moved into the center of conformal geometry in the
last decades, in part with regard to the problem of prescribing the Q-curvature. Given a four-
dimensional Riemannian manifold (M, g), the Q-curvature Q4

g and the Paneitz operator P4
g

have been introduced by Branson and Oersted [4] and Paneitz [18]:

Q4
g := −1

6

(
�g Rg − R2

g + 3| Ricg |2
)

P4
g ( f ) := �2

g f + div

(
2

3
Rgg − 2 Ricg

)
d f, ∀ f ∈ C∞(M),

where Rg and Ricg denote the scalar and Ricci curvatures of g. Higher order Q-curvatures Qn

and Paneitz operators Pn have been introduced in [2,14]. Their interest lies in their covariant
nature: considering in dimension 2m the conformal metric gu := e2u g, we have

P2m
gu

= e−2mu P2m
g , P2m

g u + Q2m
g = Q2m

gu
e2mu, (1)
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308 L. Martinazzi

see for instance [6, Chap. 4]. The last identity is a generalized version of Gauß’s identity: in
dimension 2

−�gu + Kg = Kgu e2u,

where Kg is the Gaussian curvature, and �g is the Laplace–Beltrami operator with the
analysts’ sign. Indeed, in dimension 2 we have P2

g = −�g and Q2
g = Kg . Moreover

�gu = e−2u�g . Another interesting fact is that the total Q-curvature is a global conformal
invariant: if M is closed and 2m-dimensional,∫

M

Q2m
gu

dvolgu =
∫

M

Q2m
g dvolg.

Further evidence of the geometric relevance of the Q-curvatures is given by the Gauss–
Bonnet–Chern’s theorem [10]: on a locally conformally flat closed manifold of dimension
2m, since Q2m

g is a multiple of the Pfaffian plus a divergence term (see [3]), we have
∫

M

Q2m
g dvolg = (2m − 1)! vol(S2m)

χ(M)

2
,

where χ(M) is the Euler–Poincaré characteristic of M .
Here we are interested in the special case when M is R

2m with the Euclidean metric gR2m .
In this case, we simply have P2m

g
R2m

= (−�)m and Q2m
g
R2m

≡ 0. We consider solutions to the
equation

(−�)mu = (2m − 1)!e2mu on R
2m, (2)

satisfying
∫

R2m e2mudx < ∞. From the above remarks and (1) in particular, it follows
that (2) has the following geometric meaning: if u solves (2), then the conformal metric
g := e2u gR2m has Q-curvature Q2m

g ≡ (2m − 1)!. As we shall see, every solution to (2) with

e2mu ∈ L1
loc(R

2m) is smooth (Corollary 8).
Given such a solution u, define the auxiliary function

v(x) := (2m − 1)!
γm

∫

R2m

log

( |y|
|x − y|

)
e2mu(y)dy, (3)

where γm is defined by the following property: (−�)m
(

1
γm

log 1
|x |
)

= δ0 in R
2m , see Pro-

position 22 below. Then (−�)mv = (2m − 1)!e2mu . We prove

Theorem 1 Let u be a solution of (2) with

α := 1

|S2m |
∫

R2m

e2mu(x)dx < +∞. (4)

Then
u(x) = v(x) + p(x), (5)

where p is a polynomial of even degree at most 2m − 2, v is as in (3) and

sup
x∈R2m

p(x) < +∞,

lim|x |→∞ � jv(x) = 0, j = 1, . . . , m − 1,

v(x) = −2α log |x | + o(log |x |), as |x | → +∞.
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It is well known that the function

u(x) := log
2λ

1 + λ2|x − x0|2 (6)

solves (2) and (4) with α = 1 for any λ > 0, x0 ∈ R
2m . We call the functions of the form (6)

standard solutions. They all arise as pull-back under the stereographic projection of metrics
on S2m which are round, i.e. conformally diffeomorphic to the standard metric. Chang and
Yang [8] proved that the round metrics are the only metrics on S2m having Q-curvature
identically equal to (2m − 1)!.

In the next theorem, we give conditions under which an entire solution of Liouville’s
equation satisfying (4) is necessarily a standard solution.

Theorem 2 Let u be a solution of (2) satisfying (4). Then the following are equivalent:

(i) u is a standard solution,
(ii) lim|x |→∞ �u(x) = 0

(ii’) lim|x |→∞ � j u(x) = 0 for j = 1, . . . , m − 1,
(iii) u(x) = o(|x |2) as |x | → ∞,
(iv) deg p = 0, where p is the polynomial in (5).
(v) lim inf |x |→+∞ Rgu > −∞, where gu = e2u gR2m .

(vi) π∗gu can be extended to a Riemannian metric on S2m, where π : S2m → R
2m is the

stereographic projection.

Moreover, if u is not a standard solution, there exist 1 ≤ j ≤ m − 1 and a constant a < 0
such that

� j u(x) → a as |x | → +∞. (7)

The two-dimensional case (m = 1) of Theorem 2 was treated by Chen and Li [9], who
proved that every solution with finite total Gaussian curvature is a standard one. The four-
dimensional case was treated by Lin [15], with a classification of u in terms of its growth,
or of the behaviour of �u at ∞. The classification of C-S. Lin in terms of �u was used by
Robert and Struwe [20] to study the blow-up behaviour of sequences of solutions uk to

{
�2uk = λuke32π2u2

k in � ⊂ R
4

uk = ∂uk
∂n = 0 on ∂�,

and by Malchiodi [16] to show a compactness criterion for sequences of solutions uk to the
equation

P4
g uk + Q4

k = hke4uk , hk constant

on a closed 4-manifold. The same criterion could be used in higher dimension in the proof
of an analogous compactness result. This was observed by Ndiaye [17], who then used a
different technique to show compactness. We will discuss this in a forthcoming paper.

