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Abstract A transplantation theorem for Jacobi series proved by Muckenhoupt is
reinvestigated by means of a suitable variant of Calderón–Zygmund operator theory.
An essential novelty of our paper is weak type (1,1) estimate for the Jacobi transplan-
tation operator, located in a fairly general weighted setting. Moreover, Lp estimates
are proved for a class of weights that contains the class admitted in Muckenhoupt’s
theorem.
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1 Introduction

The principal purpose of this paper is to reinvestigate the transplantation theorem
for Jacobi series proved by Muckenhoupt [9, Theorem (1.14)] from the Calderón–
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Zygmund (frequently abbreviated to CZ) theory point of view. A transplantation
theorem for Jacobi expansions was first obtained by Askey [2]. Then Muckenhoupt
substantially enhanced Askey’s result in several directions: by considering the larg-
est possible range of Jacobi parameters, admitting fairly general class of weights
for Lp estimates (a class which is different from the usual Ap class), introducing a
shift in the order parameter of Jacobi orthonormalized polynomials, adding a mul-
tiplier sequence, and, eventually, by assuming moment conditions. Recently Miyachi
[8] extended Muckenhoupt’s result to the setting of weighted Hardy spaces Hp

a,b,
0 < p ≤ 1, a, b ∈ R.

In our approach we partly benefit from the work done by Muckenhoupt, but on
the other hand we apply a new technique. The benefit we have in mind is best seen
in Proposition 3.2 below (needless to say, this is not the single place): the growth
estimates (3.3) were furnished by Muckenhoupt. Since the method we use relies on
suitably established local version of CZ theory, we also need a gradient estimate; it is
contained in (3.4) of Proposition 3.2 (and does not appear in [9]). Another ingredient
that essentially distinguishes our approach from that of Muckenhoupt is the following:
having kernels (and their appropriate estimates) of operators that approximate the
Jacobi transplantation operator, we define a kernel associated with that operator in
the sense of CZ theory. Such a definition requires proving the existence of a limit of
the approximating kernels, and to achieve this we use a (first order) Darboux type
formula for Jacobi polynomials, cf. [9, (2.12)]. Similar formula of order 2 is necessary
for justifying the abovementioned gradient estimate. Thus, believing that it may be
of independent interest, we derive a general higher order Darboux type formula for
Jacobi polynomials. The related reasoning relies on a uniform asymptotic representa-
tion for Jacobi polynomials proved recently by Wong and Zhao [12].

The technique we apply brings an immediate advantage since weighted weak type
(1,1) and Lp estimates for the transplantation operator then follow, essentially by
a variant of the CZ operator theory we establish; weak type (1,1) estimates do not
appear in [9]. The class of admissible weights in our Lp result (Theorem 2.5) is at
least as large as the class allowed in Muckenhoupt’s theorem [9, Theorem (1.14)].
The assumptions imposed on weights in the weak type (1, 1) result (Theorem 2.6) are
rather involved, but this is a price being paid for generality. However, these assump-
tions take a much simpler form after specifying to double power weights, in which
case a consistence with the Lp weight conditions can be easily observed. It should
be also mentioned that the fact that an operator is a CZ operator has further well-
known consequences: it maps H1 into L1 and L∞ into BMO (in the latter case the
operator has to be appropriately redefined, to be precise). Finally, we mention that a
similar technique was used recently by two of the three authors in [5] in the setting of
Fourier–Bessel expansions.

Given α, β ∈ (−1, ∞), consider the orthonormalized Jacobi polynomials

φ
(α,β)
n (x) = t(α,β)

n P(α,β)
n (cos x) sinα+1/2(x/2) cosβ+1/2(x/2), n ∈ N

(seemingly more appropriate name Jacobi functions would be confusing), where

t(α,β)
n =

(
(2n + α + β + 1)�(n + 1)�(n + α + β + 1)

�(n + α + 1)�(n + β + 1)

)1/2

(1.1)

(for n = 0 the product (2n+α+β+1)�(n+α+β+1) must be replaced by �(α+β+2)).
The functions {φ(α,β)

n }n∈N form a complete orthonormal system in L2((0, π), dx). They
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are also the eigenfunctions of the symmetric in L2((0, π), dx) differential operator

Lα,β = − d2

dx2 −
(

1/4 − α2

4 sin2(x/2)
+ 1/4 − β2

4 cos2(x/2)

)
,

cf. [11, (4.24.2)], and

Lα,βφ
(α,β)
n =

(
n + α + β + 1

2

)2
φ

(α,β)
n .

Given (α, β) and (γ , δ) with α, β, γ , δ ∈ (−1, ∞), we define the transplantation opera-
tor T = T(α,β),(γ ,δ) on L2((0, π), dx) by the convergent in L2((0, π), dx) series

Tf =
∞∑

n=0

〈f , φ(γ ,δ)
n 〉φ(α,β)

n .

Clearly, T is an L2 isometry which becomes the identity operator when (α, β) = (γ , δ).
For the sake of convenience we now state a simplified version of Muckenhoupt’s

transplantation theorem; in [9, Theorem (1.14)] we choose s = d = M = N = 0 and
g(n) ≡ 1.

Theorem 1.1 (Muckenhoupt) Let α, β, γ , δ ∈ (−1, ∞), 1 < p < ∞, and w(x) be a
weight on (0, π) such that

( v∫
u

[
w(x)xα+1/2(π − x)β+1/2]p dx

)1/p( v∫
u

[
w(x)−1xγ+1/2(π − x)δ+1/2]p′

dx
)1/p′

≤ C(v − u)vα+γ+1(π − u)β+δ+1, 0 ≤ u < v ≤ π . (1.2)

Then, given f ∈ Lp(w) and 0 < r < 1, the series

Trf (x) =
∞∑

n=0

rn〈f , φ(γ ,δ)
n 〉φ(α,β)

n (x)

converges for every x ∈ (0, π), the inequality

( π∫
0

∣∣Trf (x)w(x)
∣∣p dx

)1/p

≤ C
( π∫

0

|f (x)w(x)|p dx
)1/p

holds with C independent of r and f , and there is a function Tf ∈ Lp(w) such that Trf
converges to Tf in Lp(w) as r → 1−. If it is also assumed that

π∫
0

[
w(x)−1xα+1/2(π − x)β+1/2]p′

dx < ∞, (1.3)

then

〈Tf , φ(α,β)
n 〉 = 〈f , φ(γ ,δ)

n 〉.
Note that if either wa,b(x) = xa(π − x)b or wa,b(x) = sina(x/2) cosb(x/2) is a double

power weight, a, b real, then for such a weight Condition (1.2) is equivalent to

− α − 1/2 − 1/p < a < γ + 3/2 − 1/p, −β − 1/2 − 1/p < b < δ + 3/2 − 1/p,

(1.4)
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see [9, Corollary 17.11], whereas Condition (1.3) holds if and only if a < α +3/2−1/p
and b < β + 3/2 − 1/p. Note also that for α = β = γ = δ = −1/2, Condition (1.2)
becomes simply the usual Ap condition for wp.

Throughout the paper we use a fairly standard notation. Thus, for a weight w on
(0, π) (a nonnegative measurable function such that w(x) < ∞, x-a.e.) we write Lp(w)

and L1,∞(w) to denote the weighted Lp and the weighted weak L1 spaces that consist
of all functions f on (0, π) for which

‖f‖Lp(w) =
⎛
⎝

π∫
0

|f (x)w(x)|p dx

⎞
⎠

1/p

< ∞,

or

‖f‖L1,∞(w) = sup
t>0

⎛
⎜⎝t

∫
{0<x<π :|f (x)|>t}

w(x) dx

⎞
⎟⎠ < ∞,

respectively. If w ≡ 1, we simplify the notation by writing Lp or L1,∞. We write 〈f , g〉
for
∫ π

0 f (x)g(x) dx provided the integral converges, and f ∼ ∑
cnφ

(α,β)
n to indicate that

the last series represents the expansion of f with respect to the system {φ(α,β)
n }; in par-

ticular, this means that the integrals 〈f , φ(α,β)
n 〉 defining the Fourier–Jacobi coefficients

cn do exist.

2 Preliminaries and statement of results

We shall use a variant of the local Calderón–Zygmund theory established in [10,
Sect. 4] (see also [5, Sect. 3]), suited to the present setting. For the sake of con-
venience and completeness we state the relevant definitions and results. Let � =
{(x, x) : x ∈ (0, π)}.
Definition 2.1 A double local standard kernel is a kernel K : (0, π) × (0, π)\� �→ C

supported in the region (see Fig. 1 below)

D =
{
(x, y) ∈ (0, π) × (0, π)\� : max

(x
2

,
3x − π

2

)
< y < min

(3x
2

,
x + π

2

)}
,

and satisfying on D the standard estimates

|K(x, y)| ≤ C|x − y|−1,

|∇x,yK(x, y)| ≤ C(x − y)−2.

