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Abstract Let (M, g, σ ) be a compact Riemannian spin manifold of dimension ≥2. For any
metric g̃ conformal to g, we denote by λ̃ the first positive eigenvalue of the Dirac operator
on (M, g̃, σ ). We show that

inf
g̃∈[g]

λ̃ Vol(M, g̃)1/n ≤ (n/2) Vol(Sn)1/n .

This inequality is a spinorial analogue of Aubin’s inequality, an important inequality in the
solution of the Yamabe problem. The inequality is already known in the case n ≥ 3 and in the
case n = 2, ker D = {0}. Our proof also works in the remaining case n = 2, ker D �= {0}.
With the same method we also prove that any conformal class on a Riemann surface contains
a metric with 2λ̃2 ≤ µ̃, where µ̃ denotes the first positive eigenvalue of the Laplace operator.

Mathematics Subject Classification (2000) Primary 53 A 30 · 53C27; Secondary 58 J
50, 58C40

1 Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2. We assume that M is
spin, and we fix a spin structure σ on M . For any metric g̃ in the conformal class [g] of
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128 B. Ammann et al.

g, we write λ+
1 (g̃) for the smallest positive eigenvalue of the Dirac operator with respect to

(M, g̃, σ ). We define

λ+
min(M, g, σ ) = inf

g̃∈[g]
λ+

1 (g̃)Vol(M, g̃)1/n .

If (M, g) is the round sphere S
n equipped with the unique spin structure on S

n , we simply
write λ+

min(S
n). It was proven in [21] (ker D = {0}) and [3] (ker D �= {0}) that

λ+
min(M, g, σ ) > 0.

Several articles have been devoted to the study of this spin-conformal invariant. A non-
exhaustive list is [2,9,16,21]. In this article we will prove the following.

Theorem 1.1 Let (M, g, σ ) be a compact spin manifolds of dimension n ≥ 2. Then,

λ+
min(M, g, σ ) ≤ λ+

min(S
n) = n

2
ω

1
n
n (1)

where ωn stands for the volume of the standard sphere S
n.

A similar inequality, established by Aubin, played a prominent role in the solution of the
Yamabe problem, see [20] for a good overview. We define

Y (M, [g]) := inf
g̃∈[g]

λ1(Lg̃)Vol(M, g̃)2/n ∈ {−∞} ∪ R,

where Lg̃ := 4 n−1
n−2�g̃ + Scalg̃ denotes the conformal Laplacian of (M, g̃). The number

Y (M, [g]) is called Yamabe constant of (M, [g]) if Y (M[g]) ≥ 0. The definition of the
Yamabe constant in the negative case is slightly different. For the sphere one has Y (Sn) =
n(n − 1)ω2/n

n . Aubin has shown in [7] that Y (M, [g]) ≤ Y (Sn) for any n-dimensional
compact manifold M . Furthermore if strict inequality holds, then he showed using previous
work by Yamabe [26] and Trudinger [24] that g is conformal to a metric of constant scalar
curvature. If M is not conformally flat and of dimension at least 6, then strict inequality
was proven in [7] as well. The idea of his proof is to construct a good test function. For all
other conformal manifolds (except the sphere S

n , of course!) the strict version of Aubin’s
inequality Y (M, [g]) < Y (Sn) follows from work of Schoen and the positive mass theorem.

The proof of our theorem relies on constructing a suitable test spinor, and hence both
the inequality and the construction are inspired by Aubin’s work together with spinorial
techniques provided by Bourguignon and Gauduchon [10]. The main idea of our construction
is to start with a Killing spinor on the round sphere. Under stereographic projection this spinor
then yields a solution to the equation Dψ = c|ψ |2/(n−1)ψ on flat R

n . This solution will be
rescaled, cut off and finally transplanted to a neighborhood of a given point p of the manifold
M . For this transplantation we carry out several calculations in a well-adapted trivialization
of the spinor bundle.

The first steps in our proof are common in all dimensions. However, in some final estimates
one has to distinguish between the cases n ≥ 3 and n = 2.

In dimension n ≥ 3 two other proofs for the theorem have already been published: a
geometric construction [3, Theorem 3.1] and a proof using an invariant for non-compact
spin manifolds [14]. In these dimensions, it is mostly the method of proof that is interesting
and helpful: the trivialization presented here has less terms in the Taylor expansion than
the trivialization by using parallel transport along radial geodesics. Some formulae of our
article also enter in [14]. The calculations of our article also provide helpful formulae used
in [5,6,23].
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A spinorial analogue of Aubin’s inequality 129

The main interest of the theorem however lies in the case n = 2. The easier subcase n = 2,
ker D = {0} could be dealt with by a modification of the geometric proof [3, Theorem 3.2],
but the subcase n = 2 and ker D �= {0} remained open for longtime. Große’s method fails
as well for n = 2 as the contribution of a cut-off function in [14, Lemma 2.1(ii)] is too large.
We assume that her method can be adapted by using a logarithmic cut-off function, but the
details have not been worked out yet.

Our method of proof in dimension 2 actually admits applications to other problems as
well. For example, one obtains the following proposition that provides a negative answer to
a question raised in [1].

Proposition 1.2 (See Corollary 7.2) Let (M, g) be a Riemann surface with fixed spin struc-
ture σ . For any metric ḡ in the conformal class [g], let µ1(ḡ) be the first positive eigenvalue
of the Laplacian, and let λ+

1 (ḡ) be the first positive eigenvalue of the Dirac operator on
(M, ḡ, σ ). Then

inf
ḡ∈[g]

λ+
1 (ḡ)

2

µ1(ḡ)
≤ 1

2
.

Spinors and Dirac operator also appear in many other problems in modern physics. Some
associated analytical problems as, e.g. the analysis of Dirac-harmonic maps might also profit
from the techniques developed in our article. Dirac-harmonic maps are supersymmetric ano-
logues of harmonic maps. Although considerable progress was achieved recently (see [11]
and other articles by the same authors), many interesting questions remain open, e.g. efficient
criteria for the existence of solutions on generic manifolds.

The article is organized as follows: in Sect. 2, we recall thatλ+
min(M, g, σ ) has a variational

characterization. Then, in Sect. 3 we introduce a well-adapted local trivialization of the spinor
bundle, called the Bourguignon–Gauduchon-trivialization. In Sect. 4, we calculate the first
terms of the Taylor development of the Dirac operator in this trivialization. In the following,
i.e. in Sect. 5, we construct a good test spinor using a Killing spinor on S

n , and then in Sect. 6,
we set this spinor in the functional to get Theorem 1.1 in dimension n ≥ 3. In the last section,
i.e. in Sect. 7, we describe the modifications for the case n = 2 and prove the proposition.

2 A variational formulation for the spin conformal invariant

For a section ψ ∈ �(�M) we define

J (ψ) =
(∫

M |Dψ | 2n
n+1 vg

) n+1
n

∫
M 〈Dψ,ψ〉vg

.

