
Math. Z. (2008) 258:55–68
DOI 10.1007/s00209-007-0156-x Mathematische Zeitschrift

On finite energy solutions of the KP-I equation

H. Koch · N. Tzvetkov

Received: 4 April 2006 / Accepted: 19 January 2007 / Published online: 6 April 2007
© Springer-Verlag 2007

Abstract We prove that the flow map of the Kadomtsev–Petviashvili-I (KP-I) equa-
tion is not uniformly continuous on bounded sets of the natural energy space.
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1 Introduction

The understanding of solutions to dispersive equations has considerably deepened
during the last decade. Much of the progress is based on the idea of Bourgain of using
L2 based function spaces adapted to the linear operator. This technique establishes
often a very non-trivial domination of the non-linearity by the linear operator, at least
on small scales. It is connected to objects in harmonic analysis: restriction theorems,
local smoothing, maximal functions and multilinear estimates. If applicable it leads to
existence and uniqueness via Picard iteration or the implicit function theorem, and
hence to uniform continuity and even differentiability of the flow map.

Despite the amazing success of this approach there are several problems where
it failed completely. Two of the most interesting of them are the Benjamin–Ono
and the Kadomtsev–Petviashvili-I (KP-I) equation. The Benjamin–Ono equation has
been intensively studied during the last 3 years, and a very precise understanding has
emerged: in the same way as for Burgers equation the low frequency part leads to a
change of the speed of waves ([7]), which in turn contradicts uniform continuity of
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the flow map. This, however, does not imply illposedness. The transport effect can be
controlled by a gauge transform, see Tao [10]. Ionescu and Kenig [5] approached the
transformed problem by adapted function spaces and bilinear estimates and obtained
well-posedness for initial data in L2. The non-linear Schrödinger equation on compact
manifolds has related properties which have been studied by different techniques by
Burq, Gérard and the second author [1,2] and by Colliander, Christ and Tao [3]. We
refer to [12] for a survey on the notion of well-posedness for dispersive PDE’s. The
result we obtain in this paper essentially answers a conjecture in [12].

In this paper we study the KP-I equation

ut + uxxx − ∂−1
x uyy + uux = 0, (1.1)

where (t, x, y) ∈ R
3, u is real valued function and ∂−1

x formal notation for the antideriv-
ative, which always exists for tempered distributions, but whose uniqueness requires
further considerations. In this paper we only deal with antiderivatives in L2 of L2

functions f . In this case the antiderivative is uniquely defined and its Fourier trans-
form can be defined through multiplication of̂f by (iξ)−1. It is not hard to see that, if
f is in addition compactly supported, then it is integrable with mean zero, and hence
the antiderivative could also be defined through the indefinite integral from −∞.

The KP-I equation appears as an asymptotic model for the propagation of long,
essentially one directional, small amplitude surface waves when the surface tension
is bigger than some critical value. For smaller values of the surface tension we get the
KP-II model. The KP-I equation can be written in the Lax pair form (see [13]) and
thus it shares many features with the “integrable PDE’s”. One also has a family of
particular solitary waves solutions called lump solutions. The study of the KP-I flow
close to the lumps is a challenging issue.

A simple calculation shows that the solutions of (1.1) satisfy, at least formally, the
conservation of the L2 norm

N(u) =
∫

R2

u2(t, x, y)dxdy = const

and the conservation of the energy

E(u) = 1
2

∫

R2

[

(∂xu)2 + (∂−1
x uy)

2 − 1
3

u3
]

(t, x, y)dxdy = const .

Taking into account the anisotropic Sobolev inequality (see e.g., [11] and Lemma 4.1),

‖u‖3
L3(R2)

≤ C‖u‖
3
2
L2(R2)

‖ux‖L2(R2)‖∂−1
x uy‖

1
2
L2(R2)

we deduce that the subspace of L2 of finite energy is a Banach space X, which we call
energy space, equipped with the norm

‖u‖X = ‖u‖L2(R2) + ‖ux‖L2(R2) + ‖∂−1
x uy‖L2(R2) .

This provides a natural framework to study the non-linear problem (1.1). The Cauchy
problem for the KP-I equation is known to be globally well-posed in spaces smaller
than the energy space (see [6,8]). More precisely, the Cauchy problem associated to
(1.1) is globally well-posed for data in the space Z equipped with the norm

‖u‖Z = ‖u‖L2(R2) + ‖uxx‖L2(R2) + ‖∂−2
x uyy‖L2(R2) .
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Notice that u ∈ Z implies ux ∈ L2(R2), uy ∈ L2(R2), ∂−1
x uy ∈ L2(R2). Moreover, the

