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Abstract We discuss the possible candidates for conformally invariant random non-
self-crossing curves which begin and end on the boundary of a multiply connected
planar domain, and which satisfy a Markovian-type property. We consider both, the
case when the curve connects a boundary component to itself (chordal), and the case
when the curve connects two different boundary components (bilateral). We establish
appropriate extensions of Loewner’s equation to multiply connected domains for the
two cases. We show that a curve in the domain induces a motion on the boundary and
that this motion is enough to first recover the motion of the moduli of the domain and
then, second, the curve in the interior. For random curves in the interior we show that
the induced random motion on the boundary is not Markov if the domain is multiply
connected, but that the random motion on the boundary together with the random
motion of the moduli forms a Markov process. In the chordal case, we show that this
Markov process satisfies Brownian scaling and discuss how this limits the possible
conformally invariant random non-self-crossing curves. We show that the possible
candidates are labeled by two functions, one homogeneous of degree zero, the other
homogeneous of degree minus one, which describes the interaction of the random
curve with the boundary. We show that the random curve has the locality property
for appropriate choices of the interaction term.
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1 Introduction

In this paper we discuss the possible candidates for a mathematically rigorous notion
of conformally invariant random non-self-crossing curves which begin and end on
the boundary of a multiply connected planar domain, and which satisfy a Markov-
ian-type property. The Markovian-type property means that the random curves can
be developed dynamically as a (locally) growing family of random compacts. We aim
to proceed in the spirit of Schramm, who deduced that, under an additional reflec-
tion symmetry, there is only a one parameter family of such random curves in simply
connected domains, which he termed Stochastic Loewner Evolutions (SLE), see [27].
As such conformally invariant random growing compacts are conjectured to arise as
scaling limits of interfaces of 2-dimensional statistical mechanical systems at critical-
ity, Schramm had with one stroke identified what those limits can be. This has many
consequences and applications, see [17–19,28], and references therein.

Statistical mechanical systems have been studied in discrete approximations of mul-
tiply connected domains and Riemann surfaces, see [2,15], and the connections with
conformal field theory (CFT) indicate that the SLE should also extend to multiply
connected domains and Riemann surfaces.

For multiply connected domains the situation is already more subtle when com-
pared to the simply connected case, because moduli spaces enter the picture and, as
we will show, one has to consider interactions with these moduli.

Families of random compacts from the boundary to the boundary now come in two
flavors, as the random compact may grow to either connect a boundary component to
itself (the chordal case) or it may grow to connect two different boundary components.
We call the latter the bilateral case.

The radial case, treated in [5], where the random compact grows from the bound-
ary to an interior point, can be considered as a limit of the bilateral case, when the
boundary component the random compact grows towards shrinks to a point. This can
be made precise, see [12].

Our procedure rests on an appropriate extension of Loewner’s equation to the
multiply connected case. In the simply connected case, Loewner’s equation allows
to encode a simple curve in a domain D which has one endpoint on the boundary
∂D by a continuous motion on the boundary, see [20]. In the multiply connected
case, we show in Theorem 3.1 and Theorem 3.2 that a simple curve induces a motion
on the boundary of the domain. To recover the curve inside the domain requires also
the knowledge of the moduli M (which describe the conformal equivalence class), as
the curve grows. We show in Theorem 4.1 and Theorem 4.2 that these moduli can be
recovered from the boundary motion and thus, once these moduli have been obtained,
the curve in the interior itself.

A growing random non-self-crossing curve in a multiply connected domain can
then also be encoded into a random motion ξ(t) on the boundary. However, if the
connectivity is greater than one, then ξ cannot be Markov. We show in Sect. 5 that in
the chordal case the boundary motion ξ together with the motion of moduli M is a
Markov process, and that it satisfies Brownian scaling.

These facts dramatically reduce the number of possible diffusions. Indeed, one
is only free to choose two function A and B in the variables ξ and M, which are
homogeneous of degree minus one and zero, respectively. These terms measure the
interaction of the random growing compact with the boundary (for example if it is
desired that the random set avoids the interior boundary components). In the simply
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connected case the variable M disappears. Since the only homogeneous function of
degree zero in one variable is a constant, it follows B = √

κ .
SLE(κ , ρ), see [10,18], also fits naturally into this framework. There, the random

compact grows into the upper half-plane, the boundary is the real axis, and the interac-
tion is with a finite number of points on the real axis and given in terms of the simplest
homogeneous function of degree minus one, 1/x. Even though the upper half-plane
is simply connected, the marked points on the boundary can serve as moduli and then
SLE(κ , ρ) is given by a particular moduli diffusion.

For multiply connected domains it is natural to look for an interaction A which is
expressed in terms of domain functionals such as the Green function. Appropriate
combinations of derivatives of the Green function are homogeneous of degree minus
one in ξ and the moduli. The ‘harmonic random Loewner chains’ studied in [29] are
a particular example of this. A version of Loewner’s equation and equations for the
moduli motion equivalent to ours have also been established in [29] by different tech-
niques. However, there the solvability of the moduli equation was not established, as
pointed out by the author. Establishing the Lipschitz property of the vector field in the
moduli equation is the key step in our proof of Theorem 4.1 and Theorem 4.2. Based
on recent work of Lawler, the harmonic random Loewner chains of Zhan appear to be
the scaling limit of Laplacian-b random walk in multiply connected domains, see [16].

In our opinion the only further reduction in possible diffusions (ξ , M) are regu-
larity requirements on the homogenous functions A and B. The main challenge is to
identify which physical model corresponds to which choice of functions. In this paper
we do this for percolation (A = 0, B = √

6). In [30], Zhan shows that “annulus SLE6”
satisfies locality. This is the same process we define in Sect. 5 in the special case of con-
nectivity two. Our results show that it is in fact the only process which is conformally
invariant, satisfies the Markovian type property, and locality, see Remark 5.1.

For random curves connecting a boundary point to an interior point, the radial
case, we obtained results similar to many obtained in this paper, see [5]. A main
difference is that in the radial case the scaling property is not present and thus one
cannot conclude that the interaction functions A and B are homogeneous. The results
of that paper were announced in [4].

Several physical aspects related to this paper, such as connections to CFT vertex
operators and the Coulomb gas formalism, are discussed in [8,11,14] .

2 Bilateral and Chordal standard domains

2.1 Harmonic measures

Denote D a region of connectivity n > 1 in the complex plane. The components of
the complement in the extended complex plane are denoted by E1, E2, . . . , En. We
assume that no Ek reduces to a point and that there is a unique unbounded component
En. By applying preliminary conformal maps, we may assume that D is bounded by
an outer contour Cn and n − 1 inner contours C1, . . . , Cn−1, where the contours are
oriented such that D lies to the left in the direction of the contour. Denote ωk(z) the
solution to the Dirichlet problem in D with the boundary values 1 on Ck and 0 on the
other contours. We have 0 < ωk(z) < 1 in D and

ω1(z) + ω2(z) + · · · + ωn(z) = 1. (1)
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ωk(z) is called the harmonic measure of Ck in z. The conjugate harmonic differential
of ωk has periods

αkj =
∫

Cj

∗dωk =
∫

Cj

∂ωk

∂n
ds (2)

along Cj. Here, ∂/∂n denotes the normal derivative to the right of the direction of
the contour, and ds stands for arc-length measure. It is well known, [21], that the
(n − 1) × (n − 1) matrix α with entries αkj, 1 ≤ k, j ≤ n − 1, is positive definite and
symmetric. In particular, the linear system

λ1α11 + λ2α21 + · · · + λn−1αn−1,1 = 2π

λ1α12 + λ2α22 + · · · + λn−1αn−1,2 = 0
... (3)

λ1α1,n−1 + λ2α2,n−1 + · · · + λn−1αn−1,n−1 = 0

has a unique solution. It follows from (1) that any solution of (3) also solves

λ1α1n + λ2α2n + · · · + λn−1αn−1,n = −2π .

