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Abstract We consider three systems of Laguerre functions and their corresponding
heat diffusion semigroups. For the associate maximal operators, we give necessary and
sufficient conditions in order to obtain strong type, weak type and restricted weak type
(p, p), with respect to a power weight xδ , for 1 ≤ p ≤ ∞. We also obtain sufficient
conditions for more general weights.
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1 Introduction

For a given α > −1, the Laguerre polynomials are defined by

e−xxαLαn(x) = 1
n!

dn

dxn

(
e−xxn+α)

for x ∈ (0, ∞). They form an orthogonal system with respect to the measure e−xxα dx.
More precisely

∞∫

0

Lαk(x)L
α
j (x)e

−xxαdx = Γ (k + α + 1)
Γ (k + 1)

δkj.
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Moreover, when properly normalized, they constitute a basis for L2(R+, e−xxα dx).
From this system of polynomials, three different sets of Laguerre functions may be
derived, namely

Lαn(x) =
(

n!
Γ (n + α + 1)

)1/2

Lαn(x)e
−x/2xα/2 (1.1)

ϕαn (x) =
(

2n!
Γ (n + α + 1)

)1/2

Lαn(x
2)e−x2/2xα+1/2 = Lαn(x2)(2x)1/2 (1.2)

�αn(x) =
(

n!
Γ (n + α + 1)

)1/2

Lαn(x)e
−x/2 = Lαn(x)x−α/2 (1.3)

which turn to be orthonormal basis for L2(R+)with respect to the Lebesgue measure,
in the two first cases, and with respect to xα dx, in the last one. Moreover, each of
these systems is the set of eigenfunctions of a second order differential operator L,
positive and self-adjoint with respect to the corresponding measure (dx or xα dx).
More precisely, those operators are

LαL = −x
d2

dx2 − d
dx

+ x
4

+ α2

4x

Lαϕ = 1
4

{
− d2

dx2 + x2 + 1
x2

(
α2 − 1

4

)}

Lα� = −x
d2

dx2 − (α + 1)
d
dx

+ x
4

and the sequences of eigenvalues are
{

n + α + 1
2

}∞

n=0

in each of the three cases.
Let us remind that in such situation, when we have that kind of differential oper-

ator, L, with a discrete set of eigenfunctions, say ψn, with eigenvalues λn, expanding
L2(dµ), the heat-diffusion semigroup may be defined as

Ttf =
∑

n

〈f ,ψn〉ψn e−tλn , t > 0

and u(x, t) = Ttf (x) will supply, at least formally, a solution to the heat equation
associated to L with initial data f , namely,

{
∂ u
∂t

= −Lu

u(x, 0) = f (x)

Clearly, when f is, say, a finite linear combination of ψn, the semigroup admits the
expression

Ttf (x) =
∫

K(t, x, y)f (y)dµ(y), t > 0 (1.4)

where

K(t, x, y) =
∑

e−tλnψn(x)ψn(y)

is the heat diffusion kernel.
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In our situation, there is a well known formula that allow us to find a suitable
expression for the corresponding kernels (see the beginning of Sect. 5).

As it is well known, the a.e. convergence of the solution to the initial data amounts
to study the behavior of the associate maximal operator

W∗f (x) = sup
t>0

|Ttf (x)|

The aim of this paper is to establish weighted boundedness results of the maximal
operators related to the three systems of Laguerre functions on Lp spaces. For each of
the systems, we give necessary and sufficient conditions on the exponent of a power
weight in order to get strong type, weak type or restricted weak type (p, p), 1 ≤ p ≤ ∞.
Also, as a consequence of our estimates, we are able to obtain sufficient conditions
to get strong type (p, p), 1 < p < ∞, and weak type (1, 1), for more general type of
weights.

Stempak, in the pioneer work [16], provided answers to these kind of questions,
proving that for the unweighted case the corresponding maximal operators were
of weak type (1, 1) for the systems of functions (1.1), (1.2) and (1.3) when α ≥ 0,
α ≥ −1/2 and α > −1, respectively. He also shows that the integral expression (1.4)
gives in fact a C∞ solution to the corresponding heat equation when the data is in
Lp(R+), for 1 ≤ p ≤ ∞. Stempak’s results of the associate maximal operator were
later extended by Macías, Segovia and Torrea in [7] to the case of negative values of
the parameter α for the system (1.1). In [8] the authors continue their research about
the system {Lαn}, α > −1, providing a full description of the boundedness of W∗ with
power weights xδ , assuming the exponent δ to be grater than −1. This restriction seems
unnatural in the measure space (R+, dx), where xδ is a locally integrable function for
any real number δ, since any compact subset stays away from zero. Nevertheless, we
use the underlying ideas and refine some of their estimates in order to majorize by
operators more related to the structure of R

+. More precisely, our bounds turn out to
be in terms of a local maximal function on the “local” region x ∼ y, modified Hardy
operators and maximal operators associated to the natural convolution in R

+ on the
“global” region (see Sect. 3 for the precise definitions).

For the other two cases we do not need to go over to the same kind of estimates. We
rather use some appropriate changes of variables that allow us to transfer the point-
wise estimates already obtained for the first case to the other kernels. Such kind of
connection between the systems has also been exploited in [1]. For these last two sys-
tems, Nowak in [12] obtained some results including more general weights. However,
for the system {ϕαn }, the class he considers, Ap(dx), does not depend on the parameter
α, as expected. We present some results in this direction at the end of the paper.

Finally, let us point out that questions related to convergence of these Laguerre
functions expansions have been considered by several authors. See for example [6,9,
10,12,16–21]. Recently, we become aware of some new results of Nowak and Sjögren
in [14] concerning the weak type (1, 1) for the maximal operators associated to heat
diffusion semigroups for all Laguerre function systems in higher dimensions.

The organization of the paper is the following. In Sect. 2 we state our results
with power weights concerning the maximal heat operator for all of the three sys-
tems. In Sect. 3 we present some known facts about the operators we are going to
use to majorize the ones we are concerned with, while in Sect. 4 we establish and
prove boundedness properties on Lp(R+, xδ dx) for a general operator controlled by
a combination of the operators given in Sect. 3. In Sect. 5 we show that our maximal
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operators satisfy all the requirements of the proposition given in Sect. 4, completing
the proof of the main results. Finally, in Sect. 6, we give sufficient conditions to obtain
some more general weighted inequalities for the three systems of Laguerre’s functions.

2 Statement of the results

Consider a measure space (E, dµ). For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space
Lp, q(E, dµ) consists of all measurable functions f on (E, dµ) for which the quasi-norm

‖f‖Lp, q(E,dµ) =
⎧
⎨

⎩

(∫ ∞
0

[
tµf (t)1/p

]q dt
t

)1/q
, q < ∞,

supt>0
[
tµf (t)1/p

]
, q = ∞,

(2.1)

is finite, where

µf (t) = µ({x ∈ E : |f (x)| > t}).
We also consider

L∞,∞(E, dµ) .= L∞(E, dµ)

with

‖f‖L∞(E,dµ) = ess sup |f |.
The Lorentz spaces Lp, q satisfy, for 1 ≤ p ≤ ∞,

Lp,1 ↪→ Lp, p ↪→ Lp,∞, (2.2)

and
Lp, p = Lp, (2.3)

with

‖f‖Lp(E,dµ) =
⎛

⎝
∫

E

|f (x)|p dµ

⎞

⎠

1/p

.

