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Abstract We define negative K -groups for exact categories and for “derived cat-
egories” in the framework of Frobenius pairs, generalizing definitions of Bass,
Karoubi, Carter, Pedersen-Weibel and Thomason. We prove localization and van-
ishing theorems for these groups. Dévissage (for noetherian abelian categories),
additivity, and resolution hold. We show that the first negative K -group of an abe-
lian category vanishes, and that, in general, negative K -groups of a noetherian
abelian category vanish. Our methods yield an explicit non-connective delooping
of the K -theory of exact categories and chain complexes, generalizing construc-
tions of Wagoner and Pedersen-Weibel. Extending a theorem of Auslander and
Sherman, we discuss the K -theory homotopy fiber of E⊕ → E and its implications
for negative K -groups. In the appendix, we replace Waldhausen’s cylinder functor
by a slightly weaker form of non-functorial factorization which is still sufficient to
prove his approximation and fibration theorems.
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1 Introduction

In his lecture at the International Congress in Vancouver 1974, Quillen [Qui75, 7]
writes: “At the moment a theory of negative K -groups for exact categories has not
been developed.” It seems that, up to now, such a theory has not been developed.
The purpose of this article is to define negative K -groups for exact categories (or
more generally for “derived categories”) and to prove localization and vanishing
theorems for these groups. Our negative K -groups generalize definitions of Bass,
Karoubi, Pedersen-Weibel, Thomason, Carter and Yao.

To motivate the need of a theory of negative K -groups, recall that if X is a
scheme, U ⊂ X an open subscheme with complement Z , then the restriction of vec-
tor bundles from X to U induces a map of Grothendieck groups K0(X)→ K0(U )
which is not surjective, in general. For this reason, Thomason had to introduce neg-
ative K -groups for schemes in order to prove his homotopy fibration of K -theory
spectra [TT90]

K B
Z (X)→ K B(X)→ K B(U ). (1)

He did so by mimicking Bass’ definition.
It is known that negative K -groups vanish for a noetherian regular separated

scheme. However, only a few calculations are known in the non-regular case. A
conjecture of Weibel [Wei80] states that Ki (R) = 0 for i < −d and R a noetherian
ring of Krull dimension d . It has been verified for d = 0, 1, 2 [Wei01]. Hsiang
conjectured that Ki (ZG) = 0 for i < −1 and G a finitely presented group [Hsi84].
For recent progress on this conjecture, we refer the reader to [BFJR04].

Let E be an exact category and Db(E) its bounded derived category. It is known
that K0(E) = K0(Db(E)). So instead of defining negative K -groups for exact cat-
egories, we attempt to define negative K -groups for triangulated categories. We
think of negative K -groups for triangulated categories as obstruction groups in the
following sense. For an idempotent complete triangulated category A, the van-
ishing of K−1(A) is exactly the obstruction for the Verdier quotient B/A to be
idempotent complete for all full triangle embeddings A ⊂ B with B idempotent
complete (Remark 1).

Unfortunately, we can only define negative K -groups for triangulated catego-
ries “which admit models”. It is known that models are essential in the definition
of higher algebraic K -theory [Sch02]. So working with models should not be too
inconvenient.

In section 2 we explain the framework for defining negative K -groups (section
2.2). We need a category of “models” M together with some extra data including
a functor D from M to small triangulated categories. Here the word “models”
does not refer to “Quillen model categories”. The category of models could be the
category of non-unital rings, the category of small exact categories, the category
of Frobenius pairs (see below), etc.
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We define negative K -groups for objects in M (definition 2). In order to describe
our Localization Theorem (theorem 1) we define a sequence A → B → C in M
to be exact if in the sequence DA → DB → DC of triangulated categories the
composition is trivial, the first functor is fully faithful, and the induced functor
from the Verdier quotient DB/DA to DC is an equivalence (up to direct factors).
Then the Localization Theorem (theorem 1) states that an exact sequence in M
induces a long exact sequence of negative K -groups for i ≤ 0,

· · · IKi (A)→ IKi (B)→ IKi (C)
δ→ IKi−1(A)→ IKi−1(B)→ · · · (2)

The proof is a simple diagram chase. We chose an axiomatic approach to defining
negative K -groups to possibly allow non-linear models, which, however, are not
dealt with in this article.