At some places we will write Jg instead of J in order to indicate, that the functional is defined
with respect to g. Based on some idea from [21], Ammann proved in [2] that

λ+
min(M, g, σ ) = inf

ψ
J (ψ) (2)

where the infimum is taken over the set of smooth spinor fields for which
⎛
⎝
∫

M

〈Dψ,ψ〉vg

⎞
⎠ > 0.
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130 B. Ammann et al.

Hence, to prove Theorem 1.1, we are reduced to find a smooth spinor field ψ satisfying the
condition below and such that J (ψ) ≤ λ+

min(S
n)+ ε where ε > 0 is arbitrary small.

3 The Bourguignon–Gauduchon-trivialization

As already explained before, the proof of our main theorem is based on a the construction of
a suitable test spinor. We first construct a “good” spinor field of R

n and then transpose it on
the manifold. In order to carry this out, we need to locally identify spinor fields on (Rn, geucl)

and spinor fields on (M, g). Such an identification will be provided by a well-adapted local
trivialization of the spinor bundle of �(M, g).

If a spin manifold N carries two metrics g1 and g2, then it is a priori unclear how to identify
spinors on (N , g1) and spinors on (N , g2). Bourguignon and Gauduchon [10] constructed a
convenient map from the spinor bundle of (N , g1) to the spinor bundle of (N , g2) that allows
us to identify spinors, and it is this identification that will provide the necessary identification
to us. The trivialization will be called Bourguignon–Gauduchon-trivialization.

This trivialization is more efficient than the commonly used “trivialization by parallel
transport along radial geodesics”: with respect to the Bourguignon–Gauduchon-trivialization
less terms appear in the Taylor expansion in Sect. 4.

Let (M, g) be a Riemannian manifold with a spin structure σ : Spin(M, g) → SO(M, g).
Let (x1, . . . , xn) be the Riemannian normal coordinates given by the exponential map at
p ∈ M :

expp : U ⊂ Tp M ∼= R
n −→ V ⊂ M

(x1, . . . , xn) �−→ m

Let

G : V −→ S2+(n,R)
m �−→ Gm := (gi j (m))i j

denote the smooth map which associates to any point m ∈ V , the matrix of the coefficients
of the metric g at this point, expressed in the basis (∂i := ∂

∂xi )1≤i≤n . Since Gm is symmetric
and positive definite, there is a unique symmetric and positive definite matrix Bm such that

B2
m = G−1

m .

Since

t (Bm X)Gm(BmY ) = geucl(X, Y ), ∀X, Y ∈ R
n,

where geucl stands for the Euclidean scalar product, we get the following isometry defined
by

Bm : (Texp−1
p (m)U

∼= R
n, geucl) −→ (Tm V, gm)

(a1, . . . , an) �−→
∑
i, j

b j
i (m)a

i∂ j (m)

for each point m ∈ V , where b j
i (m) are the coefficients of the matrix Bm (from now on, we

use Einstein’s summation convention). As the matrix Bm depends smoothly on m, we can
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A spinorial analogue of Aubin’s inequality 131

identify the following SOn-principal bundles:

SO(U, geucl) SO(V, g)

U ⊂ Tp M V ⊂ M

�η

� �
�

expp

where η is given by the action of B on each component vector of a frame in SO(U, geucl).
The map η commutes with the right action of SOn , therefore the map η can be lifted to the
spin structures

Spin(n)× U = Spin(U, geucl) Spin(V, g) ⊂ Spin(M, g)

U ⊂ Tp M V ⊂ M

�̄η

� �
�

expp

Hence, we obtain a map between the spinor bundles �U and �V in the following way:

�U = Spin(U, geucl)×ρ �n −→ �V = Spin(V, g)×ρ �n

ψ = [s, ϕ] �−→ ψ = [η̄(s), ϕ] (3)

where (ρ,�n) is the complex spinor representation, and where [s, ϕ] denotes the equivalence
class of (s, ϕ) under the diagonal action of Spin(n).

We now define

ei := b j
i ∂ j ,

so that (e1, . . . , en) is an orthonormal frame of (T V, g). Denote by ∇ (resp. ∇̄) the Levi-
Civita connection on (T U, geucl) (resp. (T M, g)) as well as its lift to the spinor bundle �U
(resp. �V ). The Christoffel symbols of the second kind �̃k

i j are defined by

�̃k
i j := 〈∇̄ei e j , ek〉,

hence �̃k
i j = −�̃ j

ik .

Remark 3.1 To distinguish the Clifford multiplications on these two spinor bundles, one
should use different notations (for instance · and ·̃ ) but in the rest of the paper, we prefer to
write · in both cases to make the paper easier to read. With this convention, if ψ ∈ �xU for
some x in U , we have

ei · ψ = ∂i · ψ. (4)

Proposition 3.2 If D and D̄ denote the Dirac operators acting respectively on �(�U ) and
�(�V ), then we have

D̄ψ̄ = Dψ + W · ψ̄ + V · ψ̄ +
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ jψ, (5)

where W ∈ �(Cl T V ) and V ∈ �(T V ) are defined by

W = 1

4

∑
i, j, k

i �= j �= k �= i

br
i (∂r bl

j )(b
−1)kl ei · e j · ek (6)
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132 B. Ammann et al.

and

V = 1

4

∑
i,k

(
�̃i

ik − �̃k
ii

)
ek = 1

2

∑
i,k

�̃i
ik ek (7)

where, for any point m ∈ V , and the coefficients of the inverse matrix of Bm are denoted by
(b−1)kl (m) .

Proof For all spinor field ψ ∈ �(�U ), since ψ̄ ∈ �(�V ) and by definition of ∇̄ (see e.g.
[19, Theorem 4.14], [8, I Lemma 4.1]), we have

∇̄ei ψ̄ = ∇ei (ψ)+ 1

4

∑
j,k

�̃k
i j e j · ek · ψ̄. (8)

Taking Clifford multiplication by ei on each member of (8) and summing over i yields

D̄ψ̄ =
∑

i

ei · ∇eiψ + 1

4

∑
i, j,k

�̃k
i j ei · e j · ek · ψ̄.

Now, using that ei = ∑
j b j

i ∂ j and that by (4), ei · ∇eiψ = ∂i · ∇eiψ , we obtain that

D̄ψ̄ =
∑

i j

b j
i ∂i · ∇∂ jψ + 1

4

∑
i, j,k

�̃k
i j ei · e j · ek · ψ̄

and hence,

D̄ψ̄ = Dψ +
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ jψ + 1

4

∑
i, j,k

�̃k
i j ei · e j · ek · ψ̄.

See also [22] for a similar formula, worked out in more detail.
Note that by the definition of ek , we have

�̃k
i j ek = �̃k

i j b
l
k∂l .