For a sublinear operator R and 1 ≤ p ≤ ∞, we say that R is of strong type (p, p) on
(E, dµ) when

R : Lp(E, dµ) −→ Lp(E, dµ)

continuously. Also, we say that R is of weak type (p, p) on (E, dµ) when

R : Lp(E, dµ) −→ Lp,∞(E, dµ)

and of restricted weak type (p, p) on (E, dµ) when

R : Lp,1(E, dµ) −→ Lp,∞(E, dµ), (2.4)

continuously in both cases.
By (2.2) and (2.3), we have that strong type implies weak type, ant they are equiv-

alent when p = ∞. Also, weak type implies restricted weak type, and they are equiv-
alent when p = 1. For that reason, in the statements of the theorems we consider the
weak type (1, 1) together with the restricted weak type results.

We note that in [4], R is defined to be of restricted weak type (p, p) when there
exists a positive constant C such that the inequality
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∫

{x∈E:|Rf (x)|>λ}
dµ ≤ C

λp

∫

E

|f (x)|p dµ

holds for any λ > 0 and for all f characteristic functions of measurable sets. For R
linear, or sublinear and nonnegative, as is shown in Theorem 5.3, Chap. 5 of [4], this
definition is equivalent to the given in (2.4), which, by the way, is the definition of
weak type in [4].

We now state the main results of this paper.
Let {ψn} be any of the three systems of Laguerre functions given in (1.1), (1.2) and

(1.3) and consider the heat diffusion kernel

K(t, x, y) .=
∞∑

n=0

e−t(n+ α+1
2 )ψn(x)ψn(y),

the heat diffusion integral

Ktf (x) .=
∞∫

0

K(t, x, y)f (y)dy

and the associate maximal operator

W∗f (x) = sup
t>0

|Ktf (x)|.

We have the following results:

Theorem 2.1 Let α > −1 and 1 ≤ p ≤ ∞. Associated to the Laguerre system {Lαn}
given in (1.1), we have the following results:
For any t > 0, the heat diffusion integral Kt

Lα f (x) is finite a.e. for all f ∈ Lp(R+, xδ dx),
1 < p ≤ ∞, if and only if δ < (α2 + 1)p − 1, and for all f ∈ Lp,1(R+, xδ dx), 1 ≤ p < ∞,
if and only if δ ≤ ( α2 + 1)p − 1.

Moreover, the associate maximal operator W∗
Lα satisfies:

(a) For 1 < p < ∞ and δ < α
2 p + p − 1, W∗

Lα is of strong type (p, p) on (R+, xδ dx) if
and only if δ > −α

2 p − 1.
(b) For all real δ, W∗

Lα is of strong type (∞, ∞) on (R+, xδ dx) if and only if α ≥ 0.
(c) For 1 < p < ∞ and δ < α

2 p + p − 1, W∗
Lα is of weak type (p, p) on (R+, xδ dx) if

and only if δ ≥ −α
2 p − 1 when α �= 0, or δ > −1 when α = 0.

(d) For 1 ≤ p < ∞ and δ ≤ α
2 p + p − 1, W∗

Lα is of restricted weak type (p, p) on
(R+, xδ dx) if and only if δ ≥ −α

2 p − 1 when α �= 0, or δ > −1 when α = 0.

Theorem 2.2 Let α > −1 and 1 ≤ p ≤ ∞. Associated to the Laguerre system {ϕαn }
given in (1.2), we have the following results:

For any t > 0, the heat diffusion integral Kt
ϕα f (x) is finite a.e. for all f ∈ Lp (R+, xδ dx),

1 < p ≤ ∞, if and only if δ < (α+ 3
2 )p − 1, and for all f ∈ Lp,1(R+, xδ dx), 1 ≤ p < ∞,

if and only if δ ≤ (α + 3
2 )p − 1.

Moreover, the associate maximal operator W∗
ϕα satisfies:

(a) For 1 < p < ∞ and δ < (α+ 1
2 )p+p−1, W∗

ϕα is of strong type (p, p) on (R+, xδ dx)

if and only if δ > −(α + 1
2 )p − 1.

(b) For all real δ, W∗
ϕα is of strong type (∞, ∞) on (R+, xδ dx) if and only if α ≥ − 1

2 .
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(c) For 1 < p < ∞ and δ < (α+ 1
2 )p+p−1, W∗

ϕα is of weak type (p, p) on (R+, xδ dx)

if and only if δ ≥ −(α + 1
2 )p − 1 when α �= − 1

2 , or δ > −1 when α = − 1
2 .

(d) For 1 ≤ p < ∞ and δ ≤ (α + 1
2 )p + p − 1, W∗

ϕα is of restricted weak type (p, p)

on (R+, xδ dx) if and only if δ ≥ −(α + 1
2 )p − 1 when α �= − 1

2 , or δ > −1 when
α = − 1

2 .

Theorem 2.3 Let α > −1 and 1 ≤ p ≤ ∞. Associated to the Laguerre system {�αn}
given in (1.3), we have the following results:

For any t > 0, the heat diffusion integral Kt
�α f (x) is finite a.e. for all f ∈ Lp(R+,

xδxα dx), 1 < p ≤ ∞, if and only if δ < (α + 1)p − 1, and for all f ∈ Lp,1(R+, xδxα dx),
1 ≤ p < ∞, if and only if δ ≤ (α + 1)p − 1.

Moreover, the associate maximal operator W∗
�α satisfies:

(a) For 1 < p < ∞ and δ < (α+1)(p−1), W∗
�α is of strong type (p, p) on (R+, xδxα dx)

if and only if δ > −α − 1.
(b) W∗

�α is of strong type (∞, ∞) on (R+, xδxα dx) for all real δ.
(c) For 1 < p < ∞ and δ < (α+1)(p−1), W∗

�α is of weak type (p, p) on (R+, xδxα dx)
if and only if δ > −α − 1.

(d) For 1 ≤ p < ∞ and δ ≤ (α + 1)(p − 1), W∗
Lα is of restricted weak type (p, p) on

(R+, xδxα dx) if and only if δ > −α − 1.

Remark 2.1 Let us note that the restrictions on δ for the boundedness of the maximal
operator in Theorem 2.1 become natural after we observe that they are the exact con-
ditions for the Laguerre functions Lαn to belong to the Lp(xδ dx) spaces, 1 < p ≤ ∞, or
to the Lp,1(xδ dx) spaces, 1 ≤ p < ∞, for the restricted weak type case. In fact, since
Lαn(x) ∼ xα/2 when x → 0+ and Lαn(x) ∼ O(e−εx) when x → ∞ (see [19, page 27]), Lαn
will belong to Lp(xδ dx) when δ > −α

2 p − 1 (α ≥ 0 when p = ∞) and to Lp,1(xδ dx)
when δ ≥ −α

2 p − 1. Analogous observations hold for the systems {ϕαn } and {�αn}.

3 Some preliminary results

In this section we introduce our basic operators which, as we shall show in Sect. 4,
majorize our maximal operators for some special values of the parameters. We state
as lemmas their boundedness properties on weighted Lp and we either outline the
proof or else give a reference.

We also include some estimates on the behavior of the modified Bessel functions
which we will use frequently in Sect. 5 and also refer to a result of Landau needed in
Sect. 4.