Notice that the region D is “local” both near (0, 0) and (π , π), which motivates the
usage of the word double in the above definition as well as in other related places.

Definition 2.2 An operator T is a double local Calderón–Zygmund operator if

(1) T is bounded on L2(0, π);
(2) there exists a double local standard kernel K associated with T such that

〈T f , g〉 =
π∫

0

min(3x/2, x/2+π/2)∫
max(x/2, 3x/2−π/2)

K(x, y)f (y)g(x) dy dx

for all f , g ∈ C∞
c (0, π) with disjoint supports.
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Fig. 1 The region D

Definition 2.3 Let 1 ≤ p < ∞ and w be a weight on (0, π). We say that wp satisfies
the double local Ap condition if

sup
0≤u<v≤min(2u,u/2+π/2)≤π

1
v − u

⎛
⎝

v∫
u

wp

⎞
⎠

1/p⎛
⎝

v∫
u

w−p′
⎞
⎠

1/p′

< ∞ (2.1)

(if p = 1, then the second integral is understood as ess sup(u,v) w−1; p′ denotes the
conjugate of p, 1/p+1/p′ = 1). We then write wp ∈ A2loc

p (0, π) (or shortly wp ∈ A2loc
p )

and call the left hand side of (2.1) the double local Ap norm of wp.

Arguments parallel to those used in [10, Sect. 4], cf. also [5, Sect. 3], allow to prove
the following result, which in fact is the principal tool in our treatment of the Jacobi
transplantation operator.

Theorem 2.4 Assume that T is a double local Calderón–Zygmund operator and let w
be a weight on (0, π) such that wp ∈ A2loc

p .

(a) If 1 < p < ∞, then T extends to a bounded linear operator on Lp(w);
(b) If p = 1, then T extends to a bounded linear operator from L1(w) to L1,∞(w).

Moreover, the corresponding Lp and weak type constants depend on w only through
the double local Ap norm of wp.

Let 1 < p < ∞. Given a weight function w(x) on (0, π), consider the following two
conditions:

sup
0<r<π

( π∫
r

(
w(x)(π − x)β+1/2

xγ+3/2

)p

dx
)1/p( r∫

0

(
xγ+1/2

w(x)(π − x)β+3/2

)p′

dx
)1/p′

< ∞,

(2.2)
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sup
0<r<π

( r∫
0

(
w(x)xα+1/2

(π − x)δ+3/2

)p

dx
)1/p( π∫

r

(
(π − x)δ+1/2

w(x)xα+3/2

)p′

dx
)1/p′

< ∞. (2.3)

Condition (2.2) is necessary and sufficient for the weighted Hardy’s inequality

π∫
0

∣∣∣U(x)

x∫
0

f (t) dt
∣∣∣p dx ≤ C

π∫
0

|f (x)V(x)|p dx (2.4)

to hold, with U(x) = (π −x)β+1/2x−(γ+3/2)w(x) and V(x) = (π −x)β+3/2x−(γ+1/2)w(x).
Similarly, Condition (2.3) is necessary and sufficient for

π∫
0

∣∣∣U(x)

π∫
x

f (t) dt
∣∣∣p dx ≤ C

π∫
0

|f (x)V(x)|p dx (2.5)

to hold, with U(x) = (π −x)−(δ+3/2)xα+1/2w(x) and V(x) = (π −x)−(δ+1/2)xα+3/2w(x).
These facts follow directly from [1, Theorems A, B].

Finally, note that if a weight w on (0, π) satisfies any of the conditions (2.1), (2.2),
or (2.3), then either w = 0, x-a.e. or w(x) > 0, x-a.e (here the convention 0 · ∞ = 0 is
used).

Theorem 2.5 Let α, β, γ , δ ∈ (−1, ∞) and T = T(α,β),(γ ,δ). Assume that 1 < p < ∞
and w(x) is a weight that satisfies the conditions (2.1), (2.2) and (2.3). Then

( π∫
0

∣∣Tf (x)w(x)
∣∣p dx

)1/p

≤ C
( π∫

0

|f (x)w(x)|p dx
)1/p

(2.6)

for all f ∈ L2 ∩ Lp(w). Consequently, T extends uniquely to a bounded linear operator
on Lp(w). Using the same symbol T to denote this extension and assuming, in addition,
that w(x) satisfies (1.3), we have

Tf ∼
∞∑

n=0

〈f , φ(γ ,δ)
n 〉φ(α,β)

n , f ∈ Lp(w). (2.7)

When w(x) = wa,b(x) is a double power weight, a, b real, then it can be verified
that the double local Ap condition holds for all a, b ∈ R, Condition (2.2) is satisfied
if and only if a < γ + 3/2 − 1/p and b > −β − 1/2 − 1/p, and Condition (2.3) is
satisfied if and only if a > −α − 1/2 − 1/p and b < δ + 3/2 − 1/p. Consequently, we
see that Theorem 2.5 and Theorem 1.1 allow exactly the same range of double power
weights, cf. (1.4). Moreover, it can be shown that in fact (1.2) implies (2.1), (2.2) and
(2.3), hence the last three conditions are together no more restrictive than that from
Theorem 1.1; details are provided in Sect. 5. The question whether our conditions are
essentially weaker than (1.2) seems to be tricky and remains open.

In order to treat the weak type (1, 1) inequalities for the transplantation operator,
for given weight functions U(x), V(x) on (0, π/2) and η real, consider the following
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two conditions:

sup
0<r<π/2

r−η

π/2∫
r

(
χ(−∞,0](η)+χ(0,∞)(η)

( r
x

)η+µ
)

U(x) dx · ess sup
x∈(0,r)

1
V(x)

< ∞, (2.8)

sup
0<r<π/2

r−η

r∫
0

(
χ[0,∞)(η)+χ(−∞,0)(η)

( r
x

)η−µ
)

U(x) dx · ess sup
x∈(r,π/2)

1
V(x)

< ∞; (2.9)

in (2.8) and (2.9) we assume that there exists a positive µ such that the corresponding
quantities are finite.

Let Pη, Qη, η real, denote the Hardy operators acting on functions defined on
(0, π/2),

Pηf (x) = x−η

x∫
0

f (t) dt, Qηf (x) = x−η

π/2∫
x

f (t) dt, 0 < x <
π

2
.

Condition (2.8) is necessary and sufficient for the two-weight inequality

∫
{0<x<π/2 : |Pηf (x)|>λ}

U(x) dx ≤ C
λ

π/2∫
0

|f (x)|V(x) dx, λ > 0, (2.10)

to hold, cf. [1, Theorems 1, 2]. Condition (2.9) is necessary and sufficient for the
inequality (2.10) with Pη replaced by Qη, cf. [1, Theorems 4, 5].

It is easily seen that when U(x) = xA and V(x) = xB are power weights, A, B
real, then: for η ≤ 0, (2.8) is satisfied if and only if B ≤ 0 and A + 1 ≥ B + η (with
the last ≥ replaced by > in case A = −1); for η > 0, (2.8) is satisfied if and only if
B ≤ 0 and A + 1 ≥ B + η; for η ≥ 0, (2.9) is satisfied if and only if A + 1 > 0 and
A+1 ≥ max(B, 0)+η; finally, for η < 0, (2.9) holds if and only if A+1 ≥ max(B, 0)+η.

Theorem 2.6 Let α, β, γ , δ ∈ (−1, ∞) and T = T(α,β),(γ ,δ). Assume that w(x) is a weight
from A2loc

1 (0, π) satisfying:

(i) Condition (2.8) with η = γ + 3/2, U(x) = w(x), V(x) = w(x)x−(γ+1/2) and with
η = δ + 3/2, U(x) = w(π − x), V(x) = w(π − x)x−(δ+1/2);

(ii) Condition (2.9) with η = −(α + 1/2), U(x) = w(x), V(x) = w(x)xα+3/2 and with
η = −(β + 1/2), U(x) = w(π − x), V(x) = w(π − x)xβ+3/2;

(iii) Conditions (2.8) and (2.9) with η = −(β + 1/2), U(x) = w(π − x), V(x) =
w(x)x−(γ+1/2) and with η = −(α + 1/2), U(x) = w(x), V(x) = w(π − x)x−(δ+1/2).

Then
∫

{0<x<π : |Tf (x)|>λ}
w(x) dx ≤ C

λ

π∫
0

|f (x)|w(x) dx, λ > 0,

for all f ∈ L2 ∩ L1(w). Consequently, T extends to a bounded linear operator from
L1(w) to L1,∞(w).