On the other hand, we compute the Christoffel symbols of the second kind

�̃k
i j ek = ∇̄ei e j = br

i ∇̄∂r (b
s
j∂s) = br

i (∂r bs
j )∂s + br

i bs
j�

l
rs∂l ,

where as usually the Christoffel symbols of the first kind �l
rs are defined by

�l
rs∂l = ∇̄∂r ∂s .

Therefore, we have

�̃k
i j b

l
k = br

i (∂r bl
j )+ br

i bs
j�

l
rs,

and hence

�̃k
i j =

(
br

i (∂r bl
j )+ br

i bs
j�

l
rs

)
(b−1)kl . (9)

Now, we can write

1

4

∑
i, j,k

�̃k
i j ei · e j · ek = W + V
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A spinorial analogue of Aubin’s inequality 133

where W ∈ �(�3T V ) and V ∈ �(T V ) are defined by

W = 1

4

∑
i, j, k

i �= j �= k �= i

�̃k
i j ei · e j · ek

and

V = 1

4

⎛
⎜⎜⎝

∑
i= j �=k

�̃k
i j ei · e j · ek +

=0︷ ︸︸ ︷∑
i �= j=k

�̃k
i j ei · e j · ek +

∑
j �=i=k

�̃k
i j ei · e j · ek

+
=0︷ ︸︸ ︷∑

i= j=k

�̃k
i j ei · e j · ek

⎞
⎟⎟⎠ = 1

4

∑
i,k

(
�̃i

ik − �̃k
ii

)
ek

which is (7).
First note that by (9) we have

W = 1

4

∑
i, j, k

i �= j �= k �= i

(
br

i (∂r bl
j )(b

−1)kl + br
i bs

j�
l
rs(b

−1)kl

)
ei · e j · ek .

However,
∑
i, j, k

i �= j �= k �= i

br
i bs

j�
l
rs(b

−1)kl ei · e j · ek = 0

since �l
rs = �l

sr and ei · e j = −e j · ei . Therefore we obtain (6). ��

4 Development of the metric at the point p

In this section we give the development of the coefficients �̃k
i j in the coordinates (x1, . . . , xn)

at the fixed point p ∈ M .
For any point m ∈ M , r denotes the distance from p to m. Recall that in the neighborhood

of p, we have the following development of the metric g (see for example [20]):

gi j = δi j + 1

3
Riαβ j (p)x

αxβ + 1

6
Riαβ j;γ (p)xαxβxγ

+
(

1

20
Riαβ j;γ λ(p)+ 2

45

∑
m

Riαβm(p)R jγ λm(p)

)
xαxβxγ xλ + O(r5) (10)

where

Ri jkl = 〈∇e j ∇ei ek, el〉 − 〈∇ei ∇e j ek, el〉 − 〈∇[e j ,ei ]ek, el〉
and where

Ri jkl;m = (∇ R)mi jkl Ri jkl;mn = (∇2 R)nmi jkl

are the covariant derivatives of Ri jkl in direction of em (and ep). Therefore, we write

Gm = Id + G2 + G3 + O(r4)
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134 B. Ammann et al.

with

(G2)i j = 1

3
Riαβ j (p)x

αxβ

and

(G3)i j = 1

6
Riαβ j;γ (p)xαxβxγ

Writing

Bm = Id + B1 + B2 + B3 + O(r4)

with

(B1)i j = Bi jαxα,

(B2)i j = Bi jαβ xαxβ

and

(B3)i j = Bi jαβγ xαxβxγ ,

the relation B2
m Gm = Id yields B1 = 0 and

0 = (2B2 + G2)+ (2B3 + G3) ,

hence ⎧⎨
⎩

b j
i = δ

j
i − 1

6 Riαβ j xαxβ − 1
12 Riαβ j;γ xαxβxγ + O(r4)

(b−1)
j
i = δ

j
i + 1

6 Riαβ j xαxβ + 1
12 Riαβ j;γ xαxβxγ + O(r4)

(11)

We also have

∂l b
j
i = −1

6

(
Rilα j + Riαl j

)
xα − 1

12

(
Rilα j;β + Riαl j;β + Riαβ j;l

)
xαxβ + O(r3).

(12)

4.1 Development of �k
i j , V and W

�k
i j = 1

2
gkl (∂i g jl + ∂ j gil − ∂l gi j

)

= 1

2

(
∂i g jk + ∂ j gik − ∂k gi j

) + O(r2)

= 1

6

(
R jiαk + R jαik + Ri jαk + Riα jk − Rikα j − Riαk j

)
xα + O(r2)

Using the relations Ri jαk + R jiαk = 0, R jαik − Rikα j = −2Rikα j and Riα jk − Riαk j =
−2Riαk j we then have

�k
i j = −1

3

(
Rikα j + Riαk j

)
xα + O(r2) (13)

On the other hand, since ∂r bl
j and �l

rs have no constant term, Formula (9) yields

�̃k
i j =

(
δr

i (∂r bl
j )+ δr

i δ
s
j�

l
rs

)
δk

l + O(r2),
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A spinorial analogue of Aubin’s inequality 135

and hence

�̃k
i j = ∂i b

k
j + �k

i j + O(r2).

We have

V = 1

4

∑
i,k

(
�̃i

ik − �̃k
ii )ek

= 1

4

∑
i,k

(
∂i b

i
k + �i

ik − ∂i b
k
i − �k

ii

)
ek + O(r2)

= 1

4

∑
i,k

(
�i

ik − �k
ii

)
ek + O(r2)

since ∂i bi
k = ∂i bk

i .
Moreover, we have

∑
i

(
�i

ik − �k
ii

)
= −1

3

∑
i

(Riiαk + Riαik) xα + 1

3

∑
i

(Rikαi + Riαki ) xα + O(r2)

= −(Ric)αk + O(r2)

Therefore, we proved that

V =
(

−1

4
(Ric)αk xα + O(r2)

)
ek . (14)

The aim now is to show that

W = 1

4

∑
i, j, k

i �= j �= k �= i

br
i (∂r bl

j )(b
−1)kl ei · e j · ek

is O(r3). First note that by Eqs. (11) and (12) br
i has no term of order 1 and ∂r bl

j has no term
of order 0. Hence, any term in W of order < 3 is a product of the 0-order term of br

i and of
a term of order 1 or 2 of ∂r bl

j .
Therefore W has no term of order 0. To compute the terms of order 1 and 2, we write

W = 1

4

∑
i, j, k

i �= j �= k �= i

(
δr

i (∂r bl
j )δ

k
l + O(r3)

)
ei · e j · ek .

We have
∑
i, j, k

i �= j �= k �= i

∂i b
k
j ei · e j · ek = 0

since

∂i b
k
j = ∂i b

j
k and e j · ek = −ek · e j .

Therefore W has no term of order 1 and 2. We proved that

W = O(r3) (15)
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136 B. Ammann et al.

Remark 4.1 Similar calculations yield

V = −
(

1

4
(Ric)αk xα + 1

6
(Ric)αk,β xαxβ + O(r3)

)
ek .