For β > −1 and η > −1, let Hβ

0 and Hη∞ denote the modified Hardy Operators

Hβ

0 f (x) = x−β−1

x∫

0

f (y)yβ dy

Hη∞f (x) = xη
∞∫

x

f (y)y−η−1 dy,

for a measurable f defined on R
+ and x ∈ R

+.
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Note that Hölder’s inequality on Lorentz spaces implies that Hβ

0 f (x) is finite a.e.
for any f ∈ Lp(R+, xγ dx) if 1 < p ≤ ∞ and γ < (β + 1)p − 1, and for any f ∈
Lp,1(R+, xγ dx) if 1 ≤ p < ∞ and γ ≤ (β + 1)p − 1.

Lemma 3.1 For Hβ

0 , we have

(a) For 1 < p < ∞, if γ < βp + p − 1 then Hβ

0 is of strong type (p, p) on R
+ with

measure xγ dx.
(b) For p = ∞, Hβ

0 is of strong type (∞, ∞) on R
+ with measure xγ dx for any real γ .

(c) For p = 1, if γ ≤ β then Hβ

0 is of weak type (1, 1) with measure xγ dx.

(d) For 1 < p < ∞, if γ ≤ βp + p − 1 then Hβ

0 is of restricted weak type (p, p) with
measure xγ dx.

Proof For (a) and (c), see Theorem A and Theorem 2, respectively, of [3]. Part (b)
holds since β > −1 and L∞((0, ∞), xγ dx) = L∞((0, ∞), dx), with equality of norms.
For (d), it is enough to prove that Hβ

0 is of restricted weak type (p, p), with the mea-
sure xγ dx, for p = (γ + 1)/(β + 1). Let f ∈ Lp,1(xγ dx). Since p > 1 and β > −1
we have that β − γ < 0 and γ > −1. This implies that xβ−γ ∈ Lp′,∞(xγ dx), where
p′ = (γ + 1)/(γ − β). Then, using Hölder’s inequality we get

|Hβ

0 f (x)| ≤ x−β−1

∞∫

0

|f (y)|yβ dy ≤ x−β−1‖f‖Lp,1(xγ dx) ‖xβ−γ ‖Lp′ ,∞(xγ dx).

It is an easy calculation to show that x−β−1 ∈ Lp,∞(xγ dx) if and only if γ = βp+p−1.
Thus, we get the desired inequality

‖Hβ

0 f‖Lp,∞(xγ dx) ≤ C ‖f‖Lp,1(xγ dx).


�
Lemma 3.2 For Hη∞ we have

(a) For 1 < p < ∞, if γ > −ηp − 1 then Hη∞ is of strong type (p, p) with measure
xγ dx.

(b) For p = ∞, if η > 0 then Hη∞ is of strong type (∞, ∞) with measure xγ dx for all
real γ .

(c) For p = 1, if
{
γ ≥ −η − 1, η �= 0
γ > −1, η = 0

then Hη∞ is of weak type (1, 1) with measure

xγ dx.

Proof For (a) see Theorem B and for (c) see Theorems 4 and 5, all from [3]. Part (b)
holds just like Lemma 3.1.b, using this time that η > 0. 
�

Let us observe that if γ = −ηp − 1, with η �= 0 and 1 < p < ∞, then Hη∞ is not
of weak type (p, p) with respect to the measure xγ dx, as we may expect by the results
obtained in [8], with η = α/2. For this reason, we consider the slightly better operators{
Tηs

}
s∈(0,1) defined by

Tηs f (x) = xη
∞∫

x

ϕ(s, y)f (y)y−η−1 dy,
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for some nonnegative function ϕ that satisfies

sup
(s,y)∈(0,1)×(0,∞)

ϕ(s, y) < ∞, (3.1)

‖ϕ(s, y)yδ‖Lq(x,∞) < ∞ (3.2)

for any δ, 0 < s < 1, x > 0 and 1 ≤ q ≤ ∞, and

sup
0<s<1

∞∫

0

(ϕ(s, y))q
dy
y
< ∞ (3.3)

for any 1 ≤ q < ∞. Observe that if, for each s ∈ (0, 1), ϕ(s, y) is continuous and rapidly
decreasing at infinity, then (3.2) holds.

By (3.2), Tηs f (x) is finite a.e. for f ∈ Lp(R+, xγ dx), for all p and all γ .
Tη, defined by

Tηf (x) = sup
0<s<1

|Tηs f (x)|

satisfies, by (3.1),
Tηf (x) ≤ CHη∞|f |(x) ∀x ∈ (0, ∞) (3.4)

and, by Hölder’s inequality and (3.3),

Tηf (x) ≤ Cxη‖f‖Lp(x−ηp−1dx). (3.5)

Inequality (3.4) implies that all the Hη∞ properties of Lemma 3.2 also hold for Tη. By
(3.2), Tη is of strong type (∞, ∞) also when η = 0. Inequality (3.5) implies that Tη is
of weak type (p, p) with measure xγ dx, for γ = −ηp − 1, when η �= 0, since in that
case xη belongs to Lp,∞(xγ dx).
Examples of such functions ϕ are the ones we will use in Sect. 4:

ϕ(s, y) =
(y

s

)ε
e−c y

s (3.6)

or

ϕ(s, y) =
(

y2

s

)ε
e−c y2

s , (3.7)

for some positive constants ε and c. Therefore, we have obtained

Lemma 3.3 (About Tη) Let η > −1. Then

(a) For 1 < p < ∞, if γ > −ηp−1 then Tη is of strong type (p, p)with measure xγ dx.
(b) For p = ∞, if η ≥ 0 then Tη is of strong type (∞, ∞) with measure xγ dx for all

real γ .

(c) For 1 ≤ p < ∞, if
{
γ ≥ −ηp − 1, η �= 0
γ > −1, η = 0

then Tη is of weak type (p, p) with

measure xγ dx.

Local Maximal Function Mκ
loc. For κ > 1, the Local Maximal Function is defined

as

Mκ
loc f (x) = sup

0<a<x<b<κa

1
b − a

b∫

a

|f (y)| dy
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Definition 3.4 For 1 ≤ p < ∞, let Ap
loc denote the class of all nonnegative weights ω

on (0, ∞) satisfying

sup
0<a<b<2a

1
b − a

⎛

⎝
b∫

a

ω(x)dx

⎞

⎠

1
p ⎛

⎝
b∫

a

ω(x)−
p′
p dx

⎞

⎠

1
p′

< ∞

when 1 < p < ∞, and

sup
0<a<b<2a

1
b − a

⎛

⎝
v∫

u

ω(x)dx

⎞

⎠
(

ess sup
x∈(a,b)

ω−1(x)

)

< ∞

when p = 1.

From Propositions 6.1 and 6.3 of [13], we have that if ω ∈ Ap
loc then, for any κ > 1,

Mκ
loc is of strong type (p, p) with measure ω(x)dx , if 1 < p < ∞, and of weak type

(1, 1) with measure ω(x)dx, for p = 1. Is not difficult to see that ω(x) = xγ ∈ Ap
loc, for

all real γ , and 1 ≤ p < ∞. Therefore we have

Lemma 3.5 Let κ > 1, then

(a) Mκ
loc is of strong type (p, p) with measure xγ dx for any real γ and 1 < p ≤ ∞,

(b) Mκ
loc is of weak type (1, 1) with measure xγ dx for any real γ .

