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Abstract Recently Ozsváth and Szabó defined an invariant of contact structures
with values in the Heegaard-Floer homology groups. They also proved that a version
of the invariant with twisted coefficients is non trivial for weakly symplectically
fillable contact structures. In this article we show that their non vanishing result
does not hold in general for the contact invariant with untwisted coefficients. As
a consequence of this fact Heegaard-Floer theory can distinguish between weakly
and strongly symplectically fillable contact structures.

1 Introduction

Recently Ozsváth and Szabó showed how to associate to any contact manifold
(Y, ξ) an isotopy invariant c(ξ) ∈ Ĥ F(−Y )/±1 in the Heegaard-Floer homology
of −Y reduced modulo ±1. They also proved that c(ξ) = 0 if ξ is an overtwisted
contact structure, and c(ξ) is a primitive element of Ĥ F(−Y )/ ± 1 if ξ is Stein
fillable, [18]. One can get rid of the sign indeterminacy in the definition of c(ξ) by
working with the Heegaard–Floer homology with coefficients in Z/2Z. This is the
choice we will do throughout this article. The Ozsváth-Szabó contact invariant has
already been useful in proving tightness of contact structures which resisted to all
previously known techniques: see for example [17,16,15]

In this article we study the relation between the Ozsváth-Szabó contact invariant
and the symplectic fillability of contact structures. There are two different notions
of symplectic fillability. A contact manifold (Y, ξ) is said to be weakly symplecti-
cally fillable if Y oriented by ξ is the oriented boundary of a symplectic 4-manifold
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(X, ω) such that ω|ξ > 0. A contact manifold (Y, ξ) is said to be strongly symplec-
tically fillable if ξ is the kernel of a 1-form α such that dα = ω|Y . Strong fillability
implies weak fillability, but the converse is not true. The first example of a weakly
but not strongly fillable contact manifold was discovered on T 3 by Eliashberg [2],
and more examples were constructed by Ding and Geiges [1] on torus bundles over
S1 building on Eliashberg’s.

We will construct infinitely many weakly fillable contact structures whose con-
tact invariant is trivial. These are the first examples of tight contact structures with
vanishing Ozsváth–Szabó invariant over Z/2Z. More precisely, let

M0 = T 2 × [0, 1]/(v, 1) = (Av, 0)

be the mapping torus of the map A : T 2 → T 2 induced by the matrix

(
1 1

−1 0

)
.

Giroux constructed a family of weakly symplectically fillable contact structures
ξn on M0 for n ∈ N+ as follows. Put coordinates (x, y, t) on T 2 × R and fix a
function φ : R → R. For any n > 0 the 1-form

αn = sin(φ(t))dx + cos(φ(t))dy

on T 2 × R defines a contact structure ξn on M0 provided that

(1) φ′(t) > 0 for any t ∈ R

(2) αn is invariant under the action (v, t) �→ (Av, t − 1)
(3) (2n − 1)π � sup

t∈R

(φ(t + 1) − φ(t)) < 2nπ .

The main result of this article is the following theorem.

Theorem 1.1 If n is even, then the Ozsváth–Szabó contact invariant c(ξn) is trivial.

Theorem 1.1 should be contrasted with a recent non vanishing result for the con-
tact invariant with twisted coefficients proved by Ozsváth and Szabó. Associated
to any module A over the group ring Z[H1(M, Z)] of H1(M, Z) there is a Heeg-
aard–Floer homology group “with twisted coefficients” Ĥ F(M; A). The ordinary
“untwisted” Heegaard–Floer group is a particular case of this construction with
A = Z/2Z. See [19], Section 8. In this setting the contact invariant c(ξ) can be
generalised to an invariant c(ξ ; A) with values in Ĥ F(−M; A)/Z[H1(M, Z)]×,
where Z[H1(M, Z)]× denotes the multiplicative group of the invertible elements
in Z[H1(M, Z)].

Let (W, ω) be a weak symplectic filling of the contact manifold (M, ξ). Fol-
lowing [23], we define a Z[H1(M, Z)]-module structure on Z[R] via the ring
homomorphism H1(M, Z) → Z[R] defined as

γ �→ T
∫

M γ∧ω

where T r denotes the group-ring element associated to the real number r . The
Heegaard-Floer homology group with twisted coefficients in the module Z[R] will
be denoted by H F(M; [ω]). The contact invariant with twisted coefficients of
weakly symplectically fillable contact structures satisfies the following non van-
ishing theorem.
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Theorem 1.2 ([23], Theorem 4.2) Let (W, ω) be a weak symplectic filling of
(M, ξ). Then the associated contact invariant c(ξ, [ω]) ∈ Ĥ F(M; [ω])/
Z[H1(M, Z)]× is non torsion and primitive.

Theorem 1.2 implies that the “untwisted” Ozsváth–Szabó invariant of a strongly
symplectically fillable contact structure is non trivial, therefore the contact man-
ifolds (M0, ξn) are not strongly symplectically fillable if n is even. Theorem 1.1
shows that, in general, the use of twisted coefficients in the non triviality theorem
for weakly symplectically fillable contact structures cannot be avoided, and that
the Heegaard-Floer theory is subtle enough to distinguish between weakly and
strongly symplectically fillable contact structures.

