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Abstract Let G be a finite group and let Irr(G) denote the set of all complex irreducible
characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the
degree of any χ ∈ Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-
valued version of this theorem, where instead of Irr(G) we only consider the subset Irrrv(G)
consisting of all real-valued irreducible characters of G. We also prove that the character
degree graph associated to Irrrv(G) has at most 3 connected components. Similar results for
the set of real conjugacy classes of G have also been obtained.

1 Introduction

Let G be a finite group, let Irr(G) be the set of irreducible complex characters of G, and let
p be a prime number. One of the fundamental theorems in the Character Theory of Finite
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Groups is the Ito–Michler Theorem that asserts that if p does not divide the degree of any
χ ∈ Irr(G) then a Sylow p-subgroup P of G is normal in G. In this paper, we only consider a
much smaller (and quite important) subset of the irreducible characters of G: the real-valued
characters. Since non-trivial real characters only appear in groups of even order, the case
p = 2 is the essential case here.

Theorem A Let G be a finite group, and let P be a Sylow 2-subgroup of G. If all real-valued
irreducible characters of G have odd degree, then P � G.

In fact, we have proved (see Theorem 4.2) that all real-valued irreducible characters of
G are of odd degree if and only if G has a normal Sylow 2-subgroup of Chillag–Mann
type. (This interesting class of 2-groups, studied in [5], are those in which every real-valued
irreducible character is linear).

As pointed out by the referee, Theorem A might even be more general. As is well-known,
real characters come into two types, according to their Frobenius–Schur indicator. It seems
to be the case that in Theorem A it suffices to consider only +1 type real characters (i.e. the
complex irreducible characters afforded by representations realizable over the field of real
numbers). A proof of this fact, however, seems very hard and requires a considerable amount
of work in addition to this already long paper.

The proof of Theorem A relies on the classification of finite simple groups. Theorem A
does not remain true for odd primes p, even if we assume our group to have even order. We
defer the study of when all real valued irreducible characters of a finite group have degree
not divisible by p to some other place.

What are the primes dividing the degrees of the real-valued irreducible characters of G? In
simple groups, as we will show, these are exactly all the primes dividing the order of G. But
of course, this does not happen in general, specially, in solvable groups. There is a convenient
way to study the primes dividing the character degrees of a finite group by using a natural
graph. Let �rv(G) be the graph of the finite group G whose vertices are the primes dividing
the degrees of the real-valued irreducible characters of G, where we join two vertices p and
q if pq divides χ(1) for some real-valued χ ∈ Irr(G).

Theorem B Let G be a finite group. Then �rv(G) has at most three connected components.
If G is solvable, then �rv(G) has at most two.

It is interesting to point out that in general the graph �rv(G) is not an induced subgraph of
�(G) (the graph having vertices the primes dividing the degrees of the irreducible characters
of G, where p and q are joined if pq divides some χ ∈ Irr(G).) Analogues of Theorems A
and B for the real conjugacy classes have also been obtained (see Theorems 6.1 and 6.2).

Finally, Theorem A is not true if we restrict our attention to the rational characters. For
instance, the groups P SL2(32 f +1) provide an infinite family of counterexamples. In fact,
this is the only family of examples among finite simple groups (see Theorem 2.7). On the
other hand, it is very easy to find solvable examples: for instance, the semidirect product of
a cyclic group of odd prime order with a cyclic group of order 2.

2 Even degree real-valued characters of almost simple groups

Throughout the paper, a character of a finite group is real, resp. rational, if it is real-valued,
resp. rational-valued. If G is a finite group, we denote by Irrrv(G) the set of complex irre-
ducible characters of G which are real-valued. Cn denotes a cyclic group of order n. If N is
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an integer and p a prime, then Np′ denotes the p′-part of N ; furthermore, π(N ) is the set of
all prime divisors of N . Finally, �m(t) is the mth cyclotomic polynomial.

The hardest part toward the proof of Theorem A is the following.

Theorem 2.1 Let S be a normal non-abelian finite simple subgroup of G, where G/S is a
2-group, and CG(S) = 1. Then there exists χ ∈ Irrrv(G) of even degree not containing S in
its kernel.

Before proving Theorem 2.1, we establish some auxiliary statements.

Lemma 2.2 Let a, n ≥ 2 be integers. Then an − 1 has a primitive prime divisor (PPD), that
is a prime divisor of an − 1 that does not divide

∏n−1
i=1 (a

i − 1), unless either (a, n) = (2, 6)
or n = 2 and a + 1 is a 2-power. Any such a PPD is at least n + 1.

Proof See [29]. ��
Lemma 2.3 Assume S is a normal subgroup of a finite group G such that G/S is a
2-group with a unique involution γ . Assume α ∈ Irr(S) is a nontrivial character such that
αγ = ᾱ �= α. Then Irr(G) contains a real character χ of even degree which is nontrivial
on S.

Proof By our assumptions, the inertia group of α in G is just S. It follows that χ := αG is
irreducible of even degree and nontrivial at S. Take the subgroup R between G and S such
that R/S = 〈γ 〉. Then αR vanishes on R\S and equals α + ᾱ on S, so it is real. It follows
that χ = (αR)G is also real. ��
Lemma 2.4 Assume S is a normal subgroup of 2-power index of a finite group G such that
G/S ≤ C2 × C f , where C2 = 〈τ 〉 = H/S and σ is the unique involution in C f . Assume
α ∈ Irr(S) is a real nontrivial τ -invariant character of even degree, not σ -invariant; more-
over, it extends to a real character β ∈ Irr(H) in the case τ ∈ G/S. Then Irr(G) contains a
real character χ of even degree whose restriction to S contains α.

Proof First we consider the case τ /∈ G/S. By our assumptions, α is fixed by τ , but not by
σ nor by τσ . Hence the inertia group of α in G is just S. It follows that χ := αG is real,
irreducible of even degree, and χS contains α. Next assume that τ ∈ G/S, i.e. G ≥ H . Since
ασ �= α, β is not σ -invariant. Since G/H ≤ C f and σ is the unique involution in C f , the
inertia group of β in G is just H . Now we can take χ := βG . ��

The following lemmas use the Deligne–Lusztig theory of complex characters of finite
groups of Lie type, cf. [4,7]. If G is a simple algebraic group, let π1(G) denote the funda-
mental group of G.

Lemma 2.5 Let G be a simple algebraic group in characteristic p, F a Frobenius map on
G, and let G := GF . Let the pair (G∗, F∗) be dual to (G, F) and G∗ := (G∗)F∗

. Assume
s ∈ G∗ is a semisimple element of order r which is coprime to both |π1(G∗)| and |Z(G)|.
(i) Then G has an irreducible character χs of degree (G∗ : CG∗(s))p′ which is trivial at

Z(G). Furthermore, χs is real if and only if s is real in G∗.
(ii) Let σ , resp. σ ∗ be an automorphism of the (abstract) group G, resp. G∗, induced by the

field automorphism x �→ xq for some power q of p, and such that σ ◦ F = F ◦ σ .
Assume in addition that r does not divide |(G∗)σ ∗ |. Then χs is not σ -invariant.
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Proof (i) Since r is coprime to |π1(G∗)|, by [2, Corollary E-II.4.6] CG∗(s) is connected. By
the Deligne–Lusztig theory, to the G∗-conjugacy class of s one can associate an irreducible
(semisimple) character χs of the indicated degree. By its definition, χs is a linear combina-
tion of Deligne–Lusztig characters RG

T (θ), where T is an F-stable maximal torus of G and
θ is a linear character of order r of T F . By [4, Proposition 3.6.8], Z(G) = Z(G)F , also,
Z(G) ≤ T . It follows that Z(G) ≤ T F . Since r is coprime to |Z(G)|, θ is trivial at Z(G),
whence RG

T (θ)(z) = RG
T (θ)(1) for all z ∈ Z(G). We conclude that Ker(χs) ≥ Z(G). It is

well-known, cf. e.g. the proof of [25, Lemma 9.1], that χs−1 = χ̄s . Moreover, χs belongs to
the Lusztig series E(GF , s), and distinct Lusztig series are disjoint. Hence χs is real if and
only if s is real in G∗.

(ii) By [26, Corollary (2.5)], it suffices to show that the G∗-conjugacy class of s is not
σ ∗-invariant. Assume the contrary: σ ∗(s) = gsg−1 for some g ∈ G∗. Since σ ∗ is a Frobenius
map on G∗, by the Lang–Steinberg Theorem, g−1 = x−1σ ∗(x) for some x ∈ G∗. Now

σ ∗(xsx−1) = σ ∗(x)σ ∗(s)σ ∗(x)−1 = xg−1 · gsg−1 · gx−1 = xsx−1,

whence xsx−1 ∈ (G∗)σ ∗
and so r divides |(G∗)σ ∗ |, a contradiction. ��

Lemma 2.6 Let G be a simple algebraic group in characteristic p and F a Frobenius map
on G. Assume that χ ∈ Irr(GF ) is the unique unipotent character of degree χ(1). Then χ is
rational.

Proof Sinceχ is unipotent,χ occurs as a component of the Deligne–Lusztig character RG
T (1)

for some F-stable maximal torus T . The explicit formula for RG
T (1), cf. [4, Theorem 7.2.8],

shows that RG
T (1) is rational and so it is invariant under any Galois automorphism γ of Q.