Thus there is a multiple-valued integral F(z) with periods ±2π i along C1 and Cn and
all other periods equal to zero, the real part being constant equal to λk on Ck (we
set λn = 0). The function f (z) = e−F(z) is then single-valued and one can show, [1],
that f maps D conformally onto the annulus e−λ1 < |w| < 1 minus n − 2 concentric
arcs situated on the circles |w| = e−λk , k = 2, . . . , n − 1. We call such a circularly
slit annulus a bilateral standard domain. By adding an imaginary constant to F(z) we
obtain another map onto a bilateral standard domain and we may normalize the map
f by requiring f (z0) = e−λ1 for some z0 ∈ C1. With this normalization we call f the
canonical map for (D, z0, Cn).

2.2 Green function

Denote D again a region of finite connectivity which is bounded by contours
C1, . . . , Cn; this time the case n = 1 is included.

We consider a point z0 ∈ D and solve the Dirichlet problem in D with the boundary
values ln |ζ − z0|. The solution is denoted by h(z). The function

G(z) = GD(z, z0) = h(z) − ln |z − z0|
is the Green function in D with pole at z0. It is the unique function which is harmonic
in D except at z0, where it differs from ln |z − z0| by a harmonic function, and which
vanishes on the boundary of D. The Green function is conformally invariant in the
sense that if f : D → D′ is conformal, then

GD(z, z0) = GD′(f (z), f (z0)). (4)

The conjugate harmonic function of G(z, z0) is multiple-valued. It has the period 2π

along a small circle about z0, and the periods

pk(z0) =
∫

Ck

∗dG(z, z0), k = 1, . . . , n.
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It can be shown that pk(z0) = −2πωk(z0), [1]. Let now z0 ∈ Cn. By linearity,
u(z) = ∂G(z, z0)/∂nz0 is a harmonic function in z. Its conjugate differential has periods

Ak(z0) =
∫

Ck

∗du = ∂

∂nz0

∫

Ck

∗dzG(z, z0)

= −2π
∂

∂nz0

ωk(z0). (5)

Thus the linear combination u + λ1ω1 + · · · + λn−1ωn−1 is free from periods provided
that

λ1α1k + λ2α2k + · · · + λn−1αn−1,k = −Ak, k = 1, . . . , n − 1. (6)

If we write P for the matrix α/2π , λT = (λ1, . . . , λn−1), and

∂ω(z0)
T/∂n = (∂ω1(z0)/∂n, . . . , ∂ωn−1(z0)/∂n),

then the solution to (6) is given by

λ = P−1 ∂ω(z0)

∂n
.

Hence

−i
(

∂G(z, z0)

∂nz0

+ ω(z)TP−1 ∂ω(z0)

∂n

)

is the imaginary part of a single-valued analytic function 
(z). It can be shown that 


maps D conformally onto the upper half-plane �(w) > 0 minus n − 1 horizontal slits
with imaginary parts

�(w) = −[P−1∂ω(z0)/∂n]j, j = 1, . . . , n − 1.

Under this map, 
(Cn) = R, and 
(z0) = ∞. We call the upper half-plane minus a
finite number of horizontal slits a chordal standard domain. If D is contained in the
upper half-plane and for some x > 0 we have (R\[−x, x]) ⊂ Cn and ζ = ∞, then,
by adding an appropriate real constant, we may assume that g ≡ 
/2 satisfies the
hydrodynamic normalization at infinity,

lim
z→∞(g(z) − z) = 0. (7)

With this normalization, we call g the canonical mapping for D.

3 Evolution of slit mappings

The evolution of slit mappings in multiply connected domains was first studied by
Komatu in [12] for the doubly connected case, and in [13] for general finite connec-
tivity. Komatu treated this case by considering circular slit annuli. We obtain analogs
of his main result in Theorems 3.1 and 3.2. Since we consider a different family of
standard domains in the chordal case from the one Komatu considered, and, in the
bilateral case, consider a normalization different from the one employed in [13], we
give, for the sake of completeness and the convenience of the reader, proofs of these
results. A further reason for including the proofs is that the original reference [13] is
not widely available.



246 R. O. Bauer, R. M. Friedrich

However, Komatu [13] does not study the question of how to recover a slit in the
interior from a motion on the boundary, which is our ultimate goal. This requires
knowledge of the motion of the moduli, and in particular the Lipschitz property of
the vector field driving that motion. We will find the vector field and establish the
Lipschitz property in Sect. 4. This difficulty does not arise in the simply connected
case. There, due to the absence of moduli, all one needs is Loewner’s equation.

3.1 Chordal Loewner equation

Consider a chordal standard domain D. Let γ : [0, tγ ] → D be a Jordan arc such that
γ (0) ∈ R, and γ (0, tγ ] ⊂ D. Let gt be the canonical mapping from D\γ [0, t] with the
normalization (7), and denote Dt the chordal standard domain gt(D\γ [0, t]). It is well
known, see [21], that gt solves the extremal problem

a1 = max

among all univalent functions on D\γ [0, t] with expansion

z + a1

z
+ a2

z2 + · · · , ak ∈ R,

near infinity. In particular, if gt(z) = z + at/z + o(1/|z|), then at∗ ≤ at whenever
0 < t∗ < t < tγ . In fact, a simple argument shows that

at∗ < at if t∗ < t. (8)

Thus we may assume that at = 2t. We wish to find a differential equation for the
family {gt : t ∈ [0, tγ ]}.

Denote Cj(t), j = 1, . . . , n, the boundary components of Dt. We always have Cn(t) =
R. For j = 1, . . . , n − 1, let yj(t) be the imaginary part of (points on) the slit Cj(t).
Denote ξ(t) the starting point on R of the Jordan arc gt(γ [t, tγ ]) in Dt, i.e. gt(γt). For
0 < t∗ < t < tγ , set

gt,t∗ = gt∗ ◦ g−1
t .

Then gt,t∗ is a conformal map from Dt onto Dt∗\gt∗(γ [t∗, t]). The point ξ(t∗) = gt∗(γt∗)
corresponds to two prime ends in Dt∗\gt∗(γ [t∗, t]). Denote β0(t, t∗) and β1(t, t∗), with
β0(t, t∗) < β1(t, t∗), the pre-images of these prime ends under gt,t∗ , i.e.

gt,t∗(β0(t, t∗)) = gt,t∗(β1(t, t∗)) = gt∗(γt∗).

Then, if x ∈ R\[β0(t, t∗), β1(t, t∗)],
gt,t∗(x) ∈ R.