2 Contact Ozsváth–Szabó invariants

2.1 Heegaard–Floer homology

Heegaard–Floer homology is a family of topological quantum field theories for
Spinc three–manifolds introduced by Ozsváth and Szabó in [20,19,21]. They
associate Z/2Z–graded Abelian groups Ĥ F(Y, t), H F∞(Y, t), H F−(Y, t), and
H F+(Y, t) to any closed oriented Spinc 3–manifold (Y, t), and homomorphisms

F◦
W,s : H F◦(M, t1) → H F◦(M, t2)

to any oriented Spinc cobordism (W, s) between two Spinc manifolds (M, t1)

and (M, t2). Here H F◦ denotes any of the four functors Ĥ F , H F+, H F−, and
H F∞. We write H F◦(Y ) for the direct sum

⊕
t∈Spinc(Y )

H F◦(Y ) and F◦
W for the sum

∑
s∈Spinc(W )

F◦
W,s. F◦

W is a well defined map because F◦
W,s �= 0 only for finitely many

Spinc–structures on W . The homomorphisms between Heegaard–Floer homology
groups satisfy the following composition rule.

Theorem 2.1 ([21], Theorem 3.4) Let (W1, s1) be a Spinc–cobordism between
(Y1, t1) and (Y2, t2), and let (W2, s2) be a Spinc–cobordism between (Y2, t2) and
(Y3, t3). Denote by W the cobordism between Y1 and Y2 obtained by gluing W1
and W2 along Y2. Then

F◦
W2,s2

◦ F◦
W1,s1

=
∑

s ∈ Spinc(W )
s|Wi = si

F◦
W,s.

The groups H F◦(Y, t) are linked to each other by the exact triangles
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H F−(Y, t) �� H F∞(Y, t) �� H F+(Y, t)
��������

�� (1)

Ĥ F(Y, t) �� H F+(Y, t) �� H F+(Y, t)
��������

�� (2)

These exact triangles are natural, in the sense that they commute with the maps
induced by cobordisms.

The Heegaard-Floer homology groups H F◦(Y, t) have a natural Z/div(t) rel-
ative grading, where div(t) is the divisibility of c1(t) in H2(Y, Z). it was shown in
[22] that, when c1(t) is a torsion element, the relative Z–grading admits a natural
lift to an absolute Q–grading. In conclusion, for a torsion Spinc–structure t on Y
the Ozsváth–Szabó homology groups H F◦(Y, t) split as

H F◦(Y, t) =
⊕
d∈Q

H F◦
d (Y, t).

When t ∈ Spinc(Y ) has torsion first Chern class, there is an isomorphism between
the homology groups Ĥ Fd(Y, t) and Ĥ F−d(−Y, t).

Proposition 2.2 (See [22], Theorem 7.1) Let (W, s) be a Spinc cobordism be-
tween two Spinc manifolds (Y1, t1) and (Y2, t2). If the Spinc structures ti have
both torsion first Chern class and x ∈ H F◦(Y1, t1) is a homogeneous element of
degree d(x), then FW,s(x) ∈ H F◦(Y2, t2) is also homogeneous of degree

d(x) + 1

4
(c2

1(s) − 3σ(W ) − 2χ(W )).

Notice that F◦
W might map a homogeneous element x ∈ H F◦

d (Y1, t1) into a
non homogeneous element F◦

W (x) ∈ H F◦(Y2).

2.2 Definition of the contact invariants.

The Ozsváth–Szabó contact invariant is defined using the correspondence between
contact structures and open book decompositions of three–manifolds recently dis-
covered by Giroux. An open book decomposition of a 3–manifold Y is a fibred link
B ⊂ Y together with a fibration π : Y \ B → S1. The link B is called the binding
of the open book decomposition and the union of a fibre of π : Y \ B → S1 with
B is called a page.

Definition 2.3 ([9], Definition 1) Let (Y, ξ) be a contact 3–manifold. An open
book decomposition (B, π) of Y is said to be adapted to ξ if:
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(1) B is transverse to ξ ,
(2) ξ is defined by a contact form α such that dα is a symplectic form on any fibre

of π ,
(3) the orientation of B induced by the contact structure coincides with the orien-

tation as boundary of the fibres of π oriented by dα.

By [9] Theorem 3 any contact structure on a three manifold admits an adapted
open book decomposition. This open book decomposition is not unique, in fact two
open book decompositions which differ by the positive plumbing of an annulus are
adapted to isotopic contact structures. See [9] Section B. After positive plumbing,
we can assume that the binding is connected and pages have genus g ≥ 2. Adding
a 2–handle along B with the framing induced by a page we form a cobordism V
between Y and Y0, where Y0 is a 3-manifold fibred over S1 with fibres of genus
g ≥ 2. On Y0 there is a canonical Spinc–structure t0 induced by the fibration.
Ĥ F(−Y0, t0) = Z/2Z ⊕ Z/2Z with the summands lying in different degrees for
the absolute Z/2Z grading, while H F+(−Y0, t0) = Z/2Z. See [18] Section 3.
We fix a distinguished element c0 ∈ Ĥ F(−Y0, t0) as the homogeneous element of
Ĥ F(−Y0, t0) which is mapped to the non zero element of H F+(−Y0, t0) by the
natural map Ĥ F(−Y0, t0) → H F+(−Y0, t0). We denote by V the cobordism V
turned upside–down, so that V is a cobordism between −Y0 and −Y .

Definition 2.4 The Ozsváth–Szabó contact invariant of a contact 3–manifold (Y, ξ)

is the element c(ξ) ∈ Ĥ F(−Y ) defined by

c(ξ) = F̂V (c0).