It follows that χγ also occurs as a component of RG
T (1), whence χγ is also a unipotent

character. Now the uniqueness of χ implies that χγ = χ . ��
The rest of this section is devoted to the proof of Theorem 2.1.
1. If S is a sporadic finite simple group, the statement can be checked directly using GAP

[9] or [6]. On the other hand, assume S = Altn with n ≥ 5. If n �= 6, then Altn ≤ G ≤ Symn ,
and by [25, Lemma 9.3], G has rational characters of degree d and d+1 where d = n(n−3)/2
and so we can choose χ to be one of these two. Assume n = 6. Then Out(S) = C2

2 = 〈 j1, j2〉
with Sym6 = 〈S, j1〉. Now Irr(S) contains a character α of degree 8, which extends to a real
irreducible character of 〈S, j2〉 and which is not j1-invariant, cf. [6]. Hence we are done by
Lemma 2.4.

So we will assume that S is a finite group of Lie type in characteristic p. If p = 2 and
S �= 2F4(2)′, then the Steinberg character of S extends to a rational character of G by [8] and
so we are done. In the case S = 2F4(2)′ we can choose χ of degree 78. So we may assume
p > 2.

2. We will use rank 3 permutation actions, cf. [27] for instance, to produce χ for several
classical groups.

First we consider the case of S = P SUn(q) with n ≥ 4. Equip the space V = Fn
q2 with

the standard Hermitian form which has the isometry group GUn(q). Then �Un(q) (see [17]
for the definition of this extension of GUn(q)) acts on the set � of the singular 1-spaces
of V , with character say ρ. It is known that ρS = 1S + α + β, where α, β ∈ Irr(S) are of
degree q2(qn − (−1)n)(qn−3 − (−1)n−3)/(q +1)(q2 −1) and q3(qn−1 − (−1)n−1)(qn−2 −
(−1)n−2)/(q + 1)(q2 − 1). Notice that qα(1)−β(1) = (−1)n−2qn is odd, so exactly one of
α, β has even degree; denote that one by γ . Observe that G is a subgroup of�Un(q)/Ker(ρ).
It follows that χG = 1G + α′ + β ′, where α′, β ′ ∈ Irr(G) are some extensions to G of α and
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β, and they are rational as ρ is rational. Now we can take χ to be the irreducible constituent
of ρG that lies above γ .

Assume S = P SU3(q). The cases q = 3, 5 can be checked directly using [6], so we will
assume q = p f ≥ 7. The character table of SU3(q) is given in [10], and with the notation
therein, we choose the character α := χ

(1,5)
(q−1)(q2−q+1)

and β := χq2−q . Notice that β is
rational of even degree, so we are done if G = S. Thus we may assume G > S. Observe that
Out(S) = C(3,q+1) : C2 f [12], so up to a conjugation in Aut(S) ≥ G, we may also assume
that G/S has a unique involution γ which is induced by the field automorphism x �→ xq .
One can check that γ sends α to its complex conjugate ᾱ and α �= ᾱ, so we are done by
Lemma 2.3.

3. Assume S = P Sp2n(q) with n ≥ 2. Equip the space V = F2n
q with the standard

symplectic form which has the isometry group Sp2n(q). We will consider the group�Sp2n(q)
(cf. [17, Sect. 2.1] for the definition of this extension of Sp2n(q)), which induces the full
automorphism group of S since q is odd. Notice that �Sp2n(q) acts on the set � of the
1-spaces of V , with character say ρ. It is known that ρS = 1S + α + β, where α, β ∈ Irr(S)
are of degree q(qn − 1)(qn−1 + 1)/2(q − 1) and q(qn + 1)(qn−1 − 1)/2(q − 1). Notice that
α(1) − β(1) = qn is odd, so exactly one of α, β has even degree. Now G is a subgroup of
�Sp2n(q)/Ker(ρ) and so we are done as in 2.

Next assume S = �2n+1(q) with n ≥ 3. Equip the space V = F2n+1
q with the stan-

dard quadratic form which has the isometry group G O2n+1(q). Then �O2n+1(q) (see [17,
Sect. 2.1] for the definition of this extension of G O2n+1(q)) acts on the set� of the singular
1-spaces of V , with character say ρ. It is known that ρS = 1S + α + β, where α, β ∈ Irr(S)
are of degree q(qn − 1)(qn−1 + 1)/2(q − 1) and q(qn + 1)(qn−1 − 1)/2(q − 1). Notice that
α(1) − β(1) = qn is odd, so exactly one of α, β has even degree. Now G is a subgroup of
�O2n+1(q)/Ker(ρ) and so we are done as in 2.

Next assume S = P�+
2n(q) with n ≥ 4. Equip the space V = F2n

q = 〈e1, f1, . . . , en, fn〉
with the quadratic form Q(

∑n
i=1(xi ei + yi fi )) = ∑n

i=1 xi yi which has the isometry group
G O+

2n(q). Then �O+
2n(q) (see [17, Sect. 2.1] for the definition of this extension of G O+

2n(q))
acts on the set � of the singular 1-spaces of V , with character say ρ. It is known that
ρS = 1S + α + β, where α, β ∈ Irr(S) are of degree q(qn − 1)(qn−2 + 1)/(q2 − 1) and
q2(qn−1 +1)(qn−1 −1)/(q2 −1). Notice that qα(1)−β(1) = qn is odd, so exactly one of α,
β has even degree. Now G is a subgroup of �O+

2n(q)/Ker(ρ) (possibly after a conjugation
in Aut(S) when n = 4), and so we are done as in 2.

4. Assume S = P�−
2n(q) with n ≥ 4 and q = p f . Equip the space V = F2n

q with

a quadratic form which has the isometry group G O−
2n(q). Then the conformal orthogonal

group C O−
2n(q) and a subgroup C O−

2n(q)
◦ of it (see [4] for the definition of these extensions

of G O−
2n(q)) act on the set� of the singular 1-spaces of V . Modding out the scalars, we see

that PC O−
2n(q)

◦ acts on �. Recall [12, Theorem 2.5.12] that Aut(S) = Inndiag(S) : C2 f ,
and Inndiag(S) � PC O−

2n(q)
◦ can be viewed as GF for a simple algebraic group G of

adjoint type and a Frobenius map F on G. In fact, if σ is the automorphism of G coming
from the field automorphism x �→ x p and τ is the graph automorphism that switches the
last two (branching) nodes of the Dynkin diagram (of type Dn) of G, then F = σ f ◦ τ .
One can identify a point stabilizer P of GF acting on � with P F , where P is a standard
parabolic subgroup of G with Levi subgroup of type Dn−1, cf. [4, p. 63]. Clearly, P and P F

are σ -stable, and σ induces a generator of the complement C2 f in the semidirect product
Aut(S) = Inndiag(S) : C2 f that we will also denote by σ . This discussion shows that, inside
Aut(S), σ normalizes P . So if ρ is the character afforded by the permutation action of Aut(S)
on the cosets of 〈P, σ 〉, then ρ|GF is the character of the permutation action of GF on�. It is
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known that ρS = 1S +α+β, where α, β ∈ Irr(S) are of degree q(qn +1)(qn−2 −1)/(q2 −1)
and q2(qn−1 + 1)(qn−1 − 1)/(q2 − 1). Notice that qα(1)− β(1) = −qn is odd, so exactly
one of α, β has even degree. So we are done as in 2.

5. We will explore the method of 4. to handle the simple groups of type E6 and 2E6. Let
G be a simple algebraic group of type E6 over F and of adjoint type. Let σ be the automor-
phism of G coming from the field automorphism x �→ x p and τ be the (involutory) graph
automorphism of G. Consider a standard parabolic P of G with Levi subgroup of type A5.
First we consider the untwisted case F = σ f . Then H := GF = E6(q)ad for q = p f

and S = [H, H ] is simple. As in 4. we observe that P := P F is stable under σ and τ , and
Aut(S) = H : (〈σ 〉 × 〈τ 〉). Let ρ be the character afforded by the permutation action of
Aut(S) on the cosets of 〈P, σ, τ 〉. Then ρ|H is a sum of unipotent characters, of the same
rank as of the character (1W (A5))

W (E6) which is 5. Using this information one can show that

ρ|H = 1H + φ6,1 + φ20,2 + φ30,3 + φ15,4

in the notation of [4, p. 480]. All these five irreducible constituents have distinct degrees, and
three of them have even degrees. Since H �Aut(S), it follows that ρ is a sum of 5 irreducible
constituents, all rational and three of even degrees.

Next we consider the twisted case F = σ f ◦ τ . Then H := GF = 2E6(q)ad for q = p f

and S = [H, H ] is simple. As above we observe that P := P F is stable under σ , and
Aut(S) = H : 〈σ 〉 Let ρ be the character afforded by the permutation action of Aut(S) on
the cosets of 〈P, σ 〉. Then ρ|H is again a sum of unipotent characters. Computer computation
using CHEVIE [11] (done by F. Lübeck) shows that

ρ|H = 1H + φ′
2,4 + φ4,1 + φ9,2 + φ′

8,3

in the notation of [4, p. 481]. Again, all these five irreducible constituents have distinct
degrees, and three of them have even degrees. Since H � Aut(S), it follows that ρ is a sum
of 5 irreducible constituents, all rational and three of even degrees, and so we are done.

6. For the remaining Lie-type groups, we will use the Deligne–Lusztig theory to produce
χ . We will again consider a certain simple algebraic group G, a Frobenius map F on G, and
the pair (G∗, F∗) dual to (G, F). Also let F be the algebraic closure of Fp . To illustrate the
main ideas of this framework, we first handle the case S = P SL2(q) with q = p f ≥ 7
(even though one may settle this case in a more elementary way). Choose G = P SL2(F)

and F such that GF � PGL2(q). Since q ≥ 7, we can find an odd prime r1|(q2 − 1) and
a semisimple element s1 ∈ (G∗)F∗ = SL2(q) of order r1. Observe that s1 is real. So by
Lemma 2.5(i), χs1 is a real character (of even degree q ± 1) of PGL2(q) which restricts
irreducibly to S. Thus we are done if f is odd, or if f is even but G ≤ PGL2(q).