We will also need the following results:

Lemma 3.6 (Estimates for Iα) Let α > −1. If Iα(z) = i−αJα(iz) is the modified Bessel
function (where Jα is the usual Bessel function), then there exist two positive constants
cα and Cα such that

1. if 0 ≤ z ≤ 1 then cαzα ≤ Iα(z) ≤ Cαzα

2. if z ≥ 1 then cαezz−1/2 ≤ Iα(z) ≤ Cαezz−1/2

For a proof see [5, p. 5, 86].

Lemma 3.7 (Landau) Let X be a Banach function space (see [4]) and g a measurable
function; then

∫

E

|gf | dµ < ∞ ∀ f ∈ X

if and only if g belongs to the associate dual space X ′.

For a proof, see [4, page 10].

Remark 3.1 The space Lp, q(dµ), with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, or p = q = ∞, is
a Banach function space, and his associate dual space is Lp′, q′

(dµ), where 1
p + 1

p′ = 1

and 1
q + 1

q′ = 1, and moreover

‖g‖(Lp, q)′ = sup

{∣∣∣∣

∫
fg

∣∣∣∣ : f ∈ Lp, q
}

= ‖g‖Lp′ , q′ .
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4 A general result

Based on the results quoted in the previous section we establish sharp strong type,
weak type and restricted weak type (p, p) inequalities with respect to a power weight
for a general operator controlled by the operators of Lemmas 3.1, 3.3 and 3.5.

Proposition 4.1 Let {Rs}s∈I be a family of integral operators with nonnegative and
measurable kernels Rs(x, y) on (0, ∞)× (0, ∞). Let us assume that there exist constants
β > −1, η > −1, κ > 1 and C such that

Rsf ≤ C (Mκ
loc f + Hβ

0 f + Tηs f ) (4.1)

for all s ∈ I and for any nonnegative and measurable function f on (0, ∞). Suppose
further that for some s0 ∈ I there exists c > 0 such that

Rs0(x, y) ≥ c xηyβ (4.2)

for all (x, y) ∈ (0, 1)× (0, 1).
Then we have

(i) For 1 < p ≤ ∞, Rsf (x) is finite a.e. for any s ∈ I and for all f ∈ Lp(R+, xγ dx) if
and only if γ < (β + 1)p − 1

(ii) For 1 ≤ p < ∞, Rsf (x) is finite a.e. for any s ∈ I and for all f ∈ Lp,1(R+, xγ dx) if
and only if γ ≤ (β + 1)p − 1.

For the associate maximal operator

Rf (x) = sup
s∈I

|Rsf (x)|

we have:

(a) For 1 < p < ∞ and γ < βp + p − 1, R is of strong type (p, p) on (R+, xγ dx) if
and only if γ > −ηp − 1

(b) For any real γ , R is of strong type (∞, ∞) on (R+, xγ dx) if and only if η ≥ 0.
(c) For 1 < p < ∞ and γ < βp + p − 1, R is of weak type (p, p) on (R+, xγ dx) if and

only if γ ≥ −ηp − 1 when η �= 0, or γ > −1 when η = 0.
(d) For 1 ≤ p < ∞ and γ ≤ βp + p − 1, R is of restricted weak type (p, p) on

(R+, xγ dx) if and only if γ ≥ −ηp − 1 when η �= 0, or γ > −1 when η = 0.

Proof From our assumptions on Rs, the sufficient conditions on the domain of Rs for
any s ∈ I arise from the domain of each operator on the right hand side of inequal-
ity (4.1). Let us note that the domains of Mκ

loc and Tηs contain all Lp(R+, xγ dx) for

any value of γ , and the domain of Hβ

0 contains Lp(R+, xγ dx) (or Lp,1(R+, xγ dx)) if
1 < p ≤ ∞ and γ < (β + 1)p − 1 (respectively, 1 ≤ p < ∞ and γ ≤ (β + 1)p − 1).

For the necessary conditions in i) and ii), let assume first that Rs0 f (x) < ∞ a.e. for
all f ∈ Lp(R+, xγ dx). Then, by (4.2)

1∫

0

|f (y)|yβ−γ yγ dy < ∞ (4.3)
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for all f ∈ Lp((0, 1), xγ dx). Then, by Lemma 3.7 and the Remark 3.1 below, yβ−γ ∈
Lp′

((0, 1), xγ dx). If 1 < p ≤ ∞, this means that

1∫

0

y(β−γ )p′
yγ dy < ∞

which implies (β − γ )p′ + γ > −1 and hence γ < (β + 1)p − 1. For p = ∞, this holds
for all γ since β > −1.

Now assume that Rs0 f (x) < ∞ a.e. for all f ∈ Lp,1(R+, xγ dx), with 1 ≤ p < ∞. By
(4.2) we have that (4.3) holds for all f ∈ Lp,1((0, 1), xγ dx) and therefore Lemma 3.7
gives

yβ−γ ∈ Lp′,∞((0, 1), xγ dx)

which implies, for p = 1, that γ ≤ β, and for 1 < p < ∞, that

λp′
∫

{y∈(0,1):yβ−γ >λ}
yγ dy ≤ C, (4.4)

for all λ > 0. We may assume β < γ , otherwise, the inequality γ ≤ βp + p − 1 holds
since β > −1 and p > 1. In this case

{y ∈ (0, 1) : yβ−γ > λ} =
(

0, λ
1

β−γ
)

∀λ > 1.

Then (4.4) implies

λp′
λ

1
β−γ∫

0

yγ dy ≤ C ∀λ > 1

that is

λp′+(γ+1)(β−γ )−1 ≤ C ∀λ > 1,

and consequently

p′ + (γ + 1)(β − γ )−1 ≤ 0

which gives γ ≤ βp + p − 1.
Now, we consider the associate maximal operator R. The sufficient conditions for

the strong, weak and restricted weak type (p, p), 1 ≤ p ≤ ∞, of this operator come
out from the hypothesis (4.1) together with Lemmas 3.1, 3.3 and 3.5.

Let us prove the necessary conditions.
Case (b) Let f = χ

( 1
2 ,1)(x), then f ∈ L∞(R+, dx) = L∞(R+, xγ dx). Assume R is of

strong type (∞, ∞) with measure xγ dx. Then
Rf ∈ L∞(R+, xγ dx) = L∞(R+, dx), which implies

∫ 1
1/2 Rs0(x, y)dy ≤ C

for a.e. x ∈ R
+. Therefore, hypothesis (4.2) gives

xη
1∫

1
2

yβ dy ≤ C for a.e. x ∈ (0, 1)
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and then

xη ≤ C for a.e. x ∈ (0, 1)

which implies η ≥ 0.
For 1 ≤ p < ∞, consider again f = χ

( 1
2 ,1); then

f ∈ Lp(R+, xγ dx), 1 ≤ p < ∞,

and moreover

f ∈ Lp,1(R+, xγ dx), 1 ≤ p < ∞.

Also, by (4.2),
Rs0 f (x) ≥ cχ(0,1)(x)x

η (4.5)

for some positive constant c.
Case (a) Assume first that R is of strong type (p, p), with measure xγ dx, 1 < p < ∞.

Then, Rf ∈ Lp(R+, xγ dx), which implies Rs0 f ∈ Lp(R+, xγ dx), and by (4.5) we have

1∫

0

xηpxγ dx < ∞

which implies

γ > −ηp − 1.