W = − 1

144

∑
i, j, k

i �= j �= k �= i

Rlβγ k
(
R jiαl + R jlαi

)
xαxβxγ ei · e j · ek + O(r4).

We do not give details here because we do not need explicit computations of terms of order
2 for V and terms of order 3 for W in the proof of Theorem 1.1.

5 The test spinor

5.1 The explicit spinor

In this section, we construct a good test spinor on R
n . The spinor bundle on R

n is trivial,
so we can identify the fibers. Let ψ0 ∈ �0R

n with |ψ0| = 1. We set f (x) := 2
1+r2 , where

r := |x |, hence ∂i f = −xi f 2. Then, we define

ψ(x) = f
n
2 (x)(1 − x) · ψ0. (16)

One calculates

∇∂iψ = − f
n
2 ∂i · ψ0 − n

2
f

n
2 +1xi (1 − x) · ψ0, (17)

and hence

Dψ = n

2
fψ (18)

|ψ | = f
n−1

2 (19)

|Dψ | = n

2
f

n+1
2 . (20)

5.2 Conformal change of metrics

In order to explain a geometric interpretation of this spinor, we have to recall the behavior of
spinors and the Dirac operators under conformal changes. See, e.g. [17,18] for proofs.

Let (N , h) be a spin manifold of dimension n. Consider a conformal change of metric
h̃ = F−2h for any positive real function F on (N , h). The map T N → T N , X �→ X̃ = F X
induces an isomorphism of principal bundles from SO(N , h) to SO(N , h̃). It lifts to a bundle
isomorphism between the Spin(n)-principal bundles Spin(N , h) and Spin(N , h̃), and passing
to the associated bundles one obtains a map

�h N = Spin(N , h)×ρ � → �h̃ N = Spin(N , h̃)×ρ �

ϕ �→ ϕ̃

between the spinor bundles, which is a fiberwise isometry and we have

X̃ ·̃ ϕ̃ = X̃ · ϕ
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A spinorial analogue of Aubin’s inequality 137

(see [17] for more details on this construction).
By conformal covariance of the Dirac operator, we have, for ϕ ∈ �(�N ),

D̃
(

F
n−1

2 ϕ̃
)

= F
n+1

2 D̃ϕ, (21)

5.3 Geometric interpretation

We apply this formula to a particular case: let p be any point of the round sphere S
n . Then

S
n\{p} is isometric to R

n with the metric

gS = f 2geucl, (22)

with

f (x) = 2

1 + r2 .

Hence we set N := R
n , h = geucl, F = f −1. One calculates with (18) and (21) that

� := F
n−1

2 ψ̃ satisfies D� = n
2� on S

n \ {p}, and |�| = 1. Hence, the possible singularity
at p can be removed (see e.g. the Removal of singularity theorem [4, Theorem 5.1]), and
one sees that� is an eigenspinor to the eigenvalue n/2 on the round sphere S

n . The equality
discussion in Friedrich’s inequality [13] implies that � is a Killing spinor to the constant
−1/2, i.e. it satisfies

∇X� = −1

2
X ·�.

Hence we have seen that our spinor ψ is the “conformal image” of a Killing spinor on S
n .

6 The proof of Theorem 1.1 for n ≥ 3

We begin with the following Proposition.

Proposition 6.1 The metric g on M can be chosen such that

Ricg(p) = 0 and �g(Scalg)(p) = 0.

Proof Consider a conformal change of the metric g̃ = e2u g for any real function u on (M, g).
Then it is well known that the Ricci curvature (2, 0)-tensor Ricg̃ , the scalar curvature Scalg̃
and the Laplacian �g̃ corresponding to the metric g̃ satisfy (see for example [7] or [15])

Ricg̃ = Ricg − (n − 2)∇2u + (n − 2)∇u ⊗ ∇u + (�gu − (n − 2)|∇u|2g)g,
Scalg̃ = e−2u

(
Scalg + 2(n − 1)�gu − (n − 1)(n − 2)|∇u|2g

)
, (23)

As a first step, we can assume that Scalg(p) = 0. Then, let us choose u such that

u(x) = 1

2(n − 2)

(
Ricg(p)i j − Scalg(p)

n
gi j (p)

)
xi x j − �g(Scalg)(p)

48(n − 1)
(x1)4

in a neighborhood of the point p. Since u(p) = 0 and (∇u)(p) = 0, it is straightforward to
see that Ricg̃(p) = 0. Moreover, taking the Laplacian of both members of Eq. (23), a simple
computation shows that �g̃Scalg̃(p) = 0. ��
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Let ϕ̄ ∈ �U M where U is the open neighborhood of a point p ∈ M as defined in the
previous sections. With the help of formulas (14) and (15), we have the following

Corollary 6.2 For any metric g on M chosen as in Proposition 6.1, we have

D̄ϕ̄ = Dϕ +
∑

i jkαβγ
i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ϕ̄

+ W′ · ϕ̄ + V · ϕ̄ +
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ jψ (24)

where Ai jkαβγ ∈ R and where W′ ∈ �(�3T V ), V ∈ �(T V ), |W′| ≤ C r4 and |V| ≤ C ′ r2

(C and C ′ being positive constants independent of ϕ).

Remark 6.3 Using the formulae in Remark 4.1, we obtain the formula

Ai jkαβγ = − 1

144
Rlβγ k

(
R jiαl + R jlαi

)
,

Assume now that ψ is the test spinor constructed in Sect. 5. Let ε > 0 be a small positive
number. We set

ϕ(x) := ηψ
( x

ε

)
=: ψε(x)

where η = 0 on R
n \ Bp(2δ) and η = 1 on Bp(δ), and that ψ , defined as in (16) satisfies the

following relations (17), (18), (19) and (20) where f is again defined by

f (x) = 2

1 + r2 .

We now prove some lemmas which will be useful in the proof of Theorem 1.1.

Lemma 6.4 We have∣∣∣∣∣∣
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
∣∣∣∣∣∣
≤ C

r3

ε
f

n
2

( x

ε

)
(25)

where f = 2
1+r2 .

Proof At first, we prove that
∑
i jαβ

Riαβ j xαxβ∂i ·
(
∇∂ jψ

( x

ε

))
= 0. (26)

Indeed, using (17), we compute that

(∇∂ jψ)
( x

ε

)
= − f

n
2
( x
ε

)

ε
∂ j · ψ0 − n f

n+2
2
( x
ε

)

2ε
x j

(
1 − x

ε

)
· ψ0.

and obtain

∑
i jαβ

Riαβ j xαxβ∂i · (∇∂ jψ)
( x

ε

)
= − f

n
2
( x
ε

)

ε

∑
i jαβ

Riαβ j xαxβ∂i · ∂ j · ψ0 − n f
n+2

2
( x
ε

)

2ε

×
∑
i jαβ

Riαβ j xαxβx j∂i ·
(

1 − x

ε

)
· ψ0.
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A spinorial analogue of Aubin’s inequality 139

Now, since if i �= j , ∂i · ∂ j = −∂ j · ∂i and since

∑
αβ

Riαβ j xαxβ =
∑
αβ

Riβα j xαxβ =
∑
αβ

R jαβi xαxβ,

(we have used that R jαβi = Rβi jα = Riβα j ), we get that

∑
i jαβ

Riαβ j xαxβ∂i · ∂ j · ψ0 = −
∑
i,αβ

Riαβi xαxβψ0 = 0

since Ric(p) = 0. The first summand vanishes.
The second summand vanishes as

∑
β j Riαβ j xβx j = 0.