So we may assume that 2| f and G �≤ H := PGL2(q). Consider a PPD r of p2 f − 1,
and a semisimple element s ∈ (G∗)F∗

of order r . By Lemma 2.5(i) we get a real irreducible
character χs of degree q − 1 of H which also restricts irreducibly to S. Since G is of adjoint
type, by [1, Lemma 3.1], α := χs |S belongs to the principal r -block of S. It now follows
that α is the semisimple character of SL2(q) corresponding to a semisimple element t in the
dual group PGL2(q) of order divisible by r . Consider the automorphism σ of SL2(F) and
P SL2(F) induced by the field automorphism x �→ x p . The choice of r ensures that r does
not divide |(G∗)σ f/2 |. So α is not σ f/2-invariant by Lemma 2.5 (ii), where we denote the
action on S induced by σ also by σ . Recall that Out(S) = C2 × C f , where C2 = H/S and
σ f/2 is the unique involution in C f . Now we can apply Lemma 2.4 to α, with β := χs .

7. Next we consider the case S = P SLn(q) with q = p f and n ≥ 3. Choose G =
P SLn(F) and F such that H := GF � PGLn(q). Consider the unipotent characters χλ
of H labeled by the partitions λ = (n − 2, 2), (n − 2, 12) of n if n ≥ 4, and λ = (2, 1)
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if n = 3, cf. [4, p. 465]. If n = 3 then χ(2,1)(1) = q(q + 1) is even. If n ≥ 4 then
χ(n−2,12)(1)−qχ(n−2,2)(1) = qn is odd, and so exactly one of these two characters has even
degree. It is well known that unipotent characters of H are rational and restrict irreducibly to S.
So we may assume that G �≤ H . Recall [12, Theorem 2.5.12] that Aut(S) = H : (〈σ 〉×〈τ 〉),
where σ is the automorphism of S induced by the field automorphism x �→ x p and τ is the
inverse-transpose. We will also consider H∗ := (G∗)F∗ � SLn(q) and its natural module
V := Fn

q .
Assume f is odd. Then H G/H contains τH . If n is odd, choose r to be a PPD of qn − 1

and s ∈ H∗ with eigenvalues λqi
, 0 ≤ i ≤ n − 1 on V . If n is even, choose r to be a PPD

of qn−1 − 1 and s ∈ H∗ with eigenvalues 1 and λqi
, 0 ≤ i ≤ n − 2 on V . In both cases,

we choose λ ∈ F with |λ| = r . By our choice, r ≥ n + 1 and so r satisfies the assumptions
of Lemma 2.5. Claim that s is not real in H∗. (Assume the contrary. Then λ−1 = λqi

for
some i , 0 ≤ i ≤ m − 1, where m = n if n is odd and m = n − 1 if n is even. Since
r > 2, i > 0. Also, r |(q2i − 1) and so m|2i . But this is a contradiction as m is odd and
0 < i < m.) Thus χs is not real by Lemma 2.5. Consider an irreducible constituent µ of
χs |S . By [1, Lemma 3.1], µ belongs to the principal r -block of S. Viewed as a character
of H∗, µ also belongs to the principal r -block of H∗. Also, since µ(1) is coprime to p, µ
is semisimple by [21, Lemma 7.2]. It now follows by the fundamental result of Broué and
Michel [3] thatµ is the semisimple character χt of H∗ defined by an r -element t ∈ H . Notice
that χs(1) > q − 1 and |H/S| ≤ q − 1, so µ(1) > 1 and |t | = ra ≥ r . Arguing as in the
proof of [23, Lemma 2.4], one can show that |CH∗(s)| = |CH (t)| (and it is (qn − 1)/(q − 1)
if n is odd and qn−1 − 1 if n is even). It follows that χs(1) = µ(1) and so χs |S is irreducible.
Since r is coprime to q − 1, there is a preimage t1 ∈ GLn(q) of order ra of t . Now arguing
with eigenvalues of t1 on V as above, we see that t1 is not real in GLn(q). But r is again
coprime to q − 1 and H = GLn(q)/Cq−1, so t is not real in H . Thus χs |S is not real by
Lemma 2.5(i). Let α := χs |G∩H . Since G ∩ H ≥ S, we conclude that α is irreducible,
non-real, and H -invariant. By our assumptions, G = 〈G ∩ H, hτ 〉 for some h ∈ H . Since
τ commutes with F = σ f , by [26, Corollary (2.5)], (χs)

τ = χτ(s). Observe that τ(s) is
conjugate to s−1 in G∗ and so in H∗ as well by the Lang–Steinberg Theorem, since CG∗(s)
is connected. Thus (χs)

τ = χ̄s �= χs . It follows that αhτ = ᾱ �= α. Hence we are done by
Lemma 2.3.

From now on we assume f is even. If n is even, choose r to be a PPD of pn f − 1 and
s ∈ H∗ with eigenvalues λqi

, 0 ≤ i ≤ n − 1 on V . If n is odd, choose r to be a PPD of
p(n−1) f − 1 and s ∈ H∗ with eigenvalues 1 and λqi

, 0 ≤ i ≤ n − 2 on V (notice that
(n − 1) f ≥ 4 so r exists). In both cases, we choose λ ∈ F with |λ| = r . By our choice,
r ≥ 2(n −1)+1 > n and so r satisfies the assumptions of Lemma 2.5. Claim that s, s−1, and
τ(s) are all conjugate in H∗. (For, these three elements have the same characteristic polyno-
mial on V which is at the same time also their minimal polynomial. Hence they are conjugate
in G∗ = SLn(F). Since CG∗(s) is connected, they are also conjugate in (G∗)F∗ = H∗ by
the Lang–Steinberg Theorem.) Thus χs is real by Lemma 2.5. Arguing with τ as above,
we see that χs is τ - stable. Consider an irreducible constituent µ of χs |S . Arguing as in the
case of odd f , we see that µ is the semisimple character χt of H∗ defined by an r - element
t ∈ H with |t | = ra ≥ r . Moreover, |CH∗(s)| = |CH (t)|, and it is (qn − 1)/(q − 1) if n
is even and qn−1 − 1 if n is odd. It follows that χs(1) = µ(1) and so χs |S is irreducible.
Clearly, χs(1) = (H∗ : CH∗(s))p′ is divisible by q − 1 and so it is even. Also, the choice

of r implies that |t | does not divide the order of Gσ f/2 = PGLn(q1/2). So χt = χs |S is
not σ f/2-invariant. Thus α := χs |G∩H is irreducible, nontrivial, τ -invariant but not σ f/2-
invariant. Consider the extension K := 〈H, τ 〉 of index 2 of H . By the main result of [13],
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every irreducible character of K is real. Since χs is τ -invariant, it now extends to a real
irreducible character γ of K . Furthermore, if there is any h ∈ H such that (τh)2 ∈ G ∩ H ,
then, setting R := 〈G ∩ H, τh〉 ≤ K and β := γ |R , we see that β is real, of even degree, and
β|G∩H = α. Recall that G/(G ∩ H) � H G/H ≤ Aut(S)/H = 〈τ 〉 × C f and σ f/2 is the
unique involution in C f . Applying Lemma 2.4 to (G, R,G ∩ H, α) in place of (G, H, S, α),
we see that Irr(G) contains a real character of even degree whose restriction to S contains χt

and so nontrivial on S.
8. Here we consider the case S has type E7. Recall [12, Theorem 2.5.12] that Aut(S) =

H : C f , where H := Inndiag(S) = GF = E7(q)ad , q = p f , and G is the simple algebraic
group E7(F) of adjoint type. We will also consider H∗ := (G∗)F∗ = E7(q)sc; notice that
S = H∗/Z(H∗) and H/S = C2. By [28, Proposition 3.1], every semisimple element in H
and in H∗ is real. Set K := G ∩ H and choose a PPD r of p18 f −1 and a semisimple element
s of order r in L , where L := H∗ if K = H , resp. L := H if K = S. By [23, Lemma 2.3],
|CL(s)| = �18(q)�2(q). By Lemma 2.5(i), χs is a real irreducible character of even degree
of K . Observe that in both cases χs is H -invariant. This is obvious in the former case, and
follows from [26, Corollary (2.5)] applied to the automorphism induced by the conjugation
by some element y ∈ H \ S in the latter case. Also, by Lemma 2.5(ii), χs is not invariant
under any nontrivial element of the group C f of field automorphisms. It follows that the
inertia group of χs in G is exactly K and so we can take χ = χG

s .
9. Now assume that S ∈ { 2G2(q),G2(q), 3D4(q), F4(q), E8(q)} with q = p f . Assume

furthermore that p �= 3 if S = G2(q). Since G/S is a 2- power, G ≤ S : C f and in
fact G = S if S = 2G2(q). In all these cases, any semisimple element s ∈ S is real by [28,
Proposition 3.1]. View S as GF for a suitable simple algebraic group G and a Frobenius map F
on G. Choose a PPD r of pm f −1 and a semisimple element s ∈ (G∗)F∗ � S of order r , where
m = 6, resp. 6, 12, 12, 30, if S is of type 2G2, resp. G2, 3D4, F4, E8. By [23, Lemma 2.3],
|C(G∗)F∗ (s)| = �m(q), unless S = 2G2(q) in which case |C(G∗)F∗ (s)| = q ± √

3q + 1 is
odd. It follows by Lemma 2.5(i) that χs ∈ Irr(S) is a real character of even degree.