By [18] Theorem 1.3 c(ξ) is independent of the choice of the open book decom-
position adapted to ξ and is an isotopy invariant. The Ozsváth–Szabó contact invari-
ant is non trivial and detects important topological properties of the contact struc-
tures, in fact

Theorem 2.5 ([18], Theorem 1.4 and Theorem 1.5) If (Y, ξ) is overtwisted, than
c(ξ) = 0. If (Y, ξ) is Stein fillable, then c(ξ) �= 0.

The Ozsváth–Szabó contact invariant c(ξ) encodes the homotopy invariants of
ξ , see [18], Proposition 4.6. Any contact structure ξ on a 3–manifold Y determines
a Spinc–structure tξ on Y , then c(ξ) ∈ Ĥ F(−Y, tξ ). If the first Chern class of
ξ is torsion, by [10] Theorem 4.16 the homotopy type of ξ is determined by the
Spinc–structure tξ and by the Q–valued Gompf invariant d3(ξ) defined as follows.

Definition 2.6 (See [10], Definition 4.2) Let ξ be an oriented tangent plane field
on the 3–manifold Y with torsion first Chern class, and let (X, J ) be a almost
complex 4–manifold such that Y is the boundary of X and ξ = T Y ∩ J (T Y ) is
the field of complex lines in T Y . Then we define

d3 = 1

4
(c1(J )2 − 2χ(X) − 3σ(X))

where χ denote the Euler characteristic, σ the signature, and c1(J )2 is defined
because c1(ξ) = c1(J )|Y is torsion.
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By [18], Proposition 4.6, if c1(ξ) is a torsion element of H2(Y, Z), then c(ξ)

is an homogeneous element of degree −d3(ξ) − 1
2 .

Theorem 2.7 ([18], Theorem 4.2 and [17], Theorem 2.3) If the contact manifold
(Y ′, ξ ′) is obtained from the contact manifold (Y, ξ) by Legendrian surgery along a
Legendrian knot L, and W is the cobordism between Y and Y ′ obtained by adding
a 2–handle to Y ×[0, 1] along L ×{1} with framing −1 with respect to the contact
framing, then

F̂W (c(ξ ′)) = c(ξ)

where W denotes the cobordism W turned upside–down.

The space of oriented contact structures on Y has a natural involution.

Definition 2.8 For any contact structure ξ on a 3–manifold Y we denote by ξ the
contact structure on Y obtained from ξ by inverting the orientation of the planes.

This operation is compatible with the conjugation of the Spinc-structure de-
fined by the contact structure, in fact tξ = tξ . There is an isomorphism J :
H F◦(−Y, s) → H F◦(−Y, s) defined in [19], Theorem 2.4. We recall that the iso-
morphism J preserves the Z/2Z–grading of the Heegaard–Floer homology groups
and is a natural transformation in the following sense.

Proposition 2.9 ([21], Theorem 3.6) Let (W, s) be a Spinc-cobordism between
(Y1, t1) and (Y2, t2). Then the following diagram

H F◦(Y1, t1)
F◦

W,s−−−−→ H F◦(Y2, t2)
J


J

H F◦(Y1, t1)
F◦

W,s−−−−→ H F◦(Y2, t2)

commutes.

The isomorphism J commutes also with the maps in the exact triangles (1) and
(2) relating the different Heegaard–Floer homology groups.

Theorem 2.10 Let (Y, ξ) be a contact manifold, then

c(ξ) = J(c(ξ)).

Proof If (B, π) is an open book decomposition adapted to ξ , then the open book
decomposition (−B, π), where −B denotes the binding B with opposite orienta-
tion and π is the composition of π with the complex conjugation on S1, is adapted
to ξ . The pages of (−B, π) are the pages of (B, π) with opposite orientation,
so the fibration on Y0 induced by (−B, π) differs from the fibration induced by
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(B, π) for the orientation of the fibres, therefore its canonical Spinc–structure is
the conjugate of t0. The commutative diagram

Ĥ F(−Y ′
0, t0) −−−−→ H F+(−Y0, t0)

J


 J



Ĥ F(−Y ′

0, t0) −−−−→ H F+(−Y0, t0)

together with the fact that J is an isomorphism and preserves the Z/2Z–grading
of the Heegaard–Floer homology groups shows that the distinguished element of
Ĥ F(−Y ′

0, t0) is c0 = J(c0), therefore

c(ξ) = F̂V (c0) = F̂V (J(c0)) = J(F̂V (c0)) = J(c(ξ)). �

2.3 Ozsváth–Szabó contact invariants of strongly symplectically fillable contact
structures

In this section we prove a non vanishing theorem for the Ozsváth–Szabó contact
invariant of strongly symplectically fillable contact structures. This theorem can be
easily derived as a corollary of the more general non vanishing Theorem 1.2 proved
by Ozsváth and Szabó using the twisted coefficients, however it is also possible
to adapt the proof of Theorem 1.2, so that we do not need to use Heegaard-Floer
homologies with twisted coefficients. We choose this second option, but the proof
requires some more Heegaard–Floer machinery.

From the exact triangle (1) we define a fifth group H Fred(Y, t) as the kernel
of the map

H F−(Y, t) → H F∞(Y, t)

or, equivalently, as the cokernel of the map

H F∞(Y, t) → H F+(Y, t).

