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Abstract Based on the construction of the discriminant algebra of an even-ranked quadratic
form and Rost’s method of shifting quadratic algebras, we give an explicit rational construc-
tion of the discriminant algebra of finite-rank algebras and, more generally, of quadratic trace
modules, over arbitrary commutative rings. The discriminant algebra is a tensor functor with
values in quadratic algebras, and a symmetric tensor functor with values in quadratic algebras
with parity. The automorphism group of a separable quadratic trace module is a smooth, but
in general not reductive, group scheme admitting a Dickson type homomorphism into the
constant group scheme Z2.

Introduction

Consider an étale algebra E over a commutative ring k which is projective of rank r as a
k-module. The discriminant of E is the bilinear form δE on

∧r E given by

δE (x1 ∧ · · · ∧ xr , y1 ∧ · · · ∧ yr ) = det
(
T (xi y j )

)
,

where T (x) denotes the trace of left multiplication L(x) by x . A finer invariant is the discri-
minant algebra of E , a quadratic algebra for which various definitions have been proposed
in the literature. For example, Revoy [14] uses Galois theory while Waterhouse [16] gives a
cohomological definition. For the case r = 3, Rost [15] constructs the discriminant algebra of
E as a shift of the discriminant algebra of a suitable quadratic form. In [5], Deligne sketches
an approach which uses sophisticated algebraic–geometric methods and is quite different
from the more elementary one presented here.

The present paper combines Rost’s idea and the theory developed in [12] to give a new
construction of the discriminant algebra offering the following features:

– It is rational over the base ring k in the sense that no extensions of k are required.
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468 O. Loos

– It is constructive: If E/k · 1 is free as a k-module then the discriminant algebra is a free
quadratic algebra k[t]/(t2 − b t + c), and we give explicit formulae for the coefficients
b, c as polynomials in the structure constants of E .

– It works in greater generality: The assumption that E be étale is superfluous; in fact, E
need not even be an algebra. Our construction makes sense in the following more general
situation:

It is a simple but crucial observation that the discriminant of E (and, as it turns out, the
discriminant algebra as well) depends only on the unit element, the trace and the quadratic
trace, i.e., the quadratic form Q(x) = trace

∧2 L(x). Abstracting from their properties, we
define a quadratic trace module of rank r � 1 as a quadruple X = (X, Q, T, 1) consisting
of a projective k-module X of rank r , a linear and a quadratic form T and Q on X and a
unimodular vector 1 ∈ X satisfying

T (1) = r, Q(1) =
(

r

2

)

, B(1, x) = (r − 1)T (x)

for all x ∈ X , where B is the polar form of Q. The zero module is considered as a quadratic
trace module as well. Not all quadratic trace modules arise from an algebra, as soon as r � 3.

We construct a discriminant algebra Dis(X) for such X as follows. Consider the bilinear
form ∆X(x, y) = T (x)T (y) − B(x, y) on X . Put δX = ∧r

∆X and note that δE = δX
in the algebra case. First assume r = 2n even. Then Dis(X) is defined as the shift of the
discriminant algebra D(Q) of Q by (−1)n−1 �n/2� δX (this choice of shift comes from the
requirement that the discriminant of Dis(X) should be δX). If r = 2n + 1 is odd, the discri-
minant algebra D(Q) is a graded quadratic algebra of odd type which can only be separable
if 2 is a unit in k. On the other hand, quadratic trace modules admit natural direct sums, so
we define Dis(X) = Dis(E1 ⊕ X) where E1 = (k, 0, Idk, 1k) is the unique quadratic trace
module of rank 1. We also give an alternative construction of Dis(X) in the odd rank case as
a shift of the discriminant algebra of a suitable quadratic form on X/k · 1, which generalizes
Rost’s definition in the rank three case (Theorem 3.8).

Quadratic trace modules form a symmetric tensor category qtmk with the direct sum as
the product operation. Likewise, quadratic algebras admit a natural product � with which
they are a symmetric tensor category qak . We show in Theorem 6.5 that the discriminant
algebra functor is multiplicative:

Dis(X1 ⊕ X2) ∼= Dis(X1) � Dis(X2),

and in Theorem 6.6 that it is in fact a tensor functor. However, Dis is not a symmetric ten-
sor functor, i.e., it does not commute with the symmetries of qtmk and qak , as foreseen by
Deligne [5]. To remedy this defect, one must keep track of the parity of the rank of X when
passing to the discriminant algebra. (For the discriminant algebra D(q) of a quadratic module
(M, q) this is automatic because D(q) is a graded algebra of even or odd type depending
on the parity of the rank of M). We are thus led to introduce the category q̃ak of quadratic
algebras with parity whose objects are pairs (D, p) consisting of a quadratic k-algebra D
and an idempotent p ∈ k. They, too, form a symmetric tensor category, and the extended
functor

D̃is(X) = (Dis(X), rk(X) (mod 2))

is a symmetric tensor functor from qtmk to q̃ak (Theorem 7.7).
A quadratic trace module is called separable if∆X is non-singular. This is the case if and

only if there exists a faithfully flat and étale k-algebra R such that X ⊗ R is isomorphic to
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Discriminant algebras 469

the split quadratic trace module of rank r (Theorem 8.8). In the last two sections we study
the automorphism group G of a separable quadratic trace module and show first that it is a
smooth group scheme of fibre dimension

(r−1
2

)
(Theorem 9.3), which admits a Dickson type

homomorphism into the constant group scheme Z2 (Theorem 9.7). As an application, we
show in 9.10 that our construction, when applied to an étale algebra, yields a concrete real-
ization of Waterhouse’s abstract approach. The centre of G is determined in Theorem 10.5;
it is an open subgroup scheme of Z2 resp. µ2, depending on the parity of r . Finally, we
study the restriction homomorphism from G to the orthogonal group of the quadratic form
induced by Q on the submodule of trace zero elements (Theorems 10.8 and 10.9) and obtain
necessary and sufficient conditions for G to be reductive.

1. Basics

1.1. Definition. We work over an arbitrary commutative ring k and denote the category of
commutative associative unital k-algebras by k-alg. Unadorned tensor products are taken
over k.

A quadratic trace module of rank r � 1 over k is a quadruple X = (X, Q, T, 1) consisting
of a finitely generated and projective k-module X of rank r , a quadratic form Q with polar
form B, a linear form T , called the trace, and a unimodular vector 1X = 1 ∈ X , the unit
element or base point, satisfying the conditions

T (1) = r, Q(1) =
(

r

2

)

, B(1, x) = (r − 1)T (x) (1.1.1)

for all x ∈ X . The zero module, with the only possible choices of Q, T and 1, is also consid-
ered as a quadratic trace module. Morphisms between quadratic trace modules of the same
rank are k-linear maps preserving quadratic forms, trace forms and base points. We do not
allow morphisms between quadratic trace modules of different rank.

It is also possible to consider quadratic trace modules of variable rank. Then r = rk(X):
Spec(k) → N is a locally constant function, and (1.1.1) has to be interpreted in an obvious
way. However, by decomposing the base ring according to the values of r , it is no great
restriction to assume r constant. The category of quadratic trace modules over k is denoted
qtmk .

We let

Ẋ := X/k · 1 and x 	→ ẋ

denote the quotient of X by k ·1 and the canonical map X → Ẋ . For r �1 there is a canonical
isomorphism

r−1∧
Ẋ

∼= ��

r∧
X, (1.1.2)

given by ẋ1 ∧ · · · ∧ ẋr−1 	→ 1 ∧ x1 ∧ · · · ∧ xr−1.
The discriminant form of X is the symmetric bilinear form ∆ = ∆X on X given by

∆(x, y) := T (x)T (y)− B(x, y). (1.1.3)

Note that
∆(x, 1) = rT (x)− (r − 1)T (x) = T (x). (1.1.4)
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470 O. Loos

1.2. Special cases. (a) The split quadratic trace module of rank r over k is Er := (kr , Qr , Tr ,

1r ) where kr = ⊕r
i=1 k · ei in the standard basis, 1r = e1 + · · · + er , and Tr and Qr are the

first and second elementary symmetric polynomials in r variables:

T
( r∑

i=1

xi ei

)
=

r∑

i=1

xi , Q
( r∑

i=1

xi ei

)
=

∑

1�i< j�r

xi x j .

Here ∆(ei , e j ) = δi j so ∆ is the standard scalar product on kr .
(b) The only quadratic trace modules of rank 0 resp. 1 are E0 = ({0}, 0, 0, 0) and E1 =

(k, 0, Idk, 1).
(c) Let X be a quadratic trace module of rank 2. Then (1.1.1) shows that X is entirely

determined by X , Q and 1. Hence the quadratic trace modules of rank 2 are precisely the
unital quadratic forms of rank 2 as in [11].

1.3. Algebras. Let A be a k-algebra with multiplication xy = Lx (y), which is finitely gen-
erated and projective of rank r as a k-module, and which has a left unit element 1A. We make
no assumptions on associativity or commutativity of A. Then A determines a quadratic trace
module

X = qt(A) = (A, Q, T, 1A) where T (x) = tr(Lx ), Q(x) = qtr(Lx ). (1.3.1)

Here qtr( f ) = tr(
∧2 f ) is the trace of the second exterior power of an endomorphism f of

A. This may also be expressed by saying that T (x) and Q(x) are the coefficients of t and t2

in the polynomial det(Id + tLx ).
If A is associative and 1A is the (two-sided) unit element of A, then

∆(x, y) = T (xy) (1.3.2)

which follows from associativity and the well-known relation tr( f )tr(g) = tr( f ◦ g) +
qtr( f, g) for the trace and quadratic trace of endomorphisms. Here qtr( f, g) denotes the
polar form of the quadratic form qtr( f ).

Not every quadratic trace module comes from an associative algebra via (1.3.1) unless
r � 2, see next section. Indeed, (1.3.2) says that the discriminant form must factor via T .
Using this fact, it is easy to give examples of quadratic trace modules of rank �3 which
are not obtained from an associative algebra. Also, qt(A) does not depend functorially on A
because a homomorphism of algebras (even of the same rank) in general does not respect the
trace and quadratic trace forms.

1.4. Quadratic algebras. Suppose X = (X, Q, T, 1) is a quadratic trace module of rank
2. By the proof of [11, Prop. 1.6], there is a unique algebra structure D on X such that
qt(D) = X. Then Q and T are just the usual norm and trace of D. This yields a functor
F from quadratic trace modules of rank 2 to quadratic algebras, i.e., unital algebras which
are finitely generated and projective of rank 2 as k-modules. Such algebras are automatically
associative and commutative. However, F is not an isomorphism of categories (contrary to the
erroneous statement of [11, Prop. 1.6]), because algebra homomorphisms between quadratic
algebras need not preserve norms and traces. We therefore introduce the category qak whose
objects are quadratic k-algebras and whose morphisms are those algebra homomorphisms
D → D′ which preserve norms and traces; equivalently, which commute with the standard
involutions of D and D′. Then the assignment D 	→ qt(D) is an isomorphism between qak
and the category of quadratic trace modules of rank 2, with inverse F .
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Discriminant algebras 471

1.5. Direct sums. The direct sum of quadratic trace modules X and X′ is X′′ = (X ⊕
X ′, Q′′, T ′′, 1 ⊕ 1′) where

T ′′(x ⊕ x ′) = T (x)+ T ′(x ′), Q′′(x ⊕ x ′) = Q(x)+ Q′(x ′)+ T (x)T ′(x ′). (1.5.1)

Thus the quadratic form Q′′ is not simply the orthogonal sum of Q and Q′ but nearly so,
because the difference between Q′′ and Q ⊥ Q′ is just the product of two linear forms. The
properties (1.1.1) for Q′′ are easily verified. It is also straightforward to check that with the
direct sum operation, qtmk becomes a symmetric tensor category, with neutral object E0 and
the interchange of factors ω : X ⊕ X ′ → X ′ ⊕ X as symmetry.

Direct sums commute with the assignment A 	→ qt(A) described in 1.3, and from (1.1.3)
one sees that the discriminant form satisfies

∆X⊕X′ = ∆X ⊥ ∆X′ , (1.5.2)

the usual orthogonal sum of bilinear forms. The split quadratic trace module Er is just the
direct sum of r copies of E1.

1.6. Tensor products. The tensor product of quadratic trace modules X and X′ is X′′ =
(X ⊗ X ′, Q′′, T ′′, 1 ⊗ 1′) where

T ′′ = T ⊗ T ′, Q′′ = T (2) ⊗ Q′ + Q ⊗ T ′(2) − Q ⊗ Q′. (1.6.1)

Here T ⊗T ′ is the linear form x ⊗x ′ 	→ T (x)T ′(x ′) on X ⊗ X ′, and T (2) the bilinear form on
X given by T (2)(x, y) = T (x)T (y). Tensor products between bilinear forms and quadratic
forms are defined as usual, see, e.g., [13] or [11, 2.1]. Again, tensor products are compatible
with the assignment A 	→ qt(A) of 1.3.

1.7. Remarks. If r ∈ k× then X decomposes X = k ·1⊕KerT and Q = 〈(r
2

)〉 ⊥ (Q
∣
∣KerT ).

Thus in this case the category of quadratic trace modules of rank r is equivalent to the cat-
egory of quadratic modules of rank r − 1. If r − 1 ∈ k× then T (x) = (r − 1)−1 B(1, x)
is determined by Q, and the category of quadratic trace modules of rank r is equivalent to
the category of quadratic modules of rank r with a unimodular base point 1 which satisfies
Q(1) = (r

2

)
. In general, however, it does not seem possible to base the theory of quadratic

trace modules on the quadratic form Q alone.

2. Discriminants

2.1. Definition. Let X = (X, Q, T, 1) be a quadratic trace module of rank r . The discrimi-
nant of X is the bilinear form

δX :=
r∧
∆X (2.1.1)

on
∧r X , where ∆X is the discriminant form of (1.1.3). For r � 1, we have

∧r X = k and
δX is just multiplication in k. If X = qt(A) comes from an associative algebra A as in 1.3,
then it is clear from (1.3.2) that δX = δA, the usual discriminant of A, defined by

δA(x1 ∧ · · · ∧ xr , y1 ∧ · · · ∧ yr ) = det
(
T (xi y j )

)
. (2.1.2)

We also note that the discriminant is multiplicative with respect to direct sums:

δX⊕X′ = δX ⊗ δX′ (2.1.3)
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(tensor product of bilinear forms) after identifying (
∧r X)⊗ (

∧r ′
X ′) and

∧r+r ′
(X ⊕ X ′)

by ξ ⊗ η 	→ ξ ∧ η. This follows easily from (1.5.2).
We next express the (signed) discriminant δQ of Q in terms of δX. The transpose of a

matrix A with entries in k is denoted A�.

2.2. Lemma. Let X be a quadratic trace module of rank r = m +1 and let x1, . . . , xm ∈ X.
We put ξ = 1 ∧ x1 ∧ · · · ∧ xm, v = (

T (x1), . . . , T (xm)
) ∈ km (row vector) and D =(

B(xi , x j )
) ∈ Matm(k). Then

δX(ξ, ξ) = det

(
r v

v� v�v − D

)

= (−1)m · det

(
r v

mv� D

)

. (2.2.1)

If r = 2n is even the discriminant of Q is given by

δQ = (−1)n−1 (r − 1) δX = {
1 + 4 · (−1)n−1�n/2�} δX (2.2.2)

while it is
δQ = (−1)n n δX (2.2.3)

if r = 2n + 1 is odd.

Remark With the convention that the discriminant of the zero quadratic form on the zero
module is just ordinary multiplication on k, formula (2.2.2) holds also for r = 0.

Proof The first equation of (2.2.1) is immediate from the definitions. For the second, multiply
the first row formally by v� and subtract from the second row. This yields

det

(
r v

v� v�v − D

)

= det

(
r v

−mv� −D

)

= (−1)m · det

(
r v

mv� D

)

.

If r = 2n is even, δQ is (−1)n times the 2n-th exterior power of the polar form B of Q. By
(1.1.1), B(1, 1) = 2

(r
2

) = rm and B(1, xi ) = mT (xi ). Hence,

δQ(ξ, ξ) = (−1)n det

(
rm mv

mv� D

)

= m (−1)n det

(
r v

mv� D

)

.

Since (−1)m = (−1)2n−1 = −1, we have the first formula of (2.2.2), and the second follows
from the observation that

(−1)n−1(2n − 1) = 1 + 4 · (−1)n−1�n/2�. (2.2.4)

Next let r = 2n +1 be odd and let U be the upper triangular matrix with entries uii = Q(xi )

and ui j = B(xi , x j ). Then U + U� = D so by (11.3.5) and (2.2.1),

δQ(ξ, ξ) = (−1)nhdet

(
rn 2nv
0 U

)

= (−1)n det

(
rn nv

mv� D

)

= (−1)n n δX(ξ, ξ),

because now (−1)m = (−1)2n = 1.

2.3. Lemma. Let X be of odd rank r = 2n + 1. There is a well-defined quadratic form Q̇
on Ẋ given by

Q̇(ẋ) = nT (x)2 − r Q(x) = n∆X(x, x)− Q(x), (2.3.1)

for all x ∈ X. The polar form Ḃ of Q̇ is

Ḃ(ẋ, ẏ) = 2nT (x)T (y)− r B(x, y) = 2n∆X(x, y)− B(x, y). (2.3.2)
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Define �(n) by the equation

(−1)n (2n + 1)2n−1 = 1 + 4 · (−1)n �(n). (2.3.3)

Then �(n) ∈ N, and the discriminant of Q̇ is given by

δQ̇ = (−1)n rr−2 δX = {
1 + 4 · (−1)n �(n)

}
δX, (2.3.4)

where we identify
∧r X and

∧r−1 Ẋ as in (1.1.2).

Proof It follows easily from (1.1.1) that Q̇ is a well-defined quadratic form on Ẋ , and (2.3.2)
is immediate from (1.1.3). It is elementary to check that �(n) ∈ N.

For the proof of (2.3.4) let ẋ1, . . . ẋm ∈ Ẋ where m = r − 1 = 2n and put ξ = 1 ∧ x1 ∧
· · · ∧ xm and η = ẋ1 ∧ · · · ∧ ẋm . Then, with v and D as in Lemma 2.2,

δQ̇(η, η) = (−1)n det
( − (r D − 2nv�v)

)
(by (2.3.2))

= (−1)n+2nrm−1 det

(
r v

mv� D

)

(by (11.3.3))

= (−1)nrr−2(−1)mδX(ξ, ξ) (by (2.2.1)).

This is the asserted formula (2.3.4) since (−1)m = 1.

2.4. Restriction to and extension from complements of 1. Let X = (X, Q, T, 1) be a
quadratic trace module of rank r � 1 and fix a decomposition X = k · 1 ⊕ M (which always
exists because 1 is a unimodular vector). Let

q := Q
∣
∣M, t := T

∣
∣M. (2.4.1)

Then Q and T can be reconstructed from q and t by the formulas

Q(λ1 ⊕ x) = λ2
(

r

2

)

+ λ(r − 1)t (x)+ q(x), (2.4.2)

T (λ1 ⊕ x) = λr + t (x). (2.4.3)

Conversely, it easy to see that, given a quadratic form q and a linear form t on M , these for-
mulas determine a quadratic trace module (X, Q, T, 1). Thus it must be possible to express
invariants of X by means of (q, t). We do this later for the discriminant δX (5.2) and the
discriminant algebra Dis(X) (5.3, 5.4). Note, however, that (q, t) depend on the choice of
complement M . Putting this on a more formal basis amounts to a systematic study of the
splittings of the exact sequence 0 −→ k −→ X

can−→ Ẋ −→ 0, equivalently, of linear forms
α on X with α(1) = 1 (unital linear forms), as was done in [11] for unital quadratic forms.
It is possible to develop the theory of the discriminant algebra in this way, but the proof
of independence of the choice of splitting becomes rather complicated. Nevertheless, this
approach will lead to effective computations of Dis(X) in Sect. 5.

The following easily established lemma will be useful to reduce proofs to characteristic
zero:

2.5. Lemma. Let X be a quadratic trace module with Ẋ free, say with basis ẋ1, . . . , ẋm

where m = r − 1. Then also X is free with basis 1X , x1, . . . , xm. Consider the polynomial
ring R = Z[ti , ai j : 1 � i � j � m] and the quadruple X′ := (X ′, Q′, T ′, 1′) where X ′ is the
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free R-module with basis 1′, x ′
1, . . . , x ′

m and Q′ and T ′ are the quadratic and linear form
given by Q′(1′) = (r

2

)
, T ′(1′) = r , and

Q′(x ′
i ) = ai i , B ′(x ′

i , x ′
j ) = ai j (i < j), B ′(1′, x ′

i ) = (r − 1)ti , T ′(x ′
i ) = ti .

Then X′ is a quadratic trace module by 2.4, and the ring homomorphism R → k mapping
ti 	→ T (xi ), ai i 	→ Q(xi ), ai j 	→ B(xi , x j ) (i < j) induces an isomorphism

X′ ⊗R k
∼= �� X

of quadratic trace modules.

3. The discriminant algebra

As noted in 1.4, quadratic algebras (with morphisms respecting the involutions) are the same
as quadratic trace modules of rank 2. Let D be a quadratic k-algebra, with unit 1 = 1D , trace
TD , involution σD(x) = −x + TD(x) · 1 and norm (=quadratic trace) ND . We denote the
canonical map p : D → Ḋ = D/k · 1 by x 	→ ẋ . The construction in (a) of the following
lemma is due to Rost [15].

3.1. Lemma. (a) Let ε be a bilinear form on Ḋ. Then the k-module D becomes a new
quadratic algebra with the same unit element, but with multiplication

x ∗ y = xy − ε(ẋ, ẏ) · 1, (3.1.1)

called the shift (“Verschiebung”) of D with respect to ε and denoted by

D + ε.

Obviously,
(D + ε1)+ ε2 = D + (ε1 + ε2). (3.1.2)

The involution and the trace and norm forms of D + ε are

σD+ε = σD, TD+ε = TD, ND+ε(x) = ND(x)+ ε(ẋ, ẋ). (3.1.3)

The discriminant of D + ε is
δD+ε = δD − 4ε. (3.1.4)

(b) Conversely, let D and D′ be quadratic algebras with the same underlying
k-module, unit element and trace. Then D′ is a shift of D.