Lax pair formulation of the KP-I equation implies that if the initial data

u0 = u|t=0 ∈ Z

of (1.1) is smooth [i.e., in the intersection of all Hs(R2), s ∈ N], and if ∂−1
x u0 is also

smooth then the global solution of (1.1) with data u0 satisfies a third conservation law.
Namely

F(u) = const,

where

F(u) =3
2

∫

R2

u2
xx + 5

∫

R2

u2
y + 5

6

∫

R2

(∂−2
x uyy)

2

− 5
6

∫

R2

u2(∂−2
x uyy)− 5

6

∫

R2

u (∂−1
x uy)

2 + 5
4

∫

R2

u2 uxx + 5
24

∫

R2

u4 .
(1.2)

There is in fact an infinite sequence of formal conservation laws associated to the KP-I
equation (see [13]). However, as noticed in [8], it is hard to find a suitable framework
of distributions on R

2 where these conservation laws make sense.
It is presently not known whether (1.1) is well-posed in the energy space X, but

we hope this problem will be given an affirmative answer in the near future. The goal
of this paper is to show that, whatever the answer is, the flow map of (1.1) can not
be uniformly continuous on bounded sets of the energy space X. Recall that, if one
solves (1.1) in X by the Picard iteration, then the flow map is automatically uniformly
continuous on bounded subsets of X. Our result thus implies that the solution to (1.1)
cannot by constructed by Picard iteration scheme, in sharp contrast to many other dis-
persive models, the KP-II equation [where (1.1) −∂−1

x uyy is replaced by ∂−1
x uyy], the

KdV equation, etc. This feature of the KP-I equation was already observed in [8,9].
In the present paper we construct some solutions of (1.1) which are “responsible” for
this phenomenon. Here is the precise statement of our result.

Theorem 1 There exist two positive constants c and C and two sequences (un) and (̃un)

of solutions of (1.1) such that for every t ∈ [−1, 1],
sup

n
‖un(t, ·)‖X + sup

n
‖̃un(t, ·)‖X ≤ C ,

(un) and (̃un) satisfy initially

lim
n→∞ ‖un(0, ·)− ũn(0, ·)‖X = 0,

but, for every t ∈ [−1, 1],
lim inf
n→∞ ‖un(t, ·)− ũn(t, ·)‖X ≥ c |t| .

In a previous paper [7], we proved a similar result for the Benjamin–Ono equation.
The analysis in the KP-I context is more involved since we use an additional cancella-
tion in the construction of the approximate solutions, related to the existence of zero
speed waves in the x direction for the linear KP-I equation, by which we mean that
the x component of the gradient of the symbol of the spatial operators vanishes for
suitable large frequencies. For the KP-II equation this speed is never zero outside the
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origin and similar waves do not exist there. In addition, our analysis uses the Burgers
type cancellation which was the only cancellation involved in the construction of [7].
Let us also notice that a technical modification of the proof of Theorem 1 is likely
to show that in Theorem 1 one can replace the energy space by the Sobolev spaces
Hs(R2), s > 0 or the spaces Ys considered in [6] equipped with the norm

‖u‖Ys = ‖u‖L2(R2) + ‖Ds
xu‖L2(R2) + ‖∂−1

x uy‖L2(R2) .

2 Outline of the proof of Theorem 1

We decompose the proof into three parts:

(1) We construct a family of approximate solutions uap depending on parameters ω,
|ω| ≤ 1 and λ � 1. Changing ω leads to a phase shift in the high frequency part
for positive t, but for t = 0 the variation of ω is uniformly smooth. We show that
the residual terms are small uniformly in all parameters, see Lemma 3.1.

(2) We study the bounds of the solutions u with initial datum uap(0) for t ≤ 1 in
many L2 based spaces. This part relies on the well-posedness for smooth data as
well as on conserved quantities.

(3) Energy arguments control ‖uap − u‖L2 . Interpolation with the bounds for u and
uap yields that u is close to uap in suitable function spaces.

This yields the desired conclusion because uap depends in a transparent way on ω,
which contradicts uniform continuity.

Let us explain the idea of the construction of the approximate solution. We denote
i times the symbol of the spatial part of the linear equation by

p(ξ , η) = ξ3 + ξ−1η2

Let λ � 1 be a large parameter. The function

cos(λx + 4λ3t + √
3λ2y) (2.1)

is a solution to the linear equation. Its velocity vector is

∇p(±λ, ±√
3λ2) =

(

0
±2

√
3λ

)

. (2.2)

In particular the velocity of the plane wave (2.1) in the x direction vanishes, which is
the reason for choosing these points in the frequency space.