Claim that for any field automorphism γ ∈ C f of 2-power order 2c > 1, χs is not
γ -invariant. By Lemma 2.5(ii), it suffices to show that r does not divide |(G∗)γ ∗ |. This last
statement is vacuous if S = 2G2(q). It is also obvious if S = X (q) and X ∈ {G2, F4, E8},
since in these cases (G∗)γ ∗ = X (p f1) with 1 ≤ f1 < f . Assume S = 3D4(q) and r divides
|(G∗)γ ∗ |. Let σ be the automorphism of G defined by the field automorphism x �→ x p and
τ is the triality graph automorphism of G. Then F = σ f ◦ τ . Assuming γ = σ j with
1 ≤ j ≤ 3 f − 1, we see that r divides |D4(p j )| and so it divides p4 j − 1 or p6 j − 1. The
first possibility cannot occur as r is a PPD of p12 f − 1. So r |(p6 j − 1), whence 2 f divides
j . It follows that γ 3 = σ 6 f acts trivially on S < D4(p3 f ) and so the order of γ in Aut(S)
is not a nontrivial 2-power, a contradiction.

We have shown that the inertia group of χs in G is just S. Now we can take χ = χG
s .

10. Finally, we consider the case S = G2(q) and q = 3 f . In view of [6] we may assume
f > 1. According to [12, Theorem 2.5.12], Aut(S) = S : C2 f . Here C2 f = 〈σ1〉, σ 2

1 is the
automorphism of G defined by the field automorphism x �→ x3, and S = GF with G a simple
algebraic group of type G2 and F = σ

2 f
1 . Then τ := σ

f
1 is the unique involution in C2 f .

Assume s ∈ S is such that the S-conjugacy class sS of s is τ -invariant. Then τ(s) = gsg−1

for some g ∈ S. Define ϕ ∈ Aut(S) via ϕ(x) = g−1τ(x)g for x ∈ S. Then ϕ(s) =
g−1 · gsg−1 · g = s and so s ∈ CS(ϕ). Since ϕ has order 2 in Out(S), we can write the
order of ϕ in Aut(S) as 2ka for some k ≥ 1 and some odd a. Setting ψ := ϕ2k−1a , we see
that ψ2 = 1S and s ∈ CS(ψ). There are two possibilities. If ψ is an inner automorphism of
S, then it is the conjugation by an involution in S and so CS(ψ) � (SL2(q) ∗ SL2(q)) · 2
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by [18]. Otherwise, as shown in [18], ψ is S-conjugate to a fixed automorphism φ2 of S;
furthermore, CS(ψ) is isomorphic to G2(

√
q) if f is even and to 2G2(q) if f is odd.

Now we set m := 6 if f is even, resp. m := 3 if f is odd. Choose a PPD r of pm f −1 and a
semisimple element s ∈ (G∗)F∗ � S of order r . By [23, Lemma 2.3], |C(G∗)F∗ (s)| = �m(q).
It follows by Lemma 2.5(i) that χs ∈ Irr(S) is a real character of even degree. Observe that r
does not divide |(SL2(q) ∗ SL2(q)) · 2|; furthermore, it is coprime to |G2(

√
q)| if f is even,

resp. to | 2G2(q)| if f is odd. Hence the previous paragraph shows that sS is not τ -invariant.
But τ commutes with F , so [26, Corollary (2.5)] implies that χs is not τ -invariant. We have
shown that the inertia group of χs in G is just S and can now take χ = χG

s .
Theorem 2.1 has been now proved completely. ��

Theorem 2.7 Let S be a finite non-abelian simple group. Then all rational irreducible char-
acters of S are of odd degree if and only if S ∼= P SL2(32 f +1) for some integer f ≥ 1.

Proof Observe that if S is any simple group considered in pp. 1 – 5 of the proof of
Theorem 2.1, then the character χ produced in the proof (in the case G = S) is actually
rational. Now we will consider the remaining groups of Lie type in odd characteristic p.
The case of P SL2(q) is done in [25, Lemma 9.4]; in particular, if q �= 32 f +1 then χ can
be chosen to be of degree q ± 1. Furthermore, the case of P SLn(q) with n ≥ 3 has also
been done in page 7 of the proof of Theorem 2.1. Assume S is an exceptional group of
Lie type, not of type 2G2(q). Then we can consider S = GF/Z(GF ) for a simple simply
connected algebraic group G and a Frobenius map F on G and observe that any unipotent
character of GF is trivial at Z(GF ). By Lemma 2.6, it suffices to find a character of GF that
is a unique unipotent character of some even degree d . Using [4, Sect. 13.9], we can choose
d = q�2(q)2�3(q)/6, resp. q3�2(q)2�6(q)2/2, q�1(q)2�3(q)2�8(q)/2, q�8(q)�9(q),
q�8(q)�18(q), q3�1(q)4�3(q)2�5(q)�7(q)�9(q)�14(q)/2, q�4(q)2�8(q)�12(q)
�20(q)�24(q), if GF = G2(q), resp. 3D4(q), F4(q), E6(q), 2E6(q), E7(q), E8(q).
Finally, assume S = 2G2(q) with q = 32 f +1 and f ≥ 1. Again consider S = GF for
a simple algebraic group G of type G2. Observe that S � (G∗)F∗

(cf. [4]; also notice that
the existence of Jordan decomposition of irreducible characters in the case of Suzuki and
Ree groups is proved in [19]), and S > 2G2(3) = SL2(8) · 3 contains a rational element
s of order 7. Moreover, CS(s) has even index in S as s is certainly inverted by some even-
order element of S. By [25, Lemma 9.1], χs ∈ Irr(S) is a rational character of even degree.
(This also follows from the explicit description of irreducible characters of S in terms of
Deligne–Lusztig characters given in [14, Sect. 8.2].) ��

3 Primes dividing the degrees of real-valued characters of simple groups

The aim of this section is to prove the following theorem:

Theorem 3.1 Let S be a finite non-abelian simple group and let �rv(S) be the prime graph
on the set of the degrees of real irreducible characters of S, with vertex set V (S). Then

(i) V (S) = π(|S|); and
(ii) �rv(S) has at most three connected components.

Lemma 3.2 Theorem 3.1 holds for sporadic finite simple groups.

Proof Routine computer computation using GAP [9]. ��
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Proposition 3.3 Theorem 3.1 holds for alternating groups S = Altn. In fact, if n ≥ 7 then
�rv(S) is connected.

Proof 1. The cases 5 ≤ n ≤ 8 can be checked directly using [6], so we may assume n ≥ 9.
We will largely follow the ideas of [22, p. 33–35] to show that for any odd prime p ≤ n,
S has a real irreducible character χ such that 2p|χ(1). As in [22], we choose χ to be an
irreducible constituent of ξ |S , where ξ is the irreducible character of Symn corresponding to
the partition α = (n − r − s, s + 1, 1r−1) with 0 ≤ r − 1, s, r + 2s + 1 ≤ n. In particular,

ξ(1) =
(

n

s

)(
n − s − 1

r − 1

)
n − 2s − r

r + s
.

Let α′ denote the partition associated to α. If α �= α′, then χ = ξ and so it is real. If α is
self-associated, then χ(1) = ξ(1)/2, and this happens exactly in the following cases:

(i) s = 0 and n = 2r + 1,
(ii) s = 1 and n = 2r + 2.

In the case of (i), the partition h(α) of the hook lengths of α is (n), and the value ξh(α) of ξ
at an (even) permutation with cycle type h(α) is (−1)r by [16, Lemma 2.5.12]. Similarly, in
the case of (ii), h(α) = (n − 1, 1) and ξh(α) = (−1)r . This implies by [16, Theorem 2.5.13]
that, in these two cases, χ is real if and only if 2|r .

In what follows, the choices of α are made following [22], and necessary divisibility prop-
erties of ξ(1) were proved therein. For the reader’s convenience, we will recall these choices
here.

2. Assume n is odd. Then one chooses r ∈ 2Z + 1 and s ∈ 2Z, which implies 2|ξ(1).
Case 1: n �≡ 0,−1(mod p). If n �= 2p − 3, choose (r, s) = (p − 2, 0). If n = 2p − 3,
then p ≥ 7 as n ≥ 9; here we choose (r, s) = (3, p − 5). In both subcases, α �= α′ and
2p|ξ(1) = χ(1), and so we are done.

Case 2: n ≡ 0(mod p). If p > 3, choose (r, s) = (1, 2). If p = 3, choose (r, s) = (3, 2).
In both subcases, α �= α′ and 2p|ξ(1) = χ(1).

Case 3: n ≡ −1(mod p); in particular, n ≥ 2p − 1. If n �= 2p − 1, 4p − 1, choose
(r, s) = (2p − 1, 0). If n = 2p − 1 and n �= 9, or if n = 4p − 1 and n �= 11, take
(r, s) = (p, 2). In all these subcases, α �= α′ and 2p|ξ(1) = χ(1). If (n, p) = (9, 5), then
we choose α = (5, 2, 2), for which χ(1) = ξ(1) = 120. Finally, if (n, p) = (11, 3), then
we choose α = (6, 5), for which χ(1) = ξ(1) = 132.

3. Assume n is even. Then one chooses r ∈ 2Z and s ∈ 2Z + 1, which implies 2|ξ(1) and
χ is real.

Case 1: n �≡ 1,−2(mod p). If p > 3, choose (r, s) = (p − 3, 1). If p = 3, take (r, s) =
(6, 1). In both subcases, 4p|ξ(1) and so 2p|χ(1).
Case 2: n ≡ 1(mod p). If n ≥ 3p + 1, choose (r, s) = (2, p). If n = p + 1 (in particular,
p ≥ 11), choose (r, s) = (2, 3). In both subcases, α �= α′ and 2p|ξ(1) = χ(1).