The group H Fred(Y, t) is always finitely generated. Let W be an oriented cobor-
dism between the 3–manifolds Y1 and Y2. An admissible cut of W ([21], Definition
8.3) is a 3–manifold N ⊂ W which divides W into two pieces W1 and W2 such that
b+

2 (Wi ) > 0 for i = 1, 2, and the connecting homomorphism δ : H1(N , Z) →
H2(W, ∂W ) of the Meyer–Vietoris sequence of the pair (W1, W2) is trivial. It is
shown in [21], Example 8.4 that an admissible cut of W always exists if b+

2 (W ) > 1.
By [21] Lemma 8.2 the maps

F∞
W1,s

: H F∞(Y1, s|Y1) → H F∞(N , s|N )

F∞
W1,s

: H F∞(N , s|N ) → H F∞(Y2, s|Y2)

vanish for any Spinc–structure s on W , therefore an easy diagram chase on the exact
triangle (1) allows us to define a “mixed” homomorphism Fmix

W,s : H F−(Y1, t1) →
H F+(Y2, t2) which factors through H Fred(N , s). By [21], Theorem 8.5 the mixed
map Fmix

W,s does not depend on the particular admissible cut used to define it.
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The mixed map can be used to define a numerical invariant of smooth four–man-
ifolds with b+

2 > 1 which is conjecturally equal to the Seiberg–Witten invariant.
If X is a closed oriented 4–manifold, after removing two balls we can view it as a
cobordism from S3 to S3. The groups H F+(S3) and H F−(S3) have distinguished
elements �+ and �− which are the non trivial elements in minimal (resp. maximal)
degree. See [19], Section 3 for the computation of the Heegaard–Floer homology
groups of S3. The four–dimensional invariant of X is the map

�X : Spinc(X) → Z/2Z

where �X (s) is defined as the coefficient of �+ in Fmix
X,s (�−).

We denote by c+(ξ) the image of c(ξ) in H F+(−Y ). Theorem 2.7 can be
refined in the following way.

Lemma 2.11 Suppose that (Y ′, ξ ′) is obtained from (Y, ξ) by Legendrian surgery
on a Legendrian link L and that (W, ω) is the symplectic cobordism from (Y, ξ) to
(Y ′, ξ ′) induced by this surgery. Then we have

F+
W ,k

(c+(ξ ′)) = c+(ξ)

for the canonical spinc-structure k associated to the symplectic structure on W ,
and

F+
W ,s

(c+(ξ ′)) = 0

for any spinc-structure s on W with s �= k.

Proof As in the proof of [17] Theorem 2.3 there exists an open book decomposition
of Y adapted to the contact structure ξ so that the surgery link lies on a page. We can
also assume that the binding is connected and the pages have genus g > 1. An open
book decomposition adapted to ξ ′ is obtained from the open book decomposition
adapted to ξ by composing the monodromy with right–handed Dehn twists along
the surgery link. Let Y0 and Y ′

0 be the 3-manifolds obtained from Y and Y ′ respec-
tively by 0-surgery on the binding, and let V , V ′ be the induced cobordisms. The
surgery on L induces cobordisms W between Y and Y ′ and W0 from Y0 to Y ′

0. Both
Y0 and Y ′

0 are surface bundles over S1, and W0 admits a Lefschetz fibration over the
annulus. Let t0 and t′0 be the Spinc-structures on Y0 and Y ′

0 respectively determined
by the fibration, and let k0 be the canonical Spinc-structure on W0 determined by
the Lefschetz fibration. By [24], Theorem 5.3,

F+
W 0,k0

: H F+(−Y ′
0, t′0) → H F+(−Y0, t0)

is an isomorphism, while the maps

F+
W 0,s

: H F+(−Y ′
0, t′) → H F+(−Y0, t)

are trivial when s �= k0.
Let W ′ be the cobordism W ′ = W0 ∪Y ′

0
V ′ = V ∪Y W from Y0 to Y ′. Since

the cobordism V ′ is obtained by adding a unique 2-handle along a homologically
non trivial curve, the restriction map H2(W ′, Z) → H2(W0, Z) is an isomor-
phism, therefore there is a unique Spinc-structure k′0 on W which extends k0. By
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the composition formula [21] Theorem 3.4 F+
W ′,k′

0
= F+

V ′ ◦ F+
W0,k0

and for any other

Spinc-structure s �= k′0 the map F+
X,s is trivial. Let s′ be the restriction of k′0 to W ,

then the diagram

H F+(−Y ′
0, t′0)

F+
W 0,k0−−−−→ H F+(−Y0, t0)

F+
V ′


 F+
V



H F+(−Y ′, tξ ′)

F+
W ,s′−−−−→ H F+(−Y, tξ )

commutes and F+
W,s = 0 for any s �= s′. To finish the proof, we have to identify s′

with k.
By [3], Theorem 1.1, the symplectic structure induced by the Lefschetz fibra-

tion on W0 extends over the 2-handle V ′, thus we obtain a symplectic structure
ω′ on W ′ with canonical Spinc-structure k′0. The restriction of ω′ to W coincides
with the symplectic structure on W induced by the Legendrian surgery, therefore
s′ = k. �

We have stated Lemma 2.11 in the form in which we are going to use it, however
it can be proved in the same way for the stronger contact invariant in Ĥ F(−Y )
with integer coefficients.

Lemma 2.12 Let (Y, ξ) be a contact manifold, then there exists a concave sym-
plectic filling (W ′, ωW ′) of (Y, ξ) with canonical Spinc-structure kW ′ such that
b+

2 (W ′) > 1 and

c+(ξ) = Fmix
W ′,kW ′ (�

−).

Proof Combining [6], Theorem 1.1 and [5] Lemma 3.1 there is a Stein fillable
contact manifold (Y ′, ξ ′) and a symplectic cobordism (V1, ωV1) from (Y, ξ) to
(Y ′, ξ ′) so that Y ′ is a rational homology sphere and V1 is composed by 2-han-
dles attached in a Legendrian way. By [25] Lemma 1 there is a concave filling
(V2, ωV2) of (Y ′, ξ ′) with canonical Spinc-structure kV2 such that b+

2 (V2) > 1 and
c+(ξ ′) = Fmix

V2,kV2
(�−).