We fix for the sequel two constants

1
2
< α < 1 < β, α + β < 2 (2.3)

and a function ϕ ∈ C∞
0 (R) supported in [−2, 2] and identically 1 in [−1, 1]. Since the

Fourier transform of

ϕ(x/λα)ϕ(x/λβ) cos(λx + 4λ3t + √
3λ2y) (2.4)

is very small outside a small neighborhood of (λ,
√

3λ) the corresponding velocity
vectors [given by ∇p evaluated in a small neighborhood of (λ,

√
3λ)] are close to (2.2),

and hence (2.4) defines an approximate solution.
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A first guess for the approximate solutions is

uap(t, x, y) = − λ−1− α+β
2 ϕ(x/λα)ϕ(y/λβ) cos(4λ3t + λx + √

3λ2y + ωt)

− λ−1ω ϕ(x/(2λα))ϕ(y/(2λβ)).
(2.5)

The crucial point is the dependence of the first part on ω. If we plug uap into the
equation then the time derivative leads to an additional term (compared to ω = 0),
which is linear in ω, and which essentially cancels against the product of the first and
the second term in the non-linearity.

The range of α and β is dictated by the velocity of plane waves and the uncer-
tainty principle. A plane wave with frequence (ξ , η) has the velocity ∇p(ξ , η), and the
Hessian of p describes the dispersion, the change of the velocity under small changes
of the frequencies. We obtain the following conditions.

(1) The low frequency part [the second term in (2.5)] has to converge to 0 in L2 as
λ → ∞ uniformly in |ω| ≤ 1. Its norm is a constant times

|ω|λ−1+ α+β
2

hence we need α + β < 2.
(2) The velocity in y direction is of size λ. Hence β > 1 is needed so that the high

frequency part is confined up to time 1 to an interval of size λβ in y direction.
(3) Let λα be the spatial scale. By the uncertainty principle the uncertainty in fre-

quency is at least λ−α . Then the uncertainty in the velocity in x direction is given
by the second x derivative of the symbol times the uncertainty in the frequency,
hence it is at least of size λ1−α . We search for approximate solutions on a time
scale of 1, and hence the spatial scale is at least λ1−α . We need thus α > 1

2 .

This is essentially the construction we shall employ below, up to an important detail:
we want to obtain an approximate solution in the energy space, which forces us to do
technical modifications so that our functions are x derivatives of suitable functions.

The function uap is an approximate solution in the sense that

∂tuap + ∂3
xxxu − ∂−1

x ∂2
yyuap + uap∂xuap

is small in L2.
Because of the structure of uap the difference between uap and the solution u with

the same initial data converges to zero in X. This last part of the proof is a consequence
of well-posedness results in more regular spaces and suitable conserved quantitities
for solutions, immediate estimates of higher norms for the approximate solution and
an energy estimate for the difference between u and uap.

This type of failure of uniform continuity is typical for a certain type of interations
between low and high frequencies. The approach of this paper seems to be flexible and
and applicable to several dispersive problems. The basic strategy consists in finding
high frequency waves which remain in a sufficiently small region up to time 1. We
do not see a general principle how to find these waves, but in all cases we are aware
of the construction is guided by the classical Hamiltonian motion combined with the
uncertainty principle.
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3 Construction of the approximate solution

We begin the construction by collecting several elementary technical observations
needed to obtain good antiderivatives with respect to x. If f ∈ C∞

0 (R) is such that

∞
∫

−∞
f (x)dx = 0, (3.1)

then, for every x ∈ R,

∣

∣(∂−1
x f )(x)

∣

∣ =
∣

∣

∣

∣

∣

∣

x
∫

−∞
f (y)dy

∣

∣

∣

∣

∣

∣

≤ mes
(

supp(f )
)(

sup
y∈R

|f (y)|).

In particular, if for some R > 0, supp(f ) ⊂ [−R, R] then for every x ∈ R,
∣

∣(∂−1
x f )(x)

∣

∣ ≤ 2R
(

sup
y∈R

|f (y)|),

and if in addition
∞

∫

−∞
xf (x)dx = 0,

then we also have
∣

∣(∂−2
x f )(x)

∣

∣ ≤ 4R2 sup
y∈R

|f (y)|.

Let us also notice that if f ∈ C∞
0 (R) is such that (3.1) holds and for some R > 0,

supp(f ) ⊂ [−R, R] then

supp
(

∂−1
x (f )

) ⊂ [−R, R].
We recall (2.3), that ϕ ∈ C∞ is supported in [−2, 2], identically 1 in [−1, 1], λ > 1 and
set

ψλ(x) = ϕ
( x
λα

) − 2ϕ
( x
λα

+ cλ
) + ϕ

( x
λα

+ 2cλ
)

,

where

cλ = 2π [10λ1+α]
λ1+α ,

with [s] denoting the largest integer ≤ s. Notice that, ψλ is supported in an interval of
size ∼ λα . In addition, for every γ ∈ R,

∞
∫

−∞
ψλ(x) cos(λx + γ )dx =

∞
∫

−∞
xψλ(x) cos(λx + γ )dx = 0 .