Cases (c) and (d) Suppose now that R is of weak type or restricted weak type (p, p)
with measure xγ dx, 1 ≤ p < ∞. In any case, (4.5) implies that xη ∈ Lp, ∞((0, 1), xγ dx),
and therefore

λp
∫

Eλ

xγ dx ≤ M ∀λ > 0 (4.6)

for some constant M, where

Eλ = {
x ∈ (0, 1) : xη > λ

}
.

Suppose first η > 0. Then Eλ = (λ
1
η , 1) for all 0 < λ < 1, and inequality (4.6) implies

λp

1∫

λ
1
η

xγ dx ≤ M ∀ 0 < λ < 1,

which gives

λ
p+ γ+1

η ≤ M ∀ 0 < λ < 1.

From this we obtain the desired inequality γ ≥ −ηp − 1.

If η < 0 then Eλ = (0, λ
1
η ) for all λ > 1 and (4.6) implies that

λp

λ
1
η∫

0

xγ dx ≤ M ∀λ > 1,
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which gives

λ
p+ γ+1

η ≤ M ∀λ > 1

and therefore γ ≤ −ηp − 1.
Finally, if η = 0, then Eλ = (0, 1) for all 0 < λ < 1 and we must have γ > −1. 
�

5 Proof of the theorems

Before proceeding with the proofs, let us consider the heat-diffusion kernel for the
first system of Laguerre’s functions,

KLα (t, x, y) =
∞∑

n=0

e−tλnLαn(x)Lαn(y)

where λn = n + α + 1
2

, for t > 0, 0 < x < ∞ and 0 < y < ∞. Following [7] or [8],

after performing a change in the parameter, the kernel can be written as

KLα (t, x, y) = WLα
(

1 − e−t/2

1 + e−t/2 , x, y
)

with

WLα (s, x, y) = 1
2

1 − s2

2s
e− 1

4 (s+ 1
s )(x+y)Iα

(
1 − s2

2s
(xy)1/2

)
(5.1)

for 0 < s < 1, 0 < x < ∞ and 0 < y < ∞, where Iα(z) = i−αJα(iz) is the modified
Bessel function (Jα being the usual Bessel function, see [5]). Therefore, the maximal
operator W∗

Lα may be expressed in terms of WLα (s, x, y) by

W∗
Lα f (x) = sup

0<s<1

∣∣∣∣∣∣

∞∫

0

WLα (s, x, y)f (y)dy

∣∣∣∣∣∣

Regarding the two other Laguerre’s systems, we can check that their kernels are
related to the above case since, by (1.2) and (1.3), we have

Kϕα (t, x, y) =
∞∑

n=0

e−tλnϕαn (x)ϕ
α
n (y) = 2(xy)1/2KLα (t, x2, y2)

and

K�α (t, x, y) =
∞∑

n=0

e−tλn�αn(x)�
α
n(y) = (xy)−α/2KLα (t, x, y).

Again, λn = n+ α + 1
2

in both cases. After performing the same change of parameters,
we arrive to

W∗
ϕα f (x) = sup

0<s<1

∣∣∣∣∣∣

∞∫

0

Wϕα (s, x, y)f (y)dy

∣∣∣∣∣∣
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and

W∗
�α f (x) = sup

0<s<1

∣
∣
∣
∣
∣
∣

∞∫

0

W�α (s, x, y)f (y)yα dy

∣
∣
∣
∣
∣
∣
,

with
Wϕα (s, x, y) = 2(xy)1/2WLα (s, x2, y2) (5.2)

and
W�α (s, x, y) = 2(xy)−α/2WLα (s, x, y) (5.3)

for 0 < s < 1.
We proceed now with the proof of the theorems of Sect. 2.

Proof of Theorem 2.1 Let α > −1. We will prove that the family of integral operators
corresponding to the kernels (5.1), where s ∈ (0, 1), satisfies hypotheses (4.1) and (4.2)
of Proposition 4.1, with β = η = α

2 and κ = 16.

In order to obtain (4.2), let s0 = √
2 − 1. Then 0 < s0 < 1 and 1−s0

2

2s0
= 1. For

0 < x < 1 and 0 < y < 1 we have 0 < 1−s0
2

2s0
(xy)1/2 ≤ 1 which implies, by Lemma 3.6,

that the inequality

Iα

(
1 − s0

2

2s0
(xy)1/2

)
≥ c (xy)α/2

holds for some constant c. Also, for 0 < x < 1 and 0 < y < 1 we have

e− 1
4 (s0+ 1

s0
)(x+y) ≥ c,

and then

WLα (σ , x, y) ≥ c (xy)α/2.

Now, we will obtain (4.1). Let f be a nonnegative and measurable function on R
+.

Let denote with Ds(x) the set
{

y ∈ (0, ∞) : 0 ≤ 1−s2

2s (xy)1/2 ≤ 1
}

. By Lemma 3.6, if

y ∈ Ds(x) then

Iα

(
1 − s2

2s
(xy)1/2

)
∼

(
1 − s2

2s

)α
(xy)α/2

and if y /∈ Ds(x) then

Iα

(
1 − s2

2s
(xy)1/2

)
∼

(
1 − s2

2s

)−1/2

(xy)−1/4 e
1−s2

2s (xy)1/2 .

Thus, if we denote with W1
Lα (s, x, y) and W2

Lα (s, x, y) the restrictions of the kernel
WLα (s, x, y) to Ds(x) and to Ds(x)c, respectively, from (5.1) we obtain

W1
Lα (s, x, y) ∼

(
1 − s2

2s

)α+1

(xy)α/2e− 1
4 (s+ 1

s )(x+y) (5.4)

and

W2
Lα (s, x, y) ∼

(
1 − s2

2s

)1/2

(xy)−1/4e− s
4 |x1/2+y1/2|2 e− |x1/2−y1/2 |2

4s (5.5)
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since

−1
4
(s + 1

s
)(x + y)+ 1 − s2

2s
(xy)1/2 = − s

4
(x1/2 + y1/2)2 − 1

4s
(x1/2 − y1/2)2.

We consider separately three cases.
Local case: We fix 0 < s < 1 and 0 < x < ∞, and we consider those y such that

x/4 < y < 4x. Our aim is to obtain

4x∫

x/4

WLα (s, x, y)f (y)dy ≤ C Mκ
loc f (x) (5.6)

for some κ > 1 and some C > 0 only dependent of α. Observe that x/4 < y < 4x
implies that (xy)α/2 ∼ xα and x + y ∼ x. Therefore the kernel in (5.4) is bounded by

W1
Lα (s, x, y) ≤ C

1
x

(x
s

)α+1
e− x

s .

Since α > −1, tα+1e−t is bounded for all positive t, and we get

W1
Lα (s, x, y) ≤ C

1
x

,

consequently

4x∫

x/4

W1
Lα (s, x, y)f (y)dy ≤ C

1
4x − x/4

4x∫

x/4

f (y)dy

≤ C M16
loc f (x).

Consider now the kernel (in 5.5). For every integer k we define the disjoint sets

Bk(x) =
{

y : 2k ≤ |x1/2 − y1/2|
2s1/2

< 2k+1

}

. (5.7)

Let k0 be the unique integer that satisfies

2k0+3 ≤
(x

s

)1/2
< 2k0+4.