This proves (26). Now, by the development of b j
i (11), we easily obtain that

∣∣∣∣∣∣
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
∣∣∣∣∣∣
≤ C

r3

ε
|∇ψ |

( x

ε

)
.

Differentiating expression (16), we see that

|∇ψ | ≤ C
(

f
n
2 + r f

n+2
2

)
.

Together with r f (r) = 2r
1+r2 = 1 − (1−r)2

1+r2 ≤ 1 we obtain the lemma. ��

Now, we can start the proof of Theorem 1.1. We have, with the notations of Corollary 6.2:

D̄ψ̄ε(x) = ∇̄η · ψ̄
( x

ε

)
+ η D̄

(
ψ̄
( x

ε

))

= ∇̄η · ψ̄
( x

ε

)
+ η

ε
Dψ

( x

ε

)
+ η

∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ψ̄
( x

ε

)

+ηW′ · ψ̄
( x

ε

)
+ ηV · ψ̄

( x

ε

)
+ η

∑
i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
.

Therefore, we have

D̄ψ̄ε(x)=∇̄η · ψ̄
( x

ε

)
+ η
ε

n

2
f
( x

ε

)
ψ̄
( x

ε

)
+η

∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ψ̄
( x

ε

)

+ ηW′ · ψ̄
( x

ε

)
+ ηV · ψ̄

( x

ε

)
+ η

∑
i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
.

We write that

|D̄ψ̄ε|2(x) = I + II + III + IV + V + VI + VII + VIII + IX + X + XI + XII + XIII

+ XIV + XV + XVI + XVII + XVIII + XIX + XX + XXI

123



140 B. Ammann et al.

where

I = |∇̄η|2 |ψ̄ |2
( x

ε

)

II = η2

ε2

n2

4
|ψ̄ |2

( x

ε

)
f 2
( x

ε

)

III = η2

∣∣∣∣∣∣∣∣

∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ψ̄

∣∣∣∣∣∣∣∣

2

( x

ε

)

IV = η2 |W′|2
∣∣∣ψ̄

( x

ε

)∣∣∣
2

V = η2 |V|2
∣∣∣ψ̄

( x

ε

)∣∣∣
2

VI = 2 �e
〈
∇̄η · ψ̄

( x

ε

)
,
η

ε

n

2
f
( x

ε

)
ψ̄
( x

ε

)〉

VII = 2 �e

〈
∇̄η · ψ̄

( x

ε

)
, η

∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ψ̄
( x

ε

)〉

VIII = 2 �e
〈
∇̄η · ψ̄

( x

ε

)
, ηW′ · ψ̄

( x

ε

)〉

IX = 2 �e
〈
∇̄η · ψ̄

( x

ε

)
, ηV · ψ̄

( x

ε

)〉

X = η2

ε
n f

( x

ε

)
η

∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ �e
〈
ei · e j · ek · ψ̄, ψ̄ 〉

( x

ε

)

XI = η2

ε
n f

( x

ε

)
�e

〈
ψ̄
( x

ε

)
,W′ · ψ̄

( x

ε

)〉

XII = η2

ε
n f

( x

ε

)
�e

〈
ψ̄
( x

ε

)
,V · ψ̄

( x

ε

)〉

XIII = 2 η2
∑

i jkαβγ
i �= j �= k �= i

Ai jkαβγ xα xβ xγ �e
〈
ei · e j · ek · ψ̄

( x

ε

)
,W′ · ψ̄

( x

ε

)〉

XIV = 2 η2
∑

i jkαβγ
i �= j �= k �= i

Ai jkαβγ xα xβ xγ �e
〈
ei · e j · ek · ψ̄

( x

ε

)
,V · ψ̄

( x

ε

)〉

XV = 2η2�e
〈
W′ · ψ̄

( x

ε

)
,V · ψ̄

( x

ε

)〉

XVI = 2�e

〈
∇̄η · ψ̄

( x

ε

)
, η

∑
i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))〉

XVII = nη2

ε
f
( x

ε

)
�e

〈
ψ̄
( x

ε

)
,
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))〉
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XVIII = 2η2�e

〈 ∑
i jkαβγ

i �= j �= k �= i

Ai jkαβγ xα xβ xγ ei · e j · ek · ψ̄
( x

ε

)
,

∑
i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))〉

XIX = 2η2 �e

〈
W′ · ψ̄

( x

ε

)
,
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))〉

XX = 2η2 �e

〈
V · ψ̄

( x

ε

)
,
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))〉

XXI = η2

∣∣∣∣∣∣
∑

i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
∣∣∣∣∣∣

2

.

Since V is a vector field, we have

XII = 0

Assume now that x ∈ Bp(2δ). Using the fact that |∇̄η| ≤ Cr4 (C being a constant inde-
pendent of ε) and since r ≤ δ ≤ 1, we have

I + III + IV + V + VII + VIII + IX + XIII + XIV + XV ≤ C r4 f n−1
( x

ε

)
.

and

VI + XI ≤ C

ε
r4 f n

( x

ε

)
.

Since f ≤ 2 and since r2 ≤ C on Bp(2δ), we obtain that

VI + XI ≤ C
r2

ε
f n− 1

2

( x

ε

)
.

In the same way, using relation (25) and the fact that for all ε, r
ε

f
( x
ε

) ≤ 1, we have also

X + XVI + XVII + XVIII + XIX + XX + XXI ≤ C
r2

ε
f n− 1

2

( x

ε

)
.

Therefore we obtain that

|D̄ψ̄ε|2(x) ≤ n2

4ε2 f n+1
( x

ε

)
+ C r4 f n−1

( x

ε

)
+ C

ε
r2 f n− 1

2

( x

ε

)

≤ n2

4ε2 f n+1
( x

ε

)
[1 +�]

where

� = C ε2r4 f −2
( x

ε

)
+ Cε r2 f − 3

2

( x

ε

)
.

Since |D̄ψ̄ε|2 ≥ 0 we have � ≥ −1. Moreover, if we define

g(x) = 1 + n

n + 1
x − (1 + x)

n
n+1 , ∀x ≥ −1,
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then

g′(x) = n

n + 1

(
1 − (1 + x)

−1
n+1

)
, ∀x > −1.

Therefore, g admits a minimum at 0 on the interval [−1,+∞[. This yields that, ∀x ≥ −1,

(1 + x)
n

n+1 ≤ 1 + n

n + 1
x .