In higher dimension (m > 2), Wei and Xu [23] (see also [25]) treated a special case of
Theorem 2: if u(x) = o(|x |2) at infinity, then u is always a standard solution. This result is
not sufficient to prove compactness. Moreover, the proof appears to be overly simplified. For
instance, in their Lemma 2.2 the argument for showing that u ≤ C is not conclusive, and in
the crucial Lemma 2.4 they simply refer to [15] for details. This latter lemma corresponds
to Lemma 13 here and it is the main regularity result, as it implies that u ≤ C , hence
that the right-hand side of (2) belongs to L∞(R2m). Its generalization is a major issue,
because Lin’s analysis is focused on the function �u, and it makes use of the Harnack’s
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310 L. Martinazzi

inequality and of the fact that �(u − v) ≡ C . In the general case, Harnack’s inequality
does not work and there are no uniform bounds for �(m−2)(u − v) (while it is still true that
�(m−1)(u − v) ≡ C). To overcome this difficulties, we spend a few pages in the following
section to study polyharmonic functions. As a reward we obtain a Liouville-type theorem for
polyharmonic functions (Theorem 6) which allows us to make the proof of [15] more direct
and transparent.

The characterization in terms of the scalar curvature at infinity is new and quite interesting,
as it shows that non-standard solutions have a geometry essentially different from standard
solutions, and it also shows that the Q-curvature and the scalar curvature are independent
of each other in dimension 4 and higher. On the other hand, since in dimension 2 we have
2Qg = Rg , (v) is consistent with the result of [9].

The characterization in (vi) implies the result of Chang and Yang [8] described above,
which here follows from the general case.

The paper is organized as follows. In Sect. 2 we collect some relevant results about
polyharmonic functions which will be needed later. Section 3 contains the proof of Theorems 1
and 2; at the end of the paper we give examples to show that the hypothesis of Theorem 2
are sharp in terms of the growth at infinity and of the degree of p. Recently Wei and Ye
[24] proved that already in dimension 4 there is a great abundance of non-radially symmetric
solutions.

In the following, the letter C denotes a generic constant, which may change from line to
line and even within the same line.

2 A few remarks on polyharmonic functions

We briefly recall some properties of polyharmonic functions, which will be used in the sequel.
For the standard elliptic estimates for the Laplace operator, we refer to [11] or [12]. The next
lemma can be considered a generalized mean value inequality. We give the short proof for
the convenience of the reader, and because identity (12) will be used in the next section.

Lemma 3 (Pizzetti [19]) Let �mh = 0 in BR(x0) ⊂ R
n, for some m, n positive integers.

Then ∫

BR(x0)

h(z)dz =
m−1∑
i=0

ci R2i�i h(x0), (8)

where

c0 = 1, ci = n

n + 2i

(n − 2)!!
(2i)!!(2i + n − 2)!! , i ≥ 1. (9)

Proof We can translate and assume that x0 = 0. We first prove by induction on m that there
are constants b(m)

0 , . . . , b(m)
m−1 such that

∫

∂ Br

h(z)d S =
m−1∑
i=0

b(m)
i r2i�i h(0), 0 < r < R, Br := Br (0). (10)

For m = 1 this reduces to the mean value theorem for harmonic functions. Assume now that
the assertion has been proved up to m − 1, and that �mh = 0. Let Gr be the Green function
of �m in Br :

�m Gr = δ0 in Br , Gr = �Gr = · · · = �m−1Gr = 0 on ∂ Br . (11)
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For simplicity, let us only consider the case n = 2m. Then Gr (x) = G1
( x

r

)
,

G1(x) = α0 log |x | + α1|x |2 + · · · + αm−1|x |2m−2,

where the constants can be computed inductively starting with α0 up to αm−1 in order to
satisfy (11). Notice that G1 is radial. Integrating by parts

0 =
∫

Br

Gr�
mhdx

= h(0) −
m−1∑
i=0

∫

∂ Br

∂�m−1−i Gr

∂n
�i hd S

= h(0) −
m−1∑
i=0

∫

∂ Br

air
2i�i hd S, (12)

where each ai depends only on n and m. For each term on the right-hand side with i ≥ 1, we
can use the inductive hypothesis

r2i
∫

∂ Br

�i hd S = r2i
m−i−1∑

j=0

b(m−1)
j r2 j� j+i h(0), 0 ≤ i ≤ m − 1,

and substituting we obtain (10). To conclude the induction it is enough to multiply (10) by
rn−1, integrate with respect to r from 0 to R and divide by Rn

n .
To compute the ci ’s, we test with the functions h(x) = r2i := |x |2i , i ≥ 1 (for the

case i = 0 use the function h(x) ≡ 1). Since �r2i = 2i(2i + n − 2)r2i−2, we have that
�kh(0) = 0 for k 
= i and �i h(0) = (2i)!!(2i+n−2)!!

(n−2)!! . Hence Pizzetti’s formula reduces to

ci R2i (2i)!!(2i + n − 2)!!
(n − 2)!! =

∫

BR

r2i dx = n

n + 2i
R2i ,

whence (9). ��
Remark From (12), moreover, for an arbitrary C2m-function u it follows that

∫

BR(x0)

u(z)dz =
m−1∑
i=0

ci R2i�i u(x0) + cm R2m�mu(ξ), (13)

for some ξ ∈ BR(x0).

Proposition 4 Let �mh = 0 in B4 ⊂ R
n. For every 0 ≤ α < 1, p ∈ [1,∞) and k ≥ 0 there

are constants C(k, p), C(k, α) independent of h such that

‖h‖W k,p(B1)
≤ C(k, p)‖h‖L1(B4)

‖h‖Ck,α(B1)
≤ C(k, α)‖h‖L1(B4)

.

The proof of Proposition 4 is given in the appendix. As a consequence of Proposition 4
and Pizzetti’s formula we have the following Liouville-type theorem, compare [1].

Theorem 5 Consider h : R
n → R with �mh = 0 and h(x) ≤ C(1 + |x |�), for some

� ≥ 2m − 2. Then h(x) is a polynomial of degree at most �.
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312 L. Martinazzi

Proof Thanks to Proposition 4, we have for any x ∈ R
n

|D�+1h(x)| ≤ C

R�+1

∫

BR(x)

|h(y)|dy = − C

R�+1

∫

BR(x)

h(y)dy + O(R−1), as R → ∞.