Therefore ∂−1
x (ψλ(x) cos(λx + γ )) and ∂−2

x (ψλ(x) cos(λx + γ )) are well defined C∞
0 (R)

functions.
Next, to shorten the notation, we define for |ω| ≤ 1

�λ = �λ(t, x, y,ω) = 4λ3t + λx + √
3λ2y + ωt, (3.2)
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where we suppress ω in the notation of �λ, and we set

˜ψλ(x) = ϕ
( x

2λα

)

− 2ϕ
( x

2λα
+ cλ/2

)

+ ϕ
( x

2λα
+ cλ

)

and

ϕλ(y) = ϕ(y/λβ), ϕ̃λ(y) = ϕ(y/(2λβ)).

For |ω| ≤ 1 and λ ≥ 1, we define an approximate solution uap of (1.1) by the formula

uap(t, x, y) = − λ−1− α+β
2 ψλ(x)ϕλ(y) cos(4λ3t + λx + √

3λ2y + ωt)

− λ−1ω ˜ψλ(x)ϕ̃λ(y) .
(3.3)

Notice that
∞

∫

−∞
˜ψλ(x)dx =

∞
∫

−∞
x ˜ψλ(x)dx = 0 .

Therefore ∂−1
x (˜ψλ) and ∂−2

x (˜ψλ) are well defined C∞
0 (R) functions. Moreover, for

λ � 1,

ψλ˜ψλ = ψλ.

The main properties of uap are collected in the following lemma.

Lemma 3.1 There exist δ > 0, c > 0 and C > 0 such that for every ω ∈ [−1, 1], every
λ ≥ 1,

∥

∥

∥(∂t + ∂3
x − ∂−1

x ∂2
y )uap + uap∂x(uap)

∥

∥

∥

L2(R2)
≤ Cλ−1−δ . (3.4)

Moreover
‖∂−1

x ∂yuap(t)‖L2(R2) ≤ C, (3.5)

‖∂−2
x ∂2

y uap(t)‖L2(R2) ≤ Cλ (3.6)

and, for every t,ω,ω′ ∈ [−1, 1],
‖∂x(uap,ω(t)− uap,ω′(t))‖L2(R2) ≥ c|ω − ω′||t| − Cλ−δ . (3.7)

Remark 1 It is not hard to keep track of the size of δ. Let ε be a small positive constant,
choose β = 2α = 4

3 − ε. Then δ may be chosen to be 1
3 − ε.

Proof In the proof of this lemma, we denote by oL2(λ−1) quantities having L2(R2)

norm bounded by Cλ−1−δ for a suitable δ > 0 uniformly for t ∈ [−1, 1], ω ∈ [−1, 1]
and what is the most important, λ ≥ 1. The proof requires elementary but careful
calculations.

It is easy to check, using integration by parts, that
∥

∥∂−1
x ∂2

y
(

λ−1ω ˜ψλ(x)ϕ̃λ(y)
)∥

∥

L2(R2)
≤ Cλ−1+ α+β

2 +α−2β = Cλ−1+ 3
2 (α−β) .

Next,
∥

∥∂3
x
(

λ−1ω ˜ψλ(x)ϕ̃λ(y)
)∥

∥

L2(R2)
≤ Cλ−1+ α+β

2 −3α
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and thus, thanks to the assumptions on (α,β), we obtain that
(

∂3
x − ∂−1

x ∂2
y
)(

λ−1ω ˜ψλ(x)ϕ̃λ(y)
) = OL2

(

λ−1+ α+β
2 +max{α−2β,−3α}) = oL2(λ

−1). (3.8)

Coming back to the definition of uap, we can readily check that

uap ∂xuap = −ωλ−1− α+β
2 ψλ(x)ϕλ(y) sin(�λ(t, x, y,ω))+ OL2

(

λ−2− α−β
2

)

. (3.9)

Notice that the leading term in (3.9) is coming from the product of the high fre-
quency part of ∂xuap and the low frequency part of uap.

Next, we compute integrating by parts

∂−1
x (ψλ cos�λ) =

x
∫

−∞
ψλ cos�λ = λ−1ψλ sin�λ − λ−1

x
∫

−∞
∂x[ψλ] sin�λ .

We integrate by parts two more times to arrive at

∂−1
x (ψλ cos�λ) = λ−1ψλ sin�λ + λ−2∂x[ψλ] cos�λ −

−λ−3∂2
x [ψλ] sin�λ + λ−3

x
∫

−∞
∂3

x [ψλ] sin�λ. (3.10)

Using the Leibniz rule, since β > 1, we infer that

λ−1− α+β
2 ∂2

y
([λ−1ψλ sin�λ]ϕλ(y)

) = −3λ2− α+β
2 ψλ(x)ϕλ(y) sin�λ + OL2

(

λ−β) .