(c) Suppose ψ : D → D′ is a morphism of quadratic algebras and ε and ε′ are bilinear
forms on Ḋ and Ḋ′, respectively. If the induced map ψ̇ : Ḋ → Ḋ′ satisfies ε′ ◦ (ψ̇× ψ̇) = ε,
then ψ : D + ε → D′ + ε′ is again a morphism of quadratic algebras.

Proof (a) It is clear that (3.1.1) defines the structure of a quadratic algebra D′ on D with unit
1D′ = 1D . Since

x ∗ x = x2 − ε(ẋ, ẋ) · 1 = TD(x)x − (
ND(x)+ ε(ẋ, ẋ)

) · 1 = TD′(x)x − ND′(x) · 1,

we have (3.1.3). In (3.1.4), we identify
∧1 Ḋ = Ḋ ∼= ∧2 D via ẋ 	→ 1∧ x and thus consider

the discriminant as a bilinear form on Ḋ. Then

δD(ẋ, ẏ) =
∣
∣
∣
∣

2 T (x)
T (y) T (xy)

∣
∣
∣
∣ ,
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so

δD+ε(ẋ, ẏ) =
∣
∣
∣
∣

2 T (x)
T (y) T (xy)− 2ε(ẋ, ẏ)

∣
∣
∣
∣ = δD(ẋ, ẏ)− 4ε(ẋ, ẏ).

(b) Denoting the multiplication in D and D′ by xy and x ∗ y, respectively, xy − x ∗ y
depends only on ẋ and ẏ, because D and D′ have the same unit element. Thus β(ẋ, ẏ) :=
p(xy − x ∗ y) is a bilinear form on Ḋ. Since D and D′ have the same trace, it follows that
β(ẋ, ẋ) = p(x2 − x ∗ x) = p

(
(N ′(x)− N (x)) · 1

) = 0. Hence β is an alternating form on
the rank one module Ḋ and therefore vanishes. It follows that xy − x ∗ y = ε(ẋ, ẏ) · 1 is a
multiple of 1.

(c) This is immediate from the definitions.

3.2. Free quadratic algebras. Let D be a quadratic algebra whose underlying k-module is
free. Then there exists a basis of the form {1, z} of D [8, p. 14, Exercise 3], so z2 = bz − c1
where b, c ∈ k, or D ∼= k[t]/(t2 − bt + c). We write this as

D = ((b : c ]].
Note that the algebra D does not determine b and c uniquely; rather, we have

((b : c ]] ∼= ((b′ : c′ ]] ⇐⇒ b′ = µb + 2λ, c′ = µ2c + λµb + λ2,

for some λ ∈ k, µ ∈ k×. This corresponds to changing the basis of D to 1 and z′ = λ1 +µz.
The split quadratic algebra is I := ((1 : 0 ]], often identified with k ×k by mapping z to the

first standard basis vector e1 of k2. The algebra of dual numbers is ((0 : 0 ]]. The discriminant
of ((b : c ]] is

δ((b:c ]] = b2 − 4c. (3.2.1)

If D = ((b : c ]] is a free quadratic algebra, we identify Ḋ = D/k · 1 canonically with k
via λ ∈ k 	→ λż ∈ Ḋ. Then a bilinear form ε on Ḋ is just a scalar e ∈ k, and the shift of D
by e is

((b : c ]] + e = ((b : c + e ]]. (3.2.2)

3.3. The discriminant algebra of a quadratic form. We recall from [12] the construction
of the discriminant algebra D(q) of a quadratic module (M, q) of even rank 2n.

Let first M be free with basis x1, . . . , x2n , and let A be a 2n × 2n-matrix such that
aii = q(xi ) and ai j + a ji = b(xi , x j ) where b is the polar form of q . Then D(q) is (isomor-
phic to) the free quadratic algebra

D(q) ∼= ((Pf(A − A�) : (−1)n+1qdet(A) ]]
where Pf denotes the Pfaffian and qdet the quarter-determinant, cf. 11.1. A more intrinsic
construction which works for arbitrary M goes as follows.

Let a, a′ be alternating bilinear forms on M . The n-th Pfaffian power of a is the linear
form πn(a) on L := ∧2n M defined by

πn(a)(ξ) = Pf
(
a(xi , x j )

)
, (3.3.1)

where ξ = x1 ∧ · · · ∧ x2n ∈ L . Let t be an indeterminate and define �n(t, a, a′) by

πn(a + ta′) = πn(a)+ t�n(t, a, a′). (3.3.2)

A representative of q is a bilinear form f such that f (x, x) = q(x) for all x ∈ M , which
we also express as q = [ f ], thus identifying quadratic forms with equivalence classes of
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bilinear forms modulo alternating forms. For representatives f, g of q define linear forms on
L by

τ f := πn( f − f �), κ f g := �n(−2, f − f �, f − g), (3.3.3)

where f �(x, y) = f (y, x). Then

2κ f g = τ f − τg, κ f g + κgh = κ f h . (3.3.4)

There is a unique bilinear form γ f on L satisfying

γ f (ξ, ξ) = (−1)n+1qdet
(

f (xi , x j )
)
, (3.3.5)

where qdet is the quarter-determinant, see 11.1. Now D := D(q) is, as a k-module, generated
by 1 and symbols s f (ξ), linear in ξ ∈ L , subject to the relations

s f (ξ)− sg(ξ) = κ f g(ξ) · 1, (3.3.6)

where f and g run over all representatives of q . There is an exact sequence

0 �� k
i �� D

p
�� L �� 0

where p(s f (ξ)) = ξ . Trace and norm, and hence the algebra structure of D, are determined
by

TD(s f (ξ)) = τ f (ξ), ND(s f (ξ)) = γ f (ξ, ξ). (3.3.7)

3.4. Definition. Let X be a quadratic trace module of rank r . If r = 2n, the discriminant
algebra of X is the shift

Dis(X) := D(Q)+ (−1)n−1�n/2� · δX (r = 2n), (3.4.1)

where �n/2� is the integer part of n/2. If r = 2n+1 is odd, it would not do to define Dis(X) as
a shift of the discriminant algebra of Q, because this would yield a graded quadratic algebra
of odd type which cannot be separable unless 2 is a unit of k. Therefore, we define

Dis(X) := Dis(E1 ⊕ X) (r = 2n + 1), (3.4.2)

cf. 1.2(b) and 1.5. Let A be an associative commutative k-algebra which is projective of rank
r as a k-module. Then we define the discriminant algebra of A as the discriminant algebra
of the associated quadratic trace module qt(A), thus

Dis(A) := Dis(qt(A)). (3.4.3)

Clearly, Dis(X) is compatible with arbitrary base change because this is so for the discrimi-
nant algebra of a quadratic form. It depends functorially on X with respect to morphisms of
quadratic trace modules. Indeed, consider first the even rank case. A morphism ϕ : X′ → X

of quadratic trace modules is in particular a similitude between the quadratic forms Q′ and
Q. By [12, Theorem 2.3(b)], we have an induced homomorphism D(ϕ) : D(Q′) → D(Q),
given by 1 	→ 1 and

sϕ∗( f )(ξ) 	→ s f

(
( r∧

ϕ
)
(ξ)

)

, (3.4.4)

for all representatives f of Q and ξ ∈ ∧r X ′. Here ϕ∗( f ) = f ◦ (ϕ × ϕ) is the pullback of
f to X ′. The discriminant forms ∆′ and ∆ of X′ and X are related by ϕ∗(∆) = ∆′, whence
δX◦(∧r

ϕ×∧r
ϕ) = δX′ . By 3.1(c), the module homomorphism D(ϕ) is in fact a morphism

Dis(ϕ) : Dis(X′) → Dis(X) of quadratic algebras. The odd rank case is similar.
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3.5. Special cases. For r = 0 we have a natural isomorphism

Θ0 : I = k × k
∼= �� Dis(E0). (3.5.1)

Indeed, by (3.4.1), Dis(E0) = D(0) is the discriminant algebra of the zero quadratic form on
the zero module {0}. Since the Pfaffian and the quarter-determinant of an empty matrix are
1 and 0, respectively, and

∧0{0} = k, we have D(0) = k · 1 ⊕ k · s0(1k) with the relation
s0(1k)

2 = s0(1k), and we obtain (3.5.1) by mapping e1 	→ s0(1k).
For r = 2, Dis(X) = D(Q) is clear from (3.4.1). On the other hand, X = qt(D) is, by

1.4, the quadratic trace module determined by a quadratic algebra D. There is a canonical
isomorphism

Φ = ΦD : D
∼= �� Dis(D) (3.5.2)

of quadratic algebras as follows. Specializing 3.3 to the present situation, D(Q) is presented
as a k-module by generators 1 and s f (x ∧ y) where f runs over all representatives of Q,
with relations s f (x ∧ y) − sg(x ∧ y) = κ f g(x ∧ y) · 1, where g is another representative
of Q. Since r = 2, we have κ f g(x ∧ y) = f (x, y) − g(x, y). Hence there is a k-module
homomorphism Φ : D → D(Q) given by

Φ(1) = 1 and Φ(x) = f (x, 1) · 1 + s f (1 ∧ x). (3.5.3)

A straightforward computation shows that Φ is an isomorphism of algebras.
In particular, let D = I = k · e1 ⊕ k · e2 be the split quadratic algebra so that qt(I ) = E2.

Let NI (λe1 ⊕µe2) = λµ be its norm form and f0 the bilinear form with matrix
(0 0

1 0

)
which

represents NI . Then 1 ∧ e1 = (e1 + e2) ∧ e1 = −e1 ∧ e2 and f0(e1, 1) = 0. Hence ΦI is
given by

ΦI : I
∼= �� Dis(E2), ΦI (e1) = −s f0(e1 ∧ e2). (3.5.4)

Finally, for r = 1 we have X = E1 and E1 ⊕ X = E2, so 3.4.2 and (3.5.4) yield

Dis(E1) ∼= I, (3.5.5)

the split quadratic algebra.
We now show that our definitions give the correct discriminants and the expected result

in the split case. Consistency with Rost’s definition in case r = 3 will be proved in 3.8, and
with Waterhouse’s approach in case of étale algebras in 9.10.

3.6. Lemma. The discriminant of Dis(X) is δX.

Proof By [12, Th. 2.3(d)], the discriminant of D(q), where q is any quadratic form on an
even-ranked module, is the signed discriminant δq of q . If rk(X) = 2n is even,

δDis(X) = δQ − 4 (−1)n−1�n/2�δX = (−1)n−1{2n − 1 − 4 �n/2�} δX = δX,

by (3.1.4), (2.2.2), and (2.2.4). If rk(X) = 2n + 1 is odd, we have similarly

δDis(X) = δDis(E1⊕X) = δE1⊕X = δE1 ⊗ δX = δX

by (2.1.3), since δE1 is simply the bilinear form (λ, µ) 	→ λµ on k.
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3.7. The split case. Let A be the algebra kr = k · e1 ⊕ · · · ⊕ k · er with component-wise
operations, and Er = qt(A) the associated split quadratic trace module over k as in 1.2 and
1.3, so T and Q are given by

T (ei ) = 1, Q(ei ) = 0, B(ei , e j ) = 1 (i �= j).

In view of the definition of the discriminant algebra in the odd rank case and since E1 ⊕
E2n+1 = E2n+2, it suffices to compute Dis(E2n). Let ξ := e1 ∧ · · · ∧ e2n and let f be
the bilinear form on k2n whose matrix with respect to the standard basis is the strict upper
triangular matrix U2n with 1 above the diagonal. Then f represents Q, so D(Q) is the free
k-algebra with basis 1 and z := s f (ξ) and the relation z2 = τ f (ξ)z − γ f (ξ, ξ)1, see 3.3.
From (11.2.4) and (11.2.5) it follows that τ f (ξ) = Pf(U2n − U�

2n) = 1 and γ f (ξ, ξ) =
(−1)n−1qdet(U2n) = (−1)n�n/2�. Hence D(Q) is the free quadratic algebra

D(Q) = ((1 : (−1)n�n/2� ]].
Since ∆Er (ei , e j ) = δi j , we have δE2n (ξ, ξ) = 1, so by (3.2.2),

Dis(E2n) = ((1 : (−1)n�n/2� + (−1)n−1�n/2� ]] = ((1 : 0 ]] = k × k,

the split quadratic algebra.

3.8. Theorem. Let X be a quadratic trace module of odd rank r = 2n + 1 and let Q̇ and
�(n) be as in 2.3. Then there is a natural isomorphism

ρ : D(Q̇)+ (−1)n�(n)δX
∼= �� Dis(X)

of quadratic algebras as follows: Identify
∧2n Ẋ ∼= ∧2n+1 X ∼= ∧2n+2

(k · e1 ⊕ X) via

ξ := ẋ1 ∧ · · · ∧ ẋ2n 	→ ξ̃ := 1X ∧ x1 ∧ · · · ∧ x2n 	→ ξ̂ := e1 ∧ 1X ∧ x1 ∧ · · · ∧ x2n .

For a bilinear form f on Ẋ representing Q̇, let f̃ be the bilinear form on X given by

f̃ (x, y) = − f (ẋ, ẏ)+ n∆(x, y),

and let f̂ be the bilinear form on X̂ := k · e1 ⊕ X defined by

f̂ (λe1 ⊕ x, µe1 ⊕ y) = λT (y)+ f̃ (x, y).

Then ρ is given by 1 	→ 1 and s f (ξ) 	→ (−1)ns f̂ (ξ̂ )− nτ f (ξ) · 1.

Remark For r = 3 we have in particular Dis(X) ∼= D(Q̇)+ (−δX). This is Rost’s definition
[15] of the discriminant algebra of a cubic étale algebra.

Proof Let g be a second representative of Q̇ and define g̃ and ĝ as earlier. We first show that

τ f̂ (ξ̂ ) = (2n + 1)(−1)nτ f (ξ), (3.8.1)

κ f̂ ĝ(ξ̂ ) = (2n + 1)(−1)nκ f g(ξ). (3.8.2)

Indeed, let v = (
T (x1), . . . , T (x2n)

) ∈ k2n and let F and G be the square matrices of size
2n with entries f (ẋi , ẋ j ) and g(ẋi , ẋ j ), respectively. Then, with the notations introduced in
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3.3, it follows from the definition of f̂ and from (11.6.1) that

πn+1
(

f̂ − f̂ � + t( f̂ − ĝ)
)
(ξ̂ ) = Pf

⎛

⎝
0 r v

−r 0 0
−v� 0 F� − F + t(G − F)

⎞

⎠

= Pf

(
0 r

−r 0

)

· (−1)n · Pf
(
F − F� + t(F − G)

)

= r · (−1)n · πn
(

f − f � + t( f − g)
)
(ξ). (3.8.3)

Now (3.8.1) and (3.8.2) follow from (3.8.3), (3.3.2) and (3.3.3) by comparing coefficients at
powers of t.

From the definition of Q̇ and f̃ it is immediate that f̃ is a representative of Q, and
hence f̂ is a representative of Q̂, the quadratic form of E1 ⊕ X. Let us put D′ := D(Q̇)
and D := D(Q̂). There is a module isomorphism ρ : D′ → D sending 1 to 1 and s f (ξ) to
(−1)ns f̂ (ξ̂ )−nτ f (ξ)·1. Indeed, by the defining relations (3.3.6), the equation τ f −τg = 2κ f g

(cf. (3.3.4)) and (3.8.2), ρ is well-defined. Since ρ induces the isomorphism ξ 	→ (−1)n ξ̂
on the quotients Ḋ′ = D′/k · 1 and Ḋ = D/k · 1, it is a module isomorphism. Furthermore,
ρ preserves traces:

TD
(
ρ(s f (ξ))

) = TD
(
(−1)ns f̂ (ξ̂ )− nτ f (ξ) · 1

) = (−1)nτ f̂ (ξ̂ )− 2nτ f (ξ)

= (2n + 1 − 2n)τ f (ξ) (by (3.8.1)) = TD′
(
s f (ξ)

)
.

By Lemma 3.1(b), this already proves that D is isomorphic to a shift of D′. To determine
this shift, we must compute the behaviour of the norms of D′ and D under ρ. We claim that

γ f̂ (ξ̂ , ξ̂ ) = γ f (ξ, ξ)+ n(n + 1)τ f (ξ)
2 + (−1)n

{

�(n)−
⌊n + 1

2

⌋}

δX(ξ̃ , ξ̃ ). (3.8.4)

After localization, it suffices to prove this in case Ẋ is free, and by Lemma 2.5, we may assume
that k has no 2-torsion. We show that four times (3.8.4) holds. Indeed, since the discriminant
of the discriminant algebra of a quadratic form q with representative f is δq = τ 2

f − 4γ f

[12, 1.7] we have, using (3.8.1) in the second formula,

δQ̇(ξ, ξ) = τ f (ξ)
2 − 4γ f (ξ, ξ), (3.8.5)

δQ̂(ξ̂ , ξ̂ ) = (2n + 1)2τ f (ξ)
2 − 4γ f̂ (ξ̂ , ξ̂ ). (3.8.6)

On the other hand, by (2.3.4) and (2.2.2),

δQ̇(ξ, ξ) = (
1 + 4(−1)n�(n)

)
δX(ξ̃ , ξ̃ ), (3.8.7)

δQ̂(ξ̂ , ξ̂ ) =
(

1 + 4(−1)n
⌊n + 1

2

⌋)

δX̂(ξ̂ , ξ̂ ). (3.8.8)

By (2.1.3), we have δX(ξ̃ , ξ̃ ) = δX̂(ξ̂ , ξ̂ ). Now (3.8.4) follows by equating the difference

δQ̇(ξ, ξ) − δQ̂(ξ̂ , ξ̂ ) computed from (3.8.5) − (3.8.6) and (3.8.7) − (3.8.8) and cancelling
the factor 4.

Let D′′ = D′ + (−1)n�(n)δX, and putw := s f (ξ) and ŵ := (−1)ns f̂ (ξ̂ ) for short. Then

ND′′(w) = γ f (ξ, ξ)+ (−1)n�(n)δX(ξ̃ , ξ̃ ),
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while, because of (3.8.1),

ND
(
ρ(w)

) = ND
(
ŵ − nτ f (ξ)1

) = ND
(
ŵ
) − nTD(ŵ)τ f (ξ)+ n2τ f (ξ)

2

= γ f̂ (ξ̂ , ξ̂ )− n(−1)nτ f̂ (ξ̂ )τ f (ξ)+ n2τ f (ξ)
2 = γ f̂ (ξ̂ , ξ̂ )− n(n + 1)τ f (ξ)

2.

The image of ρ(w) = ŵ − nτ f (ξ) · 1 in Ḋ is (−1)n ξ̂ . Hence

NDis(X)(ρ(w)) = ND
(
ρ(w))+ (−1)n�(n + 1)/2�δX̂(ξ̂ , ξ̂ )

= γ f̂ (ξ̂ , ξ̂ )− n(n + 1)τ f (ξ)
2 + (−1)n�(n + 1)/2�δX̂(ξ̂ , ξ̂ )

= γ f (ξ, ξ)+ (−1)n�(n)δX(ξ̃ , ξ̃ ) (by (3.8.4)) = ND′′(w).

Since ρ preserves the traces of D′ and D, hence also those of their shifts D′′ and Dis(X),
it follows that ρ : D′′ → Dis(X) preserves norms and traces, hence is an isomorphism of
quadratic algebras. It remains to show naturality of ρ which is left to the reader.

4. Quadratic-linear modules

4.1. Definition. It will be useful to have the following non-unital version of quadratic trace
modules. A quadratic-linear module is a triple M = (M, q, t) consisting of a finitely gen-
erated and projective k-module M and a quadratic form q and a linear form t on M . Mor-
phisms are defined in the obvious way. Just like quadratic trace modules, quadratic-linear
modules form a symmetric tensor category with the following direct sum operation. Let
Mi = (Mi , qi , ti ) be quadratic-linear modules, denote by t1 ⊕ t2 and t1t2 the linear resp.
quadratic form on M1 ⊕ M2 given by

(t1 ⊕ t2)(x1 ⊕ x2) = t1(x1)+ t2(x2), (t1t2)(x1 ⊕ x2) = t1(x1)t2(x2),

and by q1 ⊥ q2 the usual orthogonal sum of q1 and q2 on M1 ⊕ M2. Then

M1 ⊕ M2 := (M1 ⊕ M2, (q1 ⊥ q2)+ t1t2, t1 ⊕ t2).

There is an obvious forgetful functor from quadratic trace modules to quadratic-linear mod-
ules sending X = (X, Q, T, 1) to (X, Q, T ). It is compatible with the direct sum operation.
In the opposite direction, there is a functor from quadratic-linear modules to quadratic trace
modules given by the construction of 2.4.

Let (M, q, t) be a quadratic-linear module of rank r . We define (M, q, t)�=(M�, q�, t�)
as the quadratic-linear module of rank r + 1 where

M� = k ⊕ M, q�(λ⊕ x) = λt (x)+ q(x), t�(λ⊕ x) = λ+ t (x).

(The notation q� is incomplete because q� depends on q and on t .) Of course, this is just the
direct sum of (k, 0, Idk) and (M, q, t). This assignment becomes a functor � from quadratic-
linear modules of rank r to those of rank r + 1 by defining, for a morphism ϕ : M̃ → M,
the morphism ϕ� : M̃� → M� by λ⊕ x 	→ λ⊕ ϕ(x).

4.2. Bilinear–linear modules. Replacing the quadratic form q above by a bilinear form, we
also consider triples (M, f, t) consisting of a finitely generated and projective k-module M ,
a bilinear form f and a linear form t on M , called bilinear–linear modules or bl-modules.
For them as well, we define a direct sum operation by

(M1, f1, t1)⊕ (M2, f2, t2) := (M1 ⊕ M2, f12, t1 ⊕ t2),
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where
f12 := ( f1 ⊥ f2)+ t1 ⊗ t2. (4.2.1)

Here f1 ⊥ f2 is the usual orthogonal sum of f1 and f2, and t1 ⊗ t2 denotes the bilinear form
on M1 ⊕ M2 given by

(t1 ⊗ t2)(x1 ⊕ x2, y1 ⊕ y2) = t1(x1)t2(y2).