Section 3 gives the background on triangulated categories which we need in
section 5. The results in this section are not new, and all ideas are contained in
[Nee92] and [Nee01]. Nevertheless, we give complete proofs because we don’t
know of any reference which covers exactly our situation.

In section 4 and 5 we show that we can take as a category of models M the
category of Frobenius pairs (theorem 3). Recall that a Frobenius category is an
exact category with enough injectives and projectives, and where injectives and
projectives coincide. Its stable category is a triangulated category. A Frobenius
pair is a Frobenius category together with a full Frobenius subcategory whose
projective-injective objects are also projective-injective in the ambient Frobenius
category (definition 5). We define the derived category of a Frobenius pair to
be the Verdier quotient of the associated stable categories. Any small triangu-
lated category we know of which comes from algebraic geometry, or some other
additive situation, arises as the derived category of a Frobenius pair. For exam-
ple (see section 6), any small triangulated subcategory of the derived category of
a Grothendieck abelian category, or of the derived category of modules over a
differential graded algebra, or of the derived category of an exact category, or of
the derived category of Thomason’s complicial BiWaldhausen categories [TT90],
arises as the derived category of a Frobenius pair. In particular, our definition
yields a definition of negative IK -groups and a localization exact sequence in these
situations.

Section 7 proves additivity for IKi and the fact that the functors IKi commute
with filtered colimits.

The results of sections 8, 9, 10 and 11 deal with exact categories and are
described at the end of the introduction.

Frobenius pairs can be seen as Waldhausen categories when we declare cofibra-
tions to be inflations (i.e.,admissible monomorphisms) and weak equivalences to
be maps which yield an isomorphism in the derived category. In this way, one can
attach a K -theory space to a Frobenius pair. In section 12, we provide an explicit
delooping of this K -theory space which defines a spectrum IK whose negative
homotopy groups are the groups IKi , i ≤ 0, defined in section 2 (theorem 8). This
delooping construction generalizes constructions of Wagoner [Wag72], Pedersen-
Weibel [PW89] and the author [Sch04]. An exact sequence of Frobenius pairs
induces a homotopy fibration of non-connective IK -theory spectra (theorem 9).
The long exact sequence (2) becomes the negative part of the long exact sequence
of homotopy groups of spectra associated to this homotopy fibration. The long
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exact sequence (2) is known for i ≥ 0 by the work of Thomason [TT90], at least
if the Frobenius pair has a cylinder functor. The point of this article is that the
sequence is also exact in negative degrees. We note that (1) is the homotopy fibra-
tion associated to an exact sequence of Frobenius pairs. The homotopy fibration
(theorem 9) is used in the author’s work with Hornbostel on hermitian K -theory
of rings [HS04].

Since the Waldhausen categories attached to a Frobenius pair don’t, in general,
have cylinder functors, we give a proof of Waldhausen’s fibration and approxima-
tion theorems [Wal85] and of Thomason’s cofinality theorem [TT90] where we
replace the existence of a cylinder functor by the existence of a factorization of
every map into a cofibration followed by a weak equivalence. The factorization is
not required to be functorial. This is done in the appendix.

For an exact category E , the results of the article read as follows. There are
groups IKi (E), i ≤ 0 such that IK0 is K0 of the idempotent completion of E
(remark 3). The negative K -groups of E are Bass’ groups Ki (R) when E is the
category of finitely generated projective R-modules (theorem 5). They are Tho-
mason’s groups K B

i (X) when E is the category of vector bundles of finite rank on
a quasi-compact, quasi-separated scheme X which admits an ample family of line
bundles (remark 6). Let A → B → C be a sequence of exact functors between
exact categories such that Db(A) → Db(B) → Db(C) is an “exact sequence of
triangulated categories”. Then there is an exact sequence as in (2), see remark 3. In
particular, if A→ B is such that Db(A)→ Db(B) is an equivalence, e.g.A ⊂ B
satisfies resolution, then IKi (A)→ IKi (B) is an isomorphism for i ≤ 0.