Consider the analytic function

z �→ gt,t∗(z) − z,

which satisfies

gt,t∗(z) − z = 2(t∗ − t)
z

+ o(1/|z|), (9)
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and note that z �→ �(gt,t∗(z) − z) is harmonic and constant on each boundary compo-
nent. By Poisson’s formula

�(gt,t∗(z) − z) = − 1
2π

∫

∂Dt

�(gt,t∗(ζ ) − ζ )
∂Gt(ζ , z)

∂n1
ds, (10)

where Gt(ζ , z) is the Green function for Dt with pole at z. Note that there is no
problem with integrability in (10) because

�(gt,t∗(ζ ) − ζ ) = −y
x2 + y2 + O(1/|ζ |2), ζ = x + iy,

and
sup{�(ζ ) : ζ ∈ ∂Dt} < ∞. (11)

Since �(gt,t∗(z) − z) has a single-valued harmonic conjugate, it is orthogonal to the
real part of any Abelian differential of the first kind, see [4], and we have

�(gt,t∗(z) − z)

= − 1
2π

∫

∂Dt

�(gt,t∗(ζ ) − ζ )

(
∂Gt(ζ , z)

∂n1
+ ωt(z)TP−1

t
∂ωt(ζ )

∂n

)
ds. (12)

It follows from Sect. 2 that∫

Ck(t)

(
∂Gt(ζ , z)

∂n1
+ ωt(z)TP−1

t
∂ωt(ζ )

∂n

)
ds = 0, k = 1, . . . , n − 1,

and also that

z �→ −i
(

∂Gt(ζ , z)

∂n1
+ ωt(z)TP−1

t
∂ωt(ζ )

∂n

)

is the imaginary part of a single-valued analytic function 
t(z) = 
t(z, ζ ). Thus, since
�(gt,t∗(ζ ) − ζ ) is constant on each Ck(t), k = 1, . . . , n − 1, and identically zero on
R\[β0(t, t∗), β1(t, t∗)],

gt,t∗(z) − z = 1
2π

β1(t,t∗)∫

β0(t,t∗)

�(gt,t∗(ζ ) − ζ )
t(z, ζ ) dζ + ic, (13)

where c is a real constant. Note that if z �→ 
̃t(z, ζ ) is another analytic function with
the same imaginary part as 
t, then


t(z, ζ ) − 
̃t(z, ζ ) = a(ζ ),

where a is real and depends only on ζ . We fix a normalization by requiring that

lim
z→∞ 
t(z, ζ ) = 0. (14)

If we let z → ∞, then gt,t∗(z) − z → 0. By bounded convergence, the integral in (13)
converges to zero as well and it follows that c = 0. Next,

2(t∗ − t) = lim
z→∞ z(gt,t∗(z) − z) = f (0),
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where

w �→ f (w) ≡ 1
w

[
gt,t∗ (1/w) − (1/w)

]

is regular near zero. By the Schwarz reflection principle gt,t∗ extends to the entire
complex plane minus the slits C1(t), . . . , Cn−1(t), their conjugates, and the real inter-
val [β0(t, t∗), β1(t, t∗)]. Denote C the collection of these 2n − 1 finite slits. Then f also
extends to a corresponding domain with boundary C̃. From Cauchy’s integral formula
we have

2(t∗ − t) = 1
2π i

∫

C̃

f (ζ )

ζ
dζ = 1

2π i

∫

C̃

gt,t∗(1/ζ ) − 1/ζ

ζ 2 dζ

= − 1
2π i

∫

C

(gt,t∗(η) − η) dη = − 1
2π

∫

C

�(gt,t∗(η) − η) dη, (15)

where the final equality uses the fact that dη is real for horizontal slits. The slits
C1(t), . . . , Cn−1(t) and their conjugates do not contribute to the last integral since
�(gt,t∗(η) − η) takes the same value on both “sides” of a given slit. For the slit
[β0(t, t∗), β1(t, t∗)], �(gt,t∗(η) − η) takes opposite values on the upper and lower “side”
of the slit and, since the direction of integration is reversed, we finally get

t∗ − t = − 1
2π

β1(t,t∗)∫

β0(t,t∗)

�(gt,t∗(η)) dη. (16)

Setting z = gt(w) in (13) we have

gt∗(w) − gt(w) = 1
2π

β1(t,t∗)∫

β0(t,t∗)

�(gt,t∗(η))
t(z, η)dη.

We are now ready to let t∗ ↗ t in (17). Note first that, for η ∈ [β0(t, t∗), β1(t, t∗)],
η �→ �(gt,t∗(η)) is continuous and non-negative and that also η �→ A(η) := 
t(z, η) is
continuous. Thus it follows from the mean-value theorem of integration and (16) that

1
2π

β1(t,t∗)∫

β0(t,t∗)

�(gt,t∗(η))A(η) dη

= �(A(η′)) + i�(A(η′′))
2π

β1(t,t∗)∫

β0(t,t∗)

�(gt,t∗(η) dη

= − [�(A(η′)) + i�(A(η′′))
]
(t∗ − t), (17)

for some η′, η′′ ∈ [β0(t, t∗), β1(t, t∗)]. Hence

lim
t∗↗t

gt∗(w) − gt(w)

t∗ − t
= −
t(z, ξ(t)).

By the same argument we may let t ↘ t∗. On the right-hand side above we then only
need to change t to t∗ and introduce an overall minus sign. Thus we have established
the following
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Theorem 3.1 (Chordal Loewner equation) If γ is a Jordan arc in a standard domain
D starting on R with the parametrization from above, and if gt is the canonical map for
D\γ [0, t], then, using the notation from above, the family {gt : t ∈ [0, tγ ]} satisfies the
equation

∂tgt(z) = −
t(gt(z), ξ(t)), (18)

with initial condition g0(z) = z, and where 
t(z, ζ ) is the analytic function in z with
imaginary part

−∂Gt(z, ζ )

∂nζ

− ωt(z)TP−1
t

∂ωt(ζ )

∂n
,

normalized by limz→∞ 
t(z, ζ ) = 0.

Remark 3.1 In the simply connected case, when D = H is the upper half-plane, the
Green function is given by

G(z, w) = �
(

ln
z − w
z − w

)
.

Thus, if w = x + iy,

−
(z, w) = −i
∂

∂y
|y=0 ln

z − x + iy
z − x − iy

= 2
z − w

,

and (18) reduces to the well known chordal Loewner equation.

3.2 Bilateral Komatu–Loewner equation

We consider a bilateral standard domain D with inner radius Q. Let γ : [0, tγ ] → D
be a Jordan arc such that γ (0) ∈ S1, and γ (0, tγ ] ⊂ D. Let ft be the canonical mapping
from D\γ [0, t] with the normalization ft(Q) > 0, and denote Dt the chordal standard
domain ft(D\γ [0, t]). If Qt = ft(Q), then it can be shown that t ∈ [0, tγ ] �→ Qt ∈ [Q, 1]
is continuous and strictly increasing, [13]. Thus we may assume that γ is parametrized
such that t = ln Qt. For this parameter it is shown in [13] that t �→ ft(z) is differentiable.
An expression for the derivative is also given. However, the expression given there is
not explicit enough for the purposes we have in mind. In particular, we will need to
know that the vector field is itself a Lipschitz function in the moduli of the domain. We
sketch a proof of what we call the bilateral Komatu–Loewner equation, leading to an
expression of the derivative ∂tft in terms of the Green function, harmonic measures,
their derivatives and harmonic conjugates. The argument is similar to the radial case,
[5]. In fact, the radial case can be obtained as a limiting case from the bilateral case
when Q → 0, [12].

Denote Cj(t), j = 1, . . . , n, the boundary components of Dt. We always have Cn(t) =
S1, and C1(t) = {|z| = et}. For j = 2, . . . , n − 1, let mj(t) be the radial distance of the
circular slit Cj(t) from the origin. Denote ξ(t) the starting point on S1 of the Jordan
arc gt(γ [t, tγ ]) in Dt, i.e. gt(γt). For ln Q < t∗ < t < tγ ≤ 0, set

gt,t∗ = gt∗ ◦ g−1
t .

Then gt,t∗ is a conformal map from Dt onto Dt∗\gt∗(γ [t∗, t]). The point ξ(t∗) =
gt∗(γt∗) corresponds to two prime ends in Dt∗\gt∗(γ [t∗, t]). Denote exp(iβ0(t, t∗)) and
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exp(iβ1(t, t∗)), with β0(t, t∗) < β1(t, t∗), the pre-images of these prime ends under
gt,t∗ , i.e.

gt,t∗(exp(iβ0(t, t∗))) = gt,t∗(exp(iβ1(t, t∗))) = gt∗(γt∗).