Case 3: n ≡ −2(mod p) and p > 3; in particular, n ≥ 2p − 2. If n ≥ 4p − 2, choose
(r, s) = (2p, 1). If n = 2p − 2 and p > 7, choose (r, s) = (p − 1, 3) In both subcases,
α �= α′ and 2p|ξ(1) = χ(1). Finally, if (n, p) = (12, 7), then we choose α = (9, 3), for
which χ(1) = ξ(1) = 154. ��
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The rest of the section is devoted to prove Theorem 3.1 in the case S ∈ Lie(p). We will
say that the characters χ1, . . . , χk ∈ Irr(S) cover S if any prime divisor of |S| divides the
degree of at least one χi . We aim to show that Irrrv(S) contains two or three characters that
cover S. Let F := Fp . We will consider a certain simple algebraic group G over F with a
Frobenius map F on G and the pair (G∗, F∗) dual to (G, F). We will use Lemma 2.5 as well
as certain permutation characters and unipotent characters to find desired real characters. The
reality of considered semisimple elements is established in [28]. It turns out that the cases of
P SLn(q) and P SUn(q) require attention the most.

Lemma 3.4 Theorem 3.1 holds true in the case S = P SLn(q) with n ≥ 2 and q = p f .

Proof 1. Assume n = 2. In view of Proposition 3.3 we may assume q ≥ 7. Then Irrrv(S)
contains characters of degree q , q − 1 and q + 1, and so we are done. Thus we may assume
n ≥ 3. View S as GF/Z(GF ) for a suitable Frobenius map F on G := SLn(F). Observe that
Irrrv(SL6(2)) contains (unipotent) characters of degree 23 · 5 · 31 and 22 · 3 · 72, so we may
assume (n, q) �= (6, 2).

2. Assume furthermore that n is even. Then we can find a PPD rn > n of pn f −1. Notice that
Sylow rn-subgroups of (G∗)F∗ = PGLn(q) are cyclic and may be embedded in P Spn(q).
Since any semisimple element of P Spn(q) is real by [28], we can find a real semisimple ele-
ment sn ∈ (G∗)F∗

of order rn . By Lemma 2.5 and [23, Lemma 2.4], sn defines a real character
χn ∈ Irr(S) of degree divisible by

∏n−1
i=2 (q

i − 1). We also consider certain unipotent charac-
ters χλ of PGLn(q) labeled by partitions λ of n, cf. [4, p. 465]; any of them is rational and
restricts irreducibly to S. In particular, χ(n−2,2)(1) = (qn − 1)(qn−1 − q2)/(q2 − 1)(q − 1),
and so χn and χ(n−2,2) cover S.

3. From now on we may assume n is odd. Suppose that we can find a PPD rn−1 of
p(n−1) f − 1 such that (rn−1, n) = 1. Then Sylow rn−1-subgroups of SLn−1(q) are cyclic
and may be embedded in Spn−1(q). Since any semisimple element of Spn−1(q) is real by
[28], we can find a real semisimple element sn−1 ∈ SLn−1(q) of order rn−1 By Lemma 2.5
and [23, Lemma 2.4], sn−1 then defines a real character χn−1 ∈ Irr(S) of degree divisible by∏

2≤i≤n, i �=n−1(q
i − 1). In particular, if n ≥ 5 then χn−1 and χ(n−1,1) cover S. It remains to

consider the cases where such an rn−1 does not exist.
4. Assume n = 3. The cases q = 2, 3, 7, 8 can be verified directly using [6]. Since we are

assuming rn−1 does not exist, it remains to consider the two cases where either q ≥ 31 is a
Mersenne prime, or q + 1 = 2a · 3b for some a, b ≥ 1. We show that in either case there is
a real character χ2 ∈ Irr(S) of degree q3 − 1. Choose ε ∈ F× of order 4 in the former case,
resp. q + 1 in the latter case, and take s2 ∈ (G∗)F∗

with preimage diag(ε, ε−1, 1) in GL3(F)

(which we also denote by s2). It is easy to check that

CPGL3(F)(s2) = CGL3(F)(s2)/Z(GL3(F))

and so it is connected, that

|CPGL3(q)(s2)| = |CGL3(q)(s2)/Cq−1| = |(Cq2−1 × GL1(q))/Cq−1)| = q2 − 1,

and that s2 is real in (G∗)F∗
(as we can embed it in SL2(q) < (G∗)F∗

). Also, in the former
case |s| = 4 is coprime to |Z(GF )| = 3, and in the latter case |Z(GF )| = (3, q − 1) = 1. By
Lemma 2.5, s2 defines a real character χ2 ∈ Irr(S) of degree q3 − 1. Clearly, χ2 and χ(2,1)
cover S.

5. Assume n = 5. Again choose ε ∈ F× of order q+1 and take s2 ∈ (G∗)F∗
with preimage

diag(ε, ε−1, 1, 1, 1) in GL5(F) (which we also denote by s2). It is easy to check that

CPGL5(F)(s2) = CGL5(F)(s2)/Z(GL5(F))
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and so it is connected, that

CPGL5(q)(s2) = CGL5(q)(s2)/Cq−1 = (Cq2−1 × GL3(q))/Cq−1,

and that s2 is real in (G∗)F∗
(as we can embed it in SL2(q) < (G∗)F∗

). Also, the non-existence
of rn−1 implies that 5|(q2 + 1) and so |Z(GF )| = (5, q − 1) = 1. By Lemma 2.5, s2 defines
a real character χ2 ∈ Irr(S) of degree (q5 − 1)(q2 + 1). Now χ2 together with χ(4,1) (of
degree (q5 − q)/(q − 1)) and χ(3,12) (of degree q3(q2 + 1)(q2 + q + 1)) cover S.

6. Finally, we consider the case n ≥ 7. Notice that SL7(2) has unipotent characters χ(5,2)
of degree 22 · 5 · 127 and χ(5,1,1) of degree 23 · 3 · 31, while π(|S|) = {2, 3, 5, 7, 31, 127}.
So we may assume (n, q) �= (7, 2). Then p(n−1) f − 1 has primitive prime divisors, and any
such PPD is larger than (n − 1) f . So the non-existence of rn−1 implies that f = 1 and n
is a prime. Now we can find a PPD rn−3 of p(n−3) f − 1, and clearly (rn−3, n(q − 1)) = 1.
Arguing as in 3), we see that there is a real semisimple element sn−3 ∈ Spn−3(q) < GLn(q)
of order rn−3 with CGLn(q)(sn−3) = GL3(q) × Cqn−3−1. This element gives rise to a real

semisimple element (which we also denote by sn−3) of order rn−3 in (G∗)F∗ = PGLn(q)
with |CPGLn(q)(sn−3)| = |(GL3(q) × Cqn−3−1)|/(q − 1). By Lemma 2.5, sn−3 defines a
real character χn−3 ∈ Irr(S) of degree divisible by

∏
4≤i≤n, i �=n−3(q

i − 1). Now χn−3 and

χ(n−2,2) (of degree q2(qn − 1)(qn−3 − 1)/(q2 − 1)(q − 1)) cover S. ��
Lemma 3.5 Theorem 3.1 holds true in the case S = P SUn(q) with n ≥ 3 and q = p f .

Proof 1. Assume n = 3. The case q = 3 can be checked directly using [6], so we will assume
that q ≥ 4; in particular (q −1) does not divide q +1. Hence, in the notation of [10], Irrrv(S)
contains characters χq(q−1) of degree q(q − 1) and χ(q+1)

q3+1
of degree q3 + 1, and so we are

done.
Thus we may assume n ≥ 4. View S as GF/Z(GF ) for a suitable Frobenius map F

on G := SLn(F). Observe that Irrrv(P SU6(2)) contains characters of degree 23 · 5 · 11 and
3 ·7 ·11, while π(|S|) = {2, 3, 5, 7, 11}. Furthermore, SU7(2) has unipotent characters χ(5,2)
of degree 22 · 5 · 43 and χ(5,1,1) of degree 23 · 3 · 7 · 11, while π(|S|) = {2, 3, 5, 7, 11, 43}.
So we may assume (n, q) �= (6, 2), (7, 2).

2. Assume furthermore that n is even. Then we can find a PPD rn > n of pn f − 1. Let
V := Fn

q2 denote the natural module for SUn(q). We distinguish two cases.
Suppose n ≡ 0(mod 4). Then Sylow rn-subgroups of GUn(q) are cyclic and may be

embedded in Spn(q). Since any semisimple element of Spn(q) is real by [28], we can find
a real semisimple element sn ∈ Spn(q) of order rn and then embed it in SUn(q). We may
assume that Spec(sn, V ) contains an eigenvalue α with |α| = rn . By the choice of rn , α has a
minimal polynomial f (t) of degree n/2 over Fq2 , whose roots are αq2i

, 0 ≤ i < n/2. Since

sn ∈ SUn(q), it also has an eigenvalue α−q which is not a root of f (t) as 4|n. Now if f̌ is
the minimal polynomial of α−q over Fq2 , then the characteristic polynomial of sn on V is

f · f̌ . Standard computations show that CGUn(q)(sn) = GL1(qn).
Suppose n ≡ 2(mod 4). Again choose α ∈ F× of order rn and consider its minimal poly-

nomial f (t) over Fq2 . The roots of f (t) are αq2i
, 0 ≤ i < n/2 and they do not include α−1

since n/2 is odd. Notice that the Sylow rn-subgroups of GUn/2(q) are cyclic. So we can find

a semisimple element s′ ∈ GUn/2(q) having eigenvalues αq2i
, 0 ≤ i < n/2, on F

n/2
q2 . Via

the embeddings GUn/2(q) < Spn(q) < SUn(q), s′ gives rise to a real element sn of order

rn in SUn(q) and having eigenvalues α±q2i
, 0 ≤ i < n/2 on V . The explicit spectrum of sn

on V yields that CGUn(q)(sn) = GU1(qn/2)2.
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In both cases, we will denote the image of sn in (G∗)F∗ = PGUn(q) by the same sym-
bol. Since |sn | = rn is coprime to q + 1, CPGUn(q)(sn) = CGUn(q)(s2)/Z(GUn(q)). By
Lemma 2.5, sn defines a real character χn ∈ Irr(S), of degree divisible by

∏n−1
i=2 (q

i − (−1)i )
if 4|n and by (qn/2 − 1)

∏
2≤i≤n−1, i �=n/2(q

i − (−1)i ) if n ≡ 2(mod 4). We also consider
certain unipotent charactersχλ of PGUn(q) labeled by partitions λ of n, cf. [4, p. 465]; any of
them is rational (since they are rational combinations of rational Deligne–Lusztig characters
RG

T (1)) and restricts irreducibly to S. In particular,

χ(n−2,2)(1) = q2(qn − (−1)n)(qn−3 − (−1)n−3)

(q2 − 1)(q + 1)
.