It is easy to check that for k ≤ k0

Bk(x) = (ak, ak−1] ∪ [bk−1, bk)

with
ak = (x1/2 − 2k+2s1/2)2, bk = (x1/2 + 2k+2s1/2)2. (5.8)

From this expression is clear that ak ↗ x and bk ↘ x when k → −∞. Also

x/4 ≤ ak0 ≤ ak < x < bk ≤ bk0 ≤ 4x

and

(ak0 , bk0) \ {x} =
⋃

k≤k0

Bk(x).
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Consequently we may write

4x∫

x/4

W2
Lα (s, x, y)f (y)dy =

ak0∫

x/4

W2
Lα (s, x, y)f (y)dy

+
∑

k≤k0

∫

Bk(x)

W2
Lα (s, x, y)f (y)dy

+
4x∫

bk0

W2
Lα (s, x, y)f (y)dy = I + II + III

If y ∈ Bk(x) then from (5.5), (5.7) and since y ∼ x, we get

W2
Lα (s, x, y) ≤ C

(sx)1/2
e−22k

.

Also from (5.8) we have that bk − ak = 2k+4(sx)1/2. Then we obtain

∫

Bk(x)

W2
Lα (s, x, y)f (y)dy ≤ C

(sx)1/2
e−22k

bk∫

ak

f (y)dy

≤ C 2ke−22k 1
bk − ak

bk∫

ak

f (y)dy

≤ C 2ke−22k
M16

loc f (x).

The last inequality holds since bk ≤ 4x = 16(x/4) ≤ 16ak and x ∈ (ak, bk). Using now
that

∞∑

−∞
2ke−22k

< ∞

we obtain the desired estimate for II.
For I and III, we first check that

ak0 ≤ 9
16

x <
25
16

x ≤ bk0 .

Then if either y ∈ (x/4, ak0) or y ∈ (bk0 , 4x), there is a positive constant c such that

e− |x1/2−y1/2 |2
4s ≤ e−c x

s .

This estimate in (5.5), together with y ∼ x, gives

ak0∫

x/4

W2
Lα (s, x, y)f (y)dy ≤

(x
s

)1/2
e−c x

s
1
x

4/x∫

x/4

f (y)dy

≤ C M16
loc f (x)
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and also
4x∫

bk0

W2
Lα (s, x, y)f (y)dy ≤ C M16

loc f (x).

Thus we have obtained the desired estimate (5.6) with κ = 16.
The other two cases are the global cases, at zero (when 0 < y < x/4) and at infinity

(when 4x < y < ∞). In both situations we have

e− |x1/2−y1/2 |2
4s ≤ e−c x

s e−d y
s

for some positive constants c and d. Consequently we get

W1
Lα (s, x, y) ≤ C

(
1 − s2

2s

)α+1

(xy)α/2e−c x
s e−d y

s (5.9)

and

W2
Lα (s, x, y) ≤ C

1 − s2

2s

(
1 − s2

2s
(xy)1/2

)−1/2

e−c x
s e−d y

s . (5.10)

Global case at zero: We consider 0 < y < x/4. For the kernel W1
Lα (s, x, y) we have,

from (5.9), that

W1
Lα (s, x, y) ≤ C

1
sα+1

xα/2yα/2e−c x
s

= C x−α/2−1yα/2
(x

s

)α+1
e−c x

s

≤ C x−α/2−1yα/2,

since α > −1. As for the kernel W2
Lα (s, x, y), we consider first α ≥ −1/2. In that case

(
1 − s2

2s
(xy)1/2

)−1/2

≤
(

1 − s2

2s
(xy)1/2

)α

since 1−s2

2s (xy)1/2 ≥ 1, and from (5.10) we have

W2
Lα (s, x, y) ≤ C

1
sα+1

xα/2yα/2e−c x
s ≤ C x−α/2−1yα/2.

Also, if −1 < α < −1/2, we have

W2
Lα (s, x, y) ≤ C

1
s1/2

x−1/4y−1/4e−c x
s e−d y

s

= C x−α/2−1yα/2
(x

s

)α/2+3/4
e−c x

s

(y
s

)−α/2−1/4
e−d y

s

≤ C x−α/2−1yα/2,

where the last inequality arises since both exponents α/2 + 3/4 and −α/2 − 1/4 are
positive.

Then, for both kernels, we obtain the same estimate leading to

WLα (s, x, y) ≤ C x−α/2−1yα/2,
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and we may conclude that

x/4∫

0

WLα (s, x, y)f (y)dy ≤ C Hα/2
0 f (x).

Global case at infinity: We consider 4x < y < ∞. Analogously to the global case at
zero, from (5.9) and (5.10) we obtain

W1
Lα (s, x, y) ≤ C xα/2y−α/2−1ϕ1(s, y)

where

ϕ1(s, y) =
(y

s

)α+1
e−c y

s ,

and

W2
Lα (s, x, y) ≤ C xα/2y−α/2−1ϕ1(s, y)

where

ϕ2(s, y) =
(y

s

)ε
e−c y

s ,

with ε = max{α + 1,α/2 + 3/4}. These estimates allow us to conclude that

∞∫

4x

WLα (s, x, y)f (y)dy ≤ C Tα/2s f (x),

where the function ϕ involved in the last operator is ϕ1 + ϕ2, that clearly satisfies the
requirements asked in Sect. 3, as we remarked in (3.6). 
�
Remark 5.1 If we keep track of the factor 1 − s2 in the above estimates of the kernel,
we would get that

∞∫

0

WLα (s, x, y)f (y)dy ≤ C(1 − s)σ
(

Hα/2
0 f (x)+ M16

loc f (x)+ Tα/2f (x)
)

,

for all 0 < s < 1, where σ = min{α + 1, 1/2}. From the change of parameters
s = (1 + e−t/2)/(1 − e−t/2) we get that 1 − s2 is equivalent to e−t/2. Thus, for all t > 0,
we obtain

Kt
Lα f (x) ≤ Ce−t σ2

(
Hα/2

0 f (x)+ M16
loc f (x)+ Tα/2f (x)

)
.

Similar estimates for the semigroup were obtained in [7,16,8].

Proof of Theorem 2.2 We will prove that the family of integral operators with kernels
Wϕα (s, x, y), given by (5.2), satisfies the Proposition hypotheses (4.1) and (4.2) with
η = β = α + 1/2 and κ = 4.

In order to use the relationship (5.2), we will need some estimates obtained in the
proof of Theorem 2.1. More precisely, we will use that

WLα (
√

2 − 1, x, y) ≥ C (xy)α/2, (5.11)
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for 0 < x < 1 and 0 < y < 1. Also

4x∫

x/4

WLα (s, x, y)f (y)dy ≤ C M16
loc f (x), (5.12)

and for the global region

WLα (s, x, y) ≤ C x−α/2−1yα/2, (5.13)

with 0 < y < x/4 and

WLα (s, x, y) ≤ C xα/2y−α/2−1ϕ(s, y), (5.14)

with 4x < y < ∞, where ϕ is the sum of two functions like (3.6).
From relation (5.2) and inequality (5.11), we easily obtain

Wϕα (
√

2 − 1, x, y) ≥ C(xy)α+1/2

for 0 < x < 1 and 0 < y < 1. Thus, hypothesis (4.2) holds.
To obtain (4.1), let f a be nonnegative and measurable function on R

+. We consider,
as in Theorem 2.1, three cases.

Local case: x/2 < y < 2x. From (5.2) we have

2x∫

x/2

Wϕα (s, x, y)f (y)dy = 2x1/2

2x∫

x/2

WLα (s, x2, y2)f (y)y1/2dy.