Assumptions imposed on a weight w(x) in the above theorem are relatively com-
plicated, but this is the price of generality. Moreover, the numerous conditions do
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not seem to be easily compressible in a way that allows to preserve the straightfor-
wardness of their verification for concrete weights. For the sake of convenience, for
each of the conditions (i)–(iii) we now determine those a, b ∈ R, for which a double
power weight wa,b(x) satisfies the assumed condition. Using the comment preceding
Theorem 2.6 we see that, with w(x) = wa,b(x), (i) holds if and only if a ≤ γ + 1/2,
b ≤ δ + 1/2, (ii) if and only if a ≥ −(α + 3/2) (> if α = −1/2), b ≥ −(β + 3/2) (>
if β = −1/2), (iii) if and only if a ≤ γ + 1/2 and b ≥ a − (β + γ + 2), b > −1 in
case β ≤ −1/2, and either a ≥ γ + 1/2 and b ≥ a − (β + γ + 2) or a < γ + 1/2 and
b ≥ −(β + 3/2), b ≤ δ + 1/2 and a ≥ b − (α + δ + 2), a > −1 in case α ≤ −1/2, and
either b ≥ δ + 1/2 and a ≥ b − (α + δ + 2) or b < δ + 1/2 and a ≥ −(α + 3/2). Then
it is not hard to observe that (i) and (ii) imply (iii), therefore, taking into account
that the double local A1 condition holds for all a, b ∈ R, a weight wa,b(x) satisfies the
assumptions of Theorem 2.6 if and only if

−(α + 3/2) ≤ a ≤ γ + 1/2, −(β + 3/2) ≤ b ≤ δ + 1/2,

with the first lower inequality replaced by < in case α = −1/2, and with the same
replacement concerning the second lower inequality in case β = −1/2. Notice that
this is consistent with the strong type range described in (1.4).

3 Kernel estimates

To associate with T a kernel (in the sense of CZ theory) we consider the operator

Trf (x) =
∞∑

n=0

rn〈f , φ(γ ,δ)
n 〉φ(α,β)

n (x), f ∈ L2((0, π), dx), x ∈ (0, π),

0 < r < 1, which is an integral operator with the kernel Lr = L(α,β),(γ ,δ)
r given by

Lr(x, y) =
∞∑

n=0

rnφ
(α,β)
n (x)φ

(γ ,δ)
n (y), x, y ∈ (0, π), (3.1)

that is

Trf (x) =
π∫

0

Lr(x, y)f (y) dy, x ∈ (0, π).

The theorem below provides a Darboux type formula of higher order for Jacobi
polynomials, the main tool in establishing relevant estimates of Lr(x, y). The proof of
this result is given in the Appendix (Sect. 6).

Theorem 3.1 Let α, β ∈ (−1, ∞). Given q ∈ N, there exist bounded measurable func-
tions Ak(x) and Bk(x), k = 0, . . . , q, on [0, π ] such that

φ
(α,β)
n (x) =

q∑
k=0

(
Ak(x)

(n sin x)k
sin(nx) + Bk(x)

(n sin x)k
cos(nx)

)
+ O

(
(n sin x)−q−1), (3.2)

uniformly in n ∈ N\{0} and x ∈ (0, π). Moreover, the statement remains valid if, given
an integer d, n on the right of (3.2) is replaced by n + d (if d < 0 then (3.2) is assumed
to hold for n ≥ −d + 1).
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The case q = 1 in Theorem 3.1 corresponds to the classical Darboux formula for
Jacobi polynomials used by Muckenhoupt, see [9, (2.12)]; here, however, for the sake
of simplicity of justification, we do not postulate more regularity of Ak(x) and Bk(x)

than will be needed. On the other hand, although we will use (3.2) only with q ≤ 2,
the more general statement we give seems to be of independent interest and does not
require any extra arguments.

Recall that the Poisson kernel

Pr(t) = 1
2

+
∞∑

n=1

rn cos(nt) = 1 − r2

2(1 − 2r cos t + r2)

and the conjugate Poisson kernel

Qr(t) =
∞∑

n=1

rn sin(nt) = r sin t
1 − 2r cos t + r2 ,

satisfy for 0 < |t| < 3π/2 and 0 < r < 1: |Pr(t)| ≤ C|t|−1, | d
dt Pr(t)| ≤ C|t|−2, and the

same estimates are true if Qr replaces Pr.

Proposition 3.2 Let α, β, γ , δ ∈ (−1, ∞), 0 < r < 1 and 0 < x, y < π . Then

|Lr(x, y)| ≤ C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yγ+1/2(π − x)β+1/2

xγ+3/2(π − y)β+3/2 , 0 < y ≤ max
( x

2 , 3x−π
2

)
,

|x − y|−1, max
( x

2 , 3x−π
2

)
< y < min

( 3x
2 , x+π

2

)
,

xα+1/2(π − y)δ+1/2

yα+3/2(π − x)δ+3/2 , min
( 3x

2 , x+π
2

) ≤ y < π ,

(3.3)

and

∣∣∇x,yLr(x, y)
∣∣ ≤ C|x − y|−2, max

(x
2

,
3x − π

2

)
< y < min

(3x
2

,
x + π

2

)
; (3.4)

in both cases C is independent of r, x and y. Moreover, if α, β, γ , δ ∈ [−1/2, ∞) then
the middle estimate in (3.3) holds globally, i.e. for all 0 < x, y < π , and if α, β, γ , δ ∈
[1/2, ∞) the same is true for the gradient estimate in (3.4).

Proof The third estimate in (3.3) is a dual form of the first one (see (3.5) below),
thus we only need to verify the first two estimates in (3.3). In order to show the
bound in the first line of (3.3) note that if 0 < x, y < 3π/4, the right-hand side
there is comparable with x−(γ+3/2)yγ+1/2 and the required estimate is included in
[9, Theorem 7.1]. In the case π/4 < x, y < π , the same expression is comparable
with (π − y)−(β+3/2)(π − x)β+1/2, and the required bound is obtained by using again
[9, Theorem 7.1] and the identities

L(α,β),(γ ,δ)
r (x, y) = L(β,α),(δ,γ )

r (π − x, π − y) = L(γ ,δ),(α,β)
r (y, x). (3.5)

To finish showing the first bound, consider the remaining case when 3π/4 ≤ x < π

and 0 < y ≤ π/4. In this square the bound is equivalent to (π − x)β+1/2yγ+1/2, and
the desired inequality is contained in [9, Theorem 5.1] (there, and also in [9, Theorem
7.1], we take s = 0, d = 0 and g(n) ≡ 1).
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To show the middle bound in (3.3) note that for 0 < x, y < 3π/4, it is a straightfor-
ward consequence of the asymptotic estimate given in [9, Theorem 8.3],
∣∣∣∣

∞∑
n=0

rnφ
(α,β)

n+d (x)φ
(γ ,δ)
n (y)−u(x)v(y)Qr(x − y)

∣∣∣∣≤ C
x

log

(
2x

|x − y|
)

+CPr(x − y),

(3.6)

(where d is an integer, u(x) and v(y) are bounded functions) taken with d = 0. To be
precise, in [9, Theorem 8.3] it is assumed that 0 < y ≤ 2x ≤ 3y, but the same reasoning
shows that (3.6) holds for 0 < x ≤ 2y ≤ 3x. In the case π/4 < x, y < π , we use in
addition (3.5).

We now pass to showing (3.4). By symmetry reasons we may concentrate our
attention on ∂

∂x Lr. Then it is enough to prove the inequality
∣∣∣∣∂Lr(x, y)

∂x

∣∣∣∣ ≤ C(x − y)−2, (3.7)

with the additional assumption 0 < x, y < 3π/4; analogous estimates in the considered
region but with the assumption π/4 < x, y < π follow by means of (3.5).

By using the identity (cf. [11, (4.21.7)])

dP(α,β)
n (x)

dx
= n + α + β + 1

2
P(α+1,β+1)

n−1 (x),

(we put P(α+1,β+1)

−1 (x) ≡ 0 and, consequently, φ
(α+1,β+1)

−1 (x) ≡ 0) we get

dφ
(α,β)
n (x)

dx
= −(n + α + β + 1)

t(α,β)
n

t(α+1,β+1)

n−1

φ
(α+1,β+1)

n−1 (x)

+ (2α + 1) cos2(x/2) − (2β + 1) sin2(x/2)

2 sin x
φ

(α,β)
n (x).