Similarly

λ−1− α+β
2 ∂2

y
([λ−2∂x[ψλ] cos�λ]ϕλ(y)

) = − 3λ1− α+β
2 ∂x[ψλ(x)]ϕλ(y) cos�λ

+ OL2
(

λ−1−α−β)

and,

λ−1− α+β
2 ∂2

y
([λ−3∂2

x [ψλ] sin�λ]ϕλ(y)
) = OL2

(

λ−2α).

We recall that α > 1
2 . Similarly

λ−4− α+β
2 ∂2

y

x
∫

−∞
∂3

x [ψλ] sin�λ = OL2
(

λ−2α).

Summarizing, we can conclude that

∂−1
x ∂2

y
(

λ−1− α+β
2 ψλ(x)ϕλ(y) cos�λ

) = − 3λ2− α+β
2 ψλ(x)ϕλ(y) sin�λ

− 3λ1− α+β
2 ∂x[ψλ(x)]ϕλ(y) cos�λ + oL2

(

λ−1).
(3.11)

Using the Leibniz rule, we infer

∂3
x
(

λ−1− α+β
2 ψλ(x)ϕλ(y) cos�λ

) = λ2− α+β
2 ψλ(x)ϕλ(y) sin�λ

−3λ1− α+β
2 ∂x[ψλ(x)]ϕλ(y) cos�λ + oL2

(

λ−1).
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Therefore using (3.8), we obtain that
(

∂3
x − ∂−1

x ∂2
y
)

uap = −4λ2− α+β
2 ψλ(x)ϕλ(y) sin�λ + oL2

(

λ−1).

The cancellation of the term

3λ1− α+β
2 ∂x[ψλ(x)]ϕλ(y) cos�λ

is the main new point in this paper. It is an analytic expression of the fact that the x
component of the velocity vector vanishes for the plane wave which we have chosen.
Here, we essentially use that we are dealing with the KP-I equation, i.e., the sign in
front of ∂−1

x ∂2
y is crucial to achieve this cancellation. Since

∂tuap = 4λ2− α+β
2 ψλ(x)ϕλ(y) sin�λ + λ−1− α+β

2 ωψλ(x)ϕλ(y) sin�λ,

we obtain that
(

∂t + ∂3
x − ∂−1

x ∂2
y
)

uap = ωλ−1− α+β
2 ψλ(x)ϕλ(y) sin�λ + oL2

(

λ−1).

This, together with (3.9), completes the proof of (3.4).
Using (3.10), arguing in the same way as there, we can write

∂−1
x ∂y

(

λ−1− α+β
2 ψλ(x)ϕλ(y) cos�λ

)

= √
3λ− α+β

2 ψλ(x)ϕλ(y) cos�λ + oL2
(

λ−1).

(3.12)
Moreover

∥

∥∂−1
x ∂y

(

λ−1ω ˜ψλ(x)ϕ̃λ(y)
)∥

∥

L2(R2)
≤ Cλ−1+ α+β

2 +α−β ≤ C (3.13)

which completes the proof of (3.5).
Let us now turn to the proof of (3.6). The low frequency part of uap can be estimated

as
∥

∥∂−2
x ∂2

y
(

λ−1ω ˜ψλ(x)ϕ̃λ(y)
)∥

∥

L2(R2)
≤ Cλ−1+ α+β

2 +2α−2β ≤ C.

We next estimate the high frequencies and repeat the calculation of (3.10),

∂−1
x (ψλ sin�λ) =

x
∫

−∞
ψλ sin�λ = −λ−1ψλ cos�λ + λ−1

x
∫

−∞
∂x[ψλ] cos�λ

= −λ−1ψλ cos�λ + λ−2∂x[ψλ] sin�λ − λ−2

x
∫

−∞
∂2

x [ψλ] sin�λ .

Next, we estimate each term in the right hand-side of the above equality. First
∥

∥λ−2ψλ cos�λ
∥

∥

L2(Rx)
≤ Cλ−2λ

α
2 (3.14)

and then
∥

∥λ−3∂x[ψλ] sin�λ
∥

∥

L2(Rx)
≤ Cλ−3λ−αλ

α
2 ≤ Cλ−2λ

α
2 (3.15)

and finally
∥

∥

∥

∥

∥

∥

λ−3

x
∫

−∞
∂2

x [ψλ] sin�λ

∥

∥

∥

∥

∥

∥

L2(Rx)

≤ Cλ−3λ−2αλαλ
1
2 ≤ Cλ−2λ

α
2 .
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Notice that (3.14) and (3.15) imply that
∥

∥∂−1
x (λ−2∂x[ψλ] cos�λ)