Then, if |z| = 1 and β1(t, t∗) ≤ arg z ≤ β0(t, t∗) + 2π ,

|gt,t∗(z)| = 1.

The function

z �→ ln
gt,t∗(z)

z

is analytic and single-valued throughout Dt. By Poisson’s formula

ln

∣∣∣∣gt,t∗(z)

z

∣∣∣∣ = − 1
2π

∫

∂Dt

ln

∣∣∣∣gt,t∗(ζ )

ζ

∣∣∣∣ ∂Gt(ζ , z)

∂n1
ds, (19)

where Gt(ζ , z) is the Green function for Dt with pole at z. Using orthogonality and
the period relations as we did in the chordal case, it follows that

ln
gt,t∗(z)

z
= − i

2π

β1(t,t∗)∫

β0(t,t∗)

ln

∣∣∣∣gt,t∗(ζ )

ζ

∣∣∣∣ 
t(z, ζ ) ds + ic, (20)

for some real constant c. To eliminate c, we evaluate the identity (20) at z = q = et

and then take the difference:

ln
gt,t∗(z)

z
− ln

q∗

q
= − i

2π

β1(t,t∗)∫

β0(t,t∗)

ln

∣∣∣∣gt,t∗(ζ )

ζ

∣∣∣∣
[

t(z, ζ ) − 
t(q, ζ )

]
ds. (21)

By Cauchy’s integral formula,

0 = 1
2π i

∫

∂Dt

ln

(
gt,t∗(ζ )

ζ

)
dζ

ζ
. (22)

In particular, the right-hand side of (22) is real. Since all boundary components are
concentric circular arcs, dζ/ζ is purely imaginary along ∂Dt, i.e.

dζ

ζ
= i d arg ζ , ζ ∈ ∂Dt.

Hence

0 = 1
2π

∫

∂Dt

ln

∣∣∣∣gt,t∗(ζ )

ζ

∣∣∣∣ d arg ζ

= 1
2π

β1(t,t∗)∫

β0(t,t∗)

ln
∣∣gt,t∗(eiϕ)

∣∣ dϕ − 1
2π

2π∫

0

ln
q∗

q
dϕ

+ 1
2π

n−1∑
j=2

∫

Cj(t)

ln
mj(t∗)
mj(t)

d arg ζ . (23)
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Since the two “sides” of Cj(t) make opposite contributions,
∫

Cj(t)

d arg ζ = 0, j = 2, . . . , n − 1,

and we finally get

t∗ − t = 1
2π

β1(t,t∗)∫

β0(t,t∗)

ln
∣∣gt,t∗(eiϕ)

∣∣ dϕ. (24)

Letting z = gt(w) in (21), we have

ln
gt∗(w)

gt(w)
− (t∗ − t)

= − i
2π

β1(t,t∗)∫

β0(t,t∗)

ln |gt,t∗(eiϕ)| [
t(z, eiϕ) − 
t(q, eiϕ)
]

ds. (25)

We now wish to let t∗ ↗ t in (25). Note first that, for ϕ ∈ [0, 2π], ϕ �→ ln |gt,t∗(eiϕ)|
is continuous and non-positive and that also

ϕ �→ A(ϕ) := 
t(z, eiϕ) − 
t(q, eiϕ)

is continuous. Thus it follows from the mean-value theorem of integration that

1
2π(t∗ − t)

β1(t,t∗)∫

β0(t,t∗)

ln
∣∣gt,t∗(eiϕ)

∣∣ A(ϕ) dϕ

= �(A(ϕ′)) + i�(A(ϕ′′))
2π(t∗ − t)

β1(t,t∗)∫

β0(t,t∗)

ln
∣∣gt,t∗(eiϕ)

∣∣ dϕ

= �(A(ϕ′)) + i�(A(ϕ′′)), (26)

for some ϕ′, ϕ′′ ∈ [β0(t, t∗), β1(t, t∗)]. Hence

lim
t∗↗t

ln gt∗(w) − ln gt(w)

t∗ − t
= 1 + i[
t(z, ξt) − 
t(et, ξ(t))]. (27)

By the same argument we may let t ↘ t∗. On the right-hand side above we then only
need to change t to t∗ and introduce an overall minus sign. Thus we have established
the following

Theorem 3.2 (Bilateral Komatu–Loewner equation) If γ is a Jordan arc in a standard
domain D starting on S1 with the parametrization from above, and if gt is the canonical
map for D\γ [0, t], then, using the notation from above, the family {gt : t ∈ [ln Q, tγ ]}
satisfies the equation

∂t ln gt(z) = 1 + i[
t(gt(z), ξt) − 
t(et, ξ(t))], (28)

with initial condition gln Q(z) = z.
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4 Motion of moduli

4.1 Chordal case

The right-hand side of the chordal Loewner equation, at time t, involves the Green
function of the domain Dt, and also various functions derived from the Green func-
tion. Consequently, it does not make sense to ask for the solution of (18) for a given
continuous curve t �→ ξ(t), since the vector-field on the right-hand side of (18) is not
specified by giving that information alone. To specify the Green function of Dt we
also need the moduli of the domain Dt. We will now consider what the appropriate
moduli space is for our purposes and find a system of equations these moduli satisfy.
Once this system is found, we can solve it for a given input t �→ ξ(t), and then, in a
second step, solve the radial Komatu–Loewner equation using ξ and the moduli.

The geometric description of Dt requires 3n − 3 real parameters, three for each
(interior) slit, given, for example, by the imaginary components of the slits, i.e yj(t),
j = 1, . . . , n − 1, and the real components

xj(t) < x′
j(t), j = 1, . . . , n − 1,

determining the endpoints of the slit Cj(t), j = 1 . . . , n − 1. On the other hand, it is
well known that two n-connected domains with non-degenerate boundary continua
are conformally equivalent if 3n − 6 real parameters agree for n > 2. If n = 2 then
there is only one real parameter describing the conformal class, and if n = 1, then all
such domains are conformally equivalent.

The slits we wish to grow mark two points on one of the boundary continua,
the beginning (t = 0) and end point (t = ∞) of the slit. Any n-connected planar
domain with two marked boundary points on one boundary component is confor-
mally equivalent to the upper half-plane with n − 1 horizontal slits and such that the
marked boundary points are mapped to 0 and ∞. However, there is a one-param-
eter group of automorphisms, namely multiplication by a > 0, which maps the slit
upper half-plane onto a slit upper half-plane, while fixing 0 and ∞. It is now easy to
see that the moduli space of n-connected planar domains with two marked bound-
ary points on one of the boundary components is 3n − 4 dimensional for all n ≥ 2,
and zero dimensional if n = 1. Nonetheless, we will take y(t) = (y1(t), . . . , yn−1(t)),
x(t) = (x1(t), . . . , xn−1(t)), and x′(t) = (x′

1(t), . . . , x′
n−1(t)) as the moduli of the domain

Dt and write M(t) := (y(t), x(t), x′(t)). To obtain the conformal equivalence classes
from this 3n−3 dimensional parameter space, we need to identify (y(t), x(t), x′(t)) and
(ỹ(t), x̃(t), x̃′(t)), whenever there exists an a > 0 such that y = aỹ, x = ax̃, and x′ = ax̃′.
The extra parameter M keeps track of will be reflected in a symmetry (invariance) of
the moduli diffusion. For a standard domain the marked points are 0 and ∞. For a
point M in the “moduli space” we denote by D = D(M) the corresponding standard
domain.

By boundary correspondence, if z ∈ Cj, then gt(z) ∈ Cj(t) and

�(gt(z)) = yj(t).