With this operation, bl-modules form a tensor category. In particular, after identifying the
k-modules (M1 ⊕ M2)⊕ M3 and M1 ⊕ (M2 ⊕ M3), we have the associativity law

( f12 ⊥ f3)+ (t1 ⊗ t2)⊗ t3 = ( f1 ⊥ f23)+ t1 ⊗ (t2 ⊗ t3). (4.2.2)

However, bl-modules do not form a symmetric nor even braided tensor category. The reason
lies in the asymmetry of the definition of t1 ⊗ t2 above. This definition is of course not canon-
ical; for instance, it would have been equally possible to put (t1 ⊗ t2)(x1 ⊕ x2, y1 ⊕ y2) =
t1(y1)t2(x2).

There is a tensor functor from bl-modules to quadratic-linear modules given by (M, f, t) 	→
(M, [ f ], t) (where [ f ] denotes the quadratic form x 	→ f (x, x)). In particular, this means
that if fi is a representative of qi then f12 is a representative of (q1 ⊥ q2)+ t1t2.

Just as before, we define (M, f, t)� = (k ⊕ M, f �, t�) where

f �(λ⊕ x, µ⊕ y) = λt (y)+ f (x, y), t�(λ⊕ x) = λ+ t (x).

This is the same as the direct sum of the 1-dimensional bl-module e1 := (k, 0, Idk) and
(M, f, t). Note that the n-fold direct sum e1 ⊕ · · · ⊕ e1 is (kn, Un, (1, . . . , 1)) where we
identify bilinear and linear forms on kn with n × n-matrices and row vectors, respectively,
and Un is the strict upper triangular matrix with 1 above the diagonal.

4.3. Notation. Let Mi = (Mi , qi , ti ) be quadratic-linear modules of rank ri and put Li =
∧ri Mi . For x (i)1 , . . . , x (i)ri ∈ Mi , let ξi = x (i)1 ∧ · · · ∧ x (i)ri ∈ Li . Let M = M1 ⊕ M2 and
identify

L1 ⊗ L2
∼= �� L :=

r∧
M

via ξ1 ⊗ ξ2 	→ ξ = ξ1 ∧ ξ2. In case M1 = (k, 0, Idk) and M2 = M, we identify
∧r M ∼=∧r+1 M� by ξ = x1 ∧ · · · ∧ xr 	→ ξ� := 1 ∧ ξ .

For representatives fi of qi we introduce the square matrices Fi = (
fi (x

(i)
j , x (i)l )

)
of size

ri × ri and the row vectors x (i) = (
Ti (x

(i)
1 ), . . . , Ti (x

(i)
ri )

) ∈ kri , and put x := x (1) and
y := x (2). Then the matrices of f ′ := f1 ⊥ f2 and f := f ′ + t1 ⊗ t2 with respect to the
x (1)j , x (2)l are

F ′ =
(

F1 0
0 F2

)

and F =
(

F1 x�y
0 F2

)

.

4.4. Lemma. Let Mi = (Mi , qi , ti ) be quadratic-linear modules of even rank ri = 2ni and
put M := M1 ⊕ M2. Let fi , gi be bilinear forms on Mi representing qi , define f ′ and f as
in 4.3 and put similarly g′ = g1 ⊥ g2 and g = g′ + t1 ⊗ t2. Then, with τ f , κ f g and γ f as in
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3.3, we have

τ f = τ f ′ , (4.4.1)

κ f g = κ f ′g′ , (4.4.2)

γ f = γ f ′ + δ
q�1

⊗ δ
q�2
. (4.4.3)

Here q�i is defined as in 4.1 and δ
q�i

is identified with a bilinear form on Li via the isomorphism

Li = ∧ri Mi ∼= ∧ri +1 M�
i of 4.3 and hence δ

q�1
⊗ δ

q�2
with a bilinear form on L.

Proof Define the matrices Gi for gi like the Fi for fi in 4.3 and let t be an indeterminate.
Since f − g = f ′ − g′, we have, using (11.6.1), and with n = n1 + n2,

πn
(

f − f � + t( f − g)
)
(ξ) = Pf

(
F1 − F�

1 + t(F1 − G1) x�y
−y�x F2 − F�

2 + t(F2 − G2)

)

= Pf

(
F1 − F�

1 + t(F1 − G1) 0
0 F2 − F�

2 + t(F2 − G2)

)

= πn
(

f ′ − f ′� + t( f ′ − g′)
)
(ξ)

Then (4.4.1) and (4.4.2) follow by comparing coefficients at powers of t in view of (3.3.2)
and (3.3.3). By (3.3.5) and Lemma 11.5,

(−1)n
{
γ f (ξ, ξ)− γ f ′(ξ, ξ)

} = −qdet

(
F1 x�y
0 F2

)

+ qdet

(
F1 0
0 F2

)

= hdet

(
0 x
0 F1

)

hdet

(
0 y
0 F2

)

. (4.4.4)

From 4.2 it follows that

(
0 x
0 F1

)

is the matrix, with respect to 1, x (1)1 , . . . , x (1)r1 , of a bilin-

ear form f �1 on M�
1 representing the quadratic form q�1. Since M�

1 has odd rank 2n1 + 1, the

discriminant of q�1 is given by

δ
q�1
(ξ
�
1 , ξ

�
1 ) = (−1)n1 hdet

(
0 x
0 F1

)

.

An analogous formula holds for δ
q�2

, so (4.4.3) follows.

The following result will be crucial for the proof in Sect. 6 that the discriminant algebra
is a tensor functor. The quadratic form q = (q1 ⊥ q2) + t1t2 of the direct sum of two qua-
dratic-linear modules is not quite the orthogonal sum of q1 and q2. This is reflected in its
discriminant algebra D(q) which is a shift of D(q1 ⊥ q2).

4.5. Proposition. Let Mi be quadratic-linear modules of even rank and M = (M1 ⊕
M2, q, t1 ⊕ t2) their direct sum as in 4.1. Then there is a module isomorphism ψ : D(q1 ⊥
q2) → D(q) which sends 1 to 1 and

s f1⊥ f2(ξ) 	→ s f12(ξ) (4.5.1)

where fi is a representative of qi and f12 is as in (4.2.1). Moreover,

ψ = ψM1M2 : D(q1 ⊥ q2)+ (
δ

q�1
⊗ δ

q�2

) ∼= �� D(q) (4.5.2)

is an isomorphism of quadratic algebras which is natural in M1 and M2.
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Proof Let us put D′ := D(q1 ⊥ q2) and D := D(q) for short. As a k-module, D is generated
by 1 and all s f (ξ), subject to the relations (3.3.6) where f, g run over all representatives of q ,
and trace and norm of D are determined by (3.3.7). Analogous statements hold for D′, with
f, g replaced by representatives f ′, g′ of q ′ := q1 ⊥ q2. Now let fi , gi be representatives of
qi and let h be a representative of q ′. Then also f ′ := f1 ⊥ f2 is a representative of q ′, and
f := f12 is a representative of q . We claim that the expression

s f (ξ)+ κh f ′(ξ) · 1 (4.5.3)

does not depend on the choice of the fi . Indeed, let also gi be representatives of qi , and define
g′ and g like f ′ and f . Then by (3.3.6) and (4.4.2) and the cocycle relation (3.3.4) for κ ,

s f (ξ)+ κh f ′(ξ) · 1 − sg(ξ)− κhg′(ξ) · 1 = (
κ f g(ξ)+ κh f ′(ξ)− κhg′(ξ)

) · 1

= (
κ f ′g′(ξ)− κ f ′h(ξ)− κhg′(ξ)

) · 1 = 0.

To prove that there exists a well-defined module homomorphism ψ sending sh(ξ) to (4.5.3),
it remains to show that ψ respects the defining relations of D′. Thus let also j be a repre-
sentative of q ′. Then sh(ξ) − s j (ξ) = κhj (ξ) · 1 while, again by the cocycle relation for
κ ,

s f (ξ)+ κh f ′(ξ) · 1 − s f (ξ)− κ j f ′(ξ) · 1 = κhj (ξ) · 1,

as desired. Now we have a well-defined module homomorphismψ : D′ → D and it satisfies
(4.5.1) because κ f ′ f ′ = 0. Also, ψ induces the identity on L = Ḋ = Ḋ′ and hence is a
module isomorphism.

To prove (4.5.2), it suffices by Lemma 3.1 to show that the traces and norms of D and D′
are related by

TD(ψ(w)) = TD′(w), (4.5.4)

ND(ψ(w)) = ND′(w)+ (
δ

q�1
⊗ δ

q�2

)
(ẇ, ẇ), (4.5.5)

where w ∈ D′ and ẇ = p′(w) ∈ D′/k · 1 = L . Observe that D′ is spanned by 1 and
all sh(ξ1 ∧ ξ2) where ξi ∈ Li is arbitrary and h is a fixed representative of q ′. Moreover,
TD′(1) = 2 and ND′(1) = 1. This allows us to assume h = f ′ = f1 ⊕ f2 as above, and then
(4.5.4) and (4.5.5) follow from (4.4.1) and (4.4.3). Finally, naturality of ψ is easily checked.

5. Explicit computations

In this section, we derive explicit formulas for the discriminant algebra in the free case,
based on the remark made in 2.4. The following result says, roughly speaking, that shifting a
quadratic form by a symmetric bilinear form is reflected by a shift of its discriminant algebra.

5.1. Lemma. Let (M, q) be a quadratic module of rank 2n and let h be a symmetric bilinear
form on M. Put q ′(x) := q(x)+ h(x, x), i.e., q ′ = q + [h].

(a) There is a well-defined isomorphism of k-modules ϕ = ϕh : D(q) → D(q ′) given by

ϕ(1) = 1, ϕ(s f (ξ)) = s′
f +h(ξ) (5.1.1)

in terms of the generators s f (ξ) of D := D(q) and s′
f +h(ξ) of D′ := D(q ′), for all f

representing q and all ξ ∈ L := ∧2n M. Moreover, εh := γ f +h − γ f is independent of the
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choice of f and thus is a well-defined bilinear form on L, depending only on h (and of course
on q), and

ϕh : D(q)+ εh
∼= �� D(q ′)

is an isomorphism of quadratic algebras. The discriminants of q and q ′ are related by

δq ′ = δq − 4 εh . (5.1.2)

(b) Let h′ be another symmetric bilinear form on M and put q ′′ := q ′+[h′] = q +[h+h′].
Then

εh+h′ = εh + εh′ , (5.1.3)

and the diagram
(
D(q)+ εh

) + εh′
ϕh �� D(q ′)+ εh′

ϕh′
��

D(q)+ εh+h′
ϕh+h′

�� D(q ′′)

(5.1.4)

is commutative.

Proof (a) Recall from 3.3 the linear forms τ f and κ f g and the bilinear form γ f on L . Since
h is symmetric,

τ f +h = πn( f + h − ( f + h)�) = πn( f − f �) = τ f , (5.1.5)

κ f +h,g+h = �n(−2, f + h − ( f + h)�, f + h − (g + h))

= �n(−2, f − f �, f − g) = κ f g. (5.1.6)

Now it follows immediately from (5.1.6) and (3.3.6) that (5.1.1) defines a homomorphism
of k-modules. As ϕ induces the identity on L , it is an isomorphism of k-modules. Moreover,
from (5.1.5) and the definition of the trace of D(q) and D(q ′) (cf. (3.3.7)) we see that ϕ
preserves traces. Hence by Lemma 3.1(b), ϕ is an isomorphism of a shift D + ε onto D′, and
by (3.1.3) and (3.3.7), ε is given by

ε(ξ, ξ) = ND′
(
ϕ(s f (ξ))

) − ND
(
s f (ξ)

) = γ f +h(ξ, ξ)− γ f (ξ, ξ).

Finally, (5.1.2) follows from (3.1.4) and the fact that the discriminant of D(q) is δq .
(b) By (a), we have εh+h′ = γ f +(h+h′)−γ f = γ( f +h)+h′ −γ f +h +γ f +h −γ f = εh′ +εh .

Now the commutativity of (5.1.4) follows immediately from (5.1.1).

5.2. Proposition. Let X be a quadratic trace module of rank r � 1. Fix a decomposition
X = k ·1X ⊕ M and let q := Q

∣
∣M and t := T

∣
∣M as in (2.4.1), thus defining a quadratic-lin-

ear module M = (M, q, t). Consider M� = (M�, q�, t�) as in 4.1 and identify M� = k ⊕ M
with X by 1k 	→ 1X . Denote the polar forms of q and q� by b and b�, respectively, and
identify

∧r−1 M and
∧r X via η = x1 ∧ · · · ∧ xr−1 	→ ξ = 1 ∧ η. Then

δX = (−1)r−1

{

r ·
r−1∧

b + (r − 1) ·
r∧

b�
}

. (5.2.1)
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Depending on the parity of r , this can be rewritten as follows:

δX = δq� − 4 · (−1)n
{�n/2� · δq� − n · δq

}
if r = 2n is even, (5.2.2)

δX = δq − 4 · (−1)n+1{�(n + 1)/2� · δq + n · δq�
}

if r = 2n + 1 is odd. (5.2.3)

Proof We put m = r − 1 and use the notations introduced in 2.2. By (2.2.1) and (11.3.2),

δX(ξ, ξ) = (−1)m ·
(

r v

mv� D

)

= (−1)m
{

r · det D + m · det

(
0 v

v� D

)}

= (−1)m
{

r · (
m∧

b)(η, η)+ m · (
r∧

b�)(ξ, ξ)

}

,

proving (5.2.1). Now we distinguish the cases r even and r odd.

(a) r = 2n is even: Since M has odd rank m = 2n − 1, the discriminant of q is δq =
(−1)n−1 ∧m q , where the bilinear form

∧m q on
∧m M is given by the half-determinant and

satisfies 2
∧m q = ∧m b. Furthermore, δq� = (−1)n

∧2n b�. Substituting this into (5.2.1)
yields

δX = (−1)2n−1
{
(2n)(−1)n−12δq + (2n − 1)(−1)nδq�

}
,

which together with (2.2.4) gives (5.2.2).
(b) r = 2n + 1 is odd: Then M has even rank 2n, so by interchanging the roles of q and

q� we now have
∧2n b = (−1)nδq . Furthermore, q� is a quadratic form on the odd-ranked

module X , so
∧2n+1 b� = 2 · (−1)nδq� . Substituting this into (5.2.1) yields

δX = (−1)2n
{
(2n + 1)(−1)nδq + (−1)n2 · 2nδq�

}
.

From (2.2.4) (with n replaced by n +1) we see (2n +1)(−1)n = 1−4 · (−1)n+1�(n +1)/2�.
By substituting this in the above formula we obtain (5.2.3).

5.3. Proposition Let X be a quadratic trace module of even rank r = 2n � 2. We fix a
decomposition X = k · 1X ⊕ M and use the notations of Proposition 5.2. Then

Dis(X) ∼= D(q�)+ (−1)n
{⌊n

2

⌋
· δq� − n · δq

}
. (5.3.1)

Proof Let us abbreviate

ε� = (−1)n
{�n/2� · δq� − n · δq

}
, ζ = (−1)n−1�n/2� · δX.

Also, let α : X → k be the linear form determined by α(1) = 1 and Kerα = M . Consider
the following symmetric bilinear form on X :

h(x, y) = (n − 1)
[
α(x)T (y)+ α(y)T (x)

] −
[(

r

2

)

− r

]

α(x)α(y).

An easy verification shows that Q = q� + [h]. Hence Lemma 5.1 yields an isomorphism

D(q�)+ εh
∼= �� D(Q) which induces in an obvious way an isomorphism

(
D(q�)+ εh

) + ζ = D(q�)+ (εh + ζ )
∼= �� D(Q)+ ζ = Dis(X),
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cf. (3.4.1). Comparing this with (5.3.1), we see that it remains to prove

ε� = εh + ζ. (5.3.2)

By Lemma 2.5 we may assume that the base ring has no 2-torsion, so it suffices to prove that
four times (5.3.2) holds. By (2.2.2), (5.2.2) and (5.1.2) we have

δQ − δX = 4 · ζ, δX − δq� = −4 · ε�, δq� − δQ = 4 · εh .

Adding these equations yields 4 · (ζ − ε� + εh) = 0.

5.4. Proposition Let X be a quadratic trace module of odd rank r = 2n + 1. Choose a
decomposition X = k · 1X ⊕ M and use the notations of Proposition 5.2. Then

Dis(X) ∼= D(q) + (−1)n+1
{⌊n + 1

2

⌋
· δq + n · δq�

}

. (5.4.1)

Proof Let Q̇ be the quadratic form on Ẋ = X/k · 1 introduced in 2.3. The canonical map
X → Ẋ induces an isomorphism M ∼= Ẋ by which we identify Q̇ with a quadratic form, again
denoted Q̇, on M . Define a bilinear form h on M by h(x, y) = n∆X(x, y) for all x, y ∈ M ,
so that Q̇ = −q + [h]. Let us note that D(q) ∼= D(−q) by mapping s f (η) to (−1)ns− f (η)

for a representative f of q and all η ∈ ∧2n M . This follows from the easily proved relations
τ− f = (−1)nτ f , κ− f,−g = (−1)nκ f g and γ− f = γ f ; cf. 3.3 and [12, Theorem 2.3], applied
to q̃ = −q , ϕ = Id, µ = −1. Hence by Lemma 5.1, D(q)+ εh ∼= D(−q)+ εh ∼= D(Q̇) and

(
D(q)+ εh

) + ζ = D(q)+ (εh + ζ )
∼= �� D(Q̇)+ ζ ∼= Dis(X),

where the last isomorphism comes from Theorem 3.8 and we put ζ = (−1)n�(n) · δX. Thus
it remains to show that

ε := (−1)n+1
{⌊n + 1

2

⌋
δq + nδq�

}

= εh + ζ.

By the same argument as in the proof of Proposition 5.3, it suffices to prove four times this
equation. By (2.3.4), (5.2.3) and (5.1.2), we have

δQ̇ − δX = 4 · ζ, δX − δq = −4 · ε, δq − δQ̇ = 4 · εh .

As before, the assertion follows by adding these equations.

5.5. Proposition Let X be a quadratic trace module of rank r = m +1�2, choose a decom-
position X = k · 1X ⊕ M and suppose that M is free as a k-module, with basis x1, . . . , xm.
Let v = (v1, . . . , vm) ∈ km where vi = T (xi ), let f be a bilinear form representing Q and
put ai j := f (xi , x j ) so that aii = Q(xi ) and ai j + a ji = B(xi , x j ) for i �= j . Finally, define

A = (ai j ) ∈ Matm(k) and Â =
(

0 v

0 A

)

∈ Matr (k).

Then Dis(X) = ((b : c ]] is a free quadratic algebra where b, c ∈ k are given as follows:

(a) If r = 2n is even,

b = Pf
(

Â − Â�), (5.5.1)

c = (−1)n+1qdet( Â)+ �n/2� det
(

Â + Â�) + nhdet(A) (5.5.2)

= (2n − 1)qdet( Â)+ (−1)n�n/2�b2 + n hdet(A). (5.5.3)
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(b) If r = 2n + 1 is odd,

b = Pf(A − A�), (5.5.4)

c = (−1)n+1qdet(A)− �(n + 1)/2� det
(

A + A�) − nhdet( Â) (5.5.5)

= −(2n + 1)qdet(A)+ (−1)n+1�(n + 1)/2�b2 − nhdet( Â). (5.5.6)

Proof We use the notations of 5.3 and 5.4.
(a) By [12, 2.7], D(q�) = ((b : c0 ]] where

b = Pf( Â − Â�), c0 = (−1)n+1qdet( Â).

By Proposition 5.3 and (3.2.2), Dis(X) = ((b : c0 + e ]] where

e = (−1)n�n/2�δq� (ξ, ξ)+ (−1)n−1n δq(η, η),

where η = x1 ∧ · · · ∧ xm and ξ = 1 ∧ η. On the other hand,

δq� (ξ, ξ) = (−1)n det( Â + Â�), δq(η, η) = (−1)n−1hdet(A),

which yields (5.5.2). The alternative form (5.5.3) follows easily from the relations (11.1.2)
and (2.2.4) because b2 = det( Â − Â�).

(b) r = 2n + 1: Here D(q) is the free quadratic algebra ((b : c0 ]] where b = Pf(A − A�)
and c0 = (−1)n+1qdet(A). By 5.4, Dis(X) = ((b : c0 ]] + e = ((b : c0 + e ]] where

e = (−1)n+1{�(n + 1)/2� δq(η, η)+ n δq� (ξ, ξ)
}
.

Since q and q� are quadratic forms in 2n and 2n + 1 variables, we have

δq(η, η) = (−1)n det(A + A�), δq� (ξ, ξ) = (−1)nhdet( Â).

It follows that

c = c0 + (−1)n+1�(n + 1)/2� δqM (η, η)+ (−1)n+1nδq̂M (ξ, ξ)

= (−1)n+1qdet(A)− �(n + 1)/2� det
(

A + A�) − nhdet Â.

Again, (5.5.6) is an easy consequence of (2.2.4) and (11.1.2).

5.6. The case r = 3. We have qdet(A) = det(A) for a 2 × 2-matrix. Moreover, because of
(11.4.1),

hdet( Â) = det

(
0 v

v� A

)

= −a11v
2
2 − a22v

2
1 + (a12 + a21)v1v2.

By 5.5(b) this yields

b = a12 − a21,

c = −3qdet(A)+ b2 − hdet( Â)

= −3a11a22 + a12a21 + a2
12 + a2

21 + a11v
2
2 + a22v

2
1 − (a12 + a21)v1v2.
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5.7. The case r = 4. Here we use 5.5(a) and obtain

b = Pf( Â − Â�) = (a12 − a21)v3 + (a31 − a13)v2 + (a23 − a32)v1,

c = 3qdet( Â)+ b2 + 2hdet(A)

= 3 det

(
0 v

v� A

)

+ det( Â − Â�)+ det(A + A�),

by (11.1.1) and (11.4.2).