Then we split accordingly

∂

∂x
Lr(x, y) = −L1

r (x, y) + L2
r (x, y),

where

L1
r (x, y) =

∞∑
n=1

rn(n + α + β + 1)
t(α,β)
n

t(α+1,β+1)

n−1

φ
(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y)

and

L2
r (x, y) = (2α + 1) cos2(x/2) − (2β + 1) sin2(x/2)

2 sin x
Lr(x, y).

It is clear that (here and later on the restrictions imposed on x and y are in force)
∣∣∣∣ (2α + 1) cos2(x/2) − (2β + 1) sin2(x/2)

2 sin x

∣∣∣∣ ≤ Cx−1 ≤ C|x − y|−1.

Thus, using the middle bound in (3.3), we arrive at |L2
r (x, y)| ≤ C(x − y)−2.
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The estimate of L1
r (x, y) is much more involved. By the very definition of t(α,β)

n
given in (1.1) it follows that

(n + α + β + 1)
t(α,β)
n

t(α+1,β+1)

n−1

= An + B + C
n

+ O(n−2), n ≥ 1, (3.8)

for some constants A, B, and C. Consequently, |L1
r (x, y)| is bounded, up to a multipli-

cative constant, by the sum of the absolute values of

L1,j
r (x, y) =

∞∑
n=1

rnnjφ
(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y),

for j = −1, 0, 1, and the remainder sum

∞∑
n=1

1
n2

∣∣∣φ(α+1,β+1)

n−1 (x)

∣∣∣
∣∣∣φ(γ ,δ)

n (y)

∣∣∣ .

Now, for x and y fixed, take M = [3x−1]/3 � [3y−1]/3 (here [ · ] denotes the entier
function). By using the bound (see for instance [9, (2.8)])

∣∣∣φ(α,β)
n (x)

∣∣∣ ≤ C

⎧⎪⎨
⎪⎩

(
(n + 1)x

)α+1/2, 0 < x ≤ 1/(n + 1),
1, 1/(n + 1) < x < π − 1/(n + 1),(
(n + 1)(π − x)

)β+1/2, π − 1/(n + 1) ≤ x < π ,

(3.9)

we estimate the remainder

∞∑
n=1

1
n2

∣∣∣φ(α+1,β+1)

n−1 (x)

∣∣∣
∣∣∣φ(γ ,δ)

n (y)

∣∣∣ ≤ C
(

xα+3/2yγ+1/2
M−1∑
n=1

nα+γ +
∞∑

n=M

1
n2

)
.

The very last series is bounded by a constant. Since the sum
∑M−1

n=1 nα+γ is bounded
by C, C log M or CMα+γ+1, depending on whether −2 < α + γ < −1, α + γ = −1 or
α + γ > −1, the bound

xα+3/2yγ+1/2
M−1∑
n=1

nα+γ ≤ Cxα+γ+2
M−1∑
n=1

nα+γ ≤ C

follows. Thus, the remainder sum is bounded by a constant which is obviously enough
for our purpose. We now continue with estimating |L1,j

r (x, y)|, j = −1, 0, 1.
Assuming M to be as above and applying again (3.9) we see that |L1,−1

r (x, y)| is
bounded, up to a multiplicative constant, by the expression

M−1∑
n=1

1
n

(nx)α+3/2(ny)γ+1/2 +
∣∣∣∣

∞∑
n=M

rn

n
φ

(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y)

∣∣∣∣.
The first sum is clearly controlled by C, thus we only need to estimate the second
one. To do this we apply Theorem 3.1 with q = 0 and either d = 1 or d = 0, first to
φ

(α+1,β+1)

n−1 (x) and then to φ
(γ ,δ)
n (y). In what follows writing |∑ an

{
sin
cos

}
(nx)| means

that in fact the sum of two absolute values of the series with the sine and the cosine
respectively, appear. Analogously, writing |∑ an

{
sin
cos

}
(nx)

{
sin
cos

}
(ny)| means the sum
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of absolute values of four series, each combination of the sine and the cosine is allowed
but, in any given series, the same combination must occur for all n. With this notation,
∣∣∣∣

∞∑
n=M

rn

n
φ

(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y)

∣∣∣∣ ≤ C
(∣∣∣∣

∞∑
n=M

rn

n

{
sin
cos

}
(nx)φ

(γ ,δ)
n (y)

∣∣∣∣+ 1
x

∞∑
n=M

1
n2

)

≤ C
(∣∣∣∣

∞∑
n=M

rn

n

{
sin
cos

}
(nx)

{
sin
cos

}
(ny)

∣∣∣∣+
(1

x
+ 1

y

) ∞∑
n=M

1
n2

)

≤ C log

(
2x

|x − y|
)

,

where in the last step we used [4, (5.3)] to control the first summand. This estimate is
sufficient for concluding |L1,−1

r (x, y)| ≤ C(x − y)−2.
Using (3.6) with d = −1, we simply have |L1,0

r (x, y)| ≤ C|x − y|−1 ≤ C(x − y)−2.
It remains to estimate |L1,1

r (x, y)|. To proceed, we decompose the relevant sum into

J1 =
M−1∑
n=0

rnnφ
(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y), J2 =

∞∑
n=M

rnnφ
(α+1,β+1)

n−1 (x)φ
(γ ,δ)
n (y).

The absolute value of J1, in view of (3.9), is bounded by

Cxα+3/2yγ+1/2
M−1∑
n=1

nα+γ+3 ≤ Cxα+γ+2Mα+γ+4 ≤ Cx−2 ≤ C(x − y)−2.

In order to analyze J2 we apply Theorem 3.1 with q = 2 and d = 1 to φ
(α+1,β+1)

n−1 (x)

and obtain

|J2| ≤ C
( 2∑

k=0

∣∣∣∣
∞∑

n=M

rn

(nx)k
n
{

sin
cos

}
(nx)φ

(γ ,δ)
n (y)

∣∣∣∣+
∞∑

n=M

n
1

(nx)3

∣∣φ(γ ,δ)
n (y)

∣∣).

The very last sum, by means of (3.9), is easily seen to be bounded by C(x − y)−2. Thus
it remains to bound each of the terms

Ik =
∣∣∣∣

∞∑
n=M

rn

(nx)k
n
{

sin
cos

}
(nx)φ

(γ ,δ)
n (y)

∣∣∣∣, k = 0, 1, 2,

by C(x − y)−2. Observe that (3.2) taken with q = 2 and applied to φ
(γ ,δ)
n (y) gives

Ik ≤ C
( 2∑

j=0

Ok,j +
∞∑

n=M

1
(nx)k

n
1

(ny)3

)
,

with

Ok,j =
∣∣∣∣

∞∑
n=M

rn

(nx)k(ny)j
n
{

sin
cos

}
(nx)

{
sin
cos

}
(ny)

∣∣∣∣.

Again, the remainder sum, by using (3.9), is easily seen to be bounded by C(x − y)−2.
Thus, we are reduced to proving that Ok,j ≤ C(x−y)−2 for k, j ∈ {0, 1, 2}. We distinguish
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four cases. If k + j > 2, then

Ok,j ≤ Cx−ky−j
∞∑

n=M

n1−k−j ≤ Cx−(k+j)M2−k−j ≤ Cx−2 ≤ C(x − y)−2.

If k + j = 2, then using [4, (5.3)], we obtain

Ok,j ≤ x−ky−j log

(
2x

|x − y|
)

≤ Cx−(k+j)+1|x − y|−1 ≤ C(x − y)−2.

If k + j = 1, we analyze only the sum corresponding to sin(nx) sin(ny); in the other
cases the reasoning is similar. It is clear that

Ok,j = x−ky−j
∣∣∣∣

∞∑
n=M

rn sin(nx) sin(ny)

∣∣∣∣

≤ C
x

(∣∣∣∣
∞∑

n=0

rn sin(nx) sin(ny)

∣∣∣∣+
∣∣∣∣

M−1∑
n=0

rn sin(nx) sin(ny)

∣∣∣∣
)

≤ C
x

(|Pr(x − y)| + |Pr(x + y)| + M
)
,

and the desired bound follows. Finally, if k + j = 0, as in the previous case, we treat
only the sum related to sin(nx) sin(ny). We write

∣∣∣∣
∞∑

n=M

rnn sin(nx) sin(ny)

∣∣∣∣ ≤ C
(∣∣∣∣

∞∑
n=0

rnn sin(nx) sin(ny)

∣∣∣∣+
∣∣∣∣

M−1∑
n=0

rnn sin(nx) sin(ny)

∣∣∣∣
)

≤ C
(∣∣∣∣dQr

dt
(x − y)

∣∣∣∣+
∣∣∣∣dQr

dt
(x + y)

∣∣∣∣+ M2
)

,

and again the bound by C(x − y)−2 follows. The proof of the bound of |J2| and thus
also of the estimate (3.4) is finished.