Let (W ′, ωW ′) be the concave filling of (Y, ξ) obtained by gluing (V1, ωV1) and
(V2, ωV2) along (Y ′, ξ ′), and let kV1 be the canonical Spinc-structures of (V1, ωV1).
Since Y is a rational homology sphere, H2(W ′, Z) = H2(V1, Z) ⊕ H2(V2, Z)
therefore there exists a unique Spinc-structure kW ′ on W ′ which restricts to kV1 on
V1 and to kV2 on V2. The composition formula [21], Theorem 3.4, together with
Lemma 2.11, yields

c+(ξ) = F+
V1,kV1

◦ Fmix
V2,kV2

(�−) = Fmix
W

′
,kW ′

(�−). �

Theorem 2.13 Let (Y, ξ) be a strongly symplectically fillable contact manifold,
then c(ξ) �= 0.
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Proof Let (W1, ω1) be a strong symplectic filling of (Y, ξ), and let (W2, ω2) be
the concave symplectic filling considered in Lemma 2.12. Gluing (W1, ω1) and
(W2, ω2) we obtain a closed symplectic manifold (X, ω) with b+

2 (X) > 1. The
composition formula [21] Theorem 3.4 gives

F+
W 2,kW2

(c+(ξ)) = F+
W 2,kW2

◦ Fmix
W 1,kW1

(�−)

=
∑

s ∈ Spinc(X)
s|Wi = kWi

Fmix
X,s (�−) =

∑
s ∈ Spinc(X)
s|Wi = kWi

�X (s).

One of the Spinc–structures in the sum is the canonical one kX coming from the
symplectic structure on X . For any other Spinc–structure s in the sum we have
c1(s) − c1(kX ) ∈ δ(α(s)) for α(s) ∈ H1(Y, Z), where δ is the homomorphism
H1(Y ) → H2(X) in the Meyer–Vietoris exact sequence for the pair (W1, W2),
therefore

〈c1(s) − c1(kX ), [ω]〉X = 〈α(s), [ω|Y ]〉Y = 0

in fact ω|Y is exact because W1 is a strong filling.
By [24] Theorem 1.1 the only non zero term in the sum is �X (kX ) = 1, there-

fore F+
W 1,kW1

(c+(ξ)) = �+ which implies that c+(ξ) �= 0 . In turn, this implies

that c(ξ) �= 0. �
Remark 2.14 Actually the proof of Theorem 2.13 proves the stronger fact that,
if we see (W1, ω1) as a symplectic cobordism between the standard (S3, ξ0) and
(Y, ξ), then

F+
W 1,kW1

(c(ξ)) = c(ξ0)

for the canonical Spinc–structure of (W1, ω1) and

F+
W 1,s

(c(ξ)) = 0

for any other Spinc–structure on (W1, ω1) with

〈c1(s), [ω1]〉W1 = 〈c1(kW1), [ω1]〉W1 .

3 Weakly fillable contact structures with trivial untwisted Z/2Z

Ozsváth-Szabó contact invariant

3.1 Tight contact structures on M0

Let M0 be the T 2-bundle over S1 with monodromy map A : T 2 ×{1} → T 2 ×{0}
given by A =

(
1 1

−1 0

)
.

Put coordinates (x, y, t) on T 2 × R and fix a function φ : R → R. For any
n > 0 the 1-form

αn = sin(φ(t))dx + cos(φ(t))dy

on T 2 × R defines a contact structure ξn on M0 provided that
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(1) φ′(t) > 0 for any t ∈ R

(2) αn is invariant under the action (v, t) �→ (Av, t − 1)
(3) (2n − 1)π � sup

t∈R

(φ(t + 1) − φ(t)) < 2nπ

The main results about this family of contact structures are the following.

Theorem 3.1 ([8], Proposition 2 and Theorem 6) The contact structures ξn do
not depend on the function φ up to isotopy, and are all universally tight and distinct.

Theorem 3.2 ([11], Theorem 0.1) The tight contact structures ξn are the only
tight contact structures on M0 up to isotopy.

Theorem 3.3 ([1], Theorem 1) For any n ∈ N, ξn is weakly symplectically fillable.
There is a number n0 such that, for any n > n0, ξn is not strongly symplectically
fillable.

The fibration on M0 admits a transverse 1–dimensional foliation induced by
the foliation by segments on T 2 ×[0, 1]. Let F be the image of {0}× [0, 1] in M0,
then F is Legendrian with respect to the contact structure ξn for all n.

The manifold M0 has a presentation as 0-surgery on the right-handed trefoil
knot K , in fact the complement of K in S3 fibres over S1 with fibre the holed torus

and the monodromy acts on the homology of the fibre as A =
(

1 1
−1 0

)
for some

choice of coordinates in the fibre. Moreover the identification between M0 and the
0–surgery on K can be chosen so that the complement of a tubular neighbour-
hood of K in S3 is mapped diffeomorphically into the complement of a tubular
neighbourhood of F in M0 and the meridian of K is mapped to a longitude of F .

We perform a change of coordinates in a neighbourhood of F to determine
what longitude of F corresponds to the meridian of K and to compute the twisting
number of ξn along F induced by this longitude.

Lemma 3.4 Let R =
(

1
2

√
3

2

−
√

3
2

1
2

)
be the rotation by angle −π

3 . Then A is conju-

gate to R in GL+(2, R).