Thus, by considering the imaginary part of the chordal Loewner equation,

∂tyj(t) = −�(
t(gt(z), ξ(t))). (29)
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Further, if

zj(t) = xj(t) + iyj(t), z′
j(t) = x′

j(t) + iyj(t)

are the endpoints of the slit Cj(t), then

zj(t) = gt(ηj(t) + iyj(0)), z′
j(t) = gt(η

′
j(t) + iyj(0)),

where xj(0) < ηj(t), η′
j(t) < x′

j(0). Indeed, the pre-images of the tips of Cj(t), that is
ηj(t) + iyj(0) and η′

j(t) + iyj(0), are the solutions to the equation

∂

∂z
gt(z) = 0,

on the set of prime-ends corresponding to Cj\{zj(0), z′
j(0)}. A tip of Cj(t) cannot be

the image of a tip of Cj because then the analytic function ∂gt/∂z would not have the
required number of zeroes, 2n − 2.

Lemma 4.1 (Motion of moduli – chordal case) The moduli

M(t) = (y(t), x(t), x′(t))

satisfy the system of equations

∂tyj(t) =
[
P−1

t
∂ωt(ξ(t))

∂n

]
j
,

∂txj(t) = −� (

t

(
xj(t) + iyj(t), ξ(t)

))
, (30)

∂tx′
j(t) = −�

(

t

(
x′

j(t) + iyj(t), ξ(t)
))

,

for j = 1, . . . , n − 1.

Proof We note that ∂gt/∂z and ∂2gt/(∂z)2 are analytic functions that extend analyti-
cally to the prime-ends corresponding to C1, . . . , Cn−1 with the endpoints of the slits
removed. By the implicit function theorem,

t �→ ηj(t) + iyj(0)

is differentiable with derivative

DERt :=
[

∂2gt

(∂z)2 (ηj(t) + iyj(0))

]−1
∂2gt

∂t∂z
(ηj(t) + iyj(0)).

By counting zeroes we find that

∂2gt

(∂z)2 (ηj(t) + iyj(t)) �= 0

and so DERt is finite. Hence

∂txj(t) = ∂t�(gt(ηj(t) + iyj(0)))

= −� (

t

(
xj(t) + iyj(t), ξ(t)

)) + � (
(∂zgt)(zj(t)) × DERt

)
= −� (


t
(
xj(t) + iyj(t), ξ(t)

))
. (31)
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In a similar way we obtain the derivative of x′
j(t). It remains to check that (29) agrees

with the first equation in (30). To this end we note that

�(
t(z, ζ )) = ∂Gt(ζ , z)

∂n1
+ ωt(z)TP−1

t
∂ωt(ζ )

∂n
.

From the boundary behavior of the Green function and the harmonic measures, it
follows that for z ∈ Cj(t)

∂G(ζ , z; t)
∂n1

= 0, and ωk(z) = δjk.

The lemma follows. ��
We now have our main existence statement.

Theorem 4.1 Given a continuous function t ∈ [0, ∞) �→ ξ(t) ∈ R and the moduli M
of a standard domain D, there exists a unique solution M(t) to the system (30) on an
interval [0, tξ ) with M(0) = M, and where tξ is characterized by

tξ = inf{τ : lim
t↗τ

yj(t) = 0 for some j ∈ {1, . . . , n − 1}}.

Further, if Dt is the standard domain determined by M(t), and if 
t(z, ζ ) is the holo-
morphic vector field associated to Dt (cf. Section 2.2), then, for any z ∈ D, the equation

∂tgD
t (z) = 
t(gD

t (z), ξ(t)), gD
0 (z) = z,

has a unique solution on [0, tz), where

tz = sup{t ≤ tξ : inf
s∈[0,t] |g

D
s (z) − ξ(s)| > 0}.

Finally, for t < tξ set Kt = {z ∈ D : tz ≤ t}. Then gD
t is the canonical conformal map

from D\Kt onto Dt with hydrodynamic normalization at infinity.

Proof For the existence of the solution to the moduli equations (30) on [0, tξ ) we need
to know that the vector field in (30) is Lipschitz as a function of M, with a Lipschitz
constant that only depends on distance to ξ(t) of the slit (or slits) nearest to ξ(t). Let
M and M̃ be two points in moduli space with corresponding standard domains D and
D̃, such that

|yj − ỹj|, |xj − x̃j|, |x′
j − x̃′

j| < ε.

We assume that ε is so small that

Cj ∩ C̃k = ∅, whenever j �= k.

Denote zj, z′
j the endpoints of the slit Cj and z̃j, z̃′

j the corresponding endpoints of C̃j.

Denote 
 the canonical map for D and 
̃ the canonical map for D̃. Then we need to
show that


̃(z̃j) − 
(zj), 
̃(z̃j
′) − 
(z′

j) = O(ε), j = 1, . . . , n − 1. (32)

This can be shown as in the radial case by the use of an interior variation that induces
a smooth mapping z �→ z̃ from D to D̃ which maps slit-endpoints to corresponding
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slit-endpoints, see [4]. The non-compactness of the upper half-plane is of no concern
as the mapping from D to D̃ may be assumed to be the identity outside of a compact.

The second part of the theorem now follows from general results about ordinary
differential equations, exactly as in the simply connected case. ��

4.2 Bilateral case

As we mentioned before, the bilateral case is similar to the radial case. The geomet-
ric description of a bilateral standard domain with n boundary components requires
1+3(n−2) real parameters: one for the radius Q of the inner circle, and three for each
concentric circular slit. If Cj is one of the interior slits, then Cj = {rjeiθ , θj ≤ θ ≤ θ ′

j },
and we will take mj = ln rj, and θj, θ ′

j as parameters to identify Cj.
If, in an arbitrary n-connected domain D, where n ≥ 2, we choose a boundary

point w and a boundary component that does not contain w, then there is a unique
conformal map from D onto a bilateral standard domain, which sends w to 1, and the
other distinguished boundary component to the inner boundary circle of the standard
domain. Thus the conformal equivalence classes of n-connected domains with one
marked boundary point and one distinguished boundary component which does not
include the marked point are given by 1 + 3(n − 2) = 3n − 5 parameters. We call the
parameters

(ln Q, m2, . . . , mn−1, θ2, . . . , θn−1, θ ′
2, . . . , θ ′

n−1)

the moduli of the domain. Note that, unlike in the chordal case, these are true mod-
uli, in the sense that different sets of parameters correspond to different conformal
equivalence classes.

In the bilateral case it was natural to choose the parameter t = ln Q as time. For a
bilateral standard domain Dt, where t = ln Q, we let

M(t) = (m2(t), . . . , mn−1(t), θ2(t), . . . , θn−1(t), θ
′
2(t), . . . , θ ′

n−1(t)).

We then can obtain the following results in the same way as in the chordal case.

Lemma 4.2 (Motion of moduli – bilateral case) The moduli M(t) satisfy the system

∂tmj(t) = 1 − �[
t(mj(t)eiθj(t), ξ(t)) − 
t(et, ξ(t))],
∂tθj(t) = �[
t(mj(t)eiθj(t), ξ(t)) − 
t(et, ξ(t))], (33)

∂tθ
′
j (t) = �[
t(mj(t)e

iθ ′
j (t), ξ(t)) − 
t(et, ξ(t))],

where j = 2, . . . , n − 1.