6. Multiplicativity of the discriminant algebra

6.1. The product of quadratic algebras. Recall from [11, 2.4, 2.6] that there is a natural
product D1 � D2 of quadratic algebras with which the category qak is a symmetric tensor
category. The product is constructed using the machinery of unital linear forms (although
there is a simpler description if the algebras are étale, see [10, III, (2.3.4)]). We recall this
quickly. A unital linear form on a quadratic algebra D is a linear form α with α(1D) = 1.
Then D1 � D2 is generated as a k-module by 1 and symbols ẋ1 �(α1,α2) ẋ2 where xi ∈ Di ,
ẋi = can(xi ) ∈ Ḋi = Di/k · 1, and αi is a unital linear form on Di . These symbols are
bilinear in ẋ1 and ẋ2 and satisfy relations for which we refer to [11, 2.1, 2.4]. There is an
exact sequence

0 �� k
i �� D1 � D2

p
�� Ḋ1 ⊗ Ḋ2

�� 0 (6.1.1)

where i(1) = 1 and p(ẋ1 �(α1,α2) ẋ2) = ẋ1 ⊗ ẋ2. The product of free quadratic algebras is
given by the formula

((b1 : c1 ]] � ((b2 : c2 ]] = ((b1b2 : c1(b
2
2 − 2c2)+ c2(b

2
1 − 2c1) ]] , (6.1.2)

see [8, p. 30, p. 42, Exercise 14] and [11, Th. 2.4]. The split algebra I = k · e1 ⊕ k · e2 (cf.
3.2) acts as a neutral element for the product �: There are natural isomorphisms

rD : D � I
∼= �� D, lD : I � D

∼= �� D, (6.1.3)

given by
ẋ �(α,β) ė1 	→ x − α(x)1, ė1 �(β,α) ẋ 	→ x − α(x)1, (6.1.4)

where β is the unital linear form on I with β(e1) = 0 and β(e2) = 1, and α is any unital
linear form on D, see [11, 2.6.11]. We will also need the associativity constraints

a = aD1 D2 D3 : (D1 � D2) � D3
∼= �� D1 � (D2 � D3)

which are as follows. Let αi be unital linear forms on Di . Then there are unique unital linear
forms αi j on Di � D j which vanish on all ẋi �(αi ,α j ) ẋ j . Since (Di � D j )/k · 1 ∼= Ḋi ⊗ Ḋ j

by (6.1.1), (D1 � D2) � D3 is generated by 1 and the elements (ẋ1 ⊗ ẋ2) �(α12,α3) ẋ3, and
then a is given by

(ẋ1 ⊗ ẋ2) �(α12,α3) ẋ3 	→ ẋ1 �(α1,α23) (ẋ2 ⊗ ẋ3). (6.1.5)

(Note that formula (7) of [11, 2.6] is incorrect and should read

η
(
u1 �α1(23) (u2 ⊗ u3)

) = (u1 ⊗ u2) �α(12)3 u3.

Line −3 of [11, p. 59] has to be modified similarly.)
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The product � is a bifunctor: If ϕi : D′
i → Di are homomorphisms, then ϕ1 �ϕ2 is given

by 1 	→ 1 and
(ϕ1 � ϕ1)(ẋ

′
1 �(α′

1,α
′
2)

ẋ ′
2) = ϕ̇1(ẋ

′
1) �(α1,α2) ϕ̇(ẋ

′
2), (6.1.6)

where α′
i = αi ◦ ϕi and ẋ ′

i ∈ D′
i . — We show next that the product of shifted quadratic

algebras is a suitable shift of their product:

6.2. Lemma. Let Di (i = 1, 2) be quadratic algebras, let δi = δDi be their discriminants,
and let εi be bilinear forms on Ḋi . Then

(
D1 + ε1

)
�
(
D2 + ε2) = (

D1 � D2
) + (ε1 ⊗ δ2 + δ1 ⊗ ε2 − 4ε1 ⊗ ε2). (6.2.1)

Proof It follows from [11, 2.1, 2.11(b)] that the underlying module, the unit element and the
trace of D1 � D2 depend only on the modules Di , their unit elements and the traces TDi ,
but not on their norms. By 3.1, the shifted algebras D′

i = Di + εi have the same underlying
modules, unit elements and traces as Di , hence so do D′

1 � D′
2 and D1 � D2. Thus the equality

sign in the statement of (6.2.1) makes sense. For the proof, we may by localization assume
that the Di = ((bi : ci ]] are free. Then, after identifying Ḋi ∼= k as in 3.2, the εi and δi are
identified with scalars, and we have D′

i = ((bi : ci + εi ]]. By (3.2.1), the discriminants of
Di are δi = b2

i − 4ci . Now (6.2.1) follows from (6.1.2) by a straightforward computation.

6.3. We will need the product D1 � D2 in particular when the Di are the discriminant
algebras of quadratic forms of even rank or shifts of such algebras. Let (Mi , qi ) (i = 1, 2)
be quadratic modules of even rank ri = 2ni . Choose representatives fi , gi of qi and let
f ′ = f1 ⊥ f2 and g′ = g1 ⊥ g2 be their orthogonal sums, which are then representatives
of q ′ = q1 ⊥ q2. By 3.3, Di has generators 1 and s fi (ξi ) where ξi ∈ Li = ∧ri Mi . By
[12, 2.2], the fi determine unital linear forms ρ fi on Di satisfying ρ fi ◦ sgi = −κ fi gi . Also,
Ḋi ∼= Li via s fi (ξi ) 	→ ξi . We put

ξ1 � f ′ ξ2 := ξ1 �(ρ f1 ,ρ f2 )
ξ2. (6.3.1)

Then D′′ := D1 � D2 is generated by 1 and the symbols ξ1 � f ′ ξ2, bilinear in ξ1 and ξ2,
subject to the relations

ξ1 � f ′ ξ2 − ξ1 �g′ ξ2 = κ f ′g′(ξ1 ⊗ ξ2) · 1. (6.3.2)

By [12, Th. 2.11], D is a symmetric tensor functor from even-ranked quadratic modules (with
⊥) to quadratic algebras (with �), i.e., there are natural isomorphisms

ϑ : D(q1) � D(q2)
∼= �� D(q1 ⊥ q2), (6.3.3)

ϑ0 : I
∼= �� D(0). (6.3.4)

They are given by 1 	→ 1 and

ϑ(ξ1 � f ′ ξ2) = s f ′(ξ1 ∧ ξ2), ϑ0(e1) = s0(1k). (6.3.5)

6.4. Lemma. Let (M, q) be a quadratic module of even rank r. Let f0 be the bilinear form
with matrix

(0 0
1 0

)
on k2, let f be a representative of q and let ξ ∈ ∧r M. Then the composite

isomorphism

Dis(E2) � D(q)
Φ−1�Id

∼=
�� I � D(q)

lD(q)

∼=
�� D(q) (6.4.1)

123



490 O. Loos

(where Φ = ΦI is as in (3.5.4)) is given explicitly by

−(e1 ∧ e2) � f0⊥ f ξ 	→ s f (ξ). (6.4.2)

Proof Let β be the linear form on I given by β(e1) = 0 and β(e2) = 1. By (3.5.4) we have
Φ(e1) = −s f0(e1 ∧ e2) and hence Φ̇(ė1) = −e1 ∧ e2. We claim that ρ f0 ◦ Φ = β. This
follows from ρ f0(Φ(e1)) = −ρ f0(s f0(e1 ∧ e2)) = 0 = β(e1) and ρ f0(Φ(1)) = ρ f0(1) =
1 = β(e2) = β(e1 + e2). Now (6.1.6) and (6.3.1) imply

(Φ � Id)(ė1 �(β,ρ f ) ξ ) = −(e1 ∧ e2) �(ρ f0 ,ρ f ) ξ = −(e1 ∧ e2) � f0⊥ f ξ.

On the other hand, putting x = s f (ξ), we have ẋ = ξ and ρ f (x) = 0 so by (6.1.4),

lD(q)(ė1 �(β,ρ f ) ξ ) = s f (ξ)

This implies (6.4.2).

6.5. Theorem. Let Xi = (Xi , Qi , Ti , 1i ) be quadratic trace modules of rank ri and X =
X1 ⊕ X2 = (X, Q, T, 1) their direct sum. Then there are isomorphisms

Θ = ΘX1X2 : Dis(X1) � Dis(X2)
∼= �� Dis(X1 ⊕ X2) (6.5.1)

of quadratic algebras, natural in X1 and X2, defined as follows: Choose representatives fi

of Qi and let

f12 = ( f1 ⊥ f2)+ T1 ⊗ T2

be the representative of Q as in (4.2.1). Also, let ξi ∈ Li = ∧ri Xi , and recall the notations
f � and ξ�i of 4.2 and 4.3.

(a) If r1 and r2 are even, Dis(X) is by the definition in (3.4.1) a shift of D(Q) and
Dis(X1) � Dis(X2) is, by Lemma 6.2, a shift of D(Q1) � D(Q2). Then Θ is, as a module
homomorphism, the composition

D(Q1) � D(Q2)
ϑ �� D(Q1 ⊥ Q2)

ψ
�� D(Q)

of (6.3.3) and 4.5. Explicitly, it is given by

ξ1 � f1⊥ f2 ξ2 	→ s f12(ξ1 ∧ ξ2). (6.5.2)

(b) If r1 is odd and r2 is even, we have Dis(X1) = Dis(E1⊕X1) and Dis(X) = Dis(E1⊕X)

by definition in (3.4.2). Then Θ is the isomorphism

Dis(E1 ⊕ X1) � Dis(X2)
∼= �� Dis(E1 ⊕ X)

of (6.5.1), where we canonically identify (E1 ⊕ X1)⊕ X2 = E1 ⊕ (X1 ⊕ X2). Explicitly, it
is given by

ξ
�
1 �

f �1 ⊥ f2
ξ2 	→ s

f �12

(
(ξ1 ∧ ξ2)

�
)
. (6.5.3)

(c) If r1 is even and r2 is odd, let j : X1 ⊕E1 ⊕X2 → E1 ⊕X be the switch x1 ⊕λ⊕ x2 	→
λ⊕ x1 ⊕ x2. Then Θ is the composition

Dis(X1) � Dis(E1 ⊕ X2)
∼= ��Dis(X1 ⊕ E1 ⊕ X2)

Dis( j)
��Dis(E1 ⊕ X) = Dis(X) , (6.5.4)
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where the first isomorphism is as in (6.5.1). Explicitly,

ξ1 �
f1⊥ f �2

ξ
�
2 	→ s

f �12

(
(ξ1 ∧ ξ2)

�
)
. (6.5.5)

(d) If r1 and r2 are odd, we have Dis(Xi ) = Dis(E1 ⊕Xi ) by definition. Let E2 = E1 ⊕E1

be the split quadratic trace module of rank 2 and let j : E1 ⊕ X1 ⊕ E1 ⊕ X2 → E2 ⊕ X be
the switch λ1 ⊕ x1 ⊕ λ2 ⊕ x2 	→ λ1 ⊕ λ2 ⊕ x1 ⊕ x2. Then Θ is the composition

Dis(E1 ⊕ X1) � Dis(E1 ⊕ X2)
∼= �� Dis(E1⊕X1⊕E1⊕X2)

Dis( j)
�� Dis(E2⊕X)

∼= �� Dis(E2) � Dis(X)
∼= �� Dis(X) (6.5.6)

where the first and third maps are as in (6.5.1) and the last map is the isomorphism (6.4.1).
Explicitly, Θ is given by the formula

ξ
�
1 �

f �1 ⊥ f �2
ξ
�
2 	→ s f12(ξ1 ∧ ξ2). (6.5.7)

Proof (a) Let ri = 2ni and r = r1 + r2 = 2n. Put Di := D(Qi ), D′′ := D1 � D2,
D′ := D(Q1 ⊥ Q2), and D := D(Q) for short. Recall from (3.4.1) that Dis(Xi ) = Di + εi

and Dis(X) = D + ε where

εi := (−1)ni −1�ni/2�δXi , ε := (−1)n−1�n/2�δX.
We apply Proposition 4.5 in case qi = Qi , and thus have to compute δ

Q�
i
. This follows

immediately from (2.2.3) and (2.1.3):

δ
Q�

i
(ξ
�
i , ξ

�
i ) = (−1)ni niδX�

i
(ξ
�
i , ξ

�
i ) = (−1)ni niδXi (ξi , ξi ).

By (6.1.1), D′′/k · 1 = L1 ⊗ L2 which is identified with L = ∧r X . Thus it makes sense
to shift both sides of the composition ψ ◦ ϑ : D′′ → D′ → D by ε which yields an algebra
isomorphism

D′′ + (
(−1)nn1n2 δX + ε

) ∼= �� D + ε = Dis(X),

and from (6.3.5) and (4.5.1) it is clear that (6.5.2) holds. On the other hand, by (6.2.1),

Dis(X1) � Dis(X2) = (
D1 + ε1

)
�
(
D2 + ε2

)

= D′′ + (ε1 ⊗ δ2 + δ1 ⊗ ε2 − 4ε1 ⊗ ε2)

where δi = δDi = δQi , so it remains to show that

(−1)nn1n2 δX + ε = ε1 ⊗ δ2 + δ1 ⊗ ε2 − 4ε1 ⊗ ε2. (6.5.8)

By (2.2.2) and (2.1.3),

δi = (−1)ni −1(ri − 1)δXi , δX = δX1 ⊗ δX2 .

Then (6.5.8) comes down to the formula

n1n2 −
⌊n1 + n2

2

⌋
= (2n1 − 1)

⌊n2

2

⌋
+ (2n2 − 1)

⌊n1

2

⌋
− 4

⌊n1

2

⌋⌊n2

2

⌋

for all natural numbers n1, n2. The elementary proof is left to the reader.
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(b) From what was proved in (a), it is clear thatΘ is an algebra isomorphism. By special-
izing (4.2.2) to the case where the first factor is the bilinear–linear module e1 of rank one,
we have

f �12 = ( f �1 ⊥ f2)+ T �1 ⊗ T2.

Hence (6.5.3) follows from (6.5.2) after replacing f1 by f �1 and ξ1 by ξ�1 because ξ�1 ∧ ξ2 =
(1 ∧ ξ1) ∧ ξ2 = 1 ∧ (ξ1 ∧ ξ2) = (ξ1 ∧ ξ2)

� in the exterior algebra.
(c) Again, it is clear from (a) that Θ is an algebra isomorphism, so it remains to show

(6.5.5). Put g := ( f1 ⊥ f �2 )+ T1 ⊗ T �2 and h := f �12. A calculation shows that

g(x1 ⊕ λ⊕ x2, y1 ⊕ µ⊕ y2) = f1(x1, y1)+ f2(x2, y2)+ T1(x1)T2(y2)

+µT1(x1)+ λT2(y2),

j∗(h)(x1 ⊕ λ⊕ x2, y1 ⊕ µ⊕ y2) = f1(x1, y1)+ f2(x2, y2)+ T1(x1)T2(y2)

+ λT1(y1)+ λT2(y2),

for λ,µ ∈ k, xi , yi ∈ Xi . We claim that

s j∗(h)(ξ1 ∧ ξ�2 ) = sg(ξ1 ∧ ξ�2 ). (6.5.9)

By the defining relations (3.3.6) of D(Q1 ⊕ Q�
2), this is equivalent to κg, j∗(h)(ξ1 ∧ ξ�2 ) = 0.

Let t be an indeterminate and put a = g − g� and a′ = g − j∗(h). We use the notations
introduced in 3.3 and 4.3 and put 2n = r1 + r2 + 1. Then by (11.6.1),

πn(a + ta′)(ξ1 ∧ ξ�2 ) = Pf

⎛

⎝
F1 − F�

1 (1 + t)x� x�y
−(1 + t)x 0 y

−y�x −y� F2 − F�
2

⎞

⎠

= Pf(F1 − F�
1 ) · Pf

(
0 y

−y� F2 − F�
2

)

is independent of t, whence κg, j∗(h) = 0, as asserted. Now we apply the definition of Θ in
(6.5.4) and the formula for Dis( j) in (3.4.4) which yields

ξ1 �
f1⊥ f �2

(ξ
�
2 ) 	→ sg(ξ1 ∧ ξ�2 ) = s j∗(h)(ξ1 ∧ ξ�2 )

	→ sh
(( r1+r2+1∧

j
)
(ξ1 ∧ ξ�2 )

) = s
f �12

(
(ξ1 ∧ ξ2)

�
)
,

because r1 is even.
(d) It is clear that Θ is an algebra isomorphism so let us prove (6.5.7). Let E2 =

(k2, Q0, T0, 1) be the split quadratic trace module of rank 2, so Q0(λe1 + µe2) = λµ,
T0(λe1 + µe2) = λ+ µ and 1 = e1 + e2, cf. 1.2(a). Let f0 be the bilinear form on k2 with
matrix

(0 0
1 0

)
, a representative of Q0, and put

g = ( f �1 ⊥ f �2 ) + T �1 ⊗ T �2 , h = ( f0 ⊥ f12) + T0 ⊗ (T1 ⊕ T2).
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These are bilinear forms on X �1 ⊕ X �2 and k ⊕ k ⊕ X1 ⊕ X2, respectively. A computation
shows that

g(λ1 ⊕ x1 ⊕ λ2 ⊕ x2, µ1 ⊕ y1 ⊕ µ2 ⊕ y2) = f1(x1, y1)+ f2(x2, y2)

+T1(x1)T2(y2)+ λ1µ2 + λ1(T1(y1)+ T2(y2))+ µ2T1(x1)+ λ2T2(y2),

j∗(h)(λ1 ⊕ x1 ⊕ λ2 ⊕ x2, µ1 ⊕ y1 ⊕ µ2 ⊕ y2) = f1(x1, y1)+ f2(x2, y2)

+T1(x1)T2(y2)+ λ2µ1 + (λ1 + λ2)(T1(y1)+ T2(y2)).

We claim that
s j∗(h)(ξ

�
1 ∧ ξ�2 ) = sg(ξ

�
1 ∧ ξ�2 ). (6.5.10)

Similarly as in the proof of (c), let a = g − g� and a′ = g − j∗(h), and put 2n = r1 +r2 +2.
Using the notations of 4.3, let

R̃ =
(

0 x
−x� F1 − F�

1

)

, S̃ =
(

0 y
−y� F2 − F�

2

)

,

x̃ = (1, x) ∈ kn1+1 and ỹ = (1 + t, y) ∈ k[t]n2+1. Then

πn(a + ta′)(ξ�1 ∧ ξ�2 ) = Pf

(
R̃ x̃� ỹ

−ỹ� x̃ S̃

)

= Pf(R̃) · Pf(S̃)

(by (11.6.1)) is independent of t. Hence κg, j∗(h) = 0 which proves (6.5.10).
Now we can establish (6.5.7). Let us identify e1 with 1k ⊕0⊕0⊕0 and e2 with 0⊕1k ⊕0⊕0

in E2 ⊕ X. Then since r1 is odd and ξ1 ∈ ∧r1 X1,

( 2n∧
j
)
(ξ
�
1 ∧ ξ�2 ) = ( 2n∧

j
)
(e1 ∧ ξ1 ∧ e2 ∧ ξ2) = −e1 ∧ e2 ∧ ξ1 ∧ ξ2

and hence Θ maps

ξ
�
1 �

f �1 ⊥ f �2
ξ
�
2 	→ sg(ξ

�
1 ∧ ξ�2 ) = s j∗(h)(ξ

�
1 ∧ ξ�2 )

	→ − sh(e1 ∧ e2 ∧ ξ1 ∧ ξ2) ∈ Dis(E2 ⊕ X)

	→ − (e1 ∧ e2) � f0⊥ f12 (ξ1 ∧ ξ2) ∈ Dis(E2) � Dis(X),

	→ s f12(ξ1 ∧ ξ2),

where we used (6.5.2) in reverse in the last but one and (6.4.2) in the last step.

We finally show that the isomorphismsΘ are natural in X1 and X2. In case (a), this follows
from naturality of ϑ and ψ (Proposition 4.5). The cases (b) and (c) follow easily from this,
and in case (d) one uses the naturality of the isomorphism lD(q) which implies that also the
isomorphism Dis(E2) � Dis(X) ∼= Dis(X) of (6.4.1) is natural in X.

6.6. Theorem The functor Dis is a tensor functor from the category qtmk of quadratic trace
modules (with ⊕) to the category qak of quadratic algebras (with �).

Proof This means [9] that, in addition to the natural isomorphisms Θ of Theorem 6.5, we
have a natural isomorphism Θ0 : I ∼= Dis(0) such that the following diagrams commute for
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all X,Xi , where we put Di := Dis(Xi ) for short:

Dis(X) � I
rD ��

Id�Θ0

��

Dis(X)

Dis(X) � Dis(0)
Θ

�� Dis(X ⊕ 0)

��
I � Dis(X)

lD ��

Θ0�Id
��

Dis(X)

Dis(0) � Dis(X)
Θ

�� Dis(0 ⊕ X)

��

(6.6.1)

(D1 � D2) � D3
a ��

Θ�Id

��

D1 � (D2 � D3)
Id�Θ �� D1 � Dis(X2 ⊕ X3)

Θ

��

Dis(X1 ⊕ X2) � D3
Θ

�� Dis
(
(X1 ⊕ X2)⊕ X3

)
�� Dis

(
X1 ⊕ (X2 ⊕ X3)

)

(6.6.2)

The commutativity of (6.6.1) is easy (use (3.5.1) and (6.1.3)) so we only do the commutativity
of (6.6.2). The unnamed arrow on the lower right is treated as the identity. The map a on the
upper left is as in (6.1.5). According to the parities of the ranks of the Xi , there are eight cases
in which commutativity of (6.6.2) needs to be checked, because Θ is defined differently in
each case. We do the case where all Xi have even rank. The others follow the same pattern
and are left to the reader.

Since Di is a shift of D(Qi ) we have Ḋi = Li = ∧ri Xi . Let fi be representatives of
Qi . Specializing formula (6.1.5) to the present situation and using (6.3.1), one sees that a is
given by

(ξ1 ⊗ ξ2) �( f1⊥ f2)⊥ f3 ξ3 	→ ξ1 � f1⊥( f2⊥ f3) (ξ2 ⊗ ξ3).