Clearly, χn and χ(n−2,2) cover S.
3. From now on we may assume n ≥ 5 is odd and (n, q) �= (7, 2). Suppose that we can

find a PPD rn−1 of p(n−1) f − 1 such that (rn−1, n) = 1. Arguing as in 2), we can find a real
semisimple element sn−1 ∈ SUn−1(q) of order rn−1 and then embed it in (G∗)F∗

such that
C(G∗)F∗ (sn−1) has order qn−1 − 1 if n ≡ 1(mod 4) and (q(n−1)/2 + 1)2 if n ≡ 3(mod 4).
By Lemma 2.5, sn−1 then defines a real character χn−1 ∈ Irr(S). Also, here we have

χ(n−2,12)(1) = q3(qn−1 − 1)(qn−2 + 1)

(q2 − 1)(q + 1)
.

In this case, χn−1 and χ(n−2,12) cover S. It remains to consider the cases where such an rn−1

does not exist; in particular q = p and n is a prime dividing q(n−1)/2 + 1.
4. Assume n = 5. The case q = 2 can be verified directly using [6]. Since we are assuming

rn−1 does not exist, 5|(p2 +1) and so p = 3 or p ≥ 7. If p = 3, then χ(3,2) and χ(3,12) cover

SU5(3). Suppose p ≥ 7 Choose ε ∈ F× of order q − 1 and take s2 ∈ (G∗)F∗
with preimage

diag(ε, ε−1, 1, 1, 1) in GU5(F) (which we also denote by s2). It is easy to check that

CPGL5(F)(s2) = CGL5(F)(s2)/Z(GL5(F))

and so it is connected, that

CPGU5(q)(s2) = CGU5(q)(s2)/Cq+1 = (Cq2−1 × GU3(q))/Cq+1,

and that s2 is real in (G∗)F∗
(as we can embed it in SU2(q) < (G∗)F∗

). Also, |Z(GF )| =
(5, q + 1) = 1. By Lemma 2.5, s2 defines a real character χ2 ∈ Irr(S) of degree divisible by
(q5 + 1)(q2 + 1). Now χ2, χ(4,1) (of degree q(q − 1)(q2 + 1)), and χ(3,12) cover S.

5. Finally, we consider the case n ≥ 7 is a prime. Then we can find a PPD rn−3 of
qn−3 − 1, and clearly (rn−3, n(q + 1)) = 1. Arguing as in 2), we see that there is a real
semisimple element sn−3 ∈ Spn−3(q) < GUn(q) of order rn−3, with CGUn(q)(sn−3) =
GU3(q)× GL1(qn−3) if n ≡ 3(mod 4) and CGUn(q)(sn−3) = GU3(q)× GU1(q(n−3)/2)2 if
n ≡ 1( mod 4). This element gives rise to a real semisimple element (which we also denote by
sn−3) of order rn−3 in (G∗)F∗ = PGUn(q) with |CPGUn(q)(sn−3)| = |CGUn(q)(sn−3)|/(q +
1). By Lemma 2.5, sn−3 defines a real character χn−3 ∈ Irr(S). Now χn−3 and χ(n−2,2) (of
degree q2(qn + 1)(qn−3 − 1)/(q2 − 1)(q + 1)) cover S. ��

Now we will complete the proof of Theorem 3.1 for the remaining finite groups of Lie
type.

1. Assume S = P Sp2n(q)′ with n ≥ 2, resp.�2n+1(q)with n ≥ 3 and q odd. The cases of
P Sp4(2)′ and P Sp6(2) can be checked directly using [6], so we will assume S �= P Sp4(2)′,
P Sp6(2). It follows that there is a PPD r of q2n − 1, and a semisimple element s of order
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r in (G∗)F∗
(which is SO2n+1(q), resp. PC Sp2n(q)). Such an element is real by [28]. Fur-

thermore, |C(G∗)F∗ (s)| = qn + 1 by [23, Lemma 2.4]. Hence by Lemma 2.5, s defines
a real character χ1 ∈ Irr(S) of degree divisible by |S|p′/(qn + 1). On the other hand,
S has a rank 3 permutation character with a rational irreducible constituent χ2 of degree
q(qn + 1)(qn−1 − 1)/2(q − 1), cf. [27]. Now χ1, χ2, and the Steinberg character of S if
q = 2, cover S.

2. Assume S = P�+
2n(q) with n ≥ 4. The case of �+

8 (2) can be checked directly using
[6], so we will assume (n, q) �= (4, 2). It follows that there is a PPD r of q2n−2 − 1. If
n is even, then any semisimple element in (G∗)F∗ = P(C O+

2n(q)
◦) is real by [28], and so

we can find a real semisimple element s ∈ (G∗)F∗
of order r . If n is odd, then any semi-

simple element in P�−
2n−2(q) is real by [28], and so we can find a real semisimple element

s ∈ P�−
2n−2(q) < (G∗)F∗

of order r . Notice that any Sylow r -subgroup of P�−
2n−2(q) is

cyclic and a Sylow subgroup for (G∗)F∗
. In either case, |C(G∗)F∗ (s)| = (qn−1 +1)(q +1) by

[23, Lemma 2.4]. By Lemma 2.5, s defines a real character χ1 ∈ Irr(S) of degree divisible
by |S|p′/(qn−1 + 1)(q + 1). On the other hand, S has a rank 3 permutation character with a
rational irreducible constituent χ2 of degree q2(q2n−2 − 1)/(q2 − 1), cf. [27]. Now χ1 and
χ2 cover S.

3. Assume S = P�−
2n(q) with n ≥ 4. If n is even, then we can find a PPD r of q2n − 1

and a semisimple element s ∈ (G∗)F∗ = P(C O−
2n(q)

◦) of order r . Such an element s is
real by [28] (since n is even), and |C(G∗)F∗ (s)| = (qn + 1) by [23, Lemma 2.4]. If n is odd,

we can find a PPD r of q2n−2 − 1 and a semisimple element s ∈ P�−
2n−2(q) of order r ;

any such element s is real by [28] (since n − 1 is even). Since P�−
2n−2(q) < (G∗)F∗

, and

any Sylow r -subgroup of P�−
2n−2(q) is cyclic and a Sylow subgroup for (G∗)F∗

, we can

embed s in (G∗)F∗
; furthermore, |C(G∗)F∗ (s)| = (qn−1 + 1)(q + 1) by [23, Lemma 2.4]. By

Lemma 2.5, s defines a real character χ1 ∈ Irr(S). Next, S has a rank 3 permutation character
with rational irreducible constituents χ2 of degree q2(q2n−2 − 1)/(q2 − 1) and χ3 of degree
q(qn + 1)(qn−2 − 1)/(q2 − 1), cf. [27]. Now χ1, χ2, and χ3 cover S.

4. Assume S is of type E6(q), resp. 2E6(q). Then we can find a PPD r of q12 − 1, and a
semisimple element s ∈ F4(q) of order r ; any such element s is real by [28]. Since F4(q) <
(G∗)F∗

and any Sylow r -subgroup of F4(q) is cyclic and a Sylow subgroup for (G∗)F∗
,

we can embed s in (G∗)F∗
. Furthermore, |C(G∗)F∗ (s)| = �12(q)�3(q), resp. �12(q)�6(q)

by [23, Lemma 2.3]. By Lemma 2.5, s defines a real character χ1 ∈ Irr(S). In p. 5 of the
proof of Theorem 2.1 we have shown that Irr(S) also contains a real unipotent character
χ2: φ20,2 of degree q2�4(q)�5(q)�8(q)�12(q) in the case of E6(q), and φ4,1 of degree
q2�4(q)�8(q)�10(q)�12(q) in the case of 2E6(q). Clearly, χ1 and χ2 cover S.

5. Assume S is of type G2(q), resp. F4(q), E7(q), E8(q) with q = p f . The cases
of G2(3) and G2(4) can be checked directly using [6], so we will assume that q ≥ 5 if
S = G2(q). It follows that there exist a PPD r1 of pm1 f − 1 and a PPD r2 of pm2 f − 1,
where (m1,m2) = (6, 3), resp. (12, 8), (18, 14), (30, 24). Now we can find a semisimple
element si ∈ (G∗)F∗

of order ri for i = 1, 2; such elements are real by [28]. Furthermore,
|C(G∗)F∗ (si )| = �mi (q) or �mi (q)�2(q) by [23, Lemma 2.3]. By Lemma 2.5, si defines a
real character χi ∈ Irr(S). Now χ1, χ2, and the Steinberg character cover S.