In order to justify the last statement of the proposition observe that the quantities
on the right in the first and third lines of (3.3) can be further bounded by |x − y|−1

when α, β, γ , δ ∈ [−1/2, ∞), hence the estimate |Lr(x, y)| ≤ C|x − y|−1 holds globally.
For α, β, γ , δ ∈ [1/2, ∞) also the inequality |∇x,yLr(x, y)| ≤ C(x − y)−2 holds in the
whole square. Indeed, considering ∂

∂x Lr, using (3.3) and taking into account different
parts of the square separately, we get

|L2
r (x, y)| ≤ C

|Lr(x, y)|
| sin x| ≤ C(x − y)−2

(note that the assumption α, β ≥ 1/2 is essential here, whereas the assumption con-
cerning γ and δ comes into play when dealing with ∂

∂y Lr). On the other hand, the

bound |L1
r (x, y)| ≤ C(x − y)−2 can be obtained with the aid of

∣∣∣L1
r (x, y)

∣∣∣ ≤ C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yγ+1/2(π − x)β+3/2

xγ+5/2(π − y)β+7/2
, 0 < y ≤ max

( x
2 , 3x−π

2

)
,

(x − y)−2, max
( x

2 , 3x−π
2

)
< y < min

( 3x
2 , x+π

2

)
,

xα+3/2(π − y)δ+1/2

yα+7/2(π − x)δ+5/2
, min

( 3x
2 , x+π

2

) ≤ y < π ,
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by noting that the quantities on the right-hand side in the first and third lines above
are bounded by C(x − y)−2. It remains to comment on the last estimate. Essentially,
we repeat the arguments from the first two paragraphs of the proof of Proposition
3.2. Then the bound in the first line above is deduced in the way analogous to that of
(3.3); apart from (3.5), we use either [9, Theorem 7.1] or [9, Theorem 5.1] taken with
s = d = −1 and g(n) = (n + α + β + 1)t(α,β)

n /t(α+1,β+1)

n−1 . ��

Proposition 3.3 Let α, β, γ , δ ∈ (−1, ∞) and Lr = L(α,β),(γ ,δ)
r be given by (3.1). Then

for every x �= y, 0 < x, y < π , the limit

L(x, y) = lim
r→1− Lr(x, y)

exists. Moreover, |L(x, y)| is bounded by the right-hand side of (3.3); similarly, |∇L(x, y)|
is bounded by the right-hand side of (3.4). In addition, the statement made in the last
sentence of Proposition 3.2 applies to |L(x, y)| as well.

Proof Once we prove the existence of the limit, the bounds of |L(x, y)| and |∇L(x, y)|
are direct consequences of the corresponding bounds from Proposition 3.2. To be
precise, justifying the estimate of |∇L(x, y)| requires also the identity

∂

∂x

(
lim

r→1− Lr(x, y)
)

= lim
r→1−

∂

∂x
Lr(x, y) (3.10)

and similarly for ∂
∂y . Assuming for a moment that limr→1− Lr(x, y) exists, what is still

needed for proving (3.10) is the fact that for each fixed y, 0 < y < π , the convergence
on the right of (3.10) is locally uniform in x �= y. Using the splitting ∂

∂x Lr = −L1
r + L2

r
that appears in the proof of Proposition 3.2 it is sufficient to check that for a given y,
0 < y < π , the convergence of L1

r (x, y) and L2
r (x, y) as r → 1− is locally uniform in x.

For L2
r (x, y), or rather for Lr(x, y), this will be explained along the lines of the proof of

the existence of limr→1− Lr(x, y); see the lines that follow. For L1
r (x, y) the argument

is essentially the same, hence we do not provide any details (a look into the proof of
Proposition 3.2 is helpful).

Using (3.2) with q = 1 we expand the functions φ
(α,β)
n (x) and φ

(γ ,δ)
n (y), n = 1, 2, . . .,

φ
(α,β)
n (x) = A0(x) sin(nx) + B0(x) cos(nx) + A1(x)

n
sin(nx) + B1(x)

n
cos(nx) + Hn(x),

and similarly

φ
(γ ,δ)
n (y) = C0(y) sin(ny) + D0(y) cos(ny) + C1(y)

n
sin(ny) + D1(y)

n
cos(ny) + Kn(y),

where |Hn(x)| ≤ C(n sin x)−2, |Kn(y)| ≤ C(n sin y)−2 (C independent of n and x, y ∈
(0, π)), and Ai, Bi, Ci, Di are locally bounded functions. Denoting by L̃r(x, y) the series
as in (3.1) but with the summation starting from n = 1, by exploiting the above expan-
sions we obtain

L̃r(x, y) =
1∑

j,l=0

Oj,l(r, x, y) + J1(r, x, y) + J2(r, x, y) + G(r, x, y).
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Here the terms Oj,l capture the part that comes from the main parts of the abovemen-
tioned expansions and are sums of terms of the form

Ej(x)Fl(y)

∞∑
n=1

rnn−j−l
{

sin
cos

}
(nx)

{
sin
cos

}
(ny),

and E, F may replace any of the letters A, B, C, D, the term J1 gathers the part that
comes from the main parts of the second expansion and the remainder of the first one,
hence it is a sum of terms of the form

Fj(y)

∞∑
n=1

rnn−j
{

sin
cos

}
(ny)Hn(x), j = 0, 1,

J2 acts as J1 but with the position of the both expansions switched, hence it is a sum
of terms of the form

Ei(x)

∞∑
n=1

rnn−j
{

sin
cos

}
(nx)Kn(y), i = 0, 1,

and, eventually, G captures the part that comes from the both remainders,

G(r, x, y) =
∞∑

n=1

rnHn(x)Kn(y).

Due to the bounds on Hn and Kn, it is evident that each of the series in the terms
entering into either J1 or J2, or in Gr(x, y), but with the factor rn removed, is absolutely
convergent since, either |Hn(x)| ≤ Cxn−2 or |Kn(y)| ≤ Cyn−2 (or both) applies. Thus
the corresponding expressions converge as r → 1−. In addition, the convergence is
locally uniform in x. It is therefore sufficient to analyze the Oj,l terms. Given j, l ∈ {0, 1}
we have to verify that

lim
r→1−

∞∑
n=1

rnn−j−l
{

sin
cos

}(
n(x ± y)

)

converges for x ± y /∈ {0, π}, and the convergence is locally uniform in x. If j + l = 0
then we deal with either Pr(x ± y) or Qr(x ± y) hence the convergence is obvious; if
j + l = 1 then the series also takes a compact form (see [13, p. 2]) and the required
convergence follows; if j + l = 2 the claim is obvious. The proof of the proposition is
completed. ��

Finally, we show that the kernel L(x, y) is associated with T = T(α,β),(γ ,δ) in the
sense of Calderón–Zygmund theory.

Proposition 3.4 Let f , g ∈ C∞
c (0, π) have disjoint supports. Then

〈Tf , g〉 =
π∫

0

π∫
0

L(x, y)f (y)g(x) dy dx. (3.11)

Proof Let g = ∑∞
n=0〈f , φ(α,β)

n 〉φ(α,β)
n . By Parseval’s identity

〈Tf , g〉 =
∞∑

n=0

〈f , φ(γ ,δ)
n 〉〈f , φ(α,β)

n 〉. (3.12)
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We will show that the right-hand sides of (3.11) and (3.12) coincide. Denoting by
F(x, y) the function from Proposition 3.2 that majorizes |Lr(x, y)| it is clear that

π∫
0

π∫
0

|F(x, y)f (y)g(x)| dy dx < ∞.

Therefore the dominated convergence theorem justifies the second equality in the
following chain of identities

π∫
0

π∫
0

L(x, y)f (y)g(x) dy dx =
π∫

0

π∫
0

lim
r→1− Lr(x, y)f (y)g(x) dy dx

= lim
r→1−

π∫
0

π∫
0

Lr(x, y)f (y)g(x) dy dx

= lim
r→1−

π∫
0

Trf (x)g(x) dx

= lim
r→1−

∞∑
n=0

rn〈f , φ(γ ,δ)
n 〉〈f , φ(α,β)

n 〉.

The fourth identity is a consequence of Parseval’s identity. Finally, since the series∑∞
n=0〈f , φ(γ ,δ)

n 〉〈f , φ(α,β)
n 〉 converges, the last limit equals the right-hand side of (3.12).

��

Remark 3.5 For (α, β) = (−1/2, −1/2) and (γ , δ) = (1/2, 1/2) we have

L(x, y) =
√

2 − 1
π

sin y + 1
π

cos y
sin y

cos y − cos x
.