∥

∥

L2(Rx)
≤ Cλ−2λ

α
2

which is the relevant bound for the second term in the right hand-side of (3.10). It
remains to estimate the last two terms in the right hand-side of (3.10). We can write

∥

∥∂−1
x [λ−3∂2

x [ψλ] sin�λ]
∥

∥

L2(Rx)
≤ Cλ−3λ−2αλαλ

1
2 ≤ Cλ−2λ

α
2 ,

since α > 1/2. For the last term in the right hand-side of (3.10), we can write
∥

∥

∥

∥

∥

∥

∂−1
x

⎡

⎣λ−3

x
∫

−∞
∂3

x [ψλ] sin�λ

⎤

⎦

∥

∥

∥

∥

∥

∥

L2(Rx)

= ∥

∥∂−2
x [λ−3∂3

x [ψλ] sin�λ]
∥

∥

L2(Rx)

≤ Cλ−3λ−3αλ
1
2 λ2 ≤ Cλ−2λ

α
2

since α > 1/2 > 3/7.
Summarizing, we infer that the high frequencies of uap can be estimated as

∥

∥∂−2
x (ψλ cos�λ)

∥

∥

L2(Rx)
≤ Cλ−2λ

α
2

and thus, using that ∂2
y is causing at most an amplification factor λ4, we conclude that

∥

∥∂−2
x ∂2

y
(

λ−1− α+β
2 ψλ(x)ϕλ(y) cos�λ

)∥

∥

L2(R2)
≤ Cλ−1− α+β

2

(

λ−2λ
α
2

) (

λ4λ
β
2

)

= Cλ.

This proves (3.6).
Finally, we give the proof of (3.7). Notice that

∂xuap = λ− α+β
2 ψλ(x)ϕλ(y) sin(�λ)+ OL2

(

λ−1+ β−α
2

)

. (3.16)

With a = 4λ3t + λx + √
3λ2y, we may write

sin(a + ωt)− sin(a + ω′t) = 2 sin(t(ω − ω′)/2) cos(a + t(ω + ω′)/2),

and after a sequence of integrations by parts, we get
∥

∥λ− α+β
2 ψλϕλ

{

sin�ω,λ − sin�ω,λ′
}∥

∥

2
L2 ≥ c(|t||ω − ω′|)2∥∥λ− α+β

2 ψλϕλ
∥

∥

2
L2 − Cλ−2.

Using the choice of cλ, we can minorate ‖ψλ‖L2(R) and thus

∥

∥λ− α+β
2 ψλϕλ

{

sin�ω,λ − sin�ω′,λ
}∥

∥

L2 ≥ c|ω − ω′||t| − Cλ−1

which proves (3.7). This completes the proof of Lemma 3.1. �

4 Bounds for the exact solution

Let uω,λ(t, x, y) be a solution of the KP-I equation with data

uω,λ(0, x, y) = −λ−1− α+β
2 ψλ(x)ϕλ(y) cos

(

λx + √
3λ2y

) − λ−1ω ˜ψλ(x)ϕ̃λ(y).

Thanks to the properties of ψλ(x) and ˜ψλ(x), we can apply the global well-posedness
result of [6] to obtain that uω,λ(t, x, y) is globally defined and satisfies the conservation
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laws mentioned in the introduction (see also [8, Proposition 4]). Moreover, for every
t, ξ−1ûω,λ(t, ξ , η) belongs to L2(R2) (see [4]).

In order to bound uω,λ in Z, we will use the following anisotropic Sobolev inequality.

Lemma 4.1 For 2 ≤ p ≤ 6 there exists C > 0 such that for every u ∈ X,

‖u‖Lp(R2) ≤ C‖u‖
6−p
2p

L2(R2)
‖ux‖

p−2
p

L2(R2)
‖∂−1

x uy‖
p−2
2p

L2(R2)
. (4.1)

We refer to [11] for a proof of (4.1). The L2 conservation law yields,

‖uω,λ(t, ·)‖L2(R2) = ‖uω,λ(0, ·)‖L2(R2) = ‖uap(0, ·)‖L2(R2) ≤ C .

The energy conservation, (3.5) and (4.1) with p = 3 yield

E(uω,λ(t, ·)) = E(uω,λ(0, ·)) = E(uap(0, ·)) ≤ C .