We then have

|D̄ψ̄ε| 2n
n+1 (x) ≤

( n

2ε

) 2n
n+1

f n
( x

ε

)
[1 +�]

n
n+1 ≤ (

n

2ε
)

2n
n+1 f n(

x

ε
)

+ n

n + 1
(

n

2ε
)

2n
n+1 f n

( x

ε

)
�.

Taking into account the definition of � and integrating over M leads to
∫

M

|D̄ψ̄ε| 2n
n+1 dvg ≤ ε

−2n
n+1 [A + B + C] , (27)

where

A =
∫

Bp(2δ)

(n

2

) 2n
n+1

f n
( x

ε

)
dvg

B = C
∫

Bp(2δ)

ε2r4 f n−2
( x

ε

)
dvg

C = C
∫

Bp(2δ)

ε r2 f n− 3
2

( x

ε

)
dvg.

Since the function f is radially symmetric, we can compute A with the help of spherical
coordinates:

A =
∫

Bp(2δ)

(n

2

) 2n
n+1

f n
( x

ε

)
ωn−1 G(r) rn−1dr,

where ωn−1 stands for the volume of the unit sphere S
n−1 and

G(r) = 1

ωn−1

∫

Sn−1

√|g|r x dσ(x) |g|y := det gi j (y).

From Proposition 6.1, Hebey [15] or Lee-Parker [20], we know that

G(r) ≤ 1 + O(r4).

Therefore, we can estimate A in the following way:

A ≤
(n

2

) 2n
n+1

ωn−1

⎡
⎣

2δ∫

0

f n(
x

ε
) rn−1dr + C

2δ∫

0

f n
( x

ε

)
rn+3dr

⎤
⎦

≤
(n

2

) 2n
n+1

ωn−1 ε
n

⎡
⎢⎣

2δ
ε∫

0

2nrn−1

(1 + r2)n
dr + Cε4

2δ
ε∫

0

rn+3

(1 + r2)n
dr

⎤
⎥⎦ .
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Since
2δ
ε∫

0

rn+3

(1 + r2)n
dr ≤ O

⎛
⎜⎝

2δ
ε∫

1

r3−ndr

⎞
⎟⎠

we get that

A ≤
(n

2

) 2n
n+1

ωn−1 ε
n

⎡
⎢⎣

2δ
ε∫

0

2nrn−1

(1 + r2)n
dr + o(1)

⎤
⎥⎦ ,

and hence

A ≤
(n

2

) 2n
n+1

ωn−1 ε
n

⎡
⎢⎣

2δ
ε∫

0

2nrn−1

(1 + r2)n
dr + o(1)

⎤
⎥⎦ . (28)

Let us show that

B = o(εn). (29)

Since dvg ≤ Cdx , setting y = x
ε

, we have
∫

Bp(2δ)

r4 f n−2
( x

ε

)
dvg ≤ Cεn+4

∫

Bp

(
2δ
ε

)
r4 f n−2

( y

ε

)
dy

≤ C εn+4

2δ
ε∫

0

rn+3

(1 + r2)n−2 dr.

≤ C εn+4 O

⎛
⎜⎝

2δ
ε∫

1

r7−n dr

⎞
⎟⎠ .

It is easy to check that relation (29) follows if n ≥ 3. In the same way, we can prove that
C = o(εn).

Together with Eq. (28), we can conclude that

∫

M

|D̄ψ̄ε| 2n
n+1 dvg ≤ ε

−2n
n+1 +n

⎡
⎣
(n

2

) 2n
n+1

ωn−1

+∞∫

0

rn−1 f n(r) dr + o(1)

⎤
⎦ ,

which yields
⎛
⎝
∫

M

|D̄ψ̄ε| 2n
n+1 dvg

⎞
⎠

n+1
n

≤ εn−1

[(
n2

4

) n
n+1

ωn−1 I

] n+1
n

(1 + o(1)) , (30)

where

I =
+∞∫

0

2nrn−1

(1 + r2)n
dr.
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We are now going to estimate
∣∣∫

M �e〈D̄ψ̄ε, ψ̄ε〉dvg
∣∣. We start by computing

∣∣∣∣∣∣

∫

M

�e
〈
D̄ψ̄ε, ψ̄ε

〉
dvg

∣∣∣∣∣∣
≥ A′ − B′ − C′ − D′ − E′,

where

A′ =
∫

Bp(δ)

n

2ε
f n

( x

ε

)
dvg

B′ =
∣∣∣∣∣∣

∫

M

�e
〈
∇̄η · ψ̄

( x

ε

)
, ηψ̄

( x

ε

)〉
dvg

∣∣∣∣∣∣
,

C′ =

∣∣∣∣∣∣∣∣

∫

M

η2
∑

i jkαβγ
i �= j �= k �= i

Ai jkαβγ xα xβ xγ �e〈ei · e j · ek · ψ̄, ψ̄〉
( x

ε

)
dvg

∣∣∣∣∣∣∣∣
,

D′ =
∣∣∣∣∣∣

∫

M

η2�e
〈
W′ψ̄

( x

ε

)
, ψ̄

( x

ε

)〉
dvg

∣∣∣∣∣∣

E′ =
∣∣∣∣∣∣

∫

M

η2�e

〈∑
i j

(b j
i − δ

j
i )∂i · ∇∂ j

(
ψ
( x

ε

))
, ψ̄

( x

ε

)〉
dvg

∣∣∣∣∣∣
.

(The term in V is zero). Note that A′ = 1
ε

( n
2

)1− 2n
n+1 A where η has been replaced by 2η. As

to obtain (29), we get that

B′ + C′ + D′ ≤ C
∫

Bp(2δ)

f n−1
( x

ε

)
dvg ≤ 0(εn) = o(ε−1)

and

E′ ≤ C
∫

Bp(2δ)

r3

ε
f n− 1

2

( x

ε

)
dvg ≤ o(εn−1).

Moreover, with the same method which was used to obtain (28), we get

A′ ≥ n

2
ωn−1 ε

n−1 I [1 + o(1)] .

This proves that
∣∣∣∣∣∣

∫

M

�e〈D̄ψ̄ε, ψ̄ε〉dvg

∣∣∣∣∣∣
≥ n

2
ωn−1 ε

n−1 I [1 + o(1)] . (31)

Finally, Eqs. (30) and (31) allow to estimate J (ψ̄ε) in the following way:

J (ψε) =
(∫

M |D̄ψ̄ε| 2n
n+1 dvg

) n+1
n

∫
M �e〈D̄ψ̄ε, ψ̄ε〉dvg

≤ n

2
ω

1
n
n−1 I

1
n [1 + o(1)] .
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By (22), we have

wn−1 I =
∫

Rn

f ndx = ωn

Therefore, we proved that for the test spinor ϕ, we have

J (ψ̄ε) ≤ λ+
min(S

n) [1 + o(1)] . (32)

Hence Theorem 1.1 is proven.