This is because φ
(−1/2,−1/2)
n (θ) = (2/π)1/2 cos(nθ) for n > 0, φ

(−1/2,−1/2)

0 (θ) =
1/

√
π , φ

(1/2,1/2)
n (θ) = √

2/π sin((n + 1)θ), and as a direct calculation shows,

Lr(x, y) =
√

2
π

sin y + 2
π

∞∑
n=1

rn cos(nx) sin
(
(n + 1)y

)

=
√

2
π

sin y + 1
π

[
cos y

∞∑
n=1

rn
(

sin
(
n(x + y)

)− sin
(
n(x − y)

))

+ sin y
∞∑

n=1

rn
(

cos
(
n(x − y)

)+ cos
(
n(x + y)

))]
.

Summing the above series leads to expressions involving the Poisson and the conjugate
Poisson kernels, then passing to the limit with r → 1− gives

L(x, y) =
√

2
π

sin y + 1
π

cos y
(

1
tan(x/2 + y/2)

− 1
tan(x/2 − y/2)

)
− 1

π
sin y,
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and finally an application of trigonometric identities does the job. The fact that L(x, y)

is a C1 function on (0, 1) × (0, 1) \� and satisfies the estimates of Proposition 3.3 now
follows by a straightforward inspection.

The case α = β = −1/2, γ = δ = 1/2 is not the only one when the kernel L(α,β),(γ ,δ)

may be computed explicitly. However, even in such special cases the results of this
section are meaningful. The following example is to some extent instructive.

Assume that γ = β and δ = α. We shall compute L(α,β),(β,α). Using the identity

φ
(α,β)
n (π − x) = (−1)nφ

(β,α)
n (x), (3.13)

which in turn is a consequence of the relation P(α,β)
n (−x) = (−1)nP(β,α)

n (x) (cf. [11,
(4.1.3)]), we get

L(α,β),(β,α)
r (x, y) =

∞∑
n=0

rnφ
(α,β)
n (x)φ

(β,α)
n (y) =

∞∑
n=0

(−r)nφ
(α,β)
n (x)φ

(α,β)
n (π − y).

Now the well-known formula of Bailey [3] for the Jacobi–Poisson kernel can be
applied, and this leads to

L(α,β),(β,α)
r (x, y) = �(α + β + 2)

�(α + 1)�(β + 1)

1 + r
(1 − r)α+β+2

(
�(x, y)

)α+1/2(
�(y, x)

)β+1/2

×F4

(
α + β + 2

2
,
α + β + 3

2
, α+1, β+1;

−r�2(x, y)

(1 − r)2 ,
−r�2(y, x)

(1 − r)2

)
;

here �(x, y) = 2 sin(x/2) cos(y/2), and F4 denotes Appel’s hypergeometric function
of two variables, cf. [6, Sect. 5.7] (to be precise, here by F4 we mean the analytic
continuation of the defining series in [6, Sect. 5.7, (9)]). Next, we transform the above
expression by means of the formula (cf. [6, Sect. 5.11, (9)] after correcting an obvious
misprint concerning the power of −y in the second summand there)

F4(a, b, c, d; X, Y) = �(d)�(b − a)

�(d − a)�(b)
(−Y)−aF4

(
a, a + 1 − d, c, a + 1 − b;

X
Y

,
1
Y

)

+�(d)�(a − b)

�(d − b)�(a)
(−Y)−bF4

(
b + 1 − d, b, c, b + 1 − a;

X
Y

,
1
Y

)
,

valid when the variables of all F4 functions are not in [1, ∞). This, under assumption
�(x, y) < �(y, x) (or equivalently x < y), allows to pass to the limit as r → 1−. Indeed,
the second summand then vanishes, and Appel’s function in the first one reduces to
the Gauss hypergeometric function 2F1 (cf. [6, Chap. 2] or [7, Chap. 9]) since its second
argument tends to 0. The final result, after some simplifications with the aid of the
duplication formula for the gamma function (cf. [7, (1.2.3)]), is

L(α,β),(β,α)(x, y) = 2�((α + β + 2)/2)

�(α + 1)�((β − α)/2)

(
�(x, y)

)α+1/2(
�(y, x)

)−(α+3/2)

×2F1

(
α + β + 2

2
,
α − β + 2

2
; α + 1;

(�(x, y)

�(y, x)

)2
)

.

By the symmetry, for x > y we have L(α,β),(β,α)(x, y) = L(β,α),(α,β)(y, x). In the above
formula we consider �(z)−1 to be a continuous function with the sequence of isolated
zeroes in 0, −1, −2, . . . Hence, if α = β + 2k, k = 1, 2, . . . , then L(α,β),(β,α)(x, y) = 0 on
0 < x < y and, moreover, L(α,β),(β,α)(x, y) is continuous as a function considered on
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the region 0 < y ≤ x. Similarly, if β = α + 2k, k = 1, 2, . . . , then L(α,β),(β,α)(x, y) = 0
on 0 < y < x and L(α,β),(β,α)(x, y) is continuous on 0 < x ≤ y. This is because, in
the first case, (β − α + 2)/2 ∈ {0, −1, −2, . . . } which means that 2F1((α + β + 2)/

2, (β − α + 2)/2; β + 1; t) is a polynomial in t and the same is true, in the second case,
for 2F1((α + β + 2)/2, (α − β + 2)/2; α + 1; t). If α �= β + 2k for all integers k then the
kernel has a singularity along the diagonal.

Noteworthy, there is a striking coincidence between L(α,β),(β,α) and the Hankel
transform transplantation kernel Kαβ (see [10, Sect. 3]). Namely, we have

L(α,β),(β,α)(x, y) = Kαβ

(
�(x, y), �(y, x)

)
.

This connection indicates that no significant simplifications can be expected in the
analysis of the Jacobi transplantation operator: even in this special case, with the
exact expression for the kernel, obtaining standard estimates is not a trivial task (see
[10, Proposition 3.2]).

4 Proofs of the main results

Recall that D stands for the region defined in Sect. 2, see Fig. 1. Let Ti, i = 1, 2, denote
the integral operators

Tif (x) =
π∫

0

χDi(x, y)L(x, y)f (y) dy,

where Di denote the two components of the complement of D in (0, π) × (0, π),

D1 = {
(x, y) : 0 < x < π , 0 < y ≤ max(x/2, (3x − π)/2)

}
,

D2 = {
(x, y) : 0 < x < π , min(3x/2, (x + π)/2) ≤ y < π

}
.

It is straightforward that the operator

T̃ = T − T1 − T2

is bounded in L2. Indeed, L2-boundedness of T1 and T2 follows by taking w ≡ 1 and
p = 2 in (2.4) and (2.5) and using the estimates of L(x, y), see Proposition 3.3. This
fact together with Propositions 3.3 and 3.4 shows that T̃ is a double local Calderón–
Zygmund operator with the associated kernel χD(x, y)L(x, y).

Proof of Theorem 2.5 Using the estimate of |L(x, y)| by the right-hand side of (3.3)
and applying weighted Hardy’s inequality (2.4), we obtain

π∫
0

|T1f (x)w(x)|p dx =
π∫

0

∣∣∣∣w(x)

max(x/2,(3x−π)/2)∫
0

L(x, y)f (y) dy

∣∣∣∣
p

dx

≤ C

π∫
0

⎛
⎝w(x)

(π − x)β+1/2

xγ+3/2

x∫
0

yγ+1/2

(π − y)β+3/2 |f (y)| dy

⎞
⎠

p

dx

≤ C

π∫
0

|f (x)w(x)|p dx.
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Similarly, using weighted Hardy’s inequality (2.5), we get

π∫
0

|T2f (x)w(x)|p dx =
π∫

0

∣∣∣∣w(x)

π∫
min(3x/2,(x+π)/2)

L(x, y)f (y) dy

∣∣∣∣
p

dx

≤ C

π∫
0

⎛
⎝w(x)

xα+1/2

(π − x)δ+3/2

π∫
x

(π − y)δ+1/2

yα+3/2 |f (y)| dy

⎞
⎠

p

dx

≤ C

π∫
0

|f (x)w(x)|p dx.

Now the desired Lp inequality for T̃ is a consequence of item (a) in Theorem 2.4.
In order to prove (2.7) we first note that the existence of 〈f , φ(γ ,δ)

n 〉, f ∈ Lp(w),
is a direct consequence of Conditions (2.2) and (2.3). Indeed, we can use Hölder’s
inequality, the estimate (3.9) (with (γ , δ) replacing (α, β)) and either the fact that the
second term in (2.2) for r = π/2 is finite to check that

∫ π/2
0 |f (x)φ

(γ ,δ)
n (x)| dx < ∞, or

the fact that the second term in (2.3) is finite to verify that
∫ π

π/2 |f (x)φ
(γ ,δ)
n (x)| dx < ∞.