If we introduce the change of variable z = y2 we get

2x∫

x/2

WLα (s, x2, y2)f (y)y1/2dy = 1
2

4x2∫

x2/4

WLα (s, x2, z)g(z)dz,

where g(z) = f (z1/2)z−1/4. Applying inequality (5.12) we obtain

2x∫

x/2

Wϕα (s, x, y)f (y)dy ≤ Cx1/2M16
loc g(x2).

Changing variables again we can see that

x1/2M16
loc g(x2) = sup

0<a1/2<x<b1/2<4a1/2

1
b − a

b1/2∫

a1/2

f (y)(xy)1/2dy

Since

b − a = (b1/2 + a1/2)(b1/2 − a1/2) ∼ x(b1/2 − a1/2)

and (xy)1/2 ∼ x, we have that

x1/2M16
loc g(x2) ≤ C M4

loc f (x).
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Therefore,

2x∫

x/2

Wϕα (s, x, y)f (y)dy ≤ C M4
loc f (x).

Global case at zero: 0 < y < x/2.
Since 0 < y2 < x2/4, we use relation (5.2) and inequality (5.13) to obtain

Wϕα (s, x, y) ≤ Cx−(α+1/2)−1yα+1/2

for 0 < y < x/2. Thus we have

x/2∫

0

Wϕα (s, x, y)f (y)dy ≤ C Hα+1/2
0 f (x)

for any s ∈ (0, 1).
Global case at infinity: 2x < y < ∞.
Analogously to previous case, and using inequality (5.14), we obtain

Wϕα (s, x, y) ≤ Cxα+1/2y−(α+1/2)−1ϕ̃(s, y)

for 0 < y < x/2, where ϕ̃(s, y) is the sum of two functions of the form
(

y2

s

)ε
e−c y2

s ,

for some positive constants ε and c. Since those functions are like (3.7), we have that

∞∫

2x

Wϕα (s, x, y)f (y)dy ≤ C Tα+1/2
s f (x).

Therefore, hypothesis (4.1) of Proposition 4.1 is satisfied with η = β = α+ 1/2 and
κ = 16. 
�
Proof of Theorem 2.3 Proceeding in an analogous way to the proof of Theorem 2.2,
using this time (5.3), it is easy to check that the family of integral operators with
kernels W�α (s, x, y), where s ∈ (0, 1), satisfies hypotheses (4.1) and (4.2) with η = 0,
β = α and κ = 16. Therefore, we obtain the desired results if we replace γ by δ+ α in
Proposition 4.1. 
�

6 General weighted inequalities

In the previous section we have bounded our maximal operators by modified Hardy
operators and the local maximal function pointwisely; more precisely, we have
obtained (omitting constants):

W∗
Lα � Hα/2

0 + M16
loc + Hα/2∞ , (6.1)

W∗
ϕα � H

α+ 1
2

0 + M4
loc + H

α+ 1
2∞ , (6.2)



Weighted norm inequalities for heat-diffusion Laguerre’s semigroups 349

and
W∗
�α � Hα

0 + M16
loc + H0∞. (6.3)

In fact, we have shown a little bit stronger estimates, using the operator Tη instead
of Hη∞. But, by (3.4), the above inequalities also hold. The reason for this choice is that
now we will restrict our results to strong type (p, p) and weak type (1, 1) inequalities,
and in such cases the operators Hη∞ and Tη behave in the same way (see Lemmas 3.2
and 3.3).

For the operator Mκ
loc, the class Ap

loc given in Definition 3.4 provides a characteriza-
tion of weights that gives strong type (p, p), for 1 < p < ∞, and weak type (1, 1). For
the operators Hβ

0 and Hη∞, with η > −1 and β > −1, such characterization of weights
is also known. More precisely, we quote the following facts from [3], Theorems A, B,
2, 5 and 4, respectively:

– Hβ

0 is of strong type (p, p), 1 ≤ p < ∞, with respect to ω(x)dx if and only if

sup
r>0

⎛

⎝
∞∫

r

ω(x)x−p(β+1)dx

⎞

⎠

1/p ⎛

⎝
r∫

0

ω(x)−
p′
p xp′βdx

⎞

⎠

1/p′

< ∞ (6.4)

– Hη∞ is of strong type (p, p), 1 ≤ p < ∞, with respect to ω(x)dx if and only if

sup
r>0

⎛

⎝
r∫

0

ω(x)xpηdx

⎞

⎠

1/p ⎛

⎝
∞∫

r

ω(x)−
p′
p x−p′(η+1)dx

⎞

⎠

1/p′

< ∞ (6.5)

– Hβ

0 is of weak type (1, 1) with respect to ω(x)dx if and only if

sup
r>0

⎛

⎝
∞∫

r

( r
x

)ε
ω(x)x−β−1dx

⎞

⎠

(

ess sup
x∈(0, r)

ω(x)−1xβ
)

< ∞ (6.6)

for some ε > 0.
– Hη∞ is of weak type (1, 1) with respect to ω(x)dx if and only if

sup
r>0

⎛

⎝
r∫

0

(x
r

)ε
xηω(x)dx

⎞

⎠
(

ess sup
x∈(r, ∞)

1
xη+1ω(x)

)

< ∞ (6.7)

for some positive ε, when η > 0, or

sup
r>0

rη

⎛

⎝
r∫

0

ω(x)dx

⎞

⎠

(

ess sup
x∈(r, ∞)

1
xη+1ω(x)

)

< ∞ (6.8)

when −1 < η ≤ 0.

We consider the following class of weights.

Definition 6.1 Let η > −1 and β > −1 such that η + β > −1. For 1 < p < ∞, we say
that a nonnegative weight ω belongs to class Aη,β

p if there exists a constant C such that
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⎛

⎝
b∫

a

ω(x)xpηdx

⎞

⎠

1
p ⎛

⎝
b∫

a

ω(x)−
p′
p xp′βdx

⎞

⎠

1
p′

≤ C

b∫

a

xη+βdx

for all 0 ≤ a < b < ∞.
For p = 1, we say that ω ∈ Aη,β

1 if there exist positive constants C and γ such that
⎛

⎝
b∫

a

(a
x

+ x
b

)γ
ω(x)xηdx

⎞

⎠ ess sup
x∈(a, b)

ω(x)−1xβ ≤ C

b∫

a

xη+βdx

when η �= 0, or
⎛

⎝
b∫

a

ω(x)dx

⎞

⎠ ess sup
x∈(a, b)

ω(x)−1xβ ≤ C

b∫

a

xβdx

when η = 0, for all 0 ≤ a < b < ∞.

Similar classes of weights were introduced in [2]. Note that the power weights that
belong to Aη,β

p are exactly the ones that satisfy the sufficient conditions of Proposition
4.1 (a) if 1 < p < ∞ and (d) if p = 1, in order to obtain strong type (p, p) and weak type
(1, 1), respectively. Indeed, ω(x) = xδ ∈ Aη,β

p if and only if −1 − ηp < δ < βp + p − 1
when 1 < p < ∞, −1 − η ≤ δ ≤ β when p = 1 and η �= 0, or −1 < δ ≤ β when p = 1
and η = 0. In this more general setting, we have the following results.

Theorem 6.1 Let α > −1, 1 ≤ p < ∞ and ω ∈ Aα/2,α/2
p . Then W∗

Lα is of strong type
(p, p) for p > 1 and of weak type (1, 1) on (R+,ω(x)dx).