Let ( fi j , Ti j ) := ( fi , Ti )⊕ ( f j , Tj ) as in 4.2. Thus Ti j = Ti ⊕Tj , fi j = ( fi ⊥ f j )+Ti ⊗Tj

and fi j is a representative of the quadratic form Qi j = Qi ⊥ Q j +Ti Tj of Xi ⊕X j . Formula
(6.5.2) yields

Θ(ξi � fi ⊥ f j ξ j ) = s fi j (ξi ∧ ξ j ),

and therefore the map Θ̇ : Di � D j → Dis(Xi ⊕X j ) is given by Θ̇(ξi ⊗ ξ j ) = ξi ∧ ξ j . Now
we can compute the effect of going across and down in (6.6.2):

(ξ1 ⊗ ξ2) �( f1⊥ f2)⊥ f3 ξ3
� a �� ξ1 � f1⊥( f2⊥ f3) (ξ2 ⊗ ξ3)

� Id�Θ �� ξ1 � f1⊥ f23 (ξ2 ∧ ξ3)

� Θ �� s( f1⊥ f23)+T1⊗T23

(
ξ1 ∧ (ξ2 ∧ ξ3)

)
. (6.6.3)

Going down and across is easier and results in

(ξ1 ⊗ ξ2) �( f1⊥ f2)⊥ f3 ξ3
� Θ�Id �� (ξ1 ∧ ξ2) � f12⊥ f3 ξ3

� Θ �� s( f12⊥ f3)+T12⊗T3

(
(ξ1 ∧ ξ2) ∧ ξ3

)
. (6.6.4)

By (4.2.2) we have the associative law

( f12 ⊥ f3) + T12 ⊗ T3 = ( f1 ⊥ f23) + T1 ⊗ T23 (6.6.5)

so the commutativity of (6.6.2) follows.
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7. The discriminant algebra as a symmetric tensor functor

7.1. Notations. Let F2 be the functor from k-alg to the category of commutative rings which
assigns to R the set F2(R) of all continuous maps from Spec(R) to F2, the ring with two
elements, with the obvious ring structure. We usually identify an element f ∈ F2(R) with
the idempotent p ∈ R such that f −1(1) = Spec(Rp). Then the addition in F2(R) is given
by

p � p′ = p(1 − p′)+ p′(1 − p) = p + p′ − 2pp′,

while multiplication is the usual product of idempotents in R. We denote by Z2 the k-group
functor assigning to R ∈ k-alg the additive group of F2(R). There is a homomorphism

χ : Z2 → µ2, p 	→ 1 − 2p = (−1)p,

where µ2 is the k-group functor of second roots of unity.

7.2. Involutions of quadratic algebras. A quadratic algebra D has a natural involution
σ = σD given by x + σ(x) = TD(x) · 1. By [11, 5.3] there is a homomorphism

hD : Z2 → Aut(D), hD(p) := σ p := (1 − p) · Id + p · σ. (7.2.1)

Here Aut(D) is the k-group functor R 	→ Aut(D ⊗ R). Explicitly, this means

hD(p) · x = σ p(x) = p TD(x) · 1 + (1 − 2p)x, (7.2.2)

for all p ∈ Z2(R), x ∈ D ⊗ R, R ∈ k-alg. Hence the map induced by σ p on Ḋ is given by

χ(p) : ẋ 	→ (1 − 2p)ẋ = (−1)p ẋ . (7.2.3)

Since Ḋ ∼= ∧2 D under the map ẋ 	→ 1 ∧ x , it follows that

det hD(p) = χ(p) = (−1)p.

Suppose in particular that D = ((b : c ]] = k · 1 ⊕ k · z is free, and identify GL(D) with GL2

by means of the basis 1, z. Then it is easily seen that Aut(D) ⊂ GL2 is the subgroup of all
matrices

h =
(

1 λ

0 µ

)

(7.2.4)

where µ is a unit and

2λ = b(1 − µ), λ(b − λ) = c(1 − µ2). (7.2.5)

Also, (7.2.2) applied to x = z shows that

hD(p) =
(

1 pb
0 1 − 2p

)

. (7.2.6)

7.3. Proposition. Let D1 and D2 be quadratic algebras with product D = D1 � D2. For
automorphisms hi of Di let h1 � h2 be the automorphism of D as in (6.1.6).

(a) The map (h1, h2) 	→ h1 � h2 induces a homomorphism of group functors

� : Aut(D1)× Aut(D2) → Aut(D). (7.3.1)
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(b) Let Di = ((bi : ci ]] = k · 1 ⊕ k · zi be free and D = ((b : c ]] as in (6.1.2). Writing

hi =
(

1 λi

0 µi

)

as in (7.2.4), we have

(
1 λ1

0 µ1

)

�
(

1 λ2

0 µ2

)

=
(

1 λ1b2 + λ2b1 − 2λ1λ2

0 µ1µ2

)

. (7.3.2)

(c) The following diagram is commutative:

Z2 × Z2

�
��

hD1 ×hD2 �� Aut(D1)× Aut(D2)

�
��

Z2
hD1� D2

�� Aut(D1 � D2)

(7.3.3)

In particular, for p ∈ Z2(k),

σ
p
D1

� IdD2 = IdD1 � σ
p
D2

= σ
p
D . (7.3.4)

Proof (a) This is clear because the product � of quadratic algebras is a bifunctor commuting
with base change.

(b) Let αi : Di → k be the linear form given by αi (1) = 1 and αi (zi ) = 0. Then
D = k · 1 ⊕ k · z where z = ż1 �(α1,α2) ż2. Now put βi = αi ◦ hi . Since ḣi (żi ) = µi żi ,
(6.1.6) shows

(h1 � h2)(ż1 �(β1,β2) ż2) = µ1µ2(ż1 �(α1,α2) ż2).

Define tαi ∈ Ḋ∗
i by tαi (ẋ) = TDi (x − αi (x) · 1). Then

βi (zi ) = αi (λi · 1 + µi zi ) = λi , tαi (żi ) = TDi (zi − αi (zi )) = bi .

By the defining relations of D1 � D2 (cf. [11, 2.1]),

ż1 �(α1,α2) ż2 = ż1 �(β1,β2) ż2 + cαβ(ż1 ⊗ ż2) · 1,

where cαβ = cα1β1 ⊗ tα2 + tα1 ⊗cα2β2 −2cα1β1 ⊗cα2β2 , see [11, 2.1.4]. Substituting the above
data, we obtain cαβ(ż1 ⊗ ż2) = λ1b2 +λ2b1 −2λ1λ2, and therefore, by an easy computation,

(h1 � h2)(z) = (λ1b2 + λ2b1 − 2λ1λ2) · 1 + µ1µ2 · z.

In matrix notation, this is (7.3.2).
(c) Since everything is compatible with base change, it suffices to prove the commutativity

of (7.3.3) when the group functors are evaluated at R = k. By localization, we may assume
Di and hence D free. Then the assertion follows by direct computation from (7.2.6) and
(7.3.2).

7.4. Quadratic algebras with parity. The categories qtmk of quadratic trace modules and
qak of quadratic algebras are symmetric tensor categories. It is thus natural to ask whether the
tensor functor Dis : qtmk → qak respects the symmetries. This is not the case, but becomes
true after replacing qak with a bigger category which we now define. Let q̃ak be the direct
product of qak and the discrete category F2(k). Thus the objects of q̃ak are pairs D̃ = (D, p)
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consisting of a quadratic algebra D and an element p ∈ F2(k), called the parity of D̃, and
the morphisms are

Mor
(
(D, p), (D′, p′)

) =
{

Mor(D, D′) if p = p′
∅ if p �= p′

}

.

An object D̃ ∈ q̃ak will be called even or odd if its parity is 0 or 1, respectively. For R ∈ k-alg,
the base change of D̃ is D̃ ⊗ R = (D ⊗ R, p ⊗ 1R). We leave it to the reader to show that
q̃ak becomes a tensor category with product

(D, p) � (D′, p′) = (D � D′, p � p′),

unit Ĩ = (I, 0) and the associativity, left and right unit constraints ã, l̃, r̃ derived in the obvious
way from the corresponding ones in 6.1. The symmetry c̃ of q̃ak is defined as follows. First,
qak is a symmetric tensor category with the symmetry

c = cD1 D2 : D1 � D2
∼= �� D2 � D1, ẋ1 �(α1,α2) ẋ2 	→ ẋ2 �(α2,α1) ẋ1, (7.4.1)

see [11, Theorem 2.6]. Now define c̃ : D̃1 � D̃2 → D̃2 � D̃1 for D̃i = (Di , pi ) ∈ q̃ak by

c̃D̃1 D̃2
:= cD1 D2 ◦ hD1�D2(p1 p2) = hD2�D1(p1 p2) ◦ cD1 D2 . (7.4.2)

7.5. Lemma. With the symmetries c̃ defined as above, q̃ak is a symmetric tensor category.

Proof Since the automorphisms σ p have period two, it is clear that (c̃D̃1,D̃2
)−1 = c̃D̃2,D̃1

. It
remains to show the commutativity of the diagram

(D̃1 � D̃2) � D̃3
c̃�Id ��

ã

��

(D̃2 � D̃1) � D̃3
ã �� D̃2 � (D̃1 � D̃3)

Id�c̃

��

D̃1 � (D̃2 � D̃3) c̃
�� (D̃2 � D̃3) � D̃1 ã

�� D̃2 � (D̃3 � D̃1)

(7.5.1)

By (7.3.4) and because the automorphisms h(p) = σ p commute with morphisms of qak , we
can collect the powers of σ in going around the diagram. This yields for the upper leg

(Id � c̃) ◦ ã ◦ (c̃ � Id) = σ p1 p2 ◦ σ p1 p3 ◦ (Id � c) ◦ a ◦ (c � Id),

while the lower leg results in

ã ◦ c̃ ◦ ã = σ p1(p2�p3) ◦ a ◦ c ◦ a.

Now σ p1 p2 ◦ σ p1 p3 = σ p1 p2�p1 p3 = σ p1(p2�p3) because p 	→ σ p is a group homomor-
phism, and (Id � c) ◦ a ◦ (c � Id) = a ◦ c ◦ a because qak is a symmetric tensor category.

7.6. Definition. Let X be a quadratic trace module. The discriminant algebra with parity of
X is defined as

D̃is(X) = (
Dis(X), rk(X) (mod 2)

)
.

For example, the discriminant algebras with parity of the split quadratic trace modules E1

and E2 are now different, namely

D̃is(E1) = (Dis(E2), 1) ∼= (I, 1), D̃is(E2) = (Dis(E2), 0) ∼= (I, 0) = Ĩ ,
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while their ordinary discriminant algebras are the same. If X has non-constant rank, rk(X):
Spec(k) → Z is locally constant, so rk(X) (mod 2) ∈ F2(k). Since by definition there are no
morphisms between quadratic trace modules of different rank, it is clear that D̃is is a functor
from qtmk to q̃ak .

7.7. Theorem. D̃is : qtmk → q̃ak is a symmetric tensor functor.

Proof Let Xi = (Xi , Qi , Ti , 1i ) be quadratic trace modules with parities pi = rk(Xi )

(mod 2). Then rk(X1 ⊕ X2) (mod 2) = p1 � p2, and hence the isomorphism Θ = ΘX1X2

of Theorem 6.5 induces an isomorphism

Θ̃ : D̃is(X1) � D̃is(X2) → D̃is(X1 ⊕ X2).

It is easy to check, using Theorem 6.6, that with these isomorphisms D̃is is a tensor func-
tor from qtmk to q̃ak . The symmetry in qtmk is the switch ω : X1 ⊕ X2 → X2 ⊕ X1,
x1 ⊕ x2 	→ x2 ⊕ x1. Thus for D̃is to be a symmetric tensor functor, it remains to check that
the diagrams

D̃is(X1) � D̃is(X2)
Θ̃ ��

c̃

��

D̃is(X1 ⊕ X2)

D̃is(ω)
��

D̃is(X2) � D̃is(X1)
Θ̃

�� D̃is(X2 ⊕ X1)

(7.7.1)

commute. After decomposing the base ring, we may assume that ri = rk(Xi ) is constant on
Spec(k). Then there are four cases, depending on the parity pi of ri . We do the case where
r1 and r2 are odd and leave the other cases, which follow a similar pattern but are easier, to
the reader.

Let fi be bilinear forms on Xi representing Qi and let Qi j be the quadratic form of Xi ⊕X j .
Then fi j := ( fi ⊥ f j ) + Ti ⊗ Tj is a bilinear form on Xi ⊕ X j representing Qi j , cf. 4.2.

Put Di = Dis(Xi ) and Di j = Dis(Xi ⊕ X j ) for short, and let z = ξ
�
1 �

f �1 ⊥ f �2
ξ
�
2 ∈ D1 � D2,

where we use the notations of Theorem 6.5(d). Since Θ̃ is just Θ as a map on D1 � D2, we
have by (6.5.7) that Θ̃(z) = s f12(ξ1 ∧ ξ2). We claim that the effect of going across and down
in (7.7.1) is

D̃is(ω)
(
Θ̃(z)

) = σD21

(
s f21(ξ2 ∧ ξ1)

)
. (7.7.2)

Indeed, let us note first that (
∧r1+r2 ω)(ξ1 ∧ ξ2) = (−1)r1r2ξ2 ∧ ξ1 = −ξ2 ∧ ξ1, since

ξi ∈ ∧ri Xi and both r1 and r2 are odd. Hence, by (3.4.4),

Dis(ω)
(
sg(ξ1 ∧ ξ2)

) = −s f21(ξ2 ∧ ξ1), (7.7.3)

where the pullback g := ω∗( f21) to X1 ⊕ X2 is

g(x1 ⊕ x2, y1 ⊕ y2) = f1(x1, y1)+ f2(x2, y2)+ T1(y1)T2(x2).

Let f := f12 for short. By the defining relations (3.3.6) of D12, we have s f − sg = κ f g · 1,
so we compute next κ f g . Let 2n = r1 + r2, and use the notations introduced in 4.3. Then by
(11.6.2) and (3.3.3),
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πn
(

f − f � + t( f − g)
)
(ξ1 ∧ ξ2) = Pf

(
F1 − F�

1 (1 + t)x�y
−(1 + t)y�x F2 − F�

2

)

= Pf

(
0 (1 + t)x

−(1 + t)x� F1 − F�
1

)

· Pf

(
0 y

−y� F2 − F�
2

)

= (1 + t)Pf

(
0 x

−x� F1 − F�
1

)

· Pf

(
0 y

−y� F2 − F�
2

)

= (1 + t)Pf

(
F1 − F�

1 x�y
−y�x F2 − F�

2

)

= (1 + t)πn( f − f �)(ξ1 ∧ ξ2) = (1 + t)τ f (ξ1 ∧ ξ2).

On the other hand, by (3.3.2),

πn
(

f − f � + t( f − g)
) = πn( f − f �)+ t�n(t, f − f �, f − g).

By comparing coefficients at t we see that �n(t, f − f �, f − g) = τ f is independent of t.
Therefore κ f g = �n(−2, f − f �, f − g) = τ f and s f − sg = τ f · 1. Since the trace of
s f (ξ1 ∧ ξ2) is τ f (ξ1 ∧ ξ2), it follows that

σD12

(
s f (ξ1 ∧ ξ2)

) = τ f (ξ1 ∧ ξ2) · 1 − s f (ξ1 ∧ ξ2) = −sg(ξ1 ∧ ξ2),

so (7.7.3) implies

Dis(ω)
(
σD12(s f (ξ1 ∧ ξ2))

) = s f21(ξ2 ∧ ξ1).

But Dis(ω) commutes with the standard involutions of D12 and D21, whence

Dis(ω)
(
s f (ξ1 ∧ ξ2)

) = σD21

(
s f21(ξ2 ∧ ξ1)

)
.

This proves (7.7.2). On the other hand, going down and across in (7.7.1) yields, since Θ
commutes with the involutions,

z � c̃ �� σD2�D1(c(z)) = σD2�D1(ξ
�
2 �

ξ
�
2 ⊥ξ�1 ξ

�
1 )

� Θ̃ �� σD21

(
Θ(ξ

�
2 �

ξ
�
2 ⊥ξ�1 ξ

�
1 )
) = σD21

(
s f21(ξ2 ∧ ξ1)

)
.

This completes the proof.

8. Separable quadratic trace modules

8.1. Definition. A quadratic trace module X is called separable if its discriminant form
∆ = ∆X is non-singular; equivalently, if the discriminant δX is non-singular or if the discri-
minant algebra Dis(X) is a separable quadratic algebra (Lemma 3.6). Separability is preserved
under arbitrary base changes and descends from faithfully flat base changes.

Since the discriminant form of the split quadratic trace module Er is the standard scalar
product on kr , it is clear that Er is separable. The goal of this section is to show that, con-
versely, a separable quadratic trace module is, locally in the étale topology, isomorphic to
Er .

In the sequel, a k-functor means a set-valued covariant functor on the category k-alg.
Following [6], schemes are considered as special k-functors. The affine k-scheme defined
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by a k-algebra A is Spec(A)(R) = Homk-alg(A, R). For a k-module X let Xa denote the
k-functor R 	→ X ⊗k R. If X is finitely generated and projective then Xa is an affine finitely
presented k-scheme whose affine algebra is the symmetric algebra over the dual module X∗.

For an arbitrary quadratic trace module X, define k-functors Y and U by

Y(R) ={x ∈ X ⊗ R : T (x) = 1, Q(x) = 0}, (8.1.1)

U(R) ={u ∈ Y(R) : 1 − u unimodular}, (8.1.2)

for all R ∈ k-alg. Since Xa is finitely presented and affine so is Y. Let α1, . . . , αn be a set of
generators of the dual module X∗ and let ϕi (x) = αi (1 − x). Then U ⊂ Y is the union of the
open affine subschemes Yi of Y where ϕi does not vanish, i.e., u ∈ U(R) ⇐⇒ u ∈ Y(R)
and

∑
i Rϕi (u) = R, see [6, I, §1, 3.6]. Hence U is a quasi-affine finitely presented k-

scheme. We will see that it plays the role of the unit sphere in Euclidean geometry. Note that
Y = Spec({0}) is empty (Y(R) = ∅ for all R �= {0}) if r = rk(X) = 0, and Y = Spec(k) is
the one-point functor for r = 1, while U is empty for r = 0, 1.

8.2. Proposition. Let X = (X, Q, T, 1) be a quadratic trace module of rank r and let
u ∈ U(k) (hence r � 2). Let X ′ := u⊥ with respect to ∆ = ∆X, put 1′ := 1 − u and denote
by Q′ and T ′ the restrictions of Q and T to X ′. Then X′ := (X ′, Q′, T ′, 1′) is a quadratic
trace module of rank r − 1 and

X = k · u ⊕ X′ ∼= E1 ⊕ X′, (8.2.1)

the direct sum of quadratic trace modules as in 1.5. Moreover, X is separable if and only if
X′ is separable.

Proof We have ∆(u, u) = T (u)2 − 2Q(u) = 1, so the direct sum of modules in (8.2.1) is
clear. Next,∆(u, 1 − u) = ∆(u, 1)− 1 = T (u)− 1 (by (1.1.4)) = 0, which proves 1′ ∈ X ′.

Clearly X ′ is finitely generated and projective of rank r − 1, and 1′ is unimodular by
definition of U. Furthermore, by (1.1.1), T ′(1′) = T (1 − u) = T (1)− 1 = r − 1 and

Q′(1′) = Q(1 − u) = Q(1)− B(1, u)+ Q(u) =
(

r

2

)

− (r − 1)+ 0 =
(

r − 1

2

)

.

Finally, let x ′ ∈ X ′. Then B ′(1′, x ′) = B(1 − u, x ′) = T (1 − u)T (x ′) − ∆(1 − u, x ′) =
(r −1)T (x ′)−∆(1, x ′)+0 = (r −2)T (x ′), by (1.1.4). Hence X′ is a quadratic trace module
of rank r − 1.

We show that X ∼= E1⊕X′ as quadratic trace modules. Clearly 1 = u⊕1′ and T (λu⊕x ′) =
λT (u) + T (x ′) = λ + T ′(x ′). Moreover, Q(λu ⊕ x ′) = λ2 Q(u) + λB(u, x ′) + Q(x ′) =
0 + λ

(
T (u)T (x ′)−∆(u, x ′)

) + Q(x ′) = λT ′(x ′)+ Q′(x ′) because u ⊥ x ′ with respect to
∆. The statement concerning separability follows from (1.5.2).

8.3. Lemma. Let X = (X, Q, T, 1) be separable of rank r. If r � 1 then T : X → k is
surjective. If r � 2, the restriction of Q to X0 := KerT is primitive.

Proof By separability, ∆ induces an isomorphism between X and its dual X∗, and (1.1.4)
shows that T ∈ X∗ is the image of 1X . Since 1X is unimodular so is T . Hence there exists
u ∈ X∗∗ ∼= X with T (u) = 1.

For the second statement, we may assume that k is an algebraically closed field and then
have to show that Q

∣
∣X0 �= 0. If r = 2, X = qt(D) is the quadratic trace module determined

by a separable quadratic algebra, so D ∼= k2 = k · e1 ⊕ k · e2, and D0 = k · (e1 − e2), with
Q(e1 − e2) = Q(e1) − B(e1, e2) + Q(e2) = −1. If r � 3, pick an element u ∈ X with
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T (u) = 1 so that X = k · u ⊕ X0. Assume that Q vanishes on X0. After choosing a basis in

X0, the matrix of∆ has the form

(
λ v

v� 0

)

where λ = ∆(u, u) ∈ k and v is a row vector of

length r − 1 � 2. Such a matrix must be singular, contradiction.

8.4. Lemma. If X is separable of rank r � 2 over an algebraically closed field K then
U(K ) �= ∅.

Proof By Lemma 8.3 there exist x, y ∈ X with T (y) = 1, T (x) = 0 and Q(x) �= 0. Put
u = y + λx and determine the scalar λ ∈ K by the requirement Q(u) = 0. This yields the
quadratic equation

λ2 Q(x)+ λB(x, y)+ Q(y) = 0

which has a solution since K is algebraically closed. If u �= 1 we are done. Otherwise,(r
2

) = Q(1) = Q(u) = 0 in K which implies r�3. Also, T (1) = T (u) = 1 so X = K ·1⊕X0.
Since Q does not vanish on X0 and dim X0�2, there exists a non-zero isotropic vector z ∈ X0.
Put ũ = 1 + z. Then ũ �= 1, T (ũ) = T (1) = 1 and Q(ũ) = Q(1) + B(1, z) + Q(z) =
0 + (r − 1)T (z)+ 0 = 0, as required.

8.5. Corollary. A separable quadratic trace module X over an algebraically closed field is
split.

Proof If X has rank � 1 this is evident, so we assume r = rk(X) � 2. Then the assertion
follows by induction from Proposition 8.2 and Lemma 8.4.

8.6. Theorem. Let X be a separable quadratic trace module of rank r � 2. Then U is a
smooth quasi-affine finitely presented k-scheme. The geometric fibres of U have dimension
r − 2. They consist of two points if r = 2 and are connected and non-empty for r � 3.