In a similar way, with the aid of Hölder’s inequality, it may be seen that Condition (1.3)
implies that 〈f , φ(α,β)

n 〉 exists for f ∈ Lp(w), thus the existence of 〈Tf , φ(α,β)
n 〉 for any

f ∈ Lp(w) is ensured. Next, observe that another application of Hölder’s inequality
gives for g ∈ Lp(w)

π∫
0

|g(x)φ
(α,β)
n (x)| dx ≤ ‖g‖Lp(w)‖φ(α,β)

n ‖Lp′
(w−1).

It follows by (3.9) and Condition (1.3) that the right-hand side above is finite. There-
fore, for any fixed n ∈ N, the mapping g �→ 〈g, φ(α,β)

n 〉 is a bounded functional on
Lp(w). We now fix f ∈ Lp(w) and choose a sequence fk ∈ L2 ∩Lp(w) such that fk → f
in Lp(w), k → ∞. Then, by the very definition, Tf = limk→∞ Tfk in Lp(w). Thus

〈Tf , φ(α,β)
n 〉 = lim

k→∞
〈Tfk, φ(α,β)

n 〉,

which gives (2.7) in view of the identity 〈Tfk, φ(α,β)
n 〉 = 〈fk, φ(γ ,δ)

n 〉 and the fact that
f �→ 〈f , φ(γ ,δ)

n 〉 is also a bounded functional on Lp(w) (more precisely, the last state-
ment requires ‖φ(γ ,δ)

n ‖Lp′
(w−1) < ∞, but this is again guaranteed by Conditions (2.2)

and (2.3)).
This finishes justifying (2.7), hence Theorem 2.5 is proved. ��

Proof of Theorem 2.6 Denote by Ei, i = 1, . . . , 8, the triangles decomposing (0, π) ×
(0, π) according to Fig. 2 below. Taking into account the estimates of the kernel L(x, y)

asserted in Proposition 3.3, we see that

|Tf (x)| ≤ C
( 8∑

i=1

Kif (x) + |T̃f (x)|
)

,
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Fig. 2 Decomposition into Ei (dots indicate the region D)

where C is independent of f , and

Kif (x) =
π∫

0

χEi(x, y)Ki(x, y)|f (y)| dy, i = 1, . . . , 8,

with the kernels

K1(x, y) = x−(γ+3/2)yγ+1/2,

K2(x, y) = xα+1/2y−(α+3/2),

K3(x, y) = (π − x)−(δ+3/2)(π − y)δ+1/2,

K4(x, y) = (π − x)β+1/2(π − y)−(β+3/2),

K5(x, y) = K6(x, y) = (π − x)β+1/2yγ+1/2,

K7(x, y) = K8(x, y) = xα+1/2(π − y)δ+1/2.

The weighted weak type (1, 1) inequality for each Ki, i = 1, . . . , 8, is obtained in a
straightforward manner by means of Hardy’s inequality (2.10) or its dual (i.e. with Pη

replaced by Qη), choosing appropriately the parameters and using the corresponding
condition imposed on a weight w(x). For example, for K4 we write

∫
{0<x<π : K4f (x)>λ}

w(x) dx =
∫

{
π
2 <x<π : (π−x)β+1/2

∫ x
π/2(π−y)−(β+3/2)|f (y)| dy >λ

} w(x) dx
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=
∫

{
0<x< π

2 : xβ+1/2
∫ π−x
π/2 (π−y)−(β+3/2)|f (y)| dy >λ

} w(π − x) dx

=
∫

{
0<x< π

2 : xβ+1/2
∫ π/2

x y−(β+3/2)|f (π−y)| dy >λ
} w(π − x) dx.

The last expression is, by weighted Hardy’s inequality for Q−(β+1/2) applied with
U(x) = w(π − x) and V(x) = w(π − x)xβ+3/2 (notice that this is legitimate by the
second part of condition (ii) imposed on w(x)), estimated by

C
λ

π/2∫
0

|f (π − x)|w(π − x) dx ≤ C
λ

π∫
0

|f (x)|w(x) dx.

The remaining Ki, i ≤ 8, are treated in a similar way.
Finally, the operator T̃ is a double local CZ operator, hence it satisfies the desired

weighted weak type (1, 1) estimate by item (b) of Theorem 2.4 (the corresponding
weight is assumed to verify the double local A1 condition). ��

5 Final comments

We first comment the fact that (1.2) implies each of the conditions: (2.1), (2.2) and (2.3).
The first implication is easy: under the restriction 0 ≤ u < v ≤ min(2u, (u +π)/2) ≤ π

that appears in (2.1), for u < x < v one has 1/2 < x/v < 1 and 1 < (π −x)/(π −v) < 2
hence (2.1) follows.

To check that (1.2) implies (2.2) note that the latter is equivalent to the conjunction
of the conditions:

sup
0<r<3π/4

( 3π/4∫
r

(
w(x)

xγ+3/2

)p

dx
)1/p( r∫

0

(
xγ+1/2

w(x)

)p′

dx
)1/p′

< ∞ (5.1)

and

sup
π/4<r<π

( π∫
r

(
w(x)(π − x)β+1/2

)p
dx
)1/p( r∫

π/4

(
1

w(x)(π − x)β+3/2

)p′

dx
)1/p′

< ∞.

(5.2)

An application of [9, Lemma (9.19)] taken with s = 0, q = p, a = α+1/2, b = γ +1/2,
then shows that (5.1) is implied by

( v∫
u

(
w(x)xα+1/2)pdx

)1/p( v∫
u

(
xγ+1/2

w(x)

)p′

dx
)1/p′

≤C(v−u)vα+γ+1, 0≤u < v≤3π/4.

(5.3)
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The change of variables y = π − x, s = π − r, gives the equivalent form of (5.2):

sup
0<s<3π/4

( s∫
0

(
1

w(π − y)yβ+3/2

)p′

dy
)1/p′( 3π/4∫

s

(
w(π − y)yβ+1/2)p dy

)1/p

< ∞.

Again an application of [9, Lemma (9.19)] taken with s = 0, q = p, a = β + 1/2,
b = δ + 1/2, and with w(π − y) in place of w(x), shows that the above inequality, and
thus (5.2), is implied by

( v∫
u

(
yδ+1/2

w(π − y)

)p′

dy
)1/p′( v∫

u

(
w(π − y)yβ+1/2)p dy

)1/p

≤ C(v − u)vβ+δ+1, 0 ≤ u < v ≤ 3π/4. (5.4)

The inequalities (5.3) and (5.4) are easily seen to be consequences of (1.2). The veri-
fication that (1.2) implies (2.3) goes along similar lines.

As the second comment we point out that more general versions (in the spirit of
the general Muckenhoupt’s theorem [9, Theorem (1.14)]) of our main results, Theo-
rem 2.5 and Theorem 2.6, are possible. Such generalizations would be applicable, for
instance, in studying conjugacy and Riesz transforms for Jacobi expansions. Let g(n),
n ≥ 0, be a sequence satisfying the smoothness condition, cf. [9, (1.4)],

g(n) =
J−1∑
j=0

cjn−j + O(n−J), n ≥ 1, (5.5)

where J is sufficiently large and c0, c1, . . . , cJ−1, are fixed. Then, given an integer d, we
define the generalized transplantation operator T = T(α,β),(γ ,δ)

d,g by

Tf =
∞∑

n=0

g(n)〈f , φ(γ ,δ)
n 〉φ(α,β)

n+d , f ∈ L2((0, π), dx),

with the convention that φ
(α,β)
n ≡ 0 for n < 0. Clearly, T is an L2-bounded operator.

Accordingly, we consider the kernel

Lr,d,g(x, y) =
∞∑

n=0

rng(n)φ
(α,β)

n+d (x)φ
(γ ,δ)
n (y), x, y ∈ (0, π).

A thorough analysis of the arguments used in the proof of Proposition 3.2 shows
that the estimates (3.3) and (3.4) remain valid for the kernel Lr,d,g provided

J ≥ 5 + max(α, −1/2) + max(β, −1/2) + max(γ , −1/2) + max(δ, −1/2).