6. Assume S = 3D4(q); in particular, every character of S is real by [28, Theorem 1.2].
There is a PPD r of q12 − 1, and a semisimple element s of order r in (G∗)F∗ � S; further-
more, |C(G∗)F∗ (s)| = �12(q) by [23, Lemma 2.3]. Hence by Lemma 2.5, s defines a real
character χ1 ∈ Irr(S) of degree |S|p′/�12(q). On the other hand, Irr(S) contains a unique
character χ2 of smallest degree q�12(q), cf. [20]. Now χ1 and χ2 cover S.
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Assume S = 2F4(q)′. The case of 2F4(2)′ can be checked directly using [6], so we will
assume q ≥ 8. It follows that there is a PPD r of q6 − 1, and a semisimple element s of
order r in (G∗)F∗ � S. Such an element is real by [28]; furthermore, |C(G∗)F∗ (s)| = �6(q)
by [23, Lemma 2.3]. Hence by Lemma 2.5, s defines a real character χ1 ∈ Irr(S) of degree
|S|p′/�6(q). On the other hand, Irr(S) contains a unique, hence rational, character χ2 of
third smallest degree q�6(q)�12(q), cf. [20]. Now χ1 and χ2 cover S.

Assume S is of type 2B2(q), resp. 2G2(q), with q = p f and f ≥ 3 is odd. There exist a
PPD r1 of pm1 f − 1 and a PPD r2 of pm2 f − 1, where (m1,m2) = (1, 4), resp. (1, 6). Now
we can find a semisimple element si ∈ (G∗)F∗ � S of order ri for i = 1, 2; such elements
are real by [28]. By [23, Lemma 2.3], |C(G∗)F∗ (si )| = q − 1 for i = 1 and q ± √

pq + 1 for
i = 2. By Lemma 2.5, si defines a real character χi ∈ Irr(S). Now χ1, χ2, and the Steinberg
character cover S.

Theorem 3.1 has been proved completely. ��

4 Proof of Theorem A

We shall need the following result.

Lemma 4.1 Let G be a finite group and let N � G be with G/N of odd order. If χ ∈ Irrrv(G),
then all irreducible constituents of χN are real-valued. If θ ∈ Irr(N ) is real-valued, then
there exists a unique ψ ∈ Irrrv(G) over θ .

Proof The second part is [25, Corollary 2.2]. The first part is easier. If χ ∈ Irrrv(G) and
θ ∈ Irr(N ) lies under χ , then θ̄ and θ are G-conjugate by Clifford’s theorem. Thus θ g = θ̄

for some g ∈ G and g2 stabilizes θ . Since 〈g2 N 〉 = 〈gN 〉, it follows that g stabilizes θ .
Hence θ̄ = θ . ��

Recall that a 2-group P is of Chillag–Mann type if Irrrv(P) = Irr(P/�(P)).

Theorem 4.2 Let G be a finite group and let P ∈ Syl2(G). Then all χ ∈ Irrrv(G) have odd
degree if and only if P � G of Chillag–Mann type.

Proof Suppose first that P � G and that all characters in Irrrv(P) are linear. Let χ ∈ Irrrv(G)
and let θ ∈ Irr(P) be under χ , which we know by Lemma 4.1 that it is linear. Hence χ(1)
divides |G : P| which is odd.

Now, we assume that every character in Irrrv(G) has odd degree, and prove by induction
on |G| that P � G. If 1 < N � G, then Irrrv(G/N ) ⊆ Irrrv(G), and by induction we have that
P N � G. Now, let θ ∈ Irrrv(P N ). By Lemma 4.1, there exists χ ∈ Irrrv(G) over θ . Since
χ has odd degree, θ has odd degree. If P N < G, then P � P N by induction hypothesis,
and so P � G. Hence, we may assume that P N = G for every 1 < N � G. Arguing by
contradiction, we may assume that P �= 1 is not normal in G. In particular, we deduce that
G has a unique minimal normal subgroup, say M .

Suppose first that M is abelian. Hence, M is an odd order normal subgroup of G and
G = M P . We also may assume that M > 1. In particular, CP (M) = 1 because M is the
unique minimal normal subgroup of G. Since P �= 1, we can choose an involution x ∈ P . If
x fixes all Irr(M), then x fixes all conjugacy classes of M by Brauer’s lemma (6.32) of [15].
Since |M | is odd, it follows that [x,M] = 1, which is impossible. Therefore, there exists
λ ∈ Irr(M) such that 1 �= ν = λ−1λx . Now, νx = ν̄. If T is the stabilizer of ν in G and
η ∈ Irr(T ) is the canonical extension of ν to T (see Corollary (6.28) of [15]), we have that
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ηx = η̄ because (η̄)x and η are two canonical extensions of ν to T . Now, if χ = ηG ∈ Irr(G),
then

χ̄ = (η̄)G = (ηx )G = ηG = χ .

Thus χ is real and has odd degree. But |G/M | is a 2-power, so χM is a multiple of ν. Since
νx = ν̄, this implies that ν = ν̄ and this is not possible (since ν �= 1).

Thus we may assume that M is a direct product of non-abelian simple groups which are
transitively permuted by P . Write M = S1 × · · · × Sn , where each Si is simple non-abelian.
Now, write S = S1 and let H = NG(S). Since CG(S)∩S = 1, it easily follows that the group
H̄ = H/CH (S) has a normal simple group S̄ = SCH (S)/CH (S) such that CH̄ (S̄) = 1.
Since M ⊆ SCG(S), it follows that H̄/S̄ is a 2-group. Hence, by Theorem 2.1 there exists
δ ∈ Irrrv(H̄) of even degree such that [δS, 1S] = 0 when we inflate δ to H . Let 1 �= θ ∈ Irr(S)
be an irreducible constituent of δS and let

ψ = θ ⊗ 1S2 ⊗ · · · ⊗ 1Sn .

Notice that δ lies over ψ . Now, let T be the inertia group of ψ in G. We claim that T ≤ H .
Perhaps, the easiest way to see this is the following. Let t ∈ T , and notice that Ker(ψ) =
S2 × · · · × Sn . Hence {S2, . . . , Sn} is t-invariant, which implies that S1 is t-invariant and so
t ∈ H . Now, if ξ is the Clifford correspondent of δ over ψ , then we have that ξG ∈ Irr(G).
Thus δG is an irreducible real character of even degree, and this contradiction finally proves
that P� G. Finally, notice that if θ ∈ Irrrv(P), then θ lies under some irreducibleχ ∈ Irrrv(G)
by Lemma 4.1. In particular, we deduce that every real irreducible character of P is linear.

��

5 The graph of real-valued characters

Let �rv(G) be the prime graph on the set of the degrees of the irreducible real characters of
the group G. Namely, �rv(G) is the graph with vertex set

V(G) =
⋃

χ∈Irrrv(G)

π(χ(1))

and edge set

E(G) = {{p, q} | p �= q, {p, q} ⊆ π(χ(1)) for some χ ∈ Irrrv(G)} .
For a nonlinear χ ∈ Irrrv(G), we denote by �G(χ) the connected component of �rv(G)

that contains the set of vertices π(χ(1)). In the same way, if q ∈ V(G) we denote by�G(q)
the connected component of �rv(G) which q belongs to.

Let n(�rv(G)) = |{�G(χ) |χ ∈ Irrrv(G)}| be the number of connected components of
the graph �rv(G).

Observe that if N � G, then �rv(G/N ) is a subgraph of �rv(G). If |G : N | is odd, then
by Lemma 4.1 also �rv(N ) is a subgraph of �rv(G).

We are now going to prove Theorem B. Observe that the bounds on the number of con-
nected components of �rv(G) are sharp, as n(�rv(S3)) = 2 and n(�rv(A5)) = 3.

Theorem 5.1 Let G be a finite group. Then

(i) n(�rv(G)) ≤ 3;
(ii) n(�rv(G)) ≤ 2 if G is solvable.
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Proof Let G be a counterexample of minimal order. Then, n(�rv(G)) ≥ 3 if G is solvable
and n(�rv(G)) ≥ 4 if G is non-solvable.

Let N be a maximal normal subgroup of G and assume that G/N is non-solvable. Then
G/N is a non-abelian simple group and V(G/N ) = π(|G/N |) by Theorem 3.1(i). Observe
also that, by Theorem 3.1(ii), N �= 1. Thus, n(�rv(G/N )) ≤ 3 < n(�rv(G)) and hence
there is a χ ∈ Irrrv(G) such that �G(χ) ∩ V(G/N ) = ∅. Then (χ(1), |G/N |) = 1 and
hence by [15, Corollary (11.29)] χN ∈ Irrrv(N ). Therefore, by [15, Corollary (6.17)] for any
ψ ∈ Irrrv(G/N ), we have χψ ∈ Irrrv(G). Takingψ ∈ Irrrv(G/N )withψ(1) �= 1, it follows
that �G(χ) = �G(χψ) intersects nontrivially V(G/N ), a contradiction.

Assume now that G/N is a cyclic group of prime order p �= 2 for some N � G.
As n(�rv(N )) < n(�rv(G)), there exists a χ ∈ Irrrv(G) such that �G(χ) ∩ V(N ) = ∅.

By Lemma 4.1, then χN = ∑p
i=1 φi where each φi ∈ Irrrv(N ) is linear and nontrivial.

Hence K = Ker(χ) ≤ N and N/K is an elementary abelian 2-group, as |N : Ker(φi )| = 2.
Take now ψ ∈ Irrrv(G) such that �G(ψ) �= �G(2) and �G(ψ) �= �G(p) (it exists as
n(�rv(G)) ≥ 3). Then (ψ(1), |G/K |) = 1 and hence ψK ∈ Irrrv(K ). Therefore, ψχ ∈
Irrrv(G) and, as p|χ(1), it follows that �G(ψ) = �G(χψ) = �G(p), a contradiction.