Proof As noted in 8.1, U is quasi-affine and finitely presented. By [6, I, §4, Corollary 4.6],
U is smooth if and only if, for every R ∈ k-alg and every ideal n of square zero in R,
the canonical map U(R) → U(R/n) is surjective. After a base change from k to R we
may assume R = k to simplify notation. Denote the canonical maps k → k̄ := k/n and
X → X̄ := X/nX = X ⊗ k/n by a bar, and let v ∈ U(k/n). Decompose X̄ = k̄ · v ⊕ X̄′
with X̄′ separable of rank r − 1 as in Proposition 8.2. Choose x ∈ X with x̄ = v. Then
T (x) = 1 + δ and Q(x) = ε where δ, ε ∈ n. Since n has square zero, 1 + δ ∈ k×
with (1 + δ)−1 = 1 − δ. After replacing x by (1 − δ)x , we may assume T (x) = 1. Then
∆(x, x) = T (x)2 − B(x, x) = 1−2ε ∈ k×, so X decomposes X = k ·x ⊕ M where M = x⊥
with respect to∆, and M̄ = X̄ ′. By Lemma 8.3, there existsw ∈ X̄ ′ with T (w) = 1. Choose
y ∈ M with ȳ = w. Then T (y) = 1 + γ ∈ 1 + n is invertible, so after replacing y by
(1 + γ )−1 y, we have found an element y ∈ M with T (y) = 1. Since also T (x) = 1, it
follows that

0 = ∆(x, y) = T (x)T (y)− B(x, y) = 1 − B(x, y).

Now put u := x + ε(x − y). Then ū = x̄ = v, T (u) = 1 + ε(1 − 1) = 1, and

Q(u) = Q(x)+ εB(x, x − y) = Q(x)+ ε
(
2Q(x)− B(x, y)

) = ε + ε(2ε − 1) = 0.

It remains to show that 1 − u is unimodular. Since 1̄ − v is unimodular in X̄ , there exists a
linear form β ∈ X̄∗ with β(1̄ − v) = 1. Now X̄∗ ∼= X∗ ⊗ k̄ since X is finitely generated
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and projective, so there exists α ∈ X∗ with ᾱ = β. This implies α(1 − u) = 1 and therefore
α(1 − u) ∈ 1 + n ⊂ k×, as required.

To determine the geometric fibres of U we may, after a base change, assume that k = K
is an algebraically closed field. By Lemma 8.4 and Corollary 8.5, U(K ) �= ∅ and X ∼= Er

is split. Put m = r − 1 and identify X with K r by means of the standard basis e0, . . . , em .
Let Greek indices run from 0 to m and Latin indices from 1 to m. Then Y(K ) ⊂ K m+1 is
described by the equations ∑

λ

xλ = 1,
∑

λ<µ

xλxµ = 0, (8.6.1)

and x ∈ U(K ) if in addition x �= 1X = (1, . . . , 1). For r = 2, Y(K ) = U(K ) =
{(1, 0), (0, 1)} consists of two points. Assume r � 3 and use the first equation of (8.6.1),
x0 = 1 − ∑

xi , to eliminate x0 from the second equation. Then Y(K ) becomes identified
with the affine quadric in K m with equation

f (x1, . . . , xm) =
∑

i

xi −
∑

i � j

xi x j = 0. (8.6.2)

Since m � 2, it is easily seen that the polynomial f (x1, . . . , xm) ∈ K [x1, . . . , xm] is irre-
ducible, so Y(K ) is an irreducible algebraic variety. Hence U(K ) is connected [2, II, §4.1,
Prop. 1].

8.7. Remark. In the situation of Theorem 8.6, define

S(R) = Y(R) ∩ {1X R }
for all R ∈ k-alg. Then S is a closed subscheme of Y, isomorphic to Spec(k/kd1) where

d1 = d1(r) =
{

2n − 1 if r = 2n is even
n if r = 2n + 1 is odd

}

. (8.7.1)

Moreover, Y is geometrically the union of U and S, and U is precisely the set of points of Y
where the canonical projection Y → Spec(k) is smooth. The proof is left to the reader. As a
consequence, we note:

U = Y ⇐⇒ d1(r) · 1k ∈ k×.

Clearly d1(r) = 1 if and only if r = 2 or r = 3. Hence U = Y is affine for r = 2, 3.

8.8. Theorem. Let X be a quadratic trace module of rank r. Then X is separable if and only
if there exists an étale cover R of k (i.e., an étale and faithfully flat R ∈ k-alg) such that
X ⊗ R ∼= Er ⊗ R.

Proof The condition is necessary because separability descends from faithfully flat base
extensions. The proof of the converse is by induction on r . The cases r = 0, 1 being triv-
ial, we assume r � 2. By Theorem 8.6 and [7, Cor. 17.16.3(ii)], there exists an étale cover
k′ ∈ k-alg such that U(k′) �= ∅. Choose u ∈ U(k′). Then Proposition 8.2 shows that
X ⊗ k′ ∼= (E1 ⊗ k′) ⊕ X′ where X′ is separable of rank r − 1 over k′. By induction,
X′ ⊗k′ R ∼= Er−1 ⊗k R where R is an étale cover of k′ and hence of k. It follows that
X ⊗k R ∼= (E1 ⊗ R)⊕ (X′ ⊗k′ R) ∼= Er ⊗ R.
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9. The automorphism group I

9.1. Definition. Let X = (X, Q, T, 1) be a quadratic trace module of rank r . An automor-
phism of X is an element g of GL(X) such that

g(1) = 1 and T (g(x)) = T (x), Q(g(x)) = Q(x), for all x ∈ X . (9.1.1)

We denote by Aut(X) the set of all automorphisms of X, and let G = Aut(X) be the k-group
functor G(R) = Aut(X ⊗ R), for all R ∈ k-alg. Note that the automorphism group is trivial
if r � 1.

From the fact that X is finitely generated and projective as a k-module it follows easily
that G is an affine finitely presented k-group scheme.

9.2. Lemma. Let g = Lie(G) be the Lie algebra of G = Aut(X). The following conditions
are equivalent for an element A of End(X):

(i) A ∈ g,
(ii) A(1) = 0 and T (A(x)) = B(x, A(x)) = 0, for all x ∈ X,

(iii) A(1) = 0 and ∆(x, A(x)) = 0, for all x ∈ X.

Proof A belongs to g if and only if Id + εA ∈ G(k(ε)) where k(ε) is the algebra of dual
numbers. Now the equivalence of (i) and (ii) follows easily from (9.1.1). Next, we have
∆(x, A(x)) = T (x)T (A(x))− B(x, A(x))which shows (ii) implies (iii). On the other hand,
∆(1, x) = T (x) by (1.1.4), and from ∆(x, A(x)) = 0 for all x we get by linearization
that ∆(x, A(y)) = −∆(A(x), y). Hence A(1) = 0 implies that T (A(x)) = ∆(1, A(x)) =
−∆(A(1), x) = 0, so that (iii) implies (ii).

9.3. Theorem. Let X be a separable quadratic trace module of rank r � 2.
(a) G = Aut(X) is smooth of fibre-dimension

(r−1
2

)
.

(b) If X = Er is split, g = Lie(G) is the set of alternating r × r matrices with all row
sums equal to zero.

(c) The “unit sphere” U of (8.1.2) is a homogeneous space under G in the following sense:
If U(k) �= ∅, choose u ∈ U(k) and decompose X = k · u ⊕ X′ as in
Proposition 8.2. Then H := CentG(u) ∼= Aut(X′), and the orbit map β : G → U,
g 	→ g(u), is smooth and surjective, so that G/H ∼= U as étale sheaves. In general, the
map ϑ : G × U → U × U, (g, u) 	→ (u, g(u)), is smooth and surjective.

Proof (a), (b) By localization we may assume that Ẋ = X/k · 1 is free, so X has a basis of
the form x0 = 1, x1, . . . , xm where m = r − 1. We first show that g ∈ GL(X) belongs to
G(k) if and only if

g(1) = 1, (9.3.1)

T (g(xi )) = T (xi ), for i = 1, . . . ,m, (9.3.2)

Q(g(xi )) = Q(xi ), for i = 1, . . . ,m, (9.3.3)

B(g(xi ), g(x j )) = B(xi , x j ), for 1 � i < j � m. (9.3.4)

These conditions are obviously necessary. Now suppose that they hold. Then (9.3.1) implies
that (9.3.2) holds for i = 0 as well so we have T ◦ g = T . Similarly, (9.3.3) holds for
i = 0 and we also have B(g(1), g(x j )) = (r − 1)T (g(x j )) = (r − 1)T (x j ) = B(1, x j ), for
j = 1, . . . ,m. This implies Q ◦ g = Q, so g is an automorphism.
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Clearly, (9.3.1)–(9.3.3) are polynomial equations in the entries of g (where we identify g
with its matrix with respect to the basis x0, . . . , xm). Note that (9.3.1) amounts to r scalar
equations for the components of g(1). Since all this remains valid in any scalar extension,
we see that G is defined by

r + 2(r − 1)+
(

r − 1

2

)

= r2 −
(

r − 1

2

)

polynomial equations.

To prove smoothness of G, it suffices by [6, II, §5, Prop. 2.7] that for every prime ideal p

of k, the Lie algebra of G ⊗ κ(p) has dimension
(r−1

2

)
. Since G ⊗ κ(p) ∼= Aut(X ⊗ κ(p))

and X ⊗ κ(p) splits over the algebraic closure of κ(p) by Corollary 8.5, this will follow once
we have established the description of g in (b). Let, then, X = Er be split and let ei be the
standard basis of kr . By 1.2, ∆ is the standard scalar product on kr . Hence A ∈ Matr (k)
is alternating if and only if ∆(x, A(x)) = 0 for all x ∈ kr , and since 1 = 1X is the vector
with all components equal to 1, A(1) = 0 means that all row sums of A zero. In view of
Lemma 9.2(iii) this completes the proof of (a) and (b).

(c) Let u ∈ U(k). Since G leaves the discriminant form∆ invariant and X′ is the orthog-
onal complement of u with respect to ∆, we see that H is the isomorphic image of Aut(X′)
under the map g′ 	→ Idk·u ⊕ g′, so we identify Aut(X′) and H. We show that G/H ∼= U as
sheaves in the étale topology, i.e., that for every R ∈ k-alg and every v ∈ U(R) there exists
an étale cover S of R and g ∈ G(S) such that g(u) = v. After a base change, we may assume
R = k for easier notation. By Proposition 8.2, X = k · v⊕ X′′ where X′′ is also separable of
rank r − 1. Theorem 8.8 shows that there exists an étale cover E of k and an isomorphism
h : X′ ⊗ E → X′′ ⊗ E . Define g(u) = v and g

∣
∣
X′⊗E = h. Then g ∈ G(E) and g(u) = v.

Since H ∼= Aut(X′) is smooth by (a), in particular, flat, it follows from [6, III, §3, Proposi-
tion 2.5(a), Corollary 2.6] thatβ is faithfully flat and smooth. Hence so areβ×IdU : G×U →
U × U and IdG × β : G × G → G × U. One checks that the diagram

G × G ��

IdG×β
��

G × U

ϑ

��

G × U
β×IdU

�� U × U

is Cartesian, where the top arrow is given by (g, h) 	→ (hg−1, g(u)). By faithfully flat
descent, ϑ is faithfully flat and smooth.

In general, there exists a faithfully flat R ∈ k-alg such that U(R) �= ∅
[7, Corollary 17.16.2]. Here we use the fact that the canonical projection U → Spec(k)
is surjective, hence (by smoothness of U) faithfully flat, cf. Theorem 8.6. By what we proved
already, ϑ ⊗ R is faithfully flat and smooth, and therefore so is ϑ by faithfully flat descent.

9.4. The Dickson homomorphism. Since the discriminant algebra Dis(X) of a quadratic
trace module X depends functorially on X (cf. 3.4) and is compatible with base change, there
is a homomorphism

Dick = DickX : Aut(X) → Aut
(
Dis(X)

)
, g 	→ Dis(g), (9.4.1)

called the Dickson homomorphism, because it has properties similar to the classical Dickson
homomorphism for orthogonal groups of even rank.
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Suppose that X is separable, whence also D = Dis(X) is a separable quadratic algebra by
8.1. Then the canonical homomorphism hD : Z2 → Aut(D) of 7.2 is an isomorphism [11,
5.3]. In fact, it is the unique isomorphism between Z2 and Aut(D) because the automorphism
group of the group scheme Z2 is trivial. We then define

dick = dickX := h−1
D ◦ Dick : Aut(X) → Z2. (9.4.2)

Let in particular A ∈ k-alg be finitely generated and projective as a k-module, and let
X = qt(A) be the associated quadratic trace module as in 1.3. Clearly, Aut(A) ⊂ Aut(X),
and we define the Dickson homomorphism of A as the restriction of DickX:

Dick A = DickX

∣
∣
Aut(A) : Aut(A) → Aut(Dis(A)). (9.4.3)

If A is étale, we put in analogy to (9.4.2),

dick A = h−1
D ◦ Dick A : Aut(A) → Z2. (9.4.4)

An explicit formula for DickX is as follows. First let X have even rank r = 2n and let
g ∈ Aut(X). Since Dis(X) is a shift of D(Q), the automorphism Dick(g) of D is the same
as the automorphism D(g) ∈ Aut(D(Q)) (cf. 3.1(c)). Therefore, [12, 2.4.1] shows that it is
given by

Dick(g) · s f (ξ) = κ f,g∗( f )(ξ) · 1 + det(g) · s f (ξ) (9.4.5)

where f is a representative of Q and ξ ∈ ∧2n X . If X has odd rank 2n +1 then by definition,
Dis(X) = Dis(E1 ⊕X), and Dick(g) = Dis(IdE1 ⊕g). Hence the above formula applies with
the appropriate modifications. Since

∧r X = Dis(X)/k · 1 ∼= ∧2 Dis(X), (9.4.5) implies
that

det(g) = det(Dick(g)). (9.4.6)

If X is separable, the analogous formula for dick is

det(g) = χ(dick(g)) = 1 − 2dick(g), (9.4.7)

cf. 7.1 and (7.2.3).
We use this to obtain an explicit formula for p = dick(g) in case X = E2n is split. Identify

bilinear forms with matrices by means of the standard basis ei and put ξ = e1 ∧· · ·∧ e2n . By
3.7, f = U2n is a representative of Q and D = Dis(X) = k ·1⊕k ·z where z = s f (ξ) satisfies
z2 = z; in particular, TD(z) = 1. Hence (9.4.5) and (9.4.7) show Dick(g) · z = κ f,g∗( f )(ξ) ·
1+(1−2p)z. On the other hand, by (7.2.2), Dick(g)·z = hD(p)·z = pTD(z)·1+(1−2p)z.
By comparison, we obtain the formula

dick(g) = κ f,g∗( f )(e1 ∧ · · · ∧ e2n). (9.4.8)

9.5. Lemma. Let X1, X2 be quadratic trace modules and X = X1 ⊕ X2 their direct sum.
Let Gi = Aut(Xi ), G = Aut(X) and put Di := Dis(Xi ) and D := Dis(X). Denote by
θ : Aut(D1� D2) → Aut(D) the isomorphism induced by the isomorphismΘ : D1� D2 →
D of 6.5, and let Dicki : Gi → Aut(Di ) be the Dickson homomorphisms. Then the following
diagram is commutative:

G1 × G2
Dick1×Dick2 ��

⊕
��

Aut(D1)× Aut(D2)

�
��

G
Dick

�� Aut(D) Aut(D1 � D2)
θ

��

(9.5.1)
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where the left vertical arrow is the embedding (g1, g2) 	→ g1 ⊕ g2 = (g1 0
0 g2

)
and the right

vertical arrow is the homomorphism introduced in (7.3.1). If the Xi (and therefore X) are
separable, the analogous diagram for dick is

G1 × G2
dick1×dick2 ��

⊕
��

Z2 × Z2

�
��

G
dick

�� Z2

(9.5.2)

Proof Let gi ∈ Gi (k) and hi = Dicki (gi ) ∈ Aut(Di ). Since Θ is functorial, the following
diagram is commutative:

D1 � D2

Θ ∼=
��

h1�h2 �� D1 � D2

∼= Θ

��

D
Dick(g1⊕g2)

�� D

By definition of θ we have θ(h1 � h2) = Θ ◦ (h1 � h2) ◦ Θ−1. Hence θ(h1 � h2) =
Dick(g1 ⊕ g2), which shows (9.5.1) is commutative when the group functors are evaluated
at R = k. Since everything is compatible with base change, we have (9.5.1).

In the separable case, (9.5.2) follows from (7.3.3), the definition of dick in (9.4.2) and the
fact that θ ◦ hD1�D2 : Z2 → Aut(D) is an isomorphism and therefore agrees with hD .

9.6. Lemma. Let X be a quadratic trace module of rank two, thus X = qt(D) where D is a
quadratic algebra, cf. 1.4. Then Aut(X) = Aut(D), and Dick : Aut(D) → Aut(Dis(D)) is
the isomorphism induced by the isomorphism ΦD : D → Dis(D) of (3.5.2). Moreover, the
following diagram is commutative:

Aut(D) Dick
∼=

�� Aut(Dis(D))

Z2

hD

����������� hDis(D)

������������

(9.6.1)

If X is separable, equivalently, if D is étale, then

dick = h−1
D : Aut(D) → Z2; (9.6.2)

in particular,
dick(σD) = 1 ∈ Z2(k), (9.6.3)

where σD is the involution of D, cf. 7.2.

Proof After a base change, it suffices to show that the diagram

D
g

��

Φ

��

D

Φ

��

Dis(X)
Dick(g)

�� Dis(X)
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is commutative for all g ∈ Aut(D) = Aut(X). Let f be a bilinear form representing Q and
let x ∈ D. Then by (3.5.3) and since g(1) = 1,

Φ(g(x)) = f (g(x), 1) · 1 + s f (1 ∧ g(x)) = f (g(x), 1) · 1 + det(g) · s f (1 ∧ x),

while by (9.4.5),

Dick(g)
(
Φ(x)

) = κ f,g∗( f )(1 ∧ x) · 1 + f (x, 1) · 1 + det(g) · s f (1 ∧ x)

= (
f (1, x)− f (1, g(x))+ f (x, 1)

) · 1 + det(g) · s f (1 ∧ x).

This proves our assertion because the trace form T (x) = f (1, x) + f (x, 1) is invariant
under g. Being an isomorphism of quadratic algebras, Φ respects the involutions. Hence
Dick(σD) = σDis(D), from which (9.6.1) follows immediately. Finally, (9.6.2) and (9.6.3)
follow easily from (9.6.1) and the definition of dick in (9.4.2).

9.7. Theorem. Let X be a separable quadratic trace module of rankr�2, with automorphism
group G = Aut(X) and Dickson homomorphism dick : G → Z2, and let G+ = Ker(dick).

(a) If X splits off a direct summand of rank two; in particular, if X is split, then dick has
sections in the category of group schemes. In general, dick has sections locally in the étale
topology, so the sequence

1 �� G+ inc �� G
dick �� Z2 �� 0

is exact in the étale topology. Moreover, G+ is smooth and dick is smooth and surjective.
(b) G+ has connected fibres. If r � 3 then U is a homogeneous space under G+; i.e.,

Theorem 9.3(c) holds for G+ and H+ = G+ ∩ H instead of G and H.

Proof (a) Assume that X = X1 ⊕ X2 where X1 has rank two, and let Gi = Aut(Xi ). By
Lemma 9.6, dick1 : G1 → Z2 is an isomorphism. Now it follows from (9.5.2) that a section
s : Z2 → G of dick is given by s(p) = dick−1

1 (p) ⊕ IdX2 , for all p ∈ Z2(R), R ∈ k-alg.
Hence G is the semidirect product of G+ and Z2; in particular, G is isomorphic to G+ × Z2

as a k-scheme. Since G is smooth by Theorem 9.3 it follows that G+ is smooth as well.
Hence dick is smooth and obviously surjective.

In general, X splits over an étale cover of k by Theorem 8.8, so the assertions follow by
descent from the split case.

(b) We proceed by induction on r . For r = 2, dick : G → Z2 is an isomorphism by
Lemma 9.6, whence G+ is trivial. Now let r � 3. We show that U is a homogeneous space
under G+. First, assume there exists a section u ∈ U(k), decompose X = k · u ⊕ X′ as in 8.2
and let H be the isotropy group of u in G. By Theorem 9.3(c), G′ := Aut(X′) is isomorphic
to H under the map g′ 	→ Idk·u ⊕g′. From (9.5.2), specialized to the present situation (where
now G1 = Aut(k · u) is trivial and G2 = G′) it follows that the restriction of dick to H
corresponds to the Dickson homomorphism dick′ of G′. This implies

H+ = CentG+(u) ∼= (G′)+. (9.7.1)

We show that U ∼= G+/H+ as étale sheaves. Let v ∈ U(R), R ∈ k-alg. By
Theorem 9.3(c), there exists an étale cover E of R and an element g ∈ G(E) with g(u) = v.
We now modify g to an element g+ having the same property.

Since r − 1 � 2, dick′ : G′ → Z2 is an étale epimorphism by (a), so there exists an étale
cover E ′ of E and g′ ∈ G′(E ′) such that dick′(g′) = dick(g)−1. Put g+ := g ◦ (Id ⊕ g′) ∈
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G(E ′). Then still g+(u) = v and furthermore,

dick(g+) = dick(g) � dick(Id ⊕ g′) = dick(g) � dick′(g′) = 0,

so g+ ∈ G+(E ′). This proves that U ∼= G+/H+ as étale sheaves. Now the same arguments
as in the proof of Theorem 9.3(c) show that the orbit map β : G+ → U is smooth and
surjective, and so is the map ϑ : G+ × U → U × U even when U(k) is empty.

By induction and (9.7.1), H+ ∼= (G′)+ has connected fibres, and by Theorem 8.6 so does
U. Since β : G+ → U is faithfully flat and therefore open it follows easily that G+ has
connected fibres.