As in the radial case, it can be shown that the vector field appearing on the right
above is Lipschitz in the moduli and we obtain

Theorem 4.2 Given a continuous function t ∈ [0, ∞) �→ ξ(t) ∈ S1 and the moduli M
of a bilateral standard domain D with interior boundary circle of radius Q, there exists
a unique solution M(t) to the system (30) on an interval [ln Q, tξ ) with M(0) = M, and
where tξ is characterized by

tξ = inf{τ : lim
t↗τ

mj(t) = 0 for some j ∈ {2, . . . , n − 1}}.
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Further, if Dt is the bilateral standard domain determined by M(t), and if 
t(z, ζ ) is
the holomorphic vector field associated to Dt (cf. Sect. 2.2), then, for any z ∈ D, the
equation

∂t ln gD
t (z) = 1 + [
t(gD

t (z), ξ(t)) − 
t(et, ξ(t))], gD
ln Q(z) = z,

has a unique solution on [ln Q, tz), where

tz = sup{t ≤ tξ : inf
s∈[ln Q,t] |g

D
s (z) − ξ(s)| > 0}.

Finally, for t < tξ set Kt = {z ∈ D : tz ≤ t}. Then gD
t is the canonical conformal map

from D\Kt onto Dt with gD
t (Q) = et.

5 Chordal SLE in multiply connected domains

5.1 Conformal invariance and Markovian-type property

The purpose of this paper is (1) to give a “natural” construction of conformally invari-
ant measures on “simple curves” in multiply connected domains, and (2) to study
some of the properties of these random curves. We will now motivate, using informal
arguments, our particular construction of conformally invariant measures on simple
curves. The arguments lead to a small class of processes which contains chordal SLEκ

in multiply connected domains.
For a domain D with n non-degenerate boundary continua and two boundary points

(or, more generally, prime ends) z and w lying on the same boundary continuum, let
W(D, z, w) be the set of Jordan arcs in D with endpoints z and w. Denote {LM

D,z,w}D,z,w
a family of probability measures on Jordan arcs in the complex plane such that

LM
D,z,w(W(D, z, w)) = 1,

and where M = M(D). Such families arise, or are conjectured to arise, as distributions
of interfaces of statistical mechanical systems at criticality. Based on these models, e.g.
percolation, one expects that the distributions describing the interfaces in different
domains with different marked points are related by a Markovian-type property and
conformal invariance. Denote γ a random Jordan arc with law LM

D,z,w. The Markov-
ian-type property says that if γ ′ is a sub-arc of γ which has z as one endpoint and
whose other endpoint we denote by z′, and if M′ = M(D\γ ′), then the conditional
law of γ given γ ′ is

law(γ |γ ′) = LM′
D\γ ′,z′,w. (34)

Conformal invariance means that if f : D → D′ is conformal, z′ = f (z), w′ = f (w),
then

LM
D′,z′,w′ = f∗LM

D,z,w. (35)

If (35) holds, then to understand the family {LM
D,z,w} it is enough to consider standard

domains D, take w = ∞, z = 0, and, by the identification of standard domains with
their moduli, we may write

LM
D,0,∞ = LM.
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In this case there is a natural parametrization of the Jordan arcs we consider. Let

s ∈ [0, ∞) �→ γ (s) ∈ D

be a Jordan arc in a standard domain D such that

γ (0) ∈ R, γ (0, ∞) ⊂ D, and lim
t→∞ γ (t) = ∞.

Denote M = M(D) the point in the moduli space corresponding to D and let gM
t be

the canonical mapping from D\γ [0, t] onto a standard domain Dt := gM
t (D\γ [0, t]).

Then

gM
t (z) = z + at

z
+ o(1/|z|), z → ∞, (36)

where at is called the half-plane capacity. The function t �→ at is continuous, strictly
increasing, starts at zero and satisfies at → ∞ as t → ∞ (this final statement is not
true if the curve creeps along to infinity very close to the real axis and we exclude
this case for the purpose of this argument). Thus we may and always will assume that
γ is parametrized by half-plane capacity, i.e. so that at = 2t. This parametrization is
natural in the following sense. If t ≥ 0, M(t) = M(Dt), and γ̃ is the curve defined by

s ∈ [0, ∞) �→ γ̃ (s) = gM
t (γ (t + s)),

then the canonical mapping gM(t)
s from Dt\γ̃ [0, s] is given by

gM(t)
s = gM

t+s ◦
(

gM
t

)−1
,

and so gM(t)
s (Dt\γ̃ [0, s]) = Dt+s. In particular, it is easy to see that

gM(t)
s (z) = z + 2s

z
+ o(1/|z|), z → ∞,

i.e. γ̃ is also parametrized by half-plane capacity.
Let now {gM

s : s ≥ 0} be the random family of canonical maps corresponding to the
random Jordan arcs {γ [0, s] : s ≥ 0} in a standard domain D, and denote

LM = law({gM
s : s ≥ 0}).

Then, applying first the Markovian-type property and then conformal invariance, (34),
(35), we find

law({gM
t+s : s ≥ 0}|gM

t ) =
(

gM
t

)−1

∗ LM(t).

Equivalently,

law
(

{gM
t+s ◦

(
gM

t

)−1
: s ≥ 0}|gM

t

)
= law({gM(t)

s : s ≥ 0}). (37)

By the chordal Loewner equation, (18), for each t ≥ 0, the σ -field generated by gM
t

is equal to σ((ξ(r), M(r)) : r ∈ [0, t]), where ξ(0) = 0. Similarly, it is easy to see that

we can reconstruct gM
t+s ◦ (

gM
t

)−1
from {(ξ(t + r) − ξ(t), M(t + r)) : r ∈ [0, s]}, using

Theorem 4.1. Thus (37) implies

law({(ξ(t + s) − ξ(t), M(t + s)) : s ≥ 0}|{(ξ(r), M(r)) : r ∈ [0, t]})
= law({(ξ̃ (s), M̃(s)) : s ≥ 0}), (38)
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where M̃(s) = M(Dt\γ̃ [0, s]), for a random Jordan arc γ̃ with law LM(t). The equality
(38) is precisely the statement that {(ξ(t), M(t)) : t ≥ 0} is a Markov process. In the
doubly connected case this had already been stated in [6]. Since in the doubly con-
nected case there is only one conformal invariant, this invariant was taken as ‘time’ in
[6] and thus the difficulty of the existence of the moduli diffusion, which we address
in Theorem 4.1, can be avoided in the case of connectivity two. We note that in the
simply connected case (n = 1), (38) reduces to

law({ξ(t + s) − ξ(t) : s ≥ 0}|{ξ(r) : r ∈ [0, t]}) = law({ξ̃ (s) : s ≥ 0}),
from which it follows that ξ is a process with independent, and identically distributed
increments. From this, continuity, and the symmetry law(ξ) = law(−ξ), Schramm
derived in [27] that ξ(t) = √

κBt for a standard one-dimensional Brownian motion
and a positive constant κ . The continuity follows from the continuity of the Jordan
arcs, and the symmetry is actually observed in various discrete models, such as the
percolation exploration process.

5.2 Scaling

For chordal SLE in the upper half-plane H the scaling property is usually arrived at
as a consequence of the scaling property of the driving function, Brownian motion.
Indeed, denote

∂tgt(z) = 2
gt(z) − √

κBt
, g0(z) = z,

chordal SLE in H and let Kt be its hull at time t, i.e. gt maps H\Kt conformally onto
H. If c > 0, then ht defined by

ht(z) = 1
c

gc2t(cz)

is the normalized conformal map from H\ 1
c Kc2t onto H and

∂tht(z) = 2

ht(z) − √
κ 1

c Bc2t

, h0(z) = z.