Proof A and R are conjugated in GL(2, C) because they have the same character-
istic polynomial with distinct roots, therefore they are conjugate also in GL(2, R)
because they are both real. Let B ∈ GL(2, R) be a matrix such that B AB−1 = R.
For any x ∈ R2 \{0} we have x ∧ Ax �= 0 because A has no real eigenvalues, there-
fore, after identifying

∧2
R2 to R using the canonical basis, x ∧ Ax has constant

sign as a function R2 → R. A direct computation at x = (0
1

)
shows that x ∧ Ax is

negative. For the same reason, x ∧ Rx is also negative, therefore det B > 0 because
x ∧ Rx = B−1 Bx ∧ B−1 ABx = (det B)−1 Bx ∧ ABx . �
Lemma 3.5 The twisting number of ξn along the Legendrian curve F is
tn(F, ξn) = −n

Proof Let U be a small A-invariant neighbourhood of (0, 0) in T 2 = R2/Z2 so
that

V = U × [0, 1]/(v, 1) = (Av, 0)
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Fig. 1 The boundary of V . The inner circle is glued to the outer one after a rotation of −π
3 . The

dotted line closes to a longitude of V , the radial lines close to a leaf of the transverse foliation
and the bold line closes to a dividing curve for ξ0

is a standard neighbourhood of F . Then B−1 is defined on U and U0 = B−1(U ) is a
R-invariant neighbourhood of (0, 0), i. e. a disc centred in (0, 0). In the coordinates
(x ′, y′, t) of U0 × R the 1-form αn can be written as

αn = sin(2π(n + 5

6
)t)dx ′ + cos(2π(n + 5

6
)t)dy′.

By Lemma 3.4 the leaves of the transverse foliation in the boundary of the neigh-
bourhood of K have slope − 1

6 , therefore they intersect the meridian of K once. If
we put coordinates (θ, t) on ∂U0 × I , then the longitude of F corresponding to
the meridian of K is the image in ∂V of the arc t �→ (eit π

3 , t) (the dotted curve
in Figure 1) because it intersect the leaves of the transverse foliation only once.

A dividing curve of ξn is isotopic to the image of the arc t �→ (e−2π(n+ 5
6 )t , t)

therefore the twisting number of ξn along F , which is the algebraic intersection of
a dividing curve with the longitude, is −n. Figure 1 shows what happens for n = 1.

Lemma 3.6 If L ⊂ M0 is a Legendrian curve which is smoothly isotopic to F,
then tn(L , ξn) � tn(F, ξn).

Proof Since A6 = I , M0 has a six-fold cover with total space T 3 induced by a
cover of S1. Let F̂3 and L̂ ⊂ T 3 be the pre-images of F and L respectively. By
[12], Theorem 7.6, F̂3 maximises the twisting number in its smooth isotopy class.
The lemma follows from the obvious monotonicity of the twisting number under
finite coverings. �

Since the right-handed trefoil can be put in Legendrian form with Thurston-
Bennequin invariant 1, this surgery presentation yields a Stein fillable contact
structure on M0.
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Proposition 3.7 The Stein fillable contact structure on M0 described by the pre-
sentation of M as 0-surgery on the right-handed trefoil knot K is ξ1.

Proof By Theorem 3.2, the Stein fillable contact structure on Mo is isotopic to ξk
for some k ∈ N.

It is easy to make the meridian of K Legendrian with Thurston–Bennequin
invariant −1 in the standard tight contact structure of S3, therefore tn(F, ξk) ≥ −1
because the image of the meridian of K is isotopic to F as a framed knot in M0.
By Lemma 3.5 and Lemma 3.6 this is possible only if k = 1. �

3.2 Tight contact structures on −�(2, 3, 6n + 5)

The manifold −�(2, 3, 6n + 5) is obtained from M0 by −(n + 1)–surgery on F .
For any n ∈ N and n ≥ 2 we define P∗

n = {−n + 1,−n + 3, . . . , n − 3, n − 1}.
If n is even, then 0 /∈ P∗

n and we define Pn = P∗
n ∪ {0}. In the following we will

always consider n even, although some of the facts that we are going to prove are
true for any n.

Let S+ and S− denote the operations of positive and negative stabilisation
defined, for example, in [4], Section 2.7. Given i ∈ P∗

n , denote the contact struc-
ture on −�(2, 3, 6n + 5) obtained by Legendrian surgery on (M0, ξ1) along the
Legendrian knot S(n−1+i)/2

+ S(n−1−i)/2
− (F) by ηi . We denote the tight contact struc-

ture on −�(2, 3, 6n + 5) obtained by Legendrian surgery on (M0, ξn) along F by
η0.

The contact manifolds (−�(2, 3, 6n + 5), ηi ) for i ∈ P∗
n are the Stein fillable

contact manifolds considered in [13], in fact (M0, ξ1) is the Stein fillable contact
manifold obtained by Legendrian surgery on a positive trefoil knot in S3 with
Thurston-Bennequin invariant 0 by Proposition 3.7, and performing Legendrian
surgery on a stabilisation of F is equivalent to performing Legendrian surgery on
a stabilisation of a meridian of the trefoil knot.

Proposition 3.8 Let ηi be the contact structure obtained from ηi by reversing the
orientation of the contact planes. Then ηi is isotopic to η−i .