9.8. The sign homomorphism. The constant k-group scheme defined by the symmetric
group Sr is denoted SS r . An element of SS r (R) can be considered as a locally constant map
from the spectrum of R to Sr or as a complete family of orthogonal idempotents (επ )π∈Sr

of R, with multiplication (επ ) · (ε′π ) = (ε′′π ), where ε′′π = ∑
στ=π εσ ε′τ . The sign homomor-

phism

sgn : Sr → Z/2Z, sgn(π) =
{

0 if π is even

1 if π is odd

induces a homomorphism

sgn : SS r → Z2, sgn
(
(επ )π∈Sr

) =
∑

π∈Sr \Ar

επ , (9.8.1)

where Ar denotes the alternating group.
Let Er = kr be the split étale algebra of rank r , with standard basis e1, . . . , er , and let

Pπ ∈ GLr (k) be defined by Pπ (ei ) = eπ(i). It is well known that the map

ηr : SS r → Aut(Er ), (επ )π∈Sr 	→
∑

π∈Sr

επ Pπ (9.8.2)

is an isomorphism.

9.9. Lemma. The Dickson homomorphism of Er (cf. (9.4.4)) is induced by the sign homo-
morphism; i.e., the diagram

SS r

ηr ∼=
��

sgn
�� Z2

Aut(Er )

dickEr����

��������

inc
�� Aut(Er )

dickEr

��

is commutative.

Proof We may assume r � 2, otherwise both sgn and dick are trivial. Let τ12 ∈ Sr be
the transposition of 1 and 2. Decompose Er = qt(Er ) = X1 ⊕ X2 where X1 = E2 and
X2 = Er−2. Then η2(τ12) is the switch of factors in E2 = k × k, that is, η2(τ12) = σE2 is
the involution of E2. Hence dickE2(η2(τ12)) = 1 ∈ Z2(k) by (9.6.3), and (9.5.2) implies
dick(ηr (τ12)) = 1 = sgn(τ12).

An arbitrary transposition τ is conjugate to τ12 in the symmetric group Sr . As Z2 is
abelian, dick(ηr (τ )) = dick(ηr (τ12)) = 1 = sgn(τ ). Since the transpositions generate Sr ,
it follows that dick(ηr (π)) = sgn(π) for all π ∈ Sr . Finally, SS r is the sheaf in the Zariski
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topology associated to the constant functor F(R) = Sr , for all R ∈ k-alg. We have shown
that the morphisms sgn and dickEr ◦ ηr from Sr to Z2 agree on F. Hence they are equal
because Z2 is a Zariski sheaf [6, III, §1, Prop. 1.7].

9.10. Torsors and cohomology. In 9.4, the Dickson homomorphism was deduced from the
discriminant algebra functor. This can—to a certain extent—be reversed. As an application,
it will be seen that our definition of the discriminant algebra of an étale algebra is compatible
with Waterhouse [16].

Let T be a Grothendieck topology on k-alg. Fix a quadratic trace module X0 with discri-
minant algebra D0 = Dis(X0). Let qtm(X0) ⊂ qtmk be the subcategory whose objects are
quadratic trace modules T -locally isomorphic to X0 and whose morphisms are isomorphisms,
and define qa(D0) ⊂ qak analogously. As the functor Dis commutes with base change, it
restricts to a functor Dis : qtm(X0) → qa(D0). Let G0 = Aut(X0) and H0 = Aut(D0), and
denote the categories of G0-torsors and H0-torsors (with respect to T ) over k by tor(G0) and
tor(H0), respectively. Then the Dickson homomorphism Dick : G0 → H0 induces a functor,
likewise denoted Dick : tor(G0) → tor(H0), which assigns to a G0-torsor X the H0-tor-
sor X ∨G0 H0 [6, III, §4, 3.2]. There are equivalences of categories qtm(X0) → tor(G0)

and qa(D0) → tor(H0) given by X 	→ Isom(X0,X) and D 	→ Isom(D0, D), with quasi-
inverses given by twisting X0 resp. D0 with a torsor [6, III, §5, Prop. 1.2]. Then the following
diagram is commutative up to a natural isomorphism of functors:

qtm(X0)
Dis ��

Isom(X0,−)
��

qa(D0)

Isom(D0,−)
��

tor(G0) Dick
�� tor(H0)

(9.10.1)

Indeed, let X ∈ qtm(X0) and put X := Isom(X0,X) ∈ tor(G0) as well as Y :=
Isom(D0,Dis(X)) ∈ tor(H0). We must construct an isomorphism ϕ = ϕX : X∨G0 H0 → Y
of H0-torsors, natural in X. First, there is a morphism ψ : X × H0 → Y as follows: Let
R ∈ k-alg, f ∈ X(R) and h ∈ H0(R); thus f : X0 ⊗ R → X ⊗ R is an isomorphism and
h ∈ Aut(D0 ⊗ R). Since Dis commutes with base change, we have an isomorphism

ψ( f, h) := Dis( f ) ◦ h : D0 ⊗ R
h �� D0 ⊗ R

Dis( f )
�� Dis(X ⊗ R) ∼= Dis(X)⊗ R,

i.e., ψ( f, h) ∈ Isom(D0 ⊗ R,Dis(X)⊗ R) = Isom(D0,Dis(X))(R) = Y(R). Next, for all
g ∈ G0(R) = Aut(X0 ⊗ R),

ψ( f ◦ g, h) = Dis( f ◦ g) ◦ h = Dis( f ) ◦ Dick(g) ◦ h = ψ( f,Dick(g)h),

by functoriality of Dis and definition of Dick. It is immediate thatψ( f, h◦h′) = ψ( f, h)◦h′,
for all h′ ∈ H0(R). Now X∨G0 H0 is the quotient sheaf of X×H0 by the equivalence relation
( f ◦ g, h) ∼ ( f,Dick(g)h). Hence ψ induces a morphism ϕ : X ∨G0 H0 → Y of H0-tor-
sors which is automatically an isomorphism [6, III, §4, Prop. 1.4]. Naturality of ϕX is easily
checked.

The preceding argument only required that Dis be a functor commuting with base change.
Hence, analogous statements hold when qtm(X0) is replaced by the category of finitely gen-
erated and projective k-algebras locally isomorphic to a fixed algebra A0 and G0 by Aut(A0),
with Dis and Dick for algebras defined as in (3.4.3) and (9.4.3).

Let us specialize to the case where T is the étale topology and X0 = Er is the split
quadratic trace module of rank r . By Theorem 8.8, qtm(X0) is the category of separable
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quadratic trace modules of rank r . Furthermore, D0 = Dis(Er )= k × k by 3.7 andhD0 : Z2 →
H0 = Aut(D0) is an isomorphism. Denote as usual the pointed set of isomorphism classes of
G-torsors by H1(k,G). Then (9.10.1) says that the assignment X 	→ Dis(X) gives, in the sep-
arable case, a concrete realization of the map H1(dick) : H1(k,G0) → H1(k,Z2) between
the cohomology sets. Similarly, by Lemma 9.9, the assignment E 	→ Dis(E) (where E is an
étale algebra of rank r ) realizes the map

H1(sgn) : H1(k,Sr ) → H1(k,Z2).

This proves that our definition of the discriminant algebra of an étale algebra is compatible
with Waterhouse’s cohomological definition [16].

10. The automorphism group II: centre and restriction map

10.1. Lemma. Let a, b, c ∈ k be relatively prime. Consider the polynomials P(t) = at2 −
bt + c and P̃(t) = t2 − bt + ac and the k-algebras C := k[t]/(P) and D := k[t]/(P̃) =
k · 1 ⊕ k · z. Let C := Spec(C) and D := Spec(D) be the affine schemes determined by C
and D.

(a) Define ι : C → D by ι(x) = ax, for all x ∈ C(R), R ∈ k-alg. Then ι is an open
immersion whose image is the open subscheme of D defined by the ideal I = Da + D(b − z)
of D.

(b) C is a flat, finitely presented and quasi-finite k-scheme. The image of C in S = Spec(k)
is the open subscheme defined by the ideal ka + kb. Hence C is faithfully flat over k if and
only if a and b are relatively prime.

(c) If b2 − 4ac ∈ k× then C is étale over k. The converse holds if ka + kb = k.

Proof (a) We have x ∈ C(R) if and only if x ∈ R and P(x) = 0. Hence P̃(ax) = a P(x) = 0,
so ax ∈ D(R) and thus ι maps C to D. Next, ι is a monomorphism: Let x1, x2 ∈ C(R) and
ax1 = ax2. Then 0 = P(x1)− P(x2) = a(x1 − x2)(x1 + x2)− b(x1 − x2) = −b(x1 − x2),
and 0 = P(x1)(x1 − x2) = c(x1 − x2) imply x1 − x2 = 0 because a, b, c are relatively
prime. The open subscheme V of D defined by I is the functor

V(R) = {y ∈ D(R) : Ra + R(b − y) = R},
cf. [6, I, §1, 3.5]. The values of ι lie in V: Let x ∈ C(R) and let J = Ra + R(b − ax). Then
a, b ∈ J , hence also c = x(b − ax) ∈ J , so J = R because a, b, c are relatively prime.
Conversely, let y ∈ V(R), thus y(b − y) = ac and R = Ra + R(b − y). We must show that
y = ax for some x ∈ C(R). Choose u, v ∈ R such that

1 = ua + v(b − y). (10.1.1)

Multiplying this equation with y yields

y = yua + yv(b − y) = auy + (ac)v = a(uy + cv).

Put x = uy+cv. Then ax = y, and it remains to show that x ∈ C(R), i.e., that x(b−ax) = c.
Now

x(b − ax) = x(b − y) = (uy + cv)(b − y) = uy(b − y)+ cv(b − y)

= u(ac)+ v(b − y)c = (ua + v(b − y))c = c,

because of (10.1.1).
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(b) Clearly, D is a flat and finite (of rank 2) k-scheme. Since ι is an open immersion, C
is flat and quasi-finite over k, and it is obviously finitely presented. The fibre of C over a
prime ideal p of k is Spec(C ⊗ κ(p)) which is empty if and only if a, b ∈ p. This proves the
remaining statements.

(c) D is étale if and only if the discriminant b2 −4ac of P̃ is a unit of k. Now the assertions
follow readily from (a) and (b).

10.2. Definition. We define a family of groups Cr (r ∈ N) which are open subgroups of Z2

resp. µ2, depending on the parity of r . Let

d(r) := r

gcd(2, r)
=
{

n if r = 2n is even
r if r = 2n + 1 is odd

}

(10.2.1)

and consider the polynomials

Pr (t) = d(r)t2 − gcd(2, r − 1)t =
{

nt2 − t if r = 2n
r t2 − 2t if r = 2n + 1

}

. (10.2.2)

The coefficients of Pr are relatively prime so Lemma 10.1 is applicable. Let Cr := k[t]/(Pr )

and let Cr = Spec(Cr ) be the affine scheme defined by Cr , i.e., the set-valued functor on
k-alg given by

Cr (R) = {λ ∈ R : Pr (λ) = 0} (R ∈ k-alg). (10.2.3)

Note that C0 = Spec(k), that C2 = Z2 and that C1 ∼= µ2, the group scheme of second roots
of unity, under the map λ 	→ 1 − λ.

10.3. Lemma. (a) Cr is an affine faithfully flat finitely presented quasi-finite abelian k-group
scheme with the group law

λ � λ′ = λ+ λ′ − rλλ′,

for all λ, λ′ ∈ Cr (R), R ∈ k-alg. Moreover, C2n is étale while C2n+1 is étale if and only if
2 ∈ k×.

(b) The maps

ωn : C2n → Z2, ωn(λ) = nλ,

ψn : C2n+1 → µ2, ψn(λ) = 1 − (2n + 1)λ

are open immersions and homomorphisms of group schemes. They are isomorphisms if and
only if d(r) ∈ k×, and are constant if and only if d(r) = 0 in k.

(c) The homomorphism

χr : Cr → µ2, χr =
{
χ ◦ ωn if r = 2n
ψn if r = 2n + 1

}

(where χ : Z2 → µ2 is as in 7.1) is a monomorphism if r ≡ 1 (mod 2) or r ≡ 0 (mod 4)
while the kernel of χ4l+2 is K(R) = {λ ∈ R : λ2 = λ, 2λ = 0}. It is an isomorphism if and
only if r ∈ k×.

Proof (a) The scheme-theoretic properties of Cr follow from Lemma 10.1 and the rest is a
straightforward computation.
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(b) If r = 2n then ωn is the open immersion ι of Lemma 10.1. If r = 2n + 1 then ψn is
the composition of ι and the isomorphism C1 → µ2 given by µ 	→ 1 − µ. Hence ωn and
ψn are open immersions. The homomorphism property is easily checked. The last statement
is obvious.

(c) If r is odd then χr is a monomorphism by (b). Now let r = 2n and assume that
χ(ωn(λ)) = 1 − 2nλ = 1. Then 2nλ = 0 and therefore 2nλ2 = 2λ = 0. If n = 2l then
λ = nλ2 = 2lλ2 = 0. If n = 2l + 1 then λ = (2l + 1)λ2 = λ2, so λ ∈ K(R). Conversely,
K ⊂ Ker(χ4l+2) is clear from the definitions. Finally, if r ∈ k× then µ 	→ r−1(1 −µ) is the
inverse of χr . Conversely, assume that χr is an isomorphism but that r /∈ k×. After dividing
by a suitable maximal ideal, we may assume r = 0 in k. Then χr is constant, but µ2 is not
the trivial group, contradiction.

10.4. The quadratic form Q0 and the restriction map. Let X be a separable quadratic
trace module of rank r � 2, let X0 = Ker(T ) and define

Q0 := −Q
∣
∣

X0 . (10.4.1)

By 8.3, X0 is a direct summand of X of rank r − 1 and Q0 is primitive. The minus sign is
introduced so that the polar form B0 of Q0 becomes the restriction of ∆ to X0:

B0(x, y) = ∆(x, y) (x, y ∈ X0), (10.4.2)

as is immediate from (1.1.3). Suppose X = EZ

r split over Z, with standard basis e1, . . . , er .
Then vi = ei − ei−1 (i = 2, . . . , r ) is a basis of X0, and

Q0(vi ) = 1, B0(vi , v j ) =
⎧
⎨

⎩

2 if i = j
−1 if |i − j | = 1

0 otherwise

⎫
⎬

⎭
, (10.4.3)

so Q0 is the quadratic form of the root system Ar−1.
An automorphism g of X leaves X0 invariant and induces an orthogonal transformation

of the quadratic form Q0. We thus have a restriction homomorphism

res : G = Aut(X) → O(Q0), g 	→ g
∣
∣X0. (10.4.4)

Note that

det(res(g)) = χ(dick(g)) = det(g) (g ∈ G(R), R ∈ k-alg). (10.4.5)

Indeed, pick an element u ∈ X with T (u) = 1, write X = k ·u ⊕ X0 and thus identify g with
a formal 2 × 2-matrix. Then g(u) ≡ u (mod X0), so g = (1 0

∗ h

)
where h = res(g), which

implies det(res(g)) = det(g) = χ(dick(g)) by (9.4.7). Hence res induces a homomorphism

res+ : G+ = Ker(dick) → SO(Q0). (10.4.6)

10.5. Theorem. Let X be a separable quadratic trace module of rank r � 2 over k with
automorphism group G = Aut(X), and let Cent(G) be the centre of G in the sense of group
schemes [6, II, §1, 3.9].

(a) There is an isomorphism cen : Cr
∼= �� Cent(G) given by

cen(λ)(x) = χr (λ)x + λT (x)1X , (10.5.1)

for all λ ∈ Cr (R), x ∈ X ⊗ R, R ∈ k-alg.
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(b) Let res be the restriction homomorphism of (10.4.4) and let cen0 : µ2 → O(Q0) be
the monomorphism λ 	→ λ · IdX0 . Then the diagram

Cr

χr

��

cen �� G

res
��

µ2
cen0

�� O(Q0)

(10.5.2)

is commutative and in fact Cartesian, i.e., res−1(µ2 · IdX0) = Cent(G). Hence the kernel of
res is central in G and the restriction cen : Ker(χr ) → Ker(res) is an isomorphism.

(c) The restriction of the determinant and the Dickson homomorphism to the centre of G
are as follows:

det(cen(λ)) =
{
χr (λ) if r = 2n
1 if r = 2n + 1

}

, (10.5.3)

dick(cen(λ)) =
{
ωn(λ) if r = 2n
0 if r = 2n + 1

}

, (10.5.4)

for all λ ∈ Cr (R), R ∈ k-alg.

Proof (a) A straightforward computation shows that cen : Cr → GL(X) is a group homo-
morphism. It is a monomorphism: If cen(λ) = Id then cen(λ)

∣
∣X0 = χr (λ) · IdX0 which

implies χr (λ) = 1 because rkX0 = r −1 � 1. For an element u with T (u) = 1 (which exists
by Lemma 8.3) it then follows that u = cen(λ) · u = u + λ · 1X and hence λ = 0, because
1X is unimodular.

We show next that the centralizer of G in End(X) consists of all endomorphism of the
form

hλ,µ(x) = µx + λT (x)1X (10.5.5)

where λ,µ ∈ k. Since 1X and T are invariant under automorphisms, it is evident that hλ,µ
commutes with all automorphisms of X in all base ring extensions. In particular, cen(λ) =
hλ,1−rλ centralizes G. Conversely, let h ∈ End(X) have this property. After passing to a
faithfully flat base extension we may assume that X is split. Then h commutes with all
permutations of the standard basis vectors ei (cf. 9.8), so the matrix (ai j ) of h satisfies
ai j = aπ(i),π( j) for all π ∈ Sr . This means aii = a11 and ai j = a12 for all i and all j �= i .
Hence h = hλ,µ for λ = a12 and µ = a11 − a12.

To complete the proof of (a), it remains to show, after a base change, that

h = hλ,µ ∈ Aut(X) ⇐⇒ µ = 1 − rλ and λ ∈ Cr (k). (10.5.6)

Since T (1X ) = r , we have h(1X ) = (µ + rλ)1X and T (h(x)) = (µ + rλ)T (x), for all
x ∈ X . Hence

h(1X ) = 1X and T ◦ h = T ⇐⇒ µ = 1 − rλ.

Assume that this is the case. Then a simple computation using (1.1.1) shows

Q(h(x))− Q(x) = (µ2 − 1)Q(x)+
[
(r − 1)λµ+

(
r

2

)

λ2
]
T (x)2

= (r2λ2 − 2rλ)Q(x)+
[
(r − 1)λ−

(
r

2

)

λ2
]
T (x)2

= F(λ)Q(x)− G(λ)T (x)2 (10.5.7)
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for all x ∈ X , where

F(t) = (1 − r t)2 − 1 = r2t2 − 2r t and G(t) =
(

r

2

)

t2 − (r − 1)t.

This proves the implication from right to left of

Q ◦ hλ,µ = Q ⇐⇒ F(λ) = G(λ) = 0.

For the implication from left to right, let first x ∈ X0. Then (10.5.7) says F(λ) · Q0 = 0 and
therefore F(λ) = 0, because Q0 is primitive (8.3). Now choosing an x with T (x) = 1 in
(10.5.7) yields G(λ) = 0. It is an elementary exercise to show that the ideal of k[t] generated
by F and G is precisely the one generated by Pr . Hence

F(λ) = G(λ) = 0 ⇐⇒ P(λ) = 0 ⇐⇒ λ ∈ Cr (k).

This completes the proof of (10.5.6) and hence of (a).
(c) Commutativity of (10.5.2) is evident from (10.5.1). Now let g ∈ G(k) with res(g) =

µ · IdX0 where µ ∈ µ2(k). Choose u ∈ X with T (u) = 1 and put w := g(u)− µu. Then g
is given by

g(x) = µx + T (x)w (10.5.8)

for all x ∈ X . Indeed, for x ∈ X0 this is clear, whileµu +T (u)w = µu +g(u)−µu = g(u),
so the assertion follows from X = k · u ⊕ X0. We claim that ∆(w, X0) = 0. Indeed, for all
x ∈ X0,

∆(w, x) = ∆(g(u)− µu, x) = ∆(u, g−1(x))−∆(u, µx) = 0,

since ∆ is invariant under g and g(x) = µx = g−1(x). It follows that w ∈ (X0)⊥ = k · 1X ,
because ∆ is non-degenerate and X0 = 1⊥

X by (1.1.4). Thus w = λ1X , and then (10.5.8)
says that g = hλ,µ. By what we proved in (a), g = cen(λ) is central.

(c) Let u ∈ X with T (u) = 1. Then cen(λ) · u ≡ u (mod X0) because cen(λ) pre-
serves T , and cen(λ) induces χr (λ) · Id on X0 by (10.5.2). As X = k · u ⊕ X0 we have
det(cen(λ)) = χr (λ)

r−1. This proves (10.5.3) because χr (λ) is a second root of unity.
Let us compute the Dickson invariant. By faithfully flat descent and Theorem 8.8 we may

assume X = Er split. Consider the split quadratic trace module EZ

r over the integers, let A =
Z[t]/(Pr ) be the coordinate ring of CZ

r , let t = can(t) ∈ A and g := cen(t) ∈ Aut(EZ

r ⊗ A).
Then by (10.5.3), Lemma 10.3(c) and (9.4.7),

det g =
{

1 − 2ωn(t) if r = 2n
1 if r = 2n + 1

}

= 1 − 2dick(g). (10.5.9)

By Lemma 10.3, A is flat over Z, in particular, it is a torsion-free abelian group. Hence
(10.5.9) shows that (10.5.4) holds in the special case λ = t ∈ A. Returning to X = Er over
the ring k, let λ ∈ Cr (R). Then there is a ring homomorphism A → R sending t to λ, and
since (EZ

r ⊗Z A)⊗ϕ R = EZ

r ⊗Z R = X ⊗ R, we have (10.5.4) in general.

10.6. Corollary. We keep the assumptions and notations of 10.5.
(a) If r = 2n is even then the multiplication map mult : G+ × Cent(G) → G is an open

immersion. Its image is the inverse image under dick of the image of ωn in Z2, cf. 10.3(b).
In particular, G+ ∩ Cent(G) = {1}.

(b) If r = 2n + 1 is odd then Cent(G) ⊂ G+.
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Proof One checks, using the first formula of (10.5.4), that the diagram

G+ × C2n

ϕ

��

pr2 �� C2n

ωn

��

G
dick

�� Z2

is Cartesian, where ϕ(g+, λ) = g+ · cen(λ). Hence ϕ is an open immersion, being the base
change via dick of the open immersion ωn (Lemma 10.3(b)). Since cen is an isomorphism,
ϕ is isomorphic to mult : G+ × Cent(G) → G. This proves (a) while (b) is immediate from
the second formula of (10.5.4).