(14)
On the other hand, Pizzetti’s formula implies that

∫

BR(x)

h(y)dy =
m−1∑
i=0

ci R2i�i h(x) = O(R2m−2),

and letting R → ∞, we obtain D�+1h = 0. ��

A variant of the above theorem, which will be used later is the following

Theorem 6 Consider h : R
n → R with �mh = 0 and h(x) ≤ u − v, where epu ∈ L1(Rn)

for some p > 0, v ∈ L1
loc(R

n) and −v(x) ≤ C(log(1 + |x |) + 1). Then h is a polynomial of
degree at most 2m − 2.

Proof The only thing to change in the proof of Theorem 5, is the estimate of the term
2C

R2m−1

∫
–BR(x)

h+dy, corresponding to the O(R−1) in (14). We have

∫

BR(x)

h+dy ≤
∫

BR(x)

u+dy + C
∫

BR(x)

log(1 + |y|)dy + C

≤ 1

p

∫

BR(x)

epudy + C log R + C,

and all terms go to 0 when divided by R2m−1 and for R → ∞. ��

The following estimate has been obtained by Brézis and Merle [5] in dimension 2 and by
Lin [15] and Wei [22] in dimension 4. Notice that the constant γm , defined by the relation

(−�)m
(

1

γm
log

1

|x |
)

= δ0, in R
2m

(see Proposition 22 in the appendix), plays an important role.

Theorem 7 Let f ∈ L1(BR(x0)) and let v solve
{

(−�)mv = f in BR(x0) ⊂ R
2m,

v = �v = · · · = �m−1v = 0 on ∂ BR(x0).

Then, for any p ∈
(

0,
γm

‖ f ‖L1(BR (x0))

)
, we have e2mp|v| ∈ L1(BR(x0)) and

∫

BR(x0)

e2mp|v|dx ≤ C(p)R2m,

where γm is given by (48).
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Proof We can assume x0 = 0 and, up to rescaling, that ‖ f ‖L1(BR) = 1. Define

w(x) := 1

γm

∫

BR

log
2R

|x − y| | f (y)|dy, x ∈ R
2m .

Extend f to be zero outside BR(x0); then

(−�)mw = | f | in R
2m .

We claim that w ≥ |v| in BR . Indeed by (49) and from |x − y| ≤ 2R for x, y ∈ BR , we
immediately see that

(−�) jw ≥ 0, j = 0, 1, 2, . . .

In particular the function z := w − v satisfies
{

(−�)m z ≥ 0 in BR

(−�) j z ≥ 0 on ∂ BR for 0 ≤ j ≤ m − 1.

By Proposition 21, (−�) j z ≥ 0 in BR , 0 ≤ j ≤ m − 1 and the case j = 0 corresponds
w ≥ v. Working also with −v we complete the proof of our claim.

Now it suffices to show that for p ∈ (0, γm) we have ‖e2mpw‖L1(BR) ≤ C(p)R2m . By
Jensen’s inequality we have

∫

BR

e2mpwdx =
∫

BR

e
2mp
γm

∫
BR

log 2R
|x−y| | f (y)|dy

dx

≤
∫

BR

∫

BR

| f (y)|e 2mp
γm

log 2R
|x−y| dydx

=
∫

BR

| f (y)|
⎛
⎜⎝
∫

BR

(
2R

|x − y|
) 2mp

γm
dx

⎞
⎟⎠ dy

On the other hand
∫

BR

(
2R

|x − y|
) 2mp

γm
dx ≤

∫

BR

(
2R

|x |
) 2mp

γm
dx

= ω2m

R∫

0

r2m−1− 2mp
γm (2R)

2mp
γm dr

= ω2m
γm

2mγm − 2mp
R2m2

2mp
γm .

We then conclude ∫

BR

e2mpwdx ≤ C(m)

γm − p
R2m .

��
Corollary 8 Every solution u to (2) with e2mu ∈ L1

loc(R
2m) is smooth.
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314 L. Martinazzi

Proof Given B4(x0) ⊂ R
2m , write (2m − 1)!e2mu

∣∣
B4(x0)

= f1 + f2 with

‖ f1‖L1(B4(x0)) < γm, f2 ∈ L∞(B4(x0)),

and u = u1 + u2 + u3, with
{

(−�)mui = fi in B4(x0)

ui = �ui = · · · = �m−1ui = 0 on ∂ B4(x0)

for i = 1, 2, and �mu3 = 0. Then, by Theorem 7, e2mu1 ∈ L p(B4(x0)) for some p > 1,
while, by standard elliptic estimates u2 ∈ L∞(B4(x0)) and u3 is smooth, hence u3 ∈
L∞(B3(x0)). Then e2mu ∈ L p(B3(x0)). Write now u

∣∣
B3(x0)

= v1 + v2, where

{
(−�)mv1 = (2m − 1)!e2mu in B3(x0)

v1 = �v1 = · · · = �m−1v1 = 0 on ∂ B3(x0)

and �mv2 = 0. Then, by L p-estimates and Sobolev’s embedding theorem, v1 ∈ W 2m,p

(B3(x0)) ↪→ C0,α(B3(x0)) for some 0 < α < 1, while v2 is smooth. Then u ∈ C0,α(B2(x0))

and with the same procedure of writing u as the sum of a polyharmonic (hence smooth)
function plus a function with vanishing Navier boundary condition, we can bootstrap and
use Schauder’s estimate to prove that u ∈ C∞(B1(x0)). ��

3 Proof of Theorems 1 and 2

The proof of Theorems 1 and 2 will be divided into several lemmas. It consists of a careful
study of the functions v, defined in (3), and u − v. In what follows the generic constant C
may depend also on u.

Remark In general v 
= u, even if u is a standard solution. To see that, rescale u by a factor
r > 0 as follows:

ũ(x) := u(r x) + log r.

Then ũ is again a solution, with the same energy. On the other hand the corresponding ṽ

satisfies

ṽ(x) = (2m − 1)!
γm

∫

R2m

log

( |y|
|x − y|

)
e2mu(r y)r2mdy

= (2m − 1)!
γm

∫

R2m

log

( |y′|
|r x − y′|

)
e2mu(y′)dy′ = v(r x). (15)

That shows that after rescaling, u − v changes by a contant.