Remark 6.5 There is a variant of this proof which needs less calculations. As a first step,
one proves that for any ε > 0 there is a test spinor ϕε on R

n with support in B0(1) such
that J R

n

geucl
(ϕε) ≤ λ+

min(S
n)+ ε where ε > 0. The argument for this coincides with the above

proof, but the terms IV–XXI vanish, as R
n is flat.

In a second step, one transplants this compactly supported spinor ϕε to the arbitrary
compact spin manifold (M,�2g), where � > 0 is constant, and one obtains a spinor ϕε
on (M,�2g). The terms IV–XXI reappear. However, from our Taylor expansion worked
before, it is easy to see that for � → ∞ these terms disappear.

One concludes that there for any ε > 0 there is a �ε > 0 and a spinor ϕε on (M,�2
εg)

such that

J�2
εg(ϕε) < λ+

min(S
n)+ 2ε.

Together with

λ+
min(M, g, σ ) = λ+

min(M,�
2
εg, σ ) ≤ J�2

εg(ϕε)

the theorem follows.
This proof is simpler. We chose the way presented above because of various reasons. One

the other hand, as indicated in Sect. 1, in the case n ≥ 3 it is not the result, but the method
of proof which is interesting. The above formulae enter at several places in the literature,
e.g. [5,6,23]. Secondly, the simpler proof is close to Große’s proof [14] and we refer to her
article for the probably most elegant proof in dimension n ≥ 3. Also in her proof some Taylor
expansions from the present article are used.

7 The case n = 2

The two-dimensional case is simpler since g is locally conformally flat. On the other hand,
some estimates of the last section are no longer valid in dimension 2, hence some parts have
to be modified. These modifications will be carefully carried out in this section.

Let (M, g) be a compact Riemannian surface equipped with a spin structure. If ḡ is
conformal to g we denote by µ1(ḡ) the smallest positive eigenvalue of �ḡ . We prove the
theorem.

Theorem 7.1 There exists a family of metrics (gε)ε conformal to g for which

lim sup
ε→0

λ+
1 (gε)

2Volgε (M) ≤ 4π

lim inf
ε→0

µ1(gε)Volgε (M) ≥ 8π.
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Theorem 7.1 clearly implies Theorem 1.1.
Roughly, these metrics can be described as follows. At first we choose a metric in the

conformal class which is flat in a neighborhood of a point p. We remove a small ball around
it and glue in a large truncated sphere. This removal and gluing can be done in such a way
that we stay within a conformal class. ε → 0. In the limit this truncated sphere is getting
larger and larger compared to the original part of M .

Agricola, Ammann and Friedrich asked the following question [1]:
Let M be a two-dimensional torus equipped with a trivial spin structure, can we find on

M a Riemannian metric g̃ for which λ+
1 (g̃)

2 < µ1(g̃)?
To understand this question, recall that the two-dimensional torus carries four spin struc-

tures. Three of them (the non-trivial ones) are spin boundaries: for these spin structures it
is easy to find flat examples with λ+

1 (g̃)
2 = 1

4µ1(g̃). For the trivial spin structure, one has
λ+

1 (g̃)
2 = µ1(g̃) for all flat metrics and λ+

1 (g̃)
2 > µ1(g̃) for many S1-equivariant one’s.

Clearly, Theorem 7.1 answers this question but says much more: firstly, the result is true
on any compact Riemannian surface equipped with a spin structure and not only when M
is a two-dimensional torus. In addition, the metric g̃ can be chosen in a given conformal
class. Finally, this metric g̃ can be chosen such that (2 − δ)λ+

1 (g)
2 < µ1(g) where δ > 0 is

arbitrarily small. More precisely Theorem 1.1 shows the corollary

Corollary 7.2 (Proposition 1.2 of Sect. 1) On any compact Riemannian surface (M, g), we
have

inf
λ+

1 (ḡ)
2

µ1(ḡ)
≤ 1

2

where the infimum is taken over all metrics ḡ conformal to g.

7.1 C0-metrics

Let f be a smooth positive function and set ḡ = f 2g. Let also for u ∈ C∞(M)

Iḡ(u) =
∫

M |∇u|ḡdvḡ∫
M u2dvḡ

.

It is well known thatµ1(ḡ) = inf Iḡ(u)where the infimum is taken over the smooth non-zero
functions u for which

∫
M udvḡ = 0. Another way to express µ1(ḡ) is

µ1(ḡ) := inf
V

sup
u∈V \{0}

Iḡ(u) (33)

where the infimum runs over all two-dimensional subspaces V of C∞(M). We now can write
all these expressions in the metric g. We then see that for u ∈ C∞(M), we have

Iḡ(u) =
∫

M |∇u|2gdvg∫
u2 f 2dvg

and µ1(ḡ) is characterized in a way analogous to (33). Now if f is only continuous, we can
define ḡ = f 2g. The symmetric 2-tensor ḡ is not really a metric since f is not smooth.
We then say that g is a C0-metric. We can define the first eigenvalue µ1(ḡ) of �ḡ using the
definition above.

Suppose that

(1 + ρ)−1 f ≤ f̃ ≤ (1 + ρ) f. (34)
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Then

(1 + ρ)−2 I f̃ 2g(u) ≤ I f 2g(u) ≤ (1 + ρ)2 I f̃ 2g(u).

From the variational characterization (33) it the follows that

(1 + ρ)−2µ1( f̃ 2g) ≤ µ1( f 2g) ≤ (1 + ρ)2µ1( f̃ 2g),

which is a special case of a result by Dodziuk [12, Proposition 3.3]. In particular, we get

Lemma 7.3 If ( fn) is a sequence of smooth positive functions that converges uniformly to
f , then µ1( f 2

n g) tends to µ1( f 2g).

In the same way, if ḡ = f 2g is a metric conformal to g where f is positive and smooth, we
define

Jḡ(ψ) =
∫

M |Dḡψ |2ḡdvḡ∫
M 〈Dḡψ,ψ〉ḡdvḡ

.

The first eigenvalue of the Dirac operator Dḡ is then given by λ+
1 (ḡ) = inf Jḡ(ψ) where the

infimum is taken over the smooth spinor fields ψ for which
∫

M 〈Dḡψ,ψ〉dvg > 0. Now, as
explained in paragraph 5.2 we can identify spinors for the metric g and spinors for the metric
ḡ by a fiberwise isometry. Moreover, using this identification, we have for all smooth spinor
field:

Dḡ

(
f − 1

2 ϕ
)

= f − 3
2 Dgϕ.