Proof For any n ∈ N+ (M0, ξn) is isotopic to (M0, ξn). The isotopy is induced
by a translation in the t direction in the cover T 2 × R, therefore it fixes F . We
denote S(n−1+i)/2

+ S(n−1−i)
− (F) thought of as a Legendrian knot in (M0, ξn) by

S(n−1+i)/2
+ S(n−1−i)/2

− (F). Since changing the orientation of the planes changes

positive stabilisations into negative ones and vice versa, S(n−1+i)/2
+ S(n−1−i)/2

− (F)

is Legendrian isotopic to S(n−1−i)/2
+ S(n−1+i)/2

− (F), therefore inverting the orien-

tation of the planes transforms Legendrian surgery on S(n−1+i)/2
+ S(n−1−i)

− (F) into

Legendrian surgery on S(n−1−i)/2
+ S(n−1+i)/2

− (F). �
Theorem 3.9 The contact structures ηi on −�(2, 3, 6n + 5), with i ∈ Pn, are all
pairwise non isotopic.

Proof By [13], Theorem 4.2, and [14], Corollary 4.2, the contact structures ηi with
i ∈ P∗

n are pairwise non isotopic. In particular, since we are considering n even, ηi
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is never isotopic to η−i if i ∈ P∗
n because 0 /∈ P∗

n . Suppose by contradiction that
η0 is isotopic to ηi for some i ∈ P∗

n . Inverting the orientation of the contact planes
and applying Proposition 3.8, we obtain that η0 is also isotopic to η−i . From this
it would follow that ηi is isotopic to η−i . �
Remark 3.10 Using methods from [7] one can prove that −�(2, 3, 17) admits at
most three tight contact structures up to isotopy, therefore Proposition 3.8 gives
the classification of the tight contact structures on −�(2, 3, 17).

3.3 Computation of the homotopy invariants

In this subsection we will compute the Gompf’s three-dimensional homotopy
invariant d3(ηi ). This computation will show that all ηi are homotopic and therefore
all their Ozsváth–Szabó contact invariants belong to the same factor of Ĥ F(−M).

By [10], Theorem 4.5 (for an easy proof of this theorem for integer homology
spheres see also [13], Proposition 2.2), ηi1 is homotopic to ηi2 as a plane field if
and only if d3(ηi1) = d3(ηi2), where

d3(ηi ) = 1

4
(c2

1(Ji ) − 2χ(Xi ) − 3σ(Xi ))

and (Xi , Ji ) is an almost complex manifold such that ∂ Xi = M and ηi = T M ∩
J (T M).

As almost complex manifold for the computation of d3(ηi ) we will take sym-
plectic fillings of (M, ηi ) endowed with an adapted almost complex structure. More
precisely, let (X0, ω) be the weak symplectic filling of (M0, ξn) for any n ∈ N con-
structed in [1] Proposition 15. If T ⊂ M0 is a fibre of the torus bundle M0 → S1,
then we can assume that

∫
T ω = 1. In the setting of symplectic fillings Legen-

drian surgery corresponds to adding symplectic 2–handles, so adding symplectic
2-handles to (X0, ω) as explained in the definition of (M, ηi ), we obtain symplec-
tic manifolds (X, ωi ) which fill (M, ηi ) for i ∈ Pn . We choose almost complex
structures Ji adapted to ωi so that the contact structure ηi is Ji –invariant for any
i ∈ Pn , all Ji coincide on X0 and the fibre T in M0 = ∂ X0 are quasi-complex
submanifolds.

In M0, the homology class represented by F is Poincaré dual of [ω0|M0 ], be-
cause F ·T = 1 = ∫

T ω0 and [T ] generates H2(M0), therefore F bounds a surface
� ⊂ X0 which represents the Poincaré dual of [ω]. Applying the homology long ex-
act sequence to the pair (X, X0) we obtain H2(X) = H2(X0)⊕Z[�], where � ⊂ X
is the surface obtained by capping � with the core of the 2-handle attached along
F3. Analogously, the cohomology exact sequence yields H2(X) ∼= H2(X0) ⊕ Z,
where the isomorphism is given by α �→ (ι∗α, 〈α, [�]〉).
Lemma 3.11 Let α ∈ H2(X) be the 2-dimensional cohomology class determined
by ι∗(α) = 0 and 〈α, [�]〉 = 1. Then, up to torsion, α is the Poincaré dual of
[T ] ∈ H2(X) ∼= H2(X, ∂ X).

Proof Any 2-dimensional homology class can be represented as a closed, ori-
ented embedded surface. Let K be a surface representing a homology class in
H2(X0), then K · T = 0 because K can be made disjoint from ∂ X0 = M0 and
〈α, [K ]〉 = 〈ι∗α, [K ]〉 = 0. On the other hand, � · T = F · T = 1 = 〈α, [�]〉. �
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Theorem 3.12 The contact structures ηi with i ∈ Pn are pairwise homotopic and
d3(ηi ) = − 3

2 .

Proof To prove that the contact structures are homotopic we will show that they
have the same three dimensional invariant d3. Since in the computation of d3(ηi )
we use the almost complex manifolds (X, Ji ) which are smoothly diffeomorphic,
it is enough to prove that c2

1(Ji ) does not depend on i . Given i1, i2 ∈ Pn we can
decompose

c2
1(Ji1) − c2

1(Ji2) = 〈(c1(Ji1) + c1(Ji2)), P D(c1(Ji1) − c1(Ji2))〉.
By the functoriality of the Chern classes for any i ∈ Pn we have ι∗(c1(Ji )) =
c1(Ji |X0), then ι∗(c1(Ji1)− c1(Ji2)) = 0, because all Ji agree on X0. Lemma 3.11
implies that P D(c1(Ji1) − c1(Ji2)) is a multiple of [T ]. Since T is a complex sub-
manifold of (X, Ji ), the adjunction equality gives 〈c1(Ji ), [T ]〉 = χ(T )+T ·T = 0,
then c2

1(Ji1) − c2
1(Ji2) = 0.

d3(ηi ) can be computed for any of the Stein fillable contact structures ηi with
i ∈ P∗

n using the Stein filling (W, Ji ) described in [13], Figure 2. One can imme-
diately check that c2

1(Ji ) = 0, χ(W ) = 3 and σ(W ) = 0. �
We stress the point that the Stein manifolds (W, Ji ) used to compute d3(ηi ) are
different from the almost complex manifolds (X, Ji ) used in the first part of The-
orem 3.12 to show that all ηi are homotopic.