Lemma 9 Let u be a solution of (2), (4). Then, for |x | ≥ 4,

v(x) ≥ −2α log |x | + C. (16)

Proof The proof is similar to that in dimension 4, compare [15]. Fix x with |x | ≥ 4, and
decompose R

2m = A1 ∪ A2 ∪ B2, where B2 = B2(0) and

A1 := B|x |/2(x), A2 := R
2m\(A1 ∪ B2).
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For y ∈ A1 we have

|y| ≥ |x | − |x − y| ≥ |x |
2

≥ |x − y|, log
|y|

|x − y| ≥ 0,

hence ∫

A1

log
|y|

|x − y|e2mu(y)dy ≥ 0. (17)

For y ∈ A2, since |x |, |y| ≥ 2, we have

|x − y| ≤ |x | + |y| ≤ |x ||y|, log
|y|

|x − y| ≥ log
1

|x | ,

hence ∫

A2

log
|y|

|x − y|e2mu(y)dy ≥ − log |x |
∫

A2

e2mu(y)dy. (18)

For y ∈ B2, log |x − y| ≤ log |x | + C and, since u is smooth, we find
∫

B2

log
|y|

|x − y|e2mu(y)dy ≥
∫

B2

log |y|e2mu(y)dy − log |x |
∫

B2

e2mudy − C
∫

B2

e2mudy

≥ − log |x |
∫

B2

e2mudy + C. (19)

Putting together (17)–(19) and observing that log 1
|x | < 0, we conclude that

v(x) ≥ (2m − 1)!
γm

∫

A2∪B2

log

( |y|
|x − y|

)
e2mu(y)dy

≥ − (2m − 1)!
γm

log |x |
∫

A2∪B2

e2mudy + C

≥ − (2m − 1)!|S2m |
γm

α log |x | + C.

Finally, observing that (2m − 2)!! = 2m−1(m − 1)!, we infer

(2m − 1)!|S2m |
γm

= (2m − 1)!2(2π)m(2m − 2)!!
(2m − 1)!!23m−2[(m − 1)!]2πm

= 2.

��
Lemma 10 Let u be a solution of (2) and (4), with m ≥ 2. Then u = v + p, where p is a
polynomial of degree at most 2m − 2. Moreover

� j u(x) = � jv(x) + p j

= (−1) j 22 j ( j − 1)!(m − 1)!
(m − j − 1)!|S2m |

∫

R2m

e2mu(y)

|x − y|2 j
dy + p j ,

where p j is a polynomial of degree at most 2(m − 1 − j).
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316 L. Martinazzi

Proof Let p := u − v. Then �m p = 0. By Lemma 9 we have

p(x) ≤ u(x) + 2α log |x | + C,

and Theorem 6 implies that p is a polynomial of degree at most 2m − 2. To compute � jv,
one can use (49) and the definition of γm . ��
Lemma 11 Let p be the polynomial of Lemma 10. Then

sup
x∈R2m

p(x) < +∞.

In particular deg p is even.

Proof Define

f (r) := sup
∂ Br

p.

If sup
R2m p = +∞, there exists s > 0 such that

lim
r→+∞

f (r)

rs
= +∞, (20)

see [13, Theorem 3.1].1 Moreover |∇ p(x)| ≤ C |x |2m−3 hence, also taking into account
Lemma 9, there is R > 0 such that for every r ≥ R, we can find xr with |xr | = r such that

u(y) = v(y) + p(y) ≥ rs for |y − xr | ≤ 1

r2m−3 .

Then, using Fubini’s theorem,

∫

R2m

e2mudx ≥
+∞∫

R

∫

∂ Br (0)∩Br3−2m (xr )

e2mrs
dσdr

≥ C

+∞∫

R

exp(2mrs)

r (2m−3)(2m−1)
dr = +∞,

contradicting the hypothesis e2mu ∈ L1(R2m). ��
The following lemma will be used in the proof of Lemma 13.

Lemma 12 Let G = G(|x |) be the Green’s function for �m in B1 ⊂ R
n for n, m given

positive integers. Then there are constants ci depending on m and n such that for |x | = 1,
and 0 ≤ i ≤ m − 1,

(−1)i ∂�m−1−i G(x)

∂r
= ci > 0.

Proof Since G = G(|x |), we only need to show that ci > 0. Fix i and let h solve
⎧⎨
⎩

�mh = 0 in B1

(−�)i h = −1 on ∂ B1

(−�) j h = 0 on ∂ B1 for 0 ≤ j ≤ m − 1, j 
= i.

1 The statement of Theorem 3.1 in [13] is about µ(r) := inf∂ Br |p|, but the proof works in our case too.
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By Proposition 21, h(0) < 0, hence (12) implies

0 < −h(0) = (−1)i
∫

∂ B1

∂�m−1−i G

∂r
d S = ciωn .

��
Lemma 13 Let v : R

2m → R be defined as in (3). Then

lim|x |→∞ �m− jv(x) = 0, j = 1, . . . , m − 1 (21)

and for any ε > 0 there is R > 0 such that for |x | > R

v(x) ≤ (−2α + ε) log |x |. (22)

Proof We proceed by steps.
Step 1. For any ε > 0 there is R > 0 such that for |x | ≥ R

v(x) ≤
(
−2α + ε

2

)
log |x | − (2m − 1)!

γm

∫

Bτ (x)

log |x − y|e2mu(y)dy, (23)

where τ ∈ (0, 1) will be fixed later. The simple proof of (23) is very similar to the proof of
Lemma 9 (see [15, p. 213]), and it is omitted. Notice that the second term on the right-hand
side may be very large. Together with Fubini’s theorem, (23) implies

∫

R2m\BR(0)

v+dx ≤ C
∫

R2m

∫

R2m

χ|x−y|≤τ log
1

|x − y|e2mu(y)dydx

= C
∫

R2m

e2mu(y)

∫

Bτ (y)

log
1

|x − y|dxdy

≤ C
∫

R2m

e2mu(y)dy ≤ C. (24)

Step 2. From now on, x will be a point in R
2m with |x | > R, where R is as in Step 1. Fix

p > 1 such that p(2m − 2) < 2m, and p′ = p
p−1 . By Theorem 7, there is δ > 0 such that if

∫

B4(x)

e2mudy < δ, (25)

then ∫

B4(x)

e2mp′|z|dy ≤ C, (26)

with C independent of x , where z solves
{

(−�)m z = (2m − 1)!e2mu in B4(x)

� j z = 0 on ∂ B4(x) for 0 ≤ j ≤ m − 1.