This implies that if we set ϕ = f
1
2ψ , we have

J ′̄
g(ϕ) :=

∫
M |Dgϕ|2 f −1dvg∫

M 〈Dgϕ, ϕ〉dvg
= Jḡ(ψ)

and the first eigenvalue of the Dirac operator Dḡ is given by

λ+
1 (ḡ) = inf J ′̄

g(ϕ) (35)

where the infimum is taken over the smooth spinor fields ϕ for which
∫

M 〈Dgϕ, ϕ〉dvg > 0.
Now, when ḡ = f 2g is no longer smooth, but a C0-metric, we can use (35) to define λ+

1 (ḡ).
Under the assumption (34), we get

(1 + ρ)−1J ′
f̃ 2g
(ϕ) ≤ J ′

f 2g(ϕ) ≤ (1 + ρ)J ′
f̃ 2g
(ϕ),

and hence

(1 + ρ)−1λ+
1 ( f̃ 2g) ≤ λ+

1 ( f 2g) ≤ (1 + ρ)λ+
1 ( f̃ 2g).

We have proven a result similar to Lemma 7.3.

Lemma 7.4 If ( fn) is a sequence of smooth positive functions that converges uniformly to
f , then λ+

1 ( f 2
n g) tends to λ+

1 (ḡ).
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7.2 The metrics (gα,ε)α,ε

In this paragraph, we construct the metrics (gα,ε)α,ε conformal to g which will satisfy:

lim sup
ε→0

λ+
1 (gα,ε)

2Volgα,ε (M) ≤ 4π (36)

and

lim inf
α→0

lim inf
ε→0

µ1(gα,ε)Volgα,ε (M) ≥ 8π. (37)

Clearly this implies Theorem 1.1. By Lemmas 7.3 and 7.4, it suffices to construct C0-metrics
(gα,ε)α,ε. Recall that the volume of M for a C0-metric is defined by Vol f 2g(M) = ∫

M f 2dvg .
At first, without loss of generality, we can assume that g is flat near a point p ∈ M . Let α > 0
be a small number to be fixed later such that g is flat on Bp(α). We set for all x ∈ M and
ε > 0,

fα,ε(x) =
{

ε2

ε2+r2 if r ≤ α

ε2

ε2+α2 if r > α

where r = dg(., p). The function fα,ε is continuous and positive on M . We then define for
all ε > 0, gα,ε = f 2

α,εg. The symmetric 2-tensors (gα,ε)α,ε will be the desired C0-metrics.
For these metrics, we have

Volgα,ε (M) =
∫

M

f 2
α,εdvg =

∫

Bp(α)

f 2
α,εdvg +

∫

M\Bp(α)

f 2
α,εdvg.

Since g is flat on Bp(α), we have

∫

Bp(α)

f 2
α,εdvg =

2π∫

0

α∫

0

ε4r

(ε2 + r2)2
drd�.

Substituting ρ = r2/ε2 we obtain

∫

Bp(α)

f 2
α,εdvg = πε2

α2

ε2∫

0

1

(1 + ρ)2
dr = πε2 + o(ε2).

Since f 2
α,ε ≤ ε4

α4 on M \ Bp(α), we have
∫

M\Bp(α)
f 2
α,εdvg = o(ε2). We obtain

Volgε (M) = πε2 + o(ε2). (38)

7.3 Proof of relation (36)

We define on R
2 as in Sect. 5.1 the spinor field

ψ(x) = f (x)(1 − x) · ψ0

where f (x) = 2
1+|x |2 , |ψ0| = 1. We have

Dψ = fψ and |ψ | = f
1
2 . (39)

123



A spinorial analogue of Aubin’s inequality 149

Now, we fix a small number α > 0 such that g is flat on Bp(2α). Then, let δ be a small
number such that we take 0 ≤ δ ≤ α. Assume that ε tends to 0. Furthermore let η be a cut-off
function defined on M by

η(x) =
∣∣∣∣∣∣

1 if r ≤ δ2

log(r)
log(δ) − 1 if r ∈ [δ2, δ]
0 if r ≥ δ

The function η is such that 0 ≤ η ≤ 1, η(Bp(δ)) = {1}, η(Rn \ Bp(2δ)) = {0} and

κδ :=
∫

M

|∇η|2dvg → 0 for δ → 0. (40)

Identifying Bp(2δ) in M with B0(2δ) in R
2, we can define a smooth spinor field on M by

ψε = η(x)ψ
( x
ε

)
. Using (39), we have

Dg(ψε) = ∇η · ψ
( x

ε

)
+ η

ε
f
( x

ε

)
ψ
( x

ε

)
. (41)

Since 〈∇η · ψ ( x
ε

)
, ψ

( x
ε

)〉 ∈ iR and since |Dgψε|2 ∈ R, we have
∫

M

|Dgψε|2 f −1
α,ε dvg = I1 + I2 (42)

where

I1 =
∫

M

|∇η|2
∣∣∣ψ

( x

ε

)∣∣∣
2

dx and I2 =
∫

M

η2

ε2 f 2
( x

ε

) ∣∣∣ψ
( x

ε

)∣∣∣
2

f −1
α,ε dx .

By (39),
∣∣ψ ( x

ε

)∣∣2 ≤ 2 and hence

I1 ≤ 2
∫

M

|∇η|2dvg = 2κδ → 0 (43)

for δ → 0. Now, by (39),

I2 ≤ 2

ε2

∫

Bp(2δ)

f 3
( x

ε

)
f −1
α,ε dx .

Since fα,ε = 1
2 f

( x
ε

)
on the support of η, we have

I2 ≤ 2

ε2

∫

Bp(2δ)

f 2
( x

ε

)
dx .

Mimicking what we did to get (38), we obtain that

I2 ≤ 8π + oε(1)

where oε(1) denotes a term tending to 0 for ε → 0. Together with (42) and (43), we obtain
∫

M

|Dgψε|2 f −1
α,ε dvg ≤ 8π + 2κδ + oε(1). (44)
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In the same way, by (41), since
∫

M

〈Dg(ψε), ψε〉dvg ∈ R and since 〈∇η ·ψ ( x
ε

)
, ψ

( x
ε

)〉 ∈ iR,

we have
∫

M

〈Dg(ψε), ψε〉dvg =
∫

M

η2

ε
f
( x

ε

) ∣∣∣ψ
( x

ε

)∣∣∣
2

dvg.

By (39), this gives
∫

M

〈Dg(ψε), ψε〉dvg =
∫

M

η2

ε
f 2
( x

ε

)
dvg.

With the computations made above, it follows that
∫

M

〈Dg(ψε), ψε〉dvg = 4πε + o(ε).

Together with (44) and (38), we obtain

λ+
1 (gα,ψ)

2Volgα,ψ (M) ≤
(
J ′

gα,ε (ψε)
)2

Volgα,ε (M) ≤
(

8π + 2κδ + oε(1)

4πε + o(ε)

)2

(πε2 + o(ε2))

= 4π + 2κδ + 1

4π
κ2
δ + oε(1).

Letting ε then δ go to 0, we get Relation (36).

7.4 Proof of relation (37)

As pointed out by the referee the metrics gα,ε coincide with metrics constructed in [25], and
relation (37) is proven in this article.
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