Here are the details. The initial comments concerning (3.3) remain valid as well for
Lr,d,g replacing Lr: first, the third estimate is a dual form of the first one (if g(n) satisfies
(5.5) so does g′(n) = g(n + d)); second, the first bound is included in [9, Theorems
7.1 and 5.1] since the assumptions on J imposed there are weaker than the present
assumption; third, the modified (by the sequence g(n)) version of (3.6), implying the
middle bound, remains valid for J ≥ 2, cf. [9, Theorem 8.3]. Comments concerning
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(3.4) are as follows. The suitable splitting ∂xLr,d,g = −L1
r,d,g + L2

r,d,g is in force, with

L2
r,d,g essentially the same as L2

r , and L1
r,d,g modified to

L1
r,d,g(x, y) =

∞∑
n=1

rng(n)(n + d + α + β + 1)
t(α,β)

n+d

t(α+1,β+1)

n+d−1

φ
(α+1,β+1)

n+d−1 (x)φ
(γ ,δ)
n (y).

The estimate of L1
r,d,g (the one of L2

r,d,g is immediate) requires the analogue of (3.8)
with the left-hand side first changed by replacing n by n+d and then attaching the fac-
tor g(n); this analogue is possible since J ≥ 3. Consequently, the bound of |L1

r,d,g(x, y)|
relies on estimating |L1,j

r,d,g(x, y)|, j = −1, 0, 1, (where, in their defining identities,

φ
(α+1,β+1)

n−1 (x) are replaced by φ
(α+1,β+1)

n+d−1 (x) and the factor g(n) is inserted) and the cor-

responding remainder (this time only with φ
(α+1,β+1)

n−1 (x) replaced by φ
(α+1,β+1)

n+d−1 (x)).
With these changes the further reasoning is essentially identical to that performed
for L1

r (x, y); notice that a generalization of the Darboux type formula needed here is
already provided by the last statement of Theorem 3.1.

Similarly, investigating the proof of Proposition 3.3 reveals that the limit Ld,g(x, y) =
limr→1− Lr,d,g(x, y), x �= y, exists, and satisfies (3.3) and (3.4) as well. Finally, minor
modifications of the argument from the proof of Proposition 3.4 show that T =
T(α,β),(γ ,δ)

d,g also satisfies (3.11).
Consequently, with the above assumption on J, Theorems 2.5 and 2.6 hold, with

T(α,β),(γ ,δ)
d,g replacing T(α,β),(γ ,δ) ((2.7) must be adjusted appropriately, to be precise).

6 Appendix: proof of the Darboux type formula for Jacobi polynomials

Throughout this section we assume that α, β ∈ (−1, ∞) and q ∈ N are fixed, and
n ≥ 1. The main tool in proving Theorem 3.1 will be the following uniform asymp-
totic formula for Jacobi polynomials obtained recently by Wong and Zhao [12]: for
x ∈ (0, π/2],
(

sin
x
2

)α(
cos

x
2

)β

P(α,β)
n (cos x) = Jα(Nx)

q∑
k=0

ck(x)

Nk
+ Jα+1(Nx)

q∑
k=0

dk(x)

Nk
+ δq(n, x);

here Jα denotes the Bessel function of the first kind of order α, N = n+ (α +β +1)/2,
the coefficients ck(x) and dk(x) are bounded continuous functions of x ∈ (0, π/2], and
the remainder δq(n, x) satisfies

|δq(n, x)| ≤ �q

Nq+1

(|Jα(Nx)| + |Jα+1(Nx)|) (6.1)

with a constant �q independent of x and n; see [12, (2.29), Theorems 4.1, 5.1]. Thus
for x ∈ (0, π/2]

φ
(α,β)
n (x) = t(α,β)

n

√
sin x

2

(
Jα(Nx)

q∑
k=0

ck(x)

Nk
+ Jα+1(Nx)

q∑
k=0

dk(x)

Nk
+ δq(n, x)

)
. (6.2)
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We shall also need the following asymptotics of the Bessel function (cf. [7, (5.11.6)])

√
zJν(z) =

q∑
k=0

(Ak,ν

zk
sin z + Bk,ν

zk
cos z

)
+ O

(
n−q−1), z ≥ 1. (6.3)

Finally, we will make use of the fact that the normalizing coefficients t(α,β)
n satisfy

t(α,β)
n√

N
=

q∑
k=0

ak

nk
+ O

(
n−q−1), (6.4)

with N defined above and some constants ak independent of n; this follows from the
exact expression (1.1) (compare with [9, (2.4)]).

Proof of Theorem 3.1 We first observe that it is enough to prove the Darboux type
formula only for x ∈ (0, π/2], since then the result for all x ∈ (0, π) follows immedi-
ately by a symmetry argument and the identity (3.13). Further, we may assume that
Nx ≥ 1; otherwise the Darboux formula has minor significance since the error term
dominates (in the sense of the absolute value) all the remaining terms, including φ

(α,β)
n

itself, as is readily deduced from the estimate (3.9).
Thus, assume that x ∈ (0, π/2] and Nx ≥ 1. Combining (6.2) with (6.3) gives

φ
(α,β)
n (x) = t(α,β)

n√
N

√
sin x
2x

{[ q∑
k=0

( Ak,α

(Nx)k
sin Nx + Bk,α

(Nx)k
cos Nx

)
+ O

(
(Nx)−q−1)]

×
q∑

k=0

ck(x)

Nk
+
[ q∑

k=0

(Ak,α+1

(Nx)k
sin Nx + Bk,α+1

(Nx)k
cos Nx

)
+ O

(
(Nx)−q−1)]

×
q∑

k=0

dk(x)

Nk
+ √

Nxδq(n, x)

}
.

Next, writing sin Nx and cos Nx as linear combinations with bounded functions as
coefficients of sin nx and cos nx, and using, among others, the fact that (sin x)/x is
comparable with 1 for x ∈ (0, π/2], we obtain

φ
(α,β)
n (x) = t(α,β)

n√
N

[ q∑
k=0

( Ak(x)

(N sin x)k
sin nx + Bk(x)

(N sin x)k
cos nx

)

+O
(
(Nx)−q−1)+ √

Nxδq(n, x)

]
; (6.5)

here Ak(x), Bk(x) are of course bounded functions of x. Now observe that by (6.1)
and

√
zJν(z) = O(1), z ≥ 1, (this is (6.3) specified to q = 0)

∣∣√Nxδq(n, x)
∣∣ ≤ �q

Nq+1
= O

(
(Nx)−q−1).

Moreover, since Nx is comparable with n sin x when Nx ≥ 1 and x ∈ (0, π/2], both
error terms in (6.5) can be written as O((n sin x)−q−1). Thus

φ
(α,β)
n (x) = t(α,β)

n√
N

[ q∑
k=0

( Ak(x)

(N sin x)k
sin nx + Bk(x)

(N sin x)k
cos nx

)
+ O

(
(n sin x)−q−1)].

(6.6)
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Observe that (6.4) may be slightly weakened to

t(α,β)
n√

N
=

q∑
k=0

ak(sin x)k

(n sin x)k
+ O

(
(n sin x)−q−1),

whereas for each fixed k = 0, . . . , q,

1
(N sin x)k

= 1
(n sin x)k

(
1 + α + β + 1

2n

)−k

= 1
(n sin x)k

[ q−k∑
j=0

dj

nj + O
(
n−q+k−1)]

= 1
(n sin x)k

q−k∑
j=0

dj(sin x)j

(n sin x)j + O
(
(n sin x)−q−1).

Plugging these two expansions into (6.6) we arrive at

φ
(α,β)
n (x) =

q∑
k=0

( Ak(x)

(n sin x)k
sin nx + Bk(x)

(n sin x)k
cos nx

)
+ error terms,

with some new bounded functions Ak(x), Bk(x), and all error terms easily seen to be
captured by O((n sin x)−q−1). This finishes the proof of (3.2).

Finally, we comment on necessary modifications to be done in the preceding lines in
order to obtain the variant of (3.2) with n on the right replaced by n+d; recall that we
assume n ≥ −d + 1 in the case d < 0. First, it is clear that writing sin Nx and cos Nx as
linear combinations with bounded functions as coefficients of sin((n+d)x) and cos((n+
d)x), we obtain an analogue of (6.5) with sin nx and cos nx replaced by sin((n + d)x)

and cos((n + d)x); moreover both error terms in (6.5) are O(((n + d) sin x)−q−1). Sec-
ond, it is also straightforward that in the asymptotics of t(α,β)

n /
√

N and 1/(N sin x)k,
k = 0, . . . , q, that follow (6.6), on their right-hand sides n may be replaced by n + d.
Plugging the two modified asymptotics into (6.6) gives the aforementioned variant of
(3.2). The proof of Theorem 3.1 is completed. ��

Remark 6.1 In fact the functions Ak(x) and Bk(x) appearing in Theorem 3.1 can be
even chosen to be analytic on [0, π ], but proving this requires a more detailed analysis.
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