We now choose R > 0 such that (25) is satisfied whenever |x | ≥ R, and claim that for such x ,
∫

Bτ (x)

e2mp′udy ≤ C
∫

Bτ (x)

e2mp′|z|dy ≤ Cε. (27)
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We now observe that for any σ > 0,
∫

R2m\Bσ (x)

e2mu(y)

|x − y|2 j
dy → 0 as |x | → ∞ (28)

by dominated convergence; by Hölder’s inequality and (27), if σ is small enough,

∫

Bσ (x)

e2mu

|x − y|2 j
dy ≤

⎛
⎜⎝

∫

Bσ (x)

e2mp′udy

⎞
⎟⎠

1
p′ ⎛
⎜⎝

∫

Bσ (x)

1

|x − y|2 j p
dy

⎞
⎟⎠

1
p

≤ Cε
1
p′ .

Therefore

(−�) jv(x) = C
∫

R2m

e2mu

|x − y|2 j
dy → 0, as |x | → ∞.

Finally (22) follows from (23), (27) and Hölder’s inequality.
Step 3. It remains to prove (27). Set h := v − z, so that

{
�mh = 0 in B4(x)

� j h = � jv on ∂ B4(x) for 0 ≤ j ≤ m − 1,

Integrating (−�)mv = (2m − 1)!e2mu and then integrating by parts we get

(−1)m
∫

∂ Bρ(x)

∂

∂r
(�m−1v)d S = (2m − 1)!

∫

Bρ(x)

e2mudy.

Dividing by ω2mρ2m−1, integrating on [0, R] and using Fubini’s, we find

R∫

0

∫

∂ Bρ(x)

∂

∂r
(�m−1v)dσdρ =

R∫

0

∫

∂ B1(x)

∂

∂r
(�m−1v(ρ, θ))dθdρ

=
∫

∂ B1(x)

R∫

0

∂

∂r
(�m−1v(ρ, θ))dρdθ

=
∫

∂ BR(x)

�m−1vdσ − �m−1v(x).

Similarly

R∫

0

1

ρ2m−1

∫

Bρ(x)

e2mu(y)dydρ =
R∫

0

1

ρ2m−1

∫

BR(x)

e2mu(y)χ|x−y|≤ρdydρ

=
∫

BR(x)

e2mu(y)

R∫

|x−y|

1

ρ2m−1 dρdy

= 1

(2m − 2)

∫

BR(x)

[
1

|x − y|2m−2 − 1

R2m−2

]
e2mu(y)dy.
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Hence, multiplying above by (2m−1)!
ω2m

and setting Cm−1 := (2m−1)!
(2m−2)ω2m

,

∫

∂ BR

(−�)m−1vdσ = (−�)m−1v(x) − Cm−1

∫

BR(x)

[
1

|x − y|2m−2 − 1

R2m−2

]
e2mu(y)dy

= Cm−1

⎡
⎢⎣

∫

|x−y|≥R

e2mu(y)

|x − y|2m−2 dy +
∫

BR(x)

e2mu(y)

R2m−2 dy

⎤
⎥⎦

which implies at once, setting R = 4,
∫

∂ B4(x)

(−�)m−1vd S ≤ C, (29)

with C independent of x . Similarly, one can show that
∫

∂ B4(x)

(−�)ivd S ≤ C, 1 ≤ i ≤ m − 1. (30)

By Lemma 12 and by (12) rescaled and translated to B4(x) and with the function −�h
instead of h, m − 1 instead of m, we obtain

− �h(x) = −
m−2∑
i=0

∫

∂ B4(x)

∂�m−2−i G

∂n
�i (�h)d S

=
m−1∑
i=1

∫

∂ B4(x)

ci−1(−�)i hd S ≤ C, (31)

where G is the Green function for �m−1 on B4(x):

�m−1G = δx , �i G = 0, on ∂ B4(x), for 0 ≤ i ≤ m − 2.

On the other hand, since the ci > 0, there is some τ > 0 such that the following holds: if
ξ ∈ B2τ (x) and Gξ is the Green’s function defined by

�m−1Gξ = δξ , �i Gξ = 0, on ∂ B4(x), for 0 ≤ i ≤ m − 2,

then also

0 ≤ (−1)i ∂�m−2−i Gξ (η)

∂r
≤ C, for η ∈ ∂ B4(x), r := η − x

4
.

Therefore, as in (31), we infer

−�h ≤ C on B2τ (x), (32)

for some τ ∈ (0, 2).
On the other hand, thanks to (24) and (26),

∫

B4(x)

h+dy ≤
∫

B4(x)

(v+ + |z|)dy ≤ C.
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By elliptic estimates,

sup
Bτ (x)

h ≤
∫

B4(x)

h+dy + C sup
B2τ(x)

(−�h) ≤ C,

C independent of x , as usual. Since the polynomial p is bounded from above, we infer

u ≤ h + p + |z| ≤ C + |z|,
and (27) follows at once. ��
Corollary 14 Any solution u of (2), (4) is bounded from above.

Proof Indeed u is continuous, u = v + p, and

lim|x |→∞ v(x) = −∞, sup
x∈R2m

p(x) < +∞,

by Lemma 11. ��
Lemma 15 Assume that |u(x)| = o(|x |2) as |x | → ∞. Then u = v + C. Furthermore, for
any ε > 0 there exists R > 0 such that

−2α log |x | − C ≤ u(x) ≤ (−2α + ε) log |x |, (33)

for |x | ≥ R.

Proof Since v(x) = −2α log |x | + o(log |x |) at ∞, if deg p ≥ 2, we have that u(x) =
v(x) + p(x) cannot be o(|x |2). Hence, knowing that deg p is even, we get u = v + C for
some constant C . Then (33) follows at once from Lemmas 9 and 13. ��
Lemma 16 Set gu = e2u gR2m . If u is a standard solution, then

Rgu ≡ 2m(2m − 1).