Another use of (4.1) with p = 3 then gives the following bound for the leading part
of the energy,

‖∂x(uω,λ)(t, ·)‖L2(R2) + ∥

∥∂−1
x ∂y(uω,λ)(t, ·)

∥

∥

L2(R2)
≤ C. (4.2)

We now establish several bounds for the cubic and quartic terms of the functional F
of (1.2). We can write, by invoking (4.1) with p = 3, 4

∣

∣

∣

5
6

∫

R2

u2(∂−2
x uyy)

∣

∣

∣ ≤ ‖u‖2
L4(R2)

∥

∥∂−2
x uyy

∥

∥

L2(R2)

≤ C‖u‖
1
2
L2(R2)

‖ux‖L2(R2)

∥

∥∂−1
x uy

∥

∥

1
2
L2(R2)

∥

∥∂−2
x uyy

∥

∥

L2(R2)

and
∣

∣

∣

∫

R2

u (∂−1
x uy)

2
∣

∣

∣ ≤ ‖u‖L3(R2)

∥

∥∂−1
x uy

∥

∥

2
L3(R2)

≤ C‖u‖
1
2
L2(R2)

‖ux‖
1
3
L2(R2)

∥

∥∂−1
x uy

∥

∥

7
6
L2(R2)

‖uy‖
2
3
L2(R2)

∥

∥∂−2
x uyy

∥

∥

1
3
L2(R2)

.

Next,
∣

∣

∣

∫

R2

u2 uxx

∣

∣

∣ ≤ ‖u‖2
L4(R2)

‖uxx‖L2(R2)

≤ C‖u‖
1
2
L2(R2)

‖ux‖L2(R2)

∥

∥∂−1
x uy

∥

∥

1
2
L2(R2)

‖uxx‖L2(R2)

and finally
∣

∣

∣

∫

R2

u4
∣

∣

∣ ≤ C‖u‖L2(R2)‖ux‖2
L2(R2)

∥

∥∂−1
x uy

∥

∥

L2(R2)
.

Using the above bounds, estimates (3.6), (4.2), and the conservation of F, we obtain
that for λ ≥ 1,

F(uω,λ(t, ·)) = F(uω,λ(0, ·)) = F(uap(0, ·)) ≤ Cλ2 .
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Using again the estimates for the cubic and the quartic terms of F, we obtain that the
leading part of F satisfies for λ ≥ 1, t ∈ [−1, 1],

∥

∥∂2
x (uω,λ)(t, ·)

∥

∥

L2(R2)
+ ‖∂y(uω,λ)(t, ·)‖L2(R2) + ∥

∥∂−2
x ∂2

y (uω,λ)(t, ·)
∥

∥

L2(R2)
≤ Cλ.

5 The difference between approximate and exact solution

We begin by controlling the size of uap. Using (3.6) and the definition of uap, we infer
that for λ ≥ 1, t ∈ [−1, 1],

∥

∥∂2
x (uap)(t, ·)

∥

∥

L2(R2)
+ ‖∂y(uap)(t, ·)‖L2(R2) + ∥

∥∂−2
x ∂2

y (uap)(t, ·)
∥

∥

L2(R2)
≤ Cλ

and thus, with
vω,λ = uω,λ − uap, (5.1)

∥

∥∂2
x (vω,λ)(t, ·)

∥

∥

L2(R2)
+ ‖∂y(vω,λ)(t, ·)‖L2(R2) + ∥

∥∂−2
x ∂2

y (vω,λ)(t, ·)
∥

∥

L2(R2)
≤ Cλ.

In particular
∥

∥∂2
x (vω,λ)(t, ·)

∥

∥

L2(R2)
≤ Cλ. (5.2)

We next bound the L2 norm of vω,λ.

Lemma 5.1 There exist δ > 0 such that

‖vω,λ(t, ·)‖L2(R2) ≤ Cλ−1−δ (5.3)

uniformly in λ ≥ 1, |ω| ≤ 1 and |t| ≤ 1.

Proof The function vω,λ solves the equation
(

∂t + ∂3
x − ∂−1

x ∂2
y
)

vω,λ + vω,λ∂x(vω,λ)+ ∂x(uapvω,λ)+ G = 0, (5.4)

where vω,λ(0, x, y) = 0 and

G = (

∂t + ∂3
x − ∂−1

x ∂2
y
)

uap + uap∂x(uap) .

Thanks to (3.4),

‖G(t, ·)‖L2(R2) ≤ Cλ−1−δ , δ > 0.

Multiplying (5.4) by vω,λ and an integration over R
2 gives

d
dt

‖vω,λ(t, ·)‖2
L2(R2)

� ‖∂xuap(t, ·)‖L∞(R2)‖vω,λ(t, ·)‖2
L2(R2)

+‖vω,λ(t, ·)‖L2(R2)‖G(t, ·)‖L2(R2) .

From the definition of uap, we infer that

‖∂xuap(t, ·)‖L∞(R2) ≤ Cλ−1 .

Therefore, by Gronwall’s inequality for t ∈ [−1, 1],
‖vω,λ(t, ·)‖L2(R2) ≤ sup

t∈[−1,1]
‖G(t, ·)‖L2(R2) ≤ Cλ−1−δ .