The groups IKi (E) are the negative homotopy groups of a spectrum IK (E)
whose positive homotopy groups are the Quillen K -groups of E (section 12.2).
The sequence A → B → C above induces a homotopy fibration of IK -theory
spectra yielding a long exact sequence (2) for i ∈ Z.

In section 9 we give a presentation of IK−1(E). Let D(E) be the unbounded
derived category of E as defined in [Nee90]. Then the group IK−1(E) is the quotient
of the abelian monoid of isomorphism classes of idempotents of D(E) under direct
sum operation, modulo the submonoid of those idempotents which split in D(E)
(corollary 6).

We conjecture that negative IK -groups vanish for A a small abelian cate-
gory. As evidence, we show that IK−1(A) = 0 for any small abelian category
A (theorem 6). We also show that IKi (A) = 0, i < 0, for any small noetheri-
an abelian category (theorem 7). In particular, negative G-theory for a noetherian
scheme is trivial. This also explains the fact that negative K -groups of noetheri-
an regular separated schemes vanish, as the inclusion of vector bundles of finite
rank into coherent modules is a derived equivalence. Moreover, devissage trivi-
ally holds for negative K -groups of noetherian abelian categories as these groups
vanish.

If the conjecture is true, then we have the following rather surprising conse-
quence. Write E⊕ for the split exact category, which, as an additive category, is
E . We show that the identity functor E⊕ → E induces a map IK (E⊕) → IK (E)
of spectra whose homotopy fiber is the IK -theory spectrum of an abelian category
(proposition 2, theorem 9). This generalizes a theorem of Auslander and Sher-
man [She89]. If the conjecture is true, then the long exact sequence (2) implies
isomorphisms IKi (E⊕)→ IKi (E), i < 0.
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2 Negative K -theory of derived categories

In this section we define negative K -theory of “triangulated categories which admit
models”. Let T be the category of small triangulated categories with triangle func-
tors as morphisms. We refer the reader to [Kel96], [Nee01] for the definition and
basic properties of triangulated categories.

Definition 1 Call a sequence of small triangulated categories A→ B→ C exact
if the composition is zero, the map A→ B is fully faithful, and the induced map
from the Verdier quotient [Ver96, II 2] B/A to C is cofinal, i.e., it is fully faithful,
and every object of C is a direct summand of an object of B/A.

Recall that if A is idempotent complete, then A is épaisse,i.e.,A is equivalent
to the full subcategory of B of objects sent to zero in C [Nee01, 2.1.10].

2.1 Some facts

We need three elementary facts about triangulated categories. The first is that the
idempotent completion of a triangulated category is again a triangulated category
(for a proof, see [BS01]). Write T̃ for the idempotent completion of T equipped
with its canonical structure of a triangulated category. We define IK0(T ) = K0(T̃ ).
The second fact we need is that for a small triangulated category T , the functor
K0 sets up a one-to-one correspondence between the set of dense triangulated sub-
categories of T and the set of subgroups of K0(T ) (see [Tho97]). Recall that a
subcategory of T is dense if it is cofinal and closed under isomorphisms in T .
The third fact is that an exact sequence of triangulated categories A → B → C
induces an exact sequence IK0A → IK0(B) → IK0(C) of abelian groups. This
follows from [SGA5, VIII 3.1] and the injection K0(T )→ K0(T̃ ) (fact 2 above).
In general, the first map of the exact sequence is not injective, nor is the second
map surjective. The first part of the paper addresses the question of how to extend
the sequence to the right. Given the three facts above, the rest of the definition of
the functors IKi , i < 0, and the extension of the exact sequence to the right are
elementary.

2.2 Set-up

The set-up for this section is a category M and a functor D : M → T. Call
a sequence in M exact if it becomes exact after applying D. Moreover, write
IK0(M) = IK0(DM) for M an object of M. We suppose that there are two
endofunctors F, S : M → M and natural transformations id → F → S such
that

1. F , S preserve exact sequences in M,
2. IK0(FM) = 0 for every object M of M and
3. M→ FM→ SM is exact for any object M of M.