We can finally assume that, |G/N | = 2 for every maximal normal subgroup N of G.
Let M = O2(G) and consider L ≤ M , L normal in G, such that M/L is a chief factor of

G (observe that M is non-trivial).
We claim that there is a χ ∈ Irrrv(G) such that �G(χ) ∩ π(|G/L|) = ∅. This is clear if

M/L is solvable, since then π(|G/L|) = {2, q} for some prime q . If M/L is nonsolvable,
then M/L is a direct product of isomorphic non-abelian simple groups and, by Theorem 3.1
V(M/L) = π(|M/L|) = π(|G/L|). But as n(�rv(M/L)) ≤ 3 < n(�rv(G)), there is a
χ ∈ Irrrv(G) such that �G(χ) ∩ V(M/L) = ∅ and the claim is proved.

In particular, (χ(1), |G/L|) = 1 and hence χL ∈ Irrrv(L). Observe now that G/L has no
normal Sylow 2-subgroup, as otherwise there is a maximal normal subgroup N of G such
that |G/N | = |M/L| �= 2. Therefore, by Theorem A there is a ψ ∈ Irrrv(G/L) such that
ψ(1) is even. Since χψ ∈ Irrrv(G), it follows that�G(χ) = �G(χψ) intersects nontrivially
π(|G/L|), against the choice of χ . ��

6 Real conjugacy classes

Recall that an element g of a finite group G is said to be real in G if there is an x ∈ G such
that g−1 = gx . In the following we denote by Re(G) the set of the real elements in G. A
conjugacy class gG = {gx | x ∈ G} is said to be a real class when g is a real element of G
or, equivalently, when gG = (g−1)G .

It has been observed that the set of the sizes of the conjugacy classes of a finite group shows
strong similarities with the set of the degrees of the irreducible characters. Usually, results
for conjugacy classes are somewhat stronger and also easier to prove than the corresponding
results for character degrees.

This is the case for real classes and real characters as well. The following Theorem 6.1,
which is an analogue for conjugacy classes of Theorem A, does not require the use of the
classification of the finite simple groups.

Theorem 6.1 Let G be a finite group, and let P be a Sylow 2-subgroup of G. Then all real
classes of G have odd size if and only if P � G and Re(P) ⊆ Z(P).

We recall that the 2-groups P such that Re(P) ⊆ Z(P) have been studied by Chillag and
Mann in [5].
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We also have an analogue of Theorem B. Let �∗(G) be the prime graph on the set of the
sizes of the real conjugacy classes of G. Precisely, �∗(G) is the graph with vertex set

V∗(G) =
⋃

g∈Re(G)

π(|gG |)

and edge set

E∗(G) =
{
{p, q} | p �= q, {p, q} ⊆ π(|gG |) for some g ∈ Re(G)

}
.

Let us denote by n(�∗(G)) the number of connected components of the graph �∗(G).

Theorem 6.2 For any finite group G,

n(�∗(G)) ≤ 2.

We start now working towards the proof of Theorems 6.1 and 6.2.

Lemma 6.3 (a) If x ∈ Re(G) and |xG | is odd, then x2 = 1.
(b) If x, y ∈ Re(G), xy = yx and (|xG |, |yG |) = 1, then xy ∈ Re(G). If further

(o(x), o(y)) = 1, then π(|xG |) ∪ π(|yG |) ⊆ π(|(xy)G |).
(c) Let M � G be a 2-subgroup and let x ∈ G be an element of odd order. If x M ∈

Re(G/M), then x ∈ Re(G).
(d) If N � G and |G/N | is odd, then Re(G) = Re(N ).

Proof (a) The inversion map, acting on the real class xG , must have at least a fixed point.
Hence y = y−1 for all y ∈ xG .

(b) Let u, v ∈ G such that x−1 = xu and y−1 = yv . Since [G : CG(x)] and [G : CG(y)]
are coprime, then G = CG(x)CG(y) and we can write uv−1 = a−1b for suitable a ∈ CG(x)
and b ∈ CG(y). It follows that

(xy)−1 = y−1x−1 = x−1 y−1 = xu yv = xau ybv = (xy)g

where g = au = bv. Finally, if x and y have coprime orders, then CG(xy) = CG(x)∩CG(y)
and hence π(|(xy)G |) ⊇ π(|xG |) ∪ π(|yG |).

(c) This is a special case of the Lemma 2.2(d) in [24]. For reader’s convenience, we give a
proof of it anyway. Let g ∈ G such that (x M)g = x−1 M and write H = 〈x〉. By the Frattini
argument, g normalizes some conjugate H0 of H in M H and hence g acts as the inversion
on H0. It follows that H0 ⊆ Re(G) and then that x ∈ Re(G).

(d) Let g ∈ Re(G) and let x be an element of G such that gx = g−1. Observe that gN is
a real element of G/N and, since by (a) a group of odd order has no nontrivial real element,
it follows g ∈ N . Consider now y = xm , where m = o(x)2′ is the 2′-part of the order of
x . Then gy = g−1 and, as y is a 2-element, y ∈ N , which implies that g ∈ Re(N ). Hence,
Re(G) ⊆ Re(N ). The other inclusion is trivial. ��

We next describe the groups with no nontrivial real elements of odd order.

Proposition 6.4 The following are equivalent:
(a) Every nontrivial element in Re(G) has even order;
(b) Every element in Re(G) is a 2-element;
(c) G has normal Sylow 2-subgroup.
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Proof Observing that powers of real elements are real as well, it is clear that (a) and (b) are
equivalent.

We show now that (a) implies (c). By Lemma 6.3(c), if (a) holds in G then also in G/O2(G)
there is no nontrivial real element of odd order. Working by induction on |G|, we can hence
assume that O2(G) = 1. Assume by contradiction that |G| is even and let x ∈ G be an involu-
tion. For every g ∈ G, the subgroup D = 〈x, xg〉 is dihedral and then D = Re(D) ⊆ Re(G)
and D is a 2-group. By a theorem of Baer, it follows that x ∈ O2(G) = 1 , a contradiction.

Finally, if G has a normal Sylow 2-subgroup P , then by Lemma 6.3(d) Re(G) = Re(P)
and hence (c) implies (b). ��

Proof of Theorem 6.1 Let P be a Sylow 2-subgroup of G.
Assume first that |gG | is odd for all g ∈ Re(G). Then by Lemma 6.3(a) g2 = 1 for all

g ∈ Re(G) and hence by Proposition 6.4 P is normal in G. Further, if g ∈ Re(P) then clearly
g ∈ Re(G) and hence g centralizes P .

Conversely, assume that P � G and that Re(P) ⊆ Z(P). By Lemma 6.3(d) Re(G) =
Re(P) and hence |gG | is odd for all g ∈ Re(G). ��

We now come to the proof of Theorem 6.2. For g ∈ Re(G), g �∈ Z(G), we denote by
�∗

G(g) the connected component of �∗(G) that contains the set of vertices π(|gG |). In the
same way, if q ∈ V∗(G) we denote by �∗

G(q) the connected component of �∗(G) which q
belongs to.

Proof of Theorem 6.2 Working by contradiction, let G be a group of minimal order such that
n(�∗(G)) ≥ 3.

Assume first that there exists a nontrivial element of odd order x ∈ Re(G). By taking
a suitable power, we can assume that o(x) = p with p an odd prime. By Lemma 6.3(a),
then �∗

G(x) = �∗
G(2). Since n(�∗(G)) ≥ 3, there is a connected component �∗ of �∗(G)

with �∗ �= �∗
G(x) and �∗ �= �∗

G(p). Let y be a noncentral real element of G such that
�∗ = �∗

G(y). Because 2 �∈ �∗, y is an involution. Further, as p �∈ �∗, y commutes with a
Sylow p-subgroup of G and, up to conjugation, we can assume that x and y commute. Hence
by Lemma 6.3(b) we get the contradiction �∗

G(x) = �∗
G(xy) = �∗

G(y).
Therefore, every real element in G is a 2-element and hence by Proposition 6.4 G has a

normal Sylow 2-subgroup P . In particular, by the Feit–Thompson theorem G is solvable. Let
N be a maximal normal subgroup of G containing P . Then [G : N ] = q an odd prime and
Re(G) = Re(N ) by Lemma 6.3(d). If x ∈ Re(G), thenπ(|x N |) ⊆ π(|xG |) ⊆ π(|x N |)∪{q}.

By minimality, n(�∗(N )) ≤ 2 and this implies that a connected component of �∗(G)
must consist of the single prime q . Thus, if g ∈ Re(G) and q ∈ π(|gG |), then |gG | is a
q-power and g ∈ Z(N ). Further, g is an involution by Lemma 6.3(a).

Let Z = Z(P) � G. As P lies in the kernel of the action of N on Z , we have the decom-
position Z = CZ (N ) × [Z , N ], with CZ (N ), [Z , N ] � G. Let x ∈ G with �∗

G(x) = {q}.
Then x ∈ Z ∩ CG(N ) = CZ (N ). Observe now that [Z , N ] �= 1, as otherwise every real
class of odd size would have q-power size and hence n(�∗(G)) ≤ 2. Let y ∈ [Z , N ]
be an involution. Then y ∈ Re(G) and (|xG |, |yG |) = 1, so by Lemma 6.3(b) it follows
xy ∈ Re(G). Since x and y lie in normal subgroups of G which intersect trivially, we
have CG(xy) = CG(x) ∩ CG(y) and hence π(|(xy)G |) ⊇ π(|xG |) ∪ π(|yG |). This gives
�∗

G(x) = �∗
G(xy) = �∗

G(y), a contradiction. ��
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