3.4 Computation of the Ozsváth-Szabó invariants

In [22], Section 8, H F+(�(2, 3, 6n + 5)) is computed. Applying the long ex-
act sequence relating H F+ and Ĥ F and the isomorphism between Ĥ Fd(Y ) and
Ĥ F−d(−Y ) it is easy to show that Ĥ F(−�(2, 3, 6n + 5)) = (Z/2Z)n+1

(+2) ⊕
(Z/2Z)2

(+1). The degree of c(ξ) is +1 because d3(ηi ) = − 3
2 . By [25], Section 4

Ĥ F (+1)(−�(2, 3, 6n + 5)) is freely generated by the elements c(ηi ) for i ∈ P∗
n .

Proof of Theorem 1.1. The fix space Fix(J) ⊂ Ĥ F (+1)(−�(2, 3, 6n + 5)) is gen-
erated by elements of the form c(ηi ) + c(η−i ) for i ∈ P∗

n . Let W be the smooth
cobordism between M0 and −�(2, 3, 6n + 5) constructed by attaching a 2-handle
to M0 along F , then by [18], Theorem 4.2

F̂W (c(ηi ) + c(η−i )) = F̂W (c(ηi )) + F̂W (c(η−i )) = 2c(ξ1) = 0.

Consequently Fix(J) ⊂ ker F̂W , in particular

c(ξn) = F̂W (η0) = 0

because c(η0) ∈ Fix(J) by Proposition 3.8 and Theorem 2.10. �
In view of Theorem 2.13 we have the following corollary.

Corollary 3.13 The contact manifolds (M0, ξn) are not strongly symplectically
fillable if n is even.

This is a new non fillability result, because the integer n0 in Theorem 3.3 is not
given explicitly.
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4 A remark on integer coefficients

Unfortunately Theorem 1.1 does not imply that the Ozsváth–Szabó contact invari-
ants c(ξn) for n even with untwisted integer coefficients are zero, but only that they
are the double of some elements of H F+(−M0)/±1. Fix an open book decompo-
sition of M0 adapted to ξn for an even n. We denote by M ′

0 the 3–manifold obtained
by 0–surgery on the binding and by M ′′

0 the 3–manifold obtained by 1–surgery on
the binding. Of course the manifolds M ′

0 and M ′′
0 depend on n. By [19], Theorem

9.1 there is a surgery exact triangle

H F+(−M ′
0)

F+
�� H F+(−M0)

��������������

H F+(−M ′′
0 )

�������������

The group H F+(−M ′
0) is generated by c+

0 , therefore if F+(c+
0 ) = c+(ξ2) �= 0,

the exact triangle becomes a short exact sequence

0 → H F+(−M ′
0) → H F+(−M0) → H F+(−M ′′

0 ) → 0

If c+(ξn) is non primitive there are torsion elements in H F+(−M ′′
0 ). Since all He-

egaard–Floer homology groups known so far are free, it is reasonable to expect that
c+(ξn) = 0 also in the Heegaard–Floer homology group with integer coefficients.
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14. Lisca, P., Matić, G.: Stein 4-manifolds with boundary and contact structures. Topology Appl.
88 (1–2), 55–66 (1998)

15. Lisca, P., Stipsicz, A.: Ozsváth-Szabó invariants and tight contact three-manifolds, II.
Arxiv:math.SG/0404136

16. Lisca, P., Stipsicz, A.: Ozsváth-Szabó invariants and tight contact three-manifolds. I. Geom.
Topol. 8, 925–945 (2004)

17. Lisca, P., Stipsicz, A.: Seifert fibered contact three-manifolds via surgery. Algebr. Geom.
Topol. 4, 199–217 (2004)

18. Ozsváth, P., Szabó, Z.: Heegaard-Floer homologies and contact structures. Duke Math. J.
129(1), 39–61 (2005)

19. Ozsváth, P., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and
applications. Ann. of Math. (2) 159(3), 1159–1245 (2004)

20. Ozsváth, P., Szabó, Z.: Holomorphic disks and topological invariants for closed three-man-
ifolds. Ann. of Math. (2) 159(3), 1027–1158 (2004)

21. Ozsváth, P., Szabó, Z.: Holomorphic triangles and invariants for smooth four-manifolds.
Arxiv:math.SG/0110169

22. Ozsváth, P., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-
manifolds with boundary. Adv. Math. 173(2) 179–261 (2003)

23. Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. Geom. Topol. 8, 311–334
(2004)

24. Ozsváth, P., Szabó, Z.: Holomorphic triangle invariants and the topology of symplectic
four-manifolds. Duke Math. J. 121(1), 1–34 (2004)

25. Plamenevskaya, O.: Contact structures with distinct Heegaard Floer invariants. Math. Res.
Lett. 11(4), 547–561 (2004)