If u is not a standard solution, then

lim inf|x |→+∞ Rgu (x) = −∞. (34)

Proof Assume that u is a standard solution and set

uλ(x) := log
2λ

1 + λ2|x |2 , gλ := e2uλ gR2m . (35)

Then, up to translation, u = uλ for some λ > 0. Since g1 = (π−1)∗gS2m , where π is the
stereographic projection, we have Rg1 ≡ 2m(2m − 1). Then consider the diffeomorphism of
R

2m defined by ϕλ(x) := λx . Then gλ = ϕ∗
λg1, hence Rgλ = Rg1 ◦ ϕλ ≡ 2m(2m − 1).

Assume now that u = v + p is not a standard solution. Since gR2m is flat, the formula for
the conformal change of scalar curvature, in the case m > 1, reduces to

Rgu = −2(2m − 1)e−2u (�u + (m − 1)|∇u|2) , (36)

see for instance [21, p. 184]. Then differentiating the expression (3) for v and using that
u ≤ C , we find that |∇v(x)| → 0 as |x | → ∞. We have already seen that �v(x) → 0 as
|x | → ∞; since deg p ≥ 2 implies

deg �p < deg |∇ p|2,
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we then have

lim sup
|x |→∞

(
�u + (m − 1)|∇u|2) = lim sup

|x |→∞
(
�p + (m − 1)|∇ p|2) = +∞.

Observing that e−2u ≥ 1
C > 0, u being bounded from above, we easily obtain (34). ��

Proof of Theorem 1 Put together Lemmas 9–11 and 13. ��

Proof of Theorem 2 (i) ⇒ (iii) is obvious, while (iii) ⇒ (i) follows from the argument of
[23].

(iii) ⇔ (iv) follows from Theorem 1.
(iv) ⇒ (ii’) ⇒ (ii). Assume that deg p = 0. Then by Theorem 1,

lim|x |→∞ � j u(x) = lim|x |→|∞ � j p(x) = 0, 1 ≤ j ≤ m − 1.

(ii) ⇒ (iv). By Theorem 1, sup
R2m p < ∞ and

lim|x |→∞ �p(x) = lim|x |→∞ �u = 0,

hence �p ≡ 0 and, by Liouville’s theorem, p is constant.
(i) ⇔ (v) follows from Lemma 16.
(i) ⇒ (vi) Given a conformal diffeomorphism ϕ of R

2m , ϕ̃ := π−1 ◦ ϕ ◦ π is a conformal
diffeomorphism of S2m . Any metric of the form gu = e2u gR2m , with u standard solution of
(2), can be easily written as ϕ∗g1, for some conformal diffeomorphism ϕ of R

2m,where g1

is as in (35). Then

π∗gu = π∗ϕ∗g1 = (ϕ ◦ π)∗g1 = (π ◦ ϕ̃)∗g1 = ϕ̃∗π∗g1 = ϕ̃∗gS2 ,

and clearly ϕ̃∗gS2 is a smooth Riemannian metric on S2m .
(vi) ⇒ (i). Assume u is non-standard. Then u = v + p, deg p ≥ 2. Considering that

sup
R2m p < +∞, we infer that p goes to −∞ at least quadratically in some directions. Let

S = (0, . . . , 0, 1) ∈ S2m be the South Pole, and

π : S2m\{S} → R
2m, π(ξ) := (ξ1, . . . , ξ2m)

1 + ξ2m+1

be the stereographic projection from S. Then

(π−1)∗gS2m = ρ0gR2m , ρ0(x) := 4

(1 + |x |2)2 ,

and

π∗gu = ρ1gS2m , ρ1 := e2u

ρ0
◦ π ∈ C∞(S2m\{S}).

Since e2u(x) → 0 more rapidly than |x |−4 in some directions, we have

lim inf
ξ→S

ρ1(ξ) = lim inf|x |→∞
e2u(x)

ρ0(x)
= 0,

hence ρ1gS2m does not extend to a Riemannian metric on S2m .
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To prove (7), let j be the largest integer such that � j p 
= 0. Then � j+1 p ≡ 0 and from
Theorem 6, we infer that deg p ≤ 2 j . In fact deg p = 2 j and � j p ≡ C0 
= 0. From Pizzetti’s
formula (10), we have

2m
j∑

i=0

bi R2i�i p(0) =
∫

∂ BR

2mpd S

Exponentiating and using Jensen’s inequality and Lemma 9, we infer

exp

⎛
⎝2m

j∑
i=0

bi R2i�i p(0)

⎞
⎠ ≤

∫

∂ BR

e2mpd S ≤ C R4mα

∫

∂ BR

e2mud S,

for R ≥ 4. Therefore

ϕ(R) := R−4mα+2m−1 exp

⎛
⎝2m

j∑
i=0

bi R2i�i p(0)

⎞
⎠ ∈ L1([4,+∞)),

and this is not possible if C0 = � j p > 0, hence C0 < 0. ��

4 Examples

Following an argument of [7], we now see that solutions of the kind v + p actually exist,
even among radially symmetric functions, with deg p = 2m − 2, and with deg p = 2. For
simplicity, we only treat the case when m is even; if m is odd, the proof is similar. We need
the following lemma.

Lemma 17 Let u(r) be a smooth radially symmetric function on R
n, n ≥ 1. Then for m ≥ 0

we have
�mu(0) = n

cm(n + 2m)(2m)!u(2m)(0), (37)

where the ci ’s are the constants in Pizzetti’s formula, and u(2m) := ∂2m u
∂r2m . In particular

�mu(0) has the sign of u(2m)(0).