This completes the proof of Lemma 5.1. �
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Interpolation between (5.2) and (5.3) gives that for λ ≥ 1,

‖∂x(vω,λ)(t, ·)‖L2(R2) ≤ Cλ−δ/2. (5.5)

After these preparations we turn to the proof of Theorem 1. Consider the two families
of solutions (u1,λ) and (u−1,λ), λ � 1. Write for λ ≥ 1,

‖u1,λ(0, ·)− u−1,λ(0, ·)‖X = 2‖λ−1
˜ψλ(x)ϕ̃λ(y)‖X

≤ 2λ−1‖˜ψλ(x)ϕ̃λ(y)‖L2(R2)

+2λ−1‖∂x[˜ψλ(x)]ϕ̃λ(y)‖L2(R2)

+2λ−1‖∂−1
x [˜ψλ(x)]∂y[ϕ̃λ(y)]‖L2(R2)

≤ Cλ−1λ
α+β

2 + Cλ−1λαλ−βλ
α+β

2 .

Thanks to the assumptions on (α,β), we obtain that

lim
λ→∞ ‖u1,λ(0, ·)− u−1,λ(0, ·)‖X = 0 .

To conclude we provide a non-trivial lower bound on

lim inf
λ→∞ ‖∂x(u1,λ − u−1,λ)‖L2 .

Equation (5.5) reduces this to the corresponding statement for uap, which is inequality
(3.7). This completes the proof of Theorem 1.

Remark 5.2 Actually, we proved a stronger statement than Theorem 1. We obtained
the existence of two families of solutions of the KP-I equation which remain bounded
in the energy space, such that their difference tend to zero in the energy space but
such that for t ∈ [−1, 1], t �= 0 the x derivative of their difference in L2(R2), which is
only a part of the energy norm, does not tend to zero.

Remark 5.3 As in [7], if one is interested to show the failure of uniform continuity of
the flow of KP-I on Hs(R2) for large s a modification of the low frequency part of the
approximate solution is needed. Namely one should replace

ωλ−1
˜ψλ(x)ϕ̃λ(y) (5.6)

in uap by the solution of the KP-I equation with initial data (5.6). We refer to [7] for
the details of this construction.

Acknowledgments The work of the first author was partly supported by MSRI and the Miller Institute
for Basic Research in Science.

References

1. Burq, N., Gérard, P., Tzvetkov, N.: Two singular dynamics of the non-linear Schrödinger equation
on a plane domain. Geom. Funct. Anal. 13(1), 1–19 (2003)

2. Burq, N., Gérard, P., Tzvetkov, N.: An instability property of the non-linear Schrödinger equation
on Sd. Math. Res. Lett. 9(2–3), 323–335 (2002)

3. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity
ill-posedness for canonical defocusing equations. Am. J. Math. 125(6), 1235–1293 (2003)



68 H. Koch, N. Tzvetkov

4. Iório, R.J. Jr., Nunes, W.V.L.: On equations of KP-type. Proc. R. Soc. Edinburgh Sect. A 725–743
(1998)

5. Ionescu, A., Kenig, C.: Global well-posedness of the Benjamin–Ono equation in low-regularity
spaces. arXiv:math.AP/0508632 (2005)

6. Kenig, C.: On the local and global well-posedness for the KP-I equation. Ann. IHP Anal. Non
linéaire 21, 827–838 (2004)

7. Koch, H., Tzvetkov, N.: Non-linear wave interactions for the Benjamin–Ono equation. IMRN
30, 1833–1847 (2005)

8. Molinet, L., Saut, J.C., Tzvetkov, N.: Global well-posedness for the KP-I equation. Math. Ann.
324, 255–275 (2002). Correction: Math. Ann. 328, 707–710 (2004)

9. Molinet, L., Saut, J.C., Tzvetkov, N.: Well-posedness and ill-posedness for the Kadomtsev–
Petviashvili-I equation. Duke Math. J. 115, 353–384 (2002)

10. Tao, T.: Global well-posedness of the Benjamin–Ono equation in H1(R). J. Hyperbolic Differ.
Equ. 1, 27–49 (2004)

11. Tom, M.M.: On a generalized Kadomtsev–Petviashvili equation. Contemp. Math. AMS 200,
193–210 (1996)

12. Tzvetkov, N.: Ill-posedness issues for non-linear dispersive equations. GAKUTO international
series mathematical sciences and applications, vol. 27, September, 2006. aiXiv:math.AP/0411455

13. Zakharov, V., Schulman, E.: Degenerative dispersion laws, motion invariants and kinetic equa-
tions. Physica D1, 192–202 (1980)


	On finite energy solutions of the KP-I equation
	Abstract
	Introduction
	Outline of the proof of Theorem 1
	Construction of the approximate solution
	Bounds for the exact solution
	The difference between approximate and exact solution


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