10.7. Lemma. Let X be a separable quadratic trace module of rank r � 2 and let u ∈ X
with T (u) = 1. Then the map η 	→ u ∧η is an isomorphism

∧r−1 X0 → ∧r X, independent
of the choice of u. Treating this as an identification, the (signed) discriminant of Q0 is

δQ0 = (−1)(
r−1

2 ) · d(r) · δX (10.7.1)

where d(r) is defined in (10.2.1). Hence Q0 is separable if and only if d(r) ∈ k×.
Here we call a quadratic form q on a finitely generated and projective module M separable

if its discriminant is non-singular. This means that its polar form b is non-singular if M has
even rank, and that q is semiregular [10, IV, §3] if M has odd rank.

Proof Independence of u is easily seen. By Theorem 8.8, it suffices to consider the split
quadratic trace module EZ

r over Z. Choose u = e1. With respect to the basis vi = ei − ei−1

(i = 2, . . . , r ) of X0, the matrix A = (
B0(vi , v j )

)
is the Cartan matrix of type Ar−1 (cf.

10.4), so det A = r [4]. Put η = v2 ∧ · · · ∧ vr and ξ = e1 ∧ η = e1 ∧ · · · ∧ er . Then for
r = 2n even,

2δQ0(η, η) = (−1)n−1 det A = (−1)n−12nδX(ξ, ξ),

while for r = 2n + 1 odd,

δQ0(η, η) = (−1)n det(A) = (−1)nrδX(ξ, ξ).

10.8. Theorem. Let X be a separable quadratic trace module of rank r � 2 with auto-
morphism group G = Aut(X). Suppose that d(r) ∈ k×; equivalently, by 10.7, that Q0 is
separable.

(a) Let r = 2n be even. Then Q0 is a semiregular quadratic form of rank 2n − 1 and the
maps

mult : G+ × Cent(G)
∼= �� G, (10.8.1)

dick : Cent(G)
∼= �� Z2, (10.8.2)

res+ : G+ ∼= �� SO(Q0) (10.8.3)

are isomorphisms.
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(b) Let r = 2n+1 be odd. Then Q0 is a non-singular quadratic form of rank 2n. The centre
of G is isomorphic to µ2 and is contained in G+. The restriction map res : G → O(Q0) is
an isomorphism compatible with the Dickson homomorphisms, i.e., the diagram

G

dick
��

��
��

��
��

res
∼=

�� O(Q0)

dick
		��������

Z2

(10.8.4)

is commutative.
Here dick : O(Q0) → Z2 is the usual Dickson homomorphism of the even orthogonal

group.

Proof (a) The first statement is clear from Lemma 10.7. As d(r) = n ∈ k×, ωn is an isomor-
phism by Lemma 10.3(b). Now (10.8.1) follows from Corollary 10.6(a). Also, Theorem 10.5
shows that dick : Cent(G) → Z2 is an isomorphism with inverse cen ◦ ω−1

n , which proves
(10.8.2).

It remains to prove (10.8.3). Let us put H := SO(Q0) and π := res+ for simpler nota-
tion. First, π is a monomorphism because Ker(res) ⊂ Cent(G) by Theorem 10.5(b) and
G+ ∩ Cent(G) = {1} by Corollary 10.6(a). Next, suppose k = K is a field. It is known
that H, which is a form of SO2n−1, is a connected smooth algebraic K -group of dimen-
sion

(2n−1
2

)
. By Theorems 9.3 and 9.7, G+ is also smooth of the same dimension, and

Lie(π) : Lie(G+) = Lie(G) → Lie(H) is injective because π is a monomorphism. Since
the dimension of a smooth K -group equals the dimension of its Lie algebra, Lie(π) is an iso-
morphism. It follows that π is an open immersion [6, II, §5, Corollary 5.5(b)], and therefore
even an isomorphism because H is connected.

Finally, return to the case of an arbitrary base ring k and let G+ act on H via g+ · h =
π(g+)h. Then π is the orbit map g 	→ g · e where e ∈ H(k) is the unit element, and the
centralizer of e in G+ is trivial because π is a monomorphism. Now [6, III, §3, Prop. 2.1]
shows that π is an isomorphism.

(b) By Lemma 10.7, Q0 is non-singular if r is odd. The structure of Cent(G) is clear from
Corollary 10.6(b) and the fact that χr : Cr → µ2 is an isomorphism, by Lemma 10.3(c),
because r = d(r) ∈ k×. Since also T (1X ) = r ∈ k×, we have X = k ·1X ⊕ X0 as k-modules.
Moreover, Q = 〈(r

2

)〉 ⊥ (−Q0) (orthogonal sum of quadratic forms) by 1.7. It follows easily

that res is an isomorphism, with inverse h 	→ (1 0
0 h

)
with respect to the above decomposition.

It remains to prove (10.8.4). Let g ∈ Aut(X) and h = res(g) ∈ O(Q0). Consider the qua-
dratic form Q̇ on Ẋ as in (2.3.1). Then the k-module isomorphismϕ : X0 → Ẋ ,ϕ(x) = ẋ (the
canonical image of x in Ẋ = X/k ·1X ) satisfies Q̇(ϕ(x)) = r · Q0(x), and hence is an invert-
ible similitude. By [12, Theorem 2.3(b)], it induces an isomorphism D(ϕ) : D(Q0) → D(Q̇)
of discriminant algebras. Observe that the isomorphism ḣ of Ẋ induced by h is the same as
the transformation ġ induced by g. Hence by functoriality of D, the diagram of isomorphisms

D(Q0)

D(h)

��

D(ϕ)
�� D(Q̇)

D(ġ)

��

D(Q0)
D(ϕ)

�� D(Q̇)

(10.8.5)
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is commutative. By Theorem 3.8, there is a natural isomorphism ρ : D(Q̇) + ε → Dis(X)
(where ε = (−1)n�(n)δX) and hence a commutative diagram

D(Q̇)+ ε

D(ġ)

��

ρ
�� Dis(X)

Dick(g)

��

D(Q̇)+ ε ρ
�� Dis(X)

(10.8.6)

Now observe that for a separable quadratic algebra D, and for a shift D + ε of D which
is also separable, we have Aut(D) = Aut(D + ε). This follows from the isomorphisms hD

and hD+ε from Z2 to Aut(D) (cf. 7.2 and 9.4) and the fact that D and D + ε have the same
standard involution, cf. (3.1.3). Applying this to D = D(Q0), we obtain from (10.8.5) and
(10.8.6) the commutative diagram of isomorphisms

D(Q0)+ ε′

D(h)

��

ψ
�� Dis(X)

Dick(g)

��

D(Q0)+ ε′
ψ

�� Dis(X)

(10.8.7)

where ε′ corresponds to ε under D(ϕ) and ψ = ρ ◦ D(ϕ).
By definition, Dick(g) = hDis(X)(dick(g)) and D(h) = hD(Q0)(dick(h)). Now

dick(g) = dick(h) follows from (10.8.7) and the fact that the isomorphism hD : Z2 →
Aut(D) is unique, for a separable quadratic algebra D, as remarked in 9.4.

10.9. Theorem. Let X be separable of rank r � 2 with automorphism group G = Aut(X).
Suppose that d(r) = 0 in k, equivalently, by 10.7, that Q0 has zero discriminant.

(a) Then r = 0 in k and therefore 1X ∈ X0. The quadratic form Q0 induces a non-singular
quadratic form Q̄ of rank r − 2 on X̄ := X0/k · 1X .

(b) G has trivial centre. Denote by O1(Q0) the isotropy group of 1X in O(Q0). Then the
restriction map

res : G
∼= �� O1(Q

0) (10.9.1)

is an isomorphism, and there is a split exact sequence

0 �� X̄∗
a

i �� O1(Q0)
p

�� O(Q̄) �� 1 (10.9.2)

described as follows: Denote the canonical map X0 → X̄ by x 	→ x̄ . Then for a linear form
f on X̄ , i( f ) ∈ O1(Q0) is given by

i( f )(x) = x + f (x̄) · 1X (x ∈ X0),

while p(h) = h̄ is the map on X̄ induced by h ∈ O1(Q0).

Proof (a) By (10.2.1), d(r) = 0 in k implies r = 0 in k. Hence T (1X ) = r = 0, so 1X ∈ X0.
By (1.1.4), X0 = 1⊥

X with respect to ∆, and since ∆ is non-singular, k · 1X = (X0)⊥. As
B0 is the restriction of ∆ to X0 by (10.4.2), the kernel of B0 is k · 1X . Now 1X is uni-
modular, so X̄ = X0/k · 1X is finitely generated and projective of rank r − 2. Moreover,(r

2

) = d(r)d(r − 1) shows that Q0(1X ) = −(r
2

) = 0 in k, hence Q0 induces a quadratic
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form Q̄ on X̄ whose polar form B̄ is the non-singular symmetric bilinear form induced by
B0 on X̄ .

(b) From (10.2.2), (10.2.3) and d(r) = 0 it is clear that Cr is the trivial group and hence
so is Cent(G) by Theorem 10.5(a). Since automorphisms fix 1X , res maps G to O1(Q0).
The kernel of res, being central (Theorem 10.5(b)), is trivial, so res is a monomorphism.
To determine its image, choose u ∈ X with T (u) = 1, decompose X = k · u ⊕ X0 and
identify elements of GL(X) with formal 2 × 2-matrices. Then an easy computation shows
that g ∈ G(k) if and only if g = ( 1 0

w h

)
where w ∈ X0, h ∈ O1(Q0) and

Q(w)+ B(u, w) = 0, (10.9.3)

B(w, h(x))+ B(u, h(x)− x) = 0 (x ∈ X0). (10.9.4)

After replacing x by h−1(x), (10.9.4) is equivalent to

B0(w, x) = B(u, x − h−1(x)) (x ∈ X0). (10.9.5)

Now let h ∈ O1(Q0) be given. Then finding an element g ∈ G(k) with res(g) = h amounts
to finding a solution w ∈ X0 of (10.9.3) and (10.9.5). As a function of x , the right hand side
of (10.9.5) is a linear form on X0 which vanishes for x = 1X . Hence it induces a linear form
on X̄ which is uniquely representable by B̄. Lifting this back to X0, there exists w′ ∈ X0,
unique modulo k · 1X , such that (10.9.5) holds for all w = λ · 1X + w′. Then condition
(10.9.3) becomes:

0 = Q(λ · 1 + w′)+ B(u, λ · 1 + w′)

=
(

r

2

)

λ2 + (r − 1)T (w′)+ Q(w′)+ (r − 1)λT (u)+ B(u, w′)

= Q(w′)− λ+ B(u, w′),

because r = (r
2

) = 0 in k and T (w′) = 0. This proves the existence of w, as desired. Since
these arguments remain valid in all base extensions, we have (10.9.1).

It remains to show (10.9.2). Choose a decomposition X0 = k ·1⊕ M and let Q′ = Q0
∣
∣M .

Then Q0 = 〈0〉 ⊥ Q′, and the canonical projection induces an isomorphism (M, Q′) ∼=
(X̄ , Q̄). Writing the elements of GL(X0) again as 2 ×2-matrices with respect to this decom-
position, it is easy to see that h ∈ O1(Q0) if and only if h = (1 α

0 h′
)

where h′ ∈ O(Q′) and
α ∈ M∗ are arbitrary. From this, the remaining assertions follow readily.

10.10. Corollary. Let X be a separable quadratic trace module of rank r � 2 and G =
Aut(X). Then

G is reductive ⇐⇒ d(r) ∈ k× ⇐⇒ Q0 is separable.

Proof The equivalence of the second and third condition follows from Lemma 10.7. Suppose
d(r) ∈ k×. If r = 2n then by Theorem 10.8(a), G ∼= SO(Q0) × Z2. After a faithfully flat
base change, Q0 becomes isomorphic to the standard quadratic form of rank 2n − 1 and
therefore SO(Q0) isomorphic to SO2n−1 which is known to be reductive. Hence so is G. The
proof in case r odd is similar, using Theorem 10.8(b) and reductivity of O2n . On the other
hand, suppose d(r) /∈ k×. Then there exists a prime ideal p of k such that d(r) = 0 in κ(p).
As d(2) = 1, we have r � 3. Then the fibre G ⊗ κ(p) has a unipotent radical of dimension
r − 2 by Theorem 10.9.
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11. Appendix: Some determinant formulas

11.1. The half- and the quarter-determinant The n × n unit matrix is denoted In and
the transpose of a matrix A is A�. If A is a matrix of odd order with indeterminate entries,
the determinant of A + A� is divisible by 2, so there is a well-defined integral polynomial
hdet(A) in the entries of A such that

2 hdet(A) = det(A + A�), (11.1.1)

called the half-determinant of A. Similarly, if A is of even order 2n, the quarter-
determinant of A is the integral polynomial qdet(A) in the entries of A satisfying

4 qdet(A) = det(A + A�)− (−1)n det(A − A�), (11.1.2)

see [12, 1.1] for details. The Pfaffian of an alternating matrix of even order is denoted Pf(A).

11.2. Lemma. Denote by Un the n × n-matrix which has zeros in and below the diagonal
and all entries above the diagonal equal to 1. Then

det(Un + U�
n ) = (−1)n−1(n − 1), (11.2.1)

det(nIn − Un − U�
n ) = (n + 1)n−1, (11.2.2)

hdet(U2n+1) = n, (11.2.3)

Pf(U2n − U�
2n) = 1, (11.2.4)

qdet(U2n) = −�n/2�, (11.2.5)

qdet(U2n − nI2n) = �(n). (11.2.6)

Proof (11.2.1) and (11.2.2) are special cases of the formula

det
(
aIn + b(Un + U�

n )
) = (a − b)n−1[a + (n − 1)b] (11.2.7)

which is easily proved by using the basis e1, e2 − e1, . . . , en − e1 of kn . For the remaining
formulas, we may assume k = Z. Then (11.2.3) is clear from (11.2.1) and (11.1.1) since
we can cancel a factor 2. Formula (11.2.4) follows by induction from the expansion formula
for the Pfaffian given in [1, Exercise 5 for §5, p. 86]. Formula (11.2.5) is a consequence of
(2.2.4), (11.2.1) and (11.2.4) and (11.1.2). Finally, by (11.1.2), (11.2.2), (11.2.4) and (2.3.3),

4qdet(U2n − nI2n) = det(U2n + U�
2n − 2nI2n)− (−1)n det(U2n − U�

2n)

= (2n + 1)2n−1 − (−1)n = 4�(n),

cf. (2.3.3).
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11.3. Lemma. Let A and D be matrices of size l × l and m × m with coefficients in k, let
x, u ∈ kl and y, v ∈ km be row vectors and let α ∈ k. Then

det

(
α v

y� D

)

= α det(D)− vD† y� (11.3.1)

= α det(D)+ det

(
0 v

y� D

)

, (11.3.2)

αm−1 det

(
α v

y� D

)

= det
(
αD − y�v

)
, (11.3.3)

det

(
A x�v

y�u D

)

= det(A) det(D)− (u A†x�)(vD† y�). (11.3.4)

If m = 2n and U is an m × m-matrix, then

hdet

(
α 2v
0 U

)

= det

(
α v

2v� U + U�
)

. (11.3.5)

Here A† denotes the adjoint matrix, so AA† = det(A)Il ; in particular, A† = 1 if l = 1.

Proof Formula (11.3.1) follows by expanding with respect to the first row and column,
see also [3, p. 640, Exercise 13]. For (11.3.2), use (11.3.1) in the special case α = 0. To
prove the remaining formulae, we may by a standard density argument (or by working in the
rational function field in the indeterminate entries of A, D, x, u, y, v over Q) assume that A
is invertible. Then, for rectangular matrices B,C of the appropriate size, a calculation shows

(
A B
C D

)

=
(

Il 0
C A−1 Im

)(
A 0
0 D − C A−1 B

)(
Il A−1 B
0 Im

)

(11.3.6)

which implies

det

(
A B
C D

)

= det(A) det(D − C A−1 B). (11.3.7)

Let here in particular l = 1 and A = α ∈ k×, so B = v and C� = y are in km . Then
multiplying (11.3.7) by αm−1 yields

αm−1 det

(
α v

y� D

)

= αm det(D − α−1 y�v) = det(αD − y�v),

which is (11.3.3).
Now let B = x�v and C = y�u. Then C A−1 B = y�(u A−1x�)v. On the other hand,

for λ ∈ k, by (11.3.3) and (11.3.1),

det(D − λy�v) = det

(
1 λv

y� D

)

= det(D)− λvD† y�. (11.3.8)

Substituting (11.3.8) into (11.3.7) where λ = u A−1x� = det(A)−1(u A†x�) yields (11.3.4).
Finally, to prove (11.3.5), we may assume that α and the entries of v and U are indeter-

minates and work in the polynomial ring Z[α, v,U ]. Then

2hdet

(
α 2v
0 U

)

= det

(
2α 2v

2v� U + U�
)

= 2 det

(
α v

2v� U + U�
)

,

so the assertion follows by cancelling the factor 2.
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11.4. Lemma. Let α ∈ k, y, v ∈ km and D ∈ Matm(k). Then if m = 2,

hdet

(
α v

y� D

)

= α det(D + D�)+ det

(
0 v + y

v� + y� D

)

, (11.4.1)

while for m = 3,

qdet

(
α v

y� D

)

= αhdet(D)+det

(
0 v

v� D

)

+det

(
0 y

y� D

)

−v(D × D�)y�. (11.4.2)

Here A × B = (A + B)† − A† − B† is the bilinear map determined by the quadratic map
A 	→ A†.

Proof We may assume that α and the entries of v, y and D are indeterminates and work in the
ring Z[vi , yi , di j ]. Let first m = 2. Then D 	→ D† is linear and commutes with transposition.
Hence by (11.1.1) and (11.3.1),

2hdet

(
α v

y� D

)

= det

(
2α v + y

v� + y� D + D�
)

= 2α det(D + D�)− (v + y)(D + D�)†(v + y)�

= 2α det(D + D�)− 2(v + y)D†(v + y)�

= 2α det(D + D�)+ 2 det

(
0 v + y

v� + y� D

)

.

For m = 3, we use (11.1.2) and again (11.3.1):

4qdet

(
α v

y� D

)

= det

(
2α v + y

v� + y� D + D�
)

− det

(
0 v − y

y� − v� D − D�
)

= 2α det(D + D�)− (v + y)(D + D�)†(v + y)�

+ (v − y)(D − D�)†(y − v)�

= 4αhdet(D)− 4vD†v� − 4y D† y� − 4v(D × D�)y�.

11.5. Lemma. Let F1 and F2 be square matrices of size 2l and 2m, respectively, and let
x ∈ k2l and y ∈ k2m be row vectors. Then

qdet

(
F1 x�y
0 F2

)

= qdet

(
F1 0
0 F2

)

− hdet

(
0 x
0 F1

)

hdet

(
0 y
0 F2

)

. (11.5.1)

Proof Since the asserted formula is a polynomial identity with integer coefficients in the
entries of F1, F2, x, y, we may assume these entries to be indeterminates and work over the
ring Z[F1, F2, x, y]. Put A = F1 + F�

1 , D = F2 + F�
2 , R = F1 − F�

1 and S = F2 − F�
2 .

By Lemma 11.6, and since the square of the Pfaffian is the determinant, we have

det

(
R x�y

−y�x S

)

= det

(
R 0
0 S

)

.

Now (11.1.2) and (11.3.4) imply

4qdet

(
F1 x�y
0 F2

)

− 4qdet

(
F1 0
0 F2

)

= det

(
A x�y

y�x D

)

− det

(
A 0
0 D

)

= −(x A†x�)(y D† y�). (11.5.2)
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On the other hand, by (11.1.1) and (11.3.1),

2 hdet

(
0 x
0 F1

)

= det

(
0 x

x� A

)

= −x A†x� (11.5.3)

and similarly for the second factor. Now the assertion follows from (11.5.2) and (11.5.3) by
cancelling the factor 4.

11.6. Lemma. (a) Let R and S be alternating matrices with entries from k of even order 2l
and 2m, respectively, and let x ∈ k2l and y ∈ k2m be row vectors. Then

Pf

(
R x�y

−y�x S

)

= Pf

(
R 0
0 S

)

= Pf(R) · Pf(S). (11.6.1)

(b) Let R and S be alternating matrices of odd order 2l +1 and 2m +1, and let x ∈ k2l+1

and y ∈ k2m+1 be row vectors. Then

Pf

(
R x�y

−y�x S

)

= Pf

(
0 x

−x� R

)

· Pf

(
0 y

−y� S

)

. (11.6.2)

Proof (a) By a standard density argument it suffices to prove this in case R is invertible. A
calculation shows that

(
I2l 0

y�x I2m

)(
R 0
0 S

)(
I2l x�y
0 I2m

)

=
(

R Rx�y
y�x R S + y�x Rx�y

)

.

Since R is alternating, we have x Rx� = 0. Now the lemma follows from

Pf(P� X P) = det(P)Pf(X), Pf

(
R 0
0 S

)

= Pf(R)Pf(S) (11.6.3)

(see [1, §5.2, Prop. 1]), and the fact that as x runs over k2l so does x R, because R is invertible.
(b) Let

A =
(

0 1
−1 0

)

, B =
(−x 0

0 y

)

, C = −B�, D =
(

R 0
0 S

)

.

We compute the Pfaffian of X :=
(

A B
C D

)

in two ways. Since A is invertible and (A−1 B)� =
C A−1, we have by (11.3.6) and (11.6.3) that

Pf

(
A B
C D

)

= Pf

(
A 0
0 D − C A−1 B

)

= Pf(D − C A−1 B),

and a computation shows C A−1 B =
(

0 −x�y
y�x 0

)

. Hence Pf(X) equals the left-hand

side of (11.6.2). On the other hand, let

J =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 −I2l+1 0 0
0 0 0 I2m+1

⎞

⎟
⎟
⎠ .
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Then det(J ) = 1 and

J� X J =

⎛

⎜
⎜
⎝

0 x 1 0
−x� R 0 0
−1 0 0 y
0 0 −y� S

⎞

⎟
⎟
⎠ .

Hence, by (11.6.3) and (11.6.1),

Pf(X) = Pf

⎛

⎜
⎜
⎝

0 x 1 0
−x� R 0 0
−1 0 0 y
0 0 −y� S

⎞

⎟
⎟
⎠ = Pf

(
0 x

−x� R

)

· Pf

(
0 y

−y� S

)

.
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