Since 1
c Bc2t is also a standard Brownian motion, it follows that

law
(

1
c

Kc2t : t ≥ 0
)

= law(Kt : t ≥ 0). (39)

However, we can also turn the argument around and ask for a law on growing com-
pacts Kt in the upper half-plane which is conformally invariant, the parameter t being
the half-plane capacity as above. For the conformal map z �→ cz, this implies (39), as
the half-plane capacity scales quadratically. Denote γt the tip of the curve generating
Kt. Then the driving function for the Loewner equation is given by wt = gt(γt), and
(39) implies

law
(

1
c

wc2t : t ≥ 0
)

= law(wt : t ≥ 0),
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i.e. the driving function has Brownian scaling. Examples of diffusion processes with
Brownian scaling are multiples of Brownian motion but also Bessel processes. More
generally, if w satisfies the stochastic differential equation

dwt = σ(wt) dBt + b(wt) dt,

then w has Brownian scaling if

σ(cx) = σ(x), cb(cx) = b(x),

see [23]. If we assume that the coefficients σ and b are continuous, then this is saying
that σ is constant, and b homogeneous of degree minus one.

In the multiply connected case we can argue similarly. Denote gM
t the normalized

conformal map from D(M)\KM
t onto Dt. The superscript M indicates that the random

compact set is a hull in the domain D(M). Conformal invariance of the growing
random compacts KM

t requires that

law
(

1
c

KcM
c2t : t ≥ 0

)
= law(KM

t : t ≥ 0). (40)

Let wM
t = gM

t (γt), where γt is the tip of the curve generating KM
t . Then (40) implies

law
(

1
c

wcM
c2t ,

1
c

McM
c2t : t ≥ 0

)
= law(wM

t , MM
t : t ≥ 0),

where the superscript M indicates that M0 = M. Thus, the moduli diffusion (wt, Mt)

also satisfies Brownian scaling. As in the one dimensional (simply connected) case,
this implies that the coefficient of the martingale part of the stochastic differential
equation is homogeneous of degree zero, and the drift coefficients all homogeneous
of degree minus one. The drift coefficients of dMt are given in (30) and we check
immediately that they are indeed homogeneous of degree minus one. On the other
hand, a homogeneous function of degree zero, which is a function of more than one
variable does not have to be constant. Constancy of the martingale coefficient now is
a property in addition to conformal invariance and the Markovian-type property.

One reasonable property to ask for is that the law of the random curve γ , at least
until it hits one of the interior boundary components, be absolutely continuous with
respect to an SLE-type curve in the corresponding simply connected domain obtained
by filling the holes. This is reasonable on heuristic grounds, as SLE curves should occur
as scaling limits of 2-dimensional discrete models, whose local behavior should not
be affected by the topology of the domain. If we make this assumption of absolute
continuity, then the driving functions will have to be absolutely continuous as well.
As SLE-type driving functions in simply connected domains have constant diffusion
coefficient, see above, it follows from the Girsanov’s theorem that the diffusion coeffi-
cient in the multiply connected case is constant as well. More precisely, we have the
following.

Proposition 5.1 Let (ξ , M) �→ A(ξ , M), (ξ , M) �→ B(ξ , M) be smooth and homoge-
neous of degree 0 and -1, respectively, and let (ξ(t), M(t)) be the diffusion which solves

dξ(t) = A(ξ(t), M(t)) dB(t) + B(ξ(t), M(t)) dt

and (30), where B(t) is a standard Brownian motion. Denote gt the solution to the
chordal Loewner equation (18) in the chordal standard domain D defined on [0, tξ )
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(cf. Theorem 4.1), and Kt its hull in D. Denote ft the unique conformal equivalence
from H\Kt onto H, such that limz→∞ ft(z) − z = 0. Then ht ≡ ft ◦ g−1

t is smooth at
z = ξ(t), and if W(t) = ht(ξ(t)), then, on t < tξ ,

dW(t) = h′
t(ξ(t))A(ξ(t), M(t))dB(t) + A2(ξ(t), M(t)) − 6

2
h′′

t (ξ(t))dt

+h′
t(ξ(t))[B(ξ(t), M(t)) + kt(ξ(t))]dt. (41)

Proof Kt is parametrized by half-plane capacity in D and not in H. However, it is well
known that ∂tft(z) = 2h′

t(ξ(t))2/(ft(z) − W(t)). Thus

∂tht(z) = (∂tft)(g
−1
t (z)) + f ′

t (g
−1
t (z))∂tg

−1
t (z)

= 2[h′
t(ξ(t))]2

ht(z) − ht(ξ(t))
+ h′

t(z)
t(z, ξ(t)). (42)

If kt is defined via 
t as in (44), then

lim
z→ξ(t)

∂tht(z) = lim
z→ξ(t)

[
2[h′

t(ξ(t))]2

ht(z) − ht(ξ(t))
− 2h′

t(z)

z − ξ(t)

]
+ h′

t(ξ(t))kt(ξ(t))

= −3h′′
t (ξ(t)) + h′

t(ξ(t))kt(ξ(t)),

and (41) follows from an appropriate version of Itô’s formula. ��
A similar calculation will lead to the locality property discussed in the final section.

Corollary 5.1 For there to exist two increasing sequences of stopping times {Tn}, {Sn},
such that

• almost surely, as n → ∞, Tn increases to tξ ;
• almost surely, as n → ∞, Sn increases to the exit time of D by a chordal SLE in H;
• for every n, the law of {Kt : t < Tn} is absolutely continuous with respect to a

progressively measurable time change of chordal SLE in H stopped at Sn;

it is necessary and sufficient that A2(ξ , M) ≡ κ for some κ ≥ 0.

Proof We will only show necessity. Denote Ks a parametrization of Kt by half-plane
capacity. Then ds = [h′(ξ(t))]2dt, and, under this time-change, (41) becomes

dW(s) = A(ξ(s), M(s))dB(s) + A2(ξ(s), M(s)) − 6
2

· h′′
s (ξ(s))

[h′(ξ(s))]2 ds

+B(ξ(s), M(s)) + ks(ξ(s))
h′(ξ(s))

ds. (43)

Assume now that {Tn} and {Sn} are sequences of stopping times with the properties as
stated in the corollary. Then Sn = ∫ Tn

0 [h′
t(ξ(t))]2dt. Without loss of generality, we may

assume that the coefficients of the stochastic differential equation (43) are bounded
on [0, Sn] for each n. By Girsanov’s theorem, {W(s), s < Sn} is absolutely continuous
with respect to {W̃(s), s < Sn} satisfying dW̃(s) = A(ξ(s), M(s))dB(s), which in turn is
absolutely continuous with respect to a multiple of a stopped 1-dimensional standard
Brownian motion if and only if A2(ξ , M) ≡ κ for some κ ≥ 0. Finally, the map which
associates to a continuous path t �→ ξ(t) the solution t �→ ft of the chordal Loewner
equation is continuous if both spaces are equipped with the topology of uniform con-
vergence on compacts, [3]. Thus the absolute continuity of the law of the hull Ks with
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respect to the hull of a chordal Loewner evolution in H is equivalent to the absolute
continuity of the laws of the driving functions. ��

In the following sections we will focus on the case of constant diffusion coefficient.

5.3 Moduli diffusion and interactions with the boundary

For the purposes of this subsection a different normalization of mappings on standard
domains is useful. We will change the normalization of the maps gt by changing the
vector field in the chordal Loewner equation (18). For a chordal standard domain D
and w ∈ R, define the real function k(w) by

k(w) = lim
z→w

(

(z, w) + 2

z − w

)
, (44)

and the conformal map 
0(z) = 
0(z, w) by


(z, w) = 
0(z, w) + k(w).

Then 
0(z, w) = 
0
D(z, w) is the unique conformal map from D onto the upper

half-plane with a finite number of horizontal slits which sends w to ∞ and satisfies

lim
z→w

(

0(z, w) + 2

z − w

)
= 0.