Proof We first prove that

cm�mu(0) = 1

R2m

∫

BR(0)

r2m

(2m)!u(2m)(0)dx . (38)

Then, observing that ∫

BR(0)

r2m

(2m)!dx = n R2m

(n + 2m)(2m)! , (39)

(37) follows at once. We prove (38) by induction. The case m = 0 reduces to u(0) = u(0).
Let us now assume that (38) has been proven for i = 0, . . . , m − 1 and let us prove it for m.
Since u is smooth, we have u(i)(0) = 0 for any odd i , hence Taylor’s formula reduces to

u(r) =
m∑

i=0

r2i

(2i)!u(2i)(0) + o(r2m+1).
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We now divide by R2m in (13), take the limit as R → 0 and, observing that �m+1u(ξ)

remains bounded as R → 0, we find

lim
R→0

∫
–BR

(
u −∑m−1

i=0 ci R2i�i u(0)
)

dx

R2m
= cm�mu(0).

Substituting Taylor’s formula and using the inductive hypothesis, we see that most of the
terms on the left-hand side cancel out (before taking the limit) and we are left with

lim
R→0

1

R2m

∫

BR

(
r2mu(2m)(0)

(2m)! + o(r2m+1)

)
dx = cm�mu(0).

Finally, to deduce (38), observe that, 1
R2m

∫
–BR(0)

o(r2m+1)dx → 0 as R → 0, while
1

R2m

∫
–BR

r2m u(2m)(0)
(2m)! dx does not depend on R thanks to (39). ��

Proposition 18 For every m ≥ 2 even, there exists a radially symmetric function u solving
(2), (4) with u(x) = −C |x |2m−2 + O(|x |2m−4).

Proof Set w0 = log 2
1+r2 . Then �mw0 = (2m −1)!e2mw0 . Define u = u(r) to be the unique

solution to the following ODE
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�mu = (2m − 1)!e2mu

u(0) = log 2

u(2 j+1)(0) = 0 j = 0, . . . , m − 1

u(2 j)(0) = α j ≤ w
(2 j)
0 (0) j = 1, . . . , m − 2

u(2m−2)(0) = αm−1 < w
(2m−2)
0 (0)

where the α j ’s are fixed. We shall first see that w0 ≥ u. Set g := w0 − u. Then g(r) > 0 for
r > 0 small enough, hence also �m g > 0 for small r > 0. From Lemma 17 we get

� j g(0) ≥ 0, j = 1, . . . , m − 2; �m−1g(0) > 0. (40)

We can prove inductively that �m− j g ≥ 0, j = 0, . . . , m − 1 as long as g(r) > 0. Indeed
∫

BR(0)

� j gdx =
∫

∂ BR(0)

∂� j−1g

∂r
dσ, (41)

hence, as long as g(r) > 0, we have ∂� j−1g
∂r > 0, in particular ∂g

∂r > 0, hence g(r) > 0 for
all r > 0 for which it is defined. From (40) and (41) we inductively infer

�m− j g(r) ≥ Cr2 j−2,

and, since �w0(r) → 0 as r → ∞, there is r0 > 0 such that

�u ≤ −Cr2m−4, for r ≥ r0,

integrating which, we find

u(r) ≤ −Cr2m−2, for r ≥ r0. (42)

To estimate u from below, we use the function

w1(r) = log 2 − C1r2 − · · · − Cm−1r2m−2,
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where the constants Ci are chosen so that

� j u(0) ≥ � jw1(0).

Then we can proceed as above to prove that u − w1 ≥ 0. Hence the solution exists for all
times and, thanks to (42) and Theorem 1, it has the asymptotic behaviour

u(r) = −Cr2m−2 + O(r2m−4).

��

Remark Observe the abundance of solutions: we can choose the (m − 1)-tuple of initial data
(α1, . . . , αm−1) in a set containing an open subset of R

m−1.

In the next example we show a radially symmetric solution in R
2m , m ≥ 4 even, of the

form u = v + p, with deg p = 2, thus showing that the hypothesis u(x) = o(|x |2) as
|x | → ∞ in Theorem 2 is sharp.

Proposition 19 Let w0(r) := log 2
1+r2 and let u = u(r) (r = |x |, x ∈ R

2m and m even)
solve the following ODE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�mu = (2m − 1)!e2mu

u(0) = log 2

u(2 j+1)(0) = 0 j = 0, . . . , m − 1

u(2 j)(0) = w
(2 j)
0 (0) j = 2, 3, . . . , m − 1

u′′(0) = w′′
0 (0) − 1.

Then u(r) is defined for all r ≥ 0 and u(r) = −Cr2 + O(log r) as r → +∞.

Proof As in the proof of Proposition 18, we can show that g := w0−u ≥ 0 and u(r) ≤ −Cr2.
To control u from below, we use the function w1(r) = w0(r) − r2, so that redefining
g := u − w1, we have

g′′(0) = 1, g( j)(0) = 0, j = 0, 1, 3, 4, . . . , 2m − 1.

and we can prove that g ≥ 0 as before. Hence u(r) exists for all r ≥ 0, it is non-standard
and u(r) = −Cr2 + O(log r) as r → ∞, as w1 bounds it from below. ��

Remark Using (36), we can easily compute that in the above examples

lim|x |→∞ Rg(x) → −∞,

where g = e2u gR2m .

Acknowledgments I wish to thank my advisor, Prof. M. Struwe, for stimulating discussions and for intro-
ducing me to this very interesting subject. I also thank my friend D. Saccavino for referring me to the result
of Gorin, which we use in Lemma 11.
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Appendix

We prove here a few results used above.

Lemma 20 Assume that u : B4 → R satisfies

‖�u‖W k,p(B4)
≤ C

‖u‖L1(B4)
≤ C,

for some p ∈ (1,∞). Then

‖u‖W k+2,p(B1)
≤ C.

Proof By Fubini’s theorem we can choose r > 0 with 2 ≤ r ≤ 4 such that

‖u‖L1(∂ Br )
≤ C‖u‖L1(B4)

.