Theorem 6.2 Let α > −1, 1 ≤ p < ∞ and ω ∈ A
α+ 1

2 ,α+ 1
2

p . Then W∗
ϕα is of strong type

(p, p) for p > 1 and of weak type (1, 1) on (R+,ω(x)dx).

Theorem 6.3 Let α > −1, 1 ≤ p < ∞ and ω(x)xα ∈ A0,α
p (or equivalently ω ∈

Ap(xαdx)). Then W∗
�α is of strong type (p, p) for p > 1 and of weak type (1, 1) on

(R+,ω(x)xαdx).

We shall prove the three Theorems simultaneously.

Proof We will prove that if ω ∈ Aη,β
p then ω satisfies the required conditions for the

boundedness of the operators Mκ
loc, Hβ

0 and Hη∞. Then, estimates (6.1), (6.2) and (6.3)
would imply the conclusions.

Let ω ∈ Aη,β
p . It is immediate to check that ω ∈ Ap

loc, 1 ≤ p < ∞, since x ∼ a ∼ b
on local intervals (a, b), where 0 < a < x < b < 2a.

Next, assume 1 < p < ∞. We will prove that ω satisfies (6.4) and (6.5). Note that
ω ∈ Aη,β

p is equivalent to say ω(x)xpη−η−β ∈ Ap(xη+βdx). Then, from the theory of Ap
weights, we know that ω(x)xpη−η−β ∈ Aq(xη+βdx), for some 1 < q < p. This, together
with Hölder’s inequality, give

⎛

⎝
b∫

a

ω(x)xpηdx

⎞

⎠

⎛

⎝
b∫

a

υ(x)dx

⎞

⎠

q
q′

∼
⎛

⎝
b∫

a

xη+βdx

⎞

⎠

q

(6.9)

for all 0 ≤ a < b < ∞, with υ(x) = (
ω(x)xpη−η−β)− q′

q xη+β .
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Let r > 0. Breaking the integral into dyadic intervals, using (6.9) and that (0, r) ⊂
(0, r2k) for any k ≥ 0, we obtain

∞∫

r

ω(x)x−p(β+1)dx ≤ C
∞∑

k=0

(
r2k

)−p(η+β+1)
r2k+1∫

0

ω(x)xpη dx

≤ C
∞∑

k=0

(
r2k

)(q−p)(η+β+1)

⎛

⎝
r∫

0

υ(x)dx

⎞

⎠

− q
q′

≤ C r−p(η+β+1)

r∫

0

ω(x)xηp dx,

where the last inequality arises since
∑

2k(q−p)(η+β+1) < ∞. Therefore, using again
that ω ∈ Aη,β

p ,

⎛

⎝
∞∫

r

ω(x)x−p(β+1)dx

⎞

⎠

1
p

⎛

⎝
r∫

0

ω(x)−
p′
p xp′β dx

⎞

⎠

1
p′

≤ C

holds for all r > 0. Thus, condition (6.4) is satisfied.
On the other hand, let us note that also

(
ω(x)xpη−η−β)− p′

p ∈ Aq′(xη+βdx), for some q′ < p′. Then we have

b∫

a

ω(x)−
p′
p xβp′

dx

⎛

⎝
b∫

a

(
ω(x)xpη−η−β) p′q

pq′ xη+βdx

⎞

⎠

q′
q

∼
⎛

⎝
b∫

a

xη+βdx

⎞

⎠

q′

for all 0 ≤ a < b < ∞. We proceed analogously as we did before to obtain (6.5).
Consider now p = 1. In order to prove that (6.6), (6.7) (if η > 0) and (6.8)

(if −1 < η ≤ 0) hold, we will use the following facts:
If ω ∈ Aη,β

1 then we have

b−β ess inf
x∈(b/2, b)

ω(x) ≤ C ess inf
x∈(a, 2a)

ω(x)x−β (6.10)

and
aη+1 ess inf

x∈(a, 2a)
ω(x) ≤ C ess inf

x∈(b/2, b)
ω(x)xη+1 (6.11)

for all positive a and b such that b ≥ 2a.
Indeed,

ess inf
x∈(b/2, b)

ω(x) ≤ Cγ b−η−1

b∫

b/2

( x
b

)γ
ω(x)xη dx

for any γ ≥ 0. From Definition 6.9 we have

b∫

a

( x
b

)γ
ω(x)xη dx ≤ C bβ+η+1 ess inf

x∈(a, 2a)
ω(x)x−β
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for some γ > 0 if η �= 0 and γ = 0 when η = 0; then we get (6.10). Inequality (6.11)
arises in a similar way.

We will prove now (6.6). Let r > 0 and ε > 0, then

∞∫

r

( r
x

)ε
ω(x)x−β−1 dx ≤ C

∞∑

k=0

2−kε(2kr)−β−1

2k+1r∫

2kr

ω(x)dx.

Since ω satisfies the A1
loc condition and (6.10) holds, we have that for any k ∈ N0

(2kr)−β−1

2k+1r∫

2kr

ω(x)dx ≤ C (2kr)−β ess inf
x∈(2kr,2k+1r)

ω(x)

≤ C ess inf
x∈(s,2s)

ω(x)x−β

for any 0 < s ≤ r. Then, since ε > 0 we get

∞∫

r

( r
x

)ε
ω(x)x−β−1 dx ≤ C ess inf

x∈(0,r)
ω(x)x−β

and condition (6.6) is satisfied.
In order to prove (6.7), we write

r∫

0

(x
r

)ε
ω(x)xη dx ≤ C

∞∑

k=0

2−kε
(

r2−k
)η

r2−k∫

r2−k−1

ω(x)dx.

Using (6.11) and the A1
loc condition we have

(
r2−k

)η
r2−k∫

r2−k−1

ω(x)dx ≤ C ess inf
x∈(s/2, s)

ω(x)xη+1

for any s ≥ r and any k ∈ N0. Then we get

r∫

0

(x
r

)ε
ω(x)xηdx ≤ C ess inf

x∈(r, ∞)
ω(x)xη+1

and condition (6.7) is satisfied for all η and in particular for η > 0.
For −1 < η < 0 we have, since ω ∈ A1

loc, that

r∫

0

ω(x)dx ≤ C
∞∑

k=0

r2−k ess inf
x∈(r2−k−1, r2−k)

ω(x).

By (6.11), for all s ≥ r we have

rη
r∫

0

ω(x)dx ≤ C

( ∞∑

k=0

2kη

)

ess inf
x∈(s/2, s)

ω(x)xη+1
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which implies

rη
r∫

0

ω(x)dx ≤ C ess inf
x∈(r, ∞)

ω(x)xη+1

since η < 0. Thus, (6.8) holds for −1 < η < 0.
To prove that the above inequality also holds for η = 0, consider r > 0. For a.e.

x ∈ (r, ∞), there exists some k ∈ N0 such that x ∈ (r2k, r2k+1). Then

ω(x)−1x−1 ≤
(

r2k
)−β−1

ess sup
y∈(0,r2k+1)

ω(y)−1yβ

≤ C

⎛

⎝
r∫

0

ω(x)dx

⎞

⎠

−1

.

where the last inequality holds by Definition 6.9. Finally, taking ess sup over (r, ∞) we
obtain (6.8) for η = 0. 
�
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