Consider the modified chordal Loewner equation

∂tg0
t (z) = −
0(g0

t (z), ξ0(t)), g0
0(z) = z. (45)

This is the normalization used in [29]. Geometrically, this normalization means that
if g0 removes a small vertical slit from the boundary of the upper half-plane, then the
images of the two sides of this slit under g0 have the same length up to first order,
see [5].

Let κ be a positive real number and A = Aκ (w, M) a function homogeneous of
degree minus one in the variables w ∈ R, and M in an open subset of R

3n−3. Consider
the system of stochastic differential equations

dξ(t) = √
κdBt + Aκ (ξ(t), Mt) dt,

dyj(t) = �
(

0

t
(
xj(t) + iyj(t), ξ(t)

))
,

dxj(t) = �
(

0

t
(
xj(t) + iyj(t), ξ(t)

))
,

dx′
j(t) = �

(

0

t

(
x′

j(t) + iyj(t), ξ(t)
))

, j = 1, . . . , n − 1, (46)

where Mt = (y1(t), . . . , yn−1(t), x1(t), . . . , xn−1(t), x′
1(t), . . . , x′

n−1(t)). In particular, we
assume that the coefficient of the martingale part is constant. If A is Lipschitz, this sys-
tem has a unique solution. Then we can solve the modified chordal Loewner equation
(45) for (ξ(t), Mt). Denote Kt the random compact such that g0

t maps the complement
of Kt in D conformally onto the standard domain Dt.

We can interpret the term A as an interaction of the random growing compact set
Kt with the boundary components, and it may be possible to choose A so that the
set Kt will avoid these interior boundary components. A similar situation arises for
SLEκ ,ρ , see [10]. In that case, a random growing compact set in a simply connected
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domain interacts with a finite number n of boundary points, the interaction strength
at point j being given by a real constant ρj. Then the driving function for the chordal
Loewner equation is given by the diffusion

dν(t) = √
κdBt +

n∑
j=1

ρj

ν(t) − Zj(t)
dt

dZj(t) = 2
Zj(t) − ν(t)

dt, j = 1, . . . , n, (47)

a system with drift coefficients homogeneous of degree minus one similar to (46).
There are many possible candidates for the homogeneous function A(w, M). If it

is to be a domain functional of the domain D = D(M), then natural candidates arise
from derivatives of the Green function. Indeed, if G(z, w, M) is the Green function
for the domain D = D(M) and c > 0, then

G(z, w, M) = G(cz, cw, cM)

by conformal invariance and so

∂k
z ∂ l

wG(z, w, M)

∂m
z ∂n

wG(z, w, M)

is homogeneous of degree minus one whenever

k + l = m + n + 1, k, l, m, n ∈ N.

The “harmonic random Loewner chains” Zhan studies in his thesis, see [29], corre-
spond to the choice k = l = m = 1, n = 0. Via integration, or directly by conformal
invariance, we also see that

∂k+1
z ωj(z, M)

∂k
z ωj(z, M)

is homogeneous of degree minus one.

5.4 Chordal SLE, percolation, and locality

The case of percolation is an example where there is no interaction, that is A ≡ 0.
For the following calculation we return to the original chordal Loewner equation
(18). Then ξ in (46) has a nonzero drift coming from changing back the normaliza-
tion.Thus, to model cluster-boundaries of percolation in a multiply connected domain
D we make the ansatz

dξ(t) = −kt(ξ(t)) + √
κ dBt, (48)

where the subscript t refers to the domain Dt, kt to (44), and where M(t) satisfies (30).
This choice of drift reflects that the exploration process for percolation is as likely

to turn right as it is to turn left. Other discrete models lead to different drifts. In this
section we show that the ansatz (48) leads to random growing compacts satisfying the
locality property if κ = 6.

Denote {gE
t , t ≥ 0} the solution of the chordal Loewner equation in a standard

domain E starting at z = 0 for the diffusion (48). Denote {Kt, t ≥ 0} the associated
growing compacts. Let A be a hull in E that does not contain zero. For the following
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calculations we restrict to the event {t < τ }, where τ := inf{t : Kt ∩ A �= ∅}. Let �A be
the canonical mapping from E\A, g∗

t the canonical mapping from �A(E\(A ∪ Kt)),
and ht the canonical mapping from gt(E\(A ∪ Kt)). Since the canonical mapping for
E\(A ∪ Kt) is unique, we have

ht ◦ gt = g∗
t ◦ �A. (49)

Furthermore, up to a time change, the family {g∗
t } also satisfies a chordal Loewner

equation beginning with the standard domain E∗ := �A(E\A). In fact, reasoning as
in [5], it follows that

∂tg∗
t (z) = −|h′

t(ξ(t))|2
∗
t (ξ∗(t), w∗

t ), (50)

where w∗
t = g∗

t (z), and ξ∗(t) = ht(ξ(t)). The question we are interested in is whether
(ξ∗, M∗) is a time change of (ξ , M). Since ht = g∗

t ◦ �A ◦ g−1
t , we have

∂tht(z) = [
∂tg∗

t
]
(�A(g−1

t (z))) + (g∗
t ◦ �A)′(g−1

t (z))(∂tg
−1
t (z)), (51)

and we note that
∂tg

−1
t (z) = (g−1

t )′(z)
t(ξ(t), z). (52)

Then (51),(50), and (52) imply

∂tht(z) = −h′
t(ξ(t))2
∗

t (ξ∗(t), ht(z)) + h′
t(z)
t(ξ(t), z). (53)

Hence the stochastic differential

∂tht(z) dt + h′
t(ξ(t)) dξ(t)

has martingale part h′
t(ξ(t))

√
κ dBt and its drift part can be grouped into the three

components

I : = −h′
t(ξ(t))2[
∗

t (ξ∗(t), ht(z)) − k∗
t (ξ

∗(t))] dt

+h′
t(z)[
t(ξ(t), z) − kt(ξ(t))] dt,

(54)
II : = −h′

t(ξ(t))2k∗
t (ξ

∗(t)) dt,

III : = −[h′
t(ξ(t)) − h′

t(z)]kt(ξ(t)) dt.

When z → ξ(t), then part III converges to zero, and part II, together with the mar-
tingale part, converges to a time-change of (48) starting at E∗. Finally, for part I, by
the definition of k(ξ ; t) a double application of l’Hôpital’s rule gives

lim
z→ξ

(
2h′(ξ)2

h(z) − h(ξ)
− 2h′(z)

z − ξ

)
= −3h′′(ξ). (55)

Thus, by Itô’s formula,

dht(ξ(t)) = −h′
t(ξ(t))2k∗

t (ξ
∗(t)) dt + κ − 6

2
h′′

t (ξ(t)) dt + h′
t(ξ(t))

√
κ dBt, (56)

which is indeed a time-change of (48) if and only if κ = 6. From (50) it follows imme-
diately that the equations for M∗ are given by the same time change of the equations
for M.

Theorem 5.1 (Chordal SLE6) The solution to the chordal Loewner equation based on
the diffusion (48) satisfies the locality property if and only if κ = 6.



264 R. O. Bauer, R. M. Friedrich

Remark 5.1 The ansatz with constant diffusion coefficient is the only one which will
lead to locality. Indeed, if we replace

√
κ by a smooth (C2 is sufficient) homogeneous

function of degree zero (ξ , M) �→ A(ξ , M), then (56) becomes

dht(ξ(t)) = −h′
t(ξ(t))2k∗

t (ξ
∗(t)) dt + h′

t(ξ(t))A(ξ(t), M(t)) dBt

+A2(ξ(t), M(t)) − 6
2

h′′
t (ξ(t))dt, (57)

which is a time-change of the original motion if and only if A(ξ , M) ≡ ±√
6.
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