Let’s now write u = u1 + u2, where
{

�u1 = 0 in Br

u1 = u on ∂ Br

{
�u2 = �u in Br

u2 = 0 on ∂ Br

By standard L p-estimates we have ‖u2‖W k+2,p(Br )
≤ C‖�u‖W k,p(Br )

. From the representa-
tion formula of Poisson

u1(x) =
∫

∂ Br

u1(y)�(x − y)d S(y),

we obtain ‖u1‖Ck (B1)
≤ Ck‖u1‖L1(∂ Br )

for every k ≥ 0. ��
Proof of Proposition 4 Let ‖h‖L1(B4) ≤ C , and let us assume n > 2. We proceed by steps.
Step 1. We show by induction on j that

‖�m− j h‖L∞(B2) ≤ C. (43)

The step j = 0 is obvious, as �mh ≡ 0. Let us prove the step j ≥ 1. Let

G2r (x) := 1

(2 − n)ωn

(
1

|x |n−2 − 1

(2r)n−2

)

be the Green function for the Laplace operator on B2r with singularity at 0. Then

�m− j h(0) =
∫

∂ B2r

�m− j hdx +
∫

B2r

G2r�
m− j+1hdx .

By inductive hypothesis and the scaling property of G2r , the last term is bounded by Cr2,
hence

�m− j h(0) ≤
∫

∂ B2r

�m− j hdx + Cr2,

and integrating with respect to r on [1/2, 1], we obtain

�m− j h(0) ≤
∫

B2

�m− j hdx + C. (44)
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To estimate
∫
–B2

�m− j hdx , we use Pizzetti’s formula for h at x ∈ B2,

cm− j�
m− j h(x) = −

m− j−1∑
i=0

ci�
i h(x)−

m∑
i=m− j+1

ci�
i h(x) +

∫

B1(x)

hdy

︸ ︷︷ ︸
≤C

by the inductive hypothesis again, and the L1-bound on h and get

cm− j�
m− j h(x) ≤ −

m− j−1∑
i=0

ci�
i h(x) + C. (45)

Averaging in (45) over B2 and using (44), we find

cm− j�
m− j h(0) ≤ −

m− j−1∑
i=0

⎛
⎜⎝ci

∫

B2

�i h(x)dx

⎞
⎟⎠+ C.

and its scaled version

cm− j�
m− j h(0) ≤ −

m− j−1∑
i=0

⎛
⎜⎝cir

2(i−m+ j)
∫

B2r

�i h(x)dx

⎞
⎟⎠+ Cr2( j−m). (46)

Consider now a non-negative function ϕ ∈ C∞
c ((1, 2)), with

∫ 2
1 ϕ(r)dr = 1. From (46), we

find

cm− j�
m− j h(0) ≤ −

m− j−1∑
i=0

ci

2∫

1

⎛
⎜⎝r2(i−m+ j)

∫

B2r

�i h(x)dx ϕ(r)

⎞
⎟⎠ dr + C.

Each term in the sum on the right-hand side can be written as
∣∣∣∣∣∣∣
C

2∫

1

r2(i−m+ j)−n
∫

∂ B2r

∂�i−1h

∂ν
d Sϕ(r)dr

∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣

∫

B2\B1

r2(i−m+ j)−n ∂�i−1h(x)

∂ν
ϕ(|x |)dx

∣∣∣∣∣∣∣

= C
∫

B2\B1

|h(x)|
∣∣∣∣

∂

∂ν
�i−1

(
r2(i−m+ j)−nϕ(|x |)

)∣∣∣∣ dx

≤ C
∫

B2

|h(x)|dx .

Working with −h and observing the local character of the above estimates, we obtain (43).
Step 2. Fix � ≥ m. We can prove inductively that

‖��− j h‖W 2 j,p(B2) ≤ C(p).
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The step j = 0 is obvious, as ��h ≡ 0. For the inductive step, we see that by Lemma 20
applied to ��− j h (and a simple covering argument to fix the radii), we have

‖��− j h‖W 2 j,p(B1)
≤ C‖�(��− j h)‖W 2 j−2,p(B2) + C ‖��− j h‖L1(B2)︸ ︷︷ ︸

≤C by Step 1

≤ C,

for every 1 < p < ∞, and the usual covering argument extends the estimate to B2. Therefore
‖h‖W 2�,p(B1)

≤ C(p, �), and we conclude applying Sobolev’s theorem. ��

Proposition 21 Let u ∈ C2m(B1) such that
{

(−�)mu ≤ C1 in B1

(−�) j u ≤ C1 on ∂ B1 for 0 ≤ j ≤ m − 1
(47)

Then there exists a constant C independent of u such that

u ≤ C in B1.

If C1 = 0 in (47), then u < 0 in B1, unless u ≡ 0.

Proof By induction on m. The case m = 1 follows from the maximum principle, applied to
the function v(x) := u(x) − C |x |2, which is subharmonic for C large enough. Assume now
that the case m −1 has been dealt with and let us consider u satisfying (47). Then v := −�u
satisfies v ≤ C in B1 by inductive hypothesis. Applying the case m = 1 again we conclude.
Similarly if C1 = 0. ��

Proposition 22 (Fundamental solution) For m ≥ 1, set

γm := ω2m22m−2[(m − 1)!]2, (48)

where ω2m := |S2m−1| = (2π)m

(2m−2)!! . Then the function

K (x) := 1

γm
log

1

|x |
is a fundamental solution of (−�)m in R

2m, i.e. (−�)m K = δ0.

Proof The case m = 1 is well-known, so we shall assume m ≥ 2. Set r := |x |. For radial
functions we have � = ∂2

∂r2 + n−1
r

∂
∂r , hence for j ≥ 1

−� log
1

r
= 2(m − 1)

r2 , −�
1

r2 j
= 4 j (m − 1 − j)

r2 j+2 .

Then

(−�) j log
1

r
= 22 j−1 ( j − 1)!(m − 1)!

(m − j − 1)!
1

r2 j
(49)

(−�)m−1 log
1

r
= 22m−3(m − 2)!(m − 1)! 1

r2m−2 . (50)

Given a function ϕ ∈ C∞
c (R2m), we can apply the usual procedure of integrating by parts in

R
2m\Bε(0) using
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lim
ε→0

∫

∂ Bε(0)

|Dk K |d S = 0, 0 ≤ k ≤ 2m − 2,

to obtain
∫

R2m

(−�)mϕK dx = lim
ε→0

∫

∂ Bε(0)

−ϕ
∂(−�)m−1 K

∂ν
d S

=
∫

∂ Bε(0)

ϕd S → ϕ(0).

��
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