The functor S is called suspension, and F stands for “flasque”.
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Ideally, we would like to take M = T and D = id , but we don’t know how to
construct the functors F and S in this case. Instead, we will see in section 5 that
we can take M to be the category of Frobenius pairs and D to be the functor that
associates to a Frobenius pair its derived category. Then the functors F and S of the
set-up do exist. Moreover, there are functors from the category of rings (schemes,
small exact categories, complicial BiWaldhausen categories [TT90]) to the cate-
gory of Frobenius pairs such that D corresponds to the bounded derived category
of finitely generated projective R-modules for a ring R (bounded derived category
of locally free sheaves of OX -modules for X a scheme, the bounded derived cat-
egory of an exact category, the derived category of a complicial BiWaldhausen
category, respectively). This is made precise in section 6. The following definition
will yield a definition of lower algebraic K -groups in these cases.

Definition 2 Let M be an object of M. We define its negative IK -groups by

IK−n(M) = IK0(SnM), n ∈ N.

2.3 The connecting homomorphism

Let A → B → C be an exact sequence in M. Idempotent completion in T pre-
serves exact sequences of triangulated categories. It follows from the assumptions
of the set-up (section 2.2) that there is a natural diagram of idempotent complete
triangulated categories

D̃A
i ��

iA
��

D̃B
iB

��

p �� D̃C
iC

��
DFA

iF ��

pA
��

DFB
pB

��

pF �� DFC
pC

��

D̃SA iS
�� D̃SB pS

�� D̃SC

with exact rows and columns. The categories DFM are idempotent complete for

M in M because the map DFM→ D̃FM is an equivalence of categories. This

follows from fact 2 in section 2.1 and K0(D̃FM) = 0. To simplify notation we
assume that a subcategory is closed under isomorphisms in its ambient category.

We define a map δ : IK0(C)→ IK−1(A) = IK0(SA) as follows. First, define
δ : ObD̃C → IK0(SA). Let c be an object of D̃C. Since pF is a localization
(essential surjectivity on objects follows from IK0F = 0 and section 2.1), there is an
object B of DFB such that pF (B) ∼= iC(c). Calculating pS pB(B) ∼= pC(c) = 0,

we see that pB(B) ∈ D̃SA, and we set δ(c) = [pB(B)] ∈ IK0(SA).
Let B ′ be another object of DFB such that pF (B ′) ∼= iC(c). Then there are

maps β : B → B ′′, β ′ : B ′ → B ′′ with cones A, A′ in DFA whose classes [A],
[A′] in IK0(FA)(= 0, see section 2.2), and hence in IK0(SA), are trivial. It follows
that [pB(B)] = [pB(B ′′)] − [pA(A)] = [pB(B ′′)] = [pB(B ′′)] − [pA(A′)] =
[pB(B ′)] in IK0(SA). Hence δ yields a well defined map from objects of D̃C to
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IK0(SA). The argument also shows that δ is well-defined on isomorphism classes
of objects of D̃C. Given a distinguished triangle c → c′ → c′′ → �c in D̃C, its
image under iC is isomorphic to the image under pF of a distinguished triangle
B → B ′ → B ′′ → �B in DFB. Its image under pB yields an exact triangle in

D̃SA giving rise to the relation δ(c) − δ(c′) + δ(c′′) in IK0(SA). Applying the
above argument to the i-th suspension, we have the following.

Lemma 1 The map δ described in section 2.3 yields a well defined map δ :
IKi (C)→ IKi−1(A) of abelian groups, i ≤ 0.

Theorem 1 Let A→ B→ C be a short exact sequence in M. Then the sequence
of abelian groups

· · · → IKi (A)→ IKi (B)→ IKi (C)

δ→ IKi−1(A)→ IKi−1(B)→ IKi−1(C)→ · · ·
is exact, i ≤ 0.

Proof We only need to show the case i = 0. The general case follows by applying
the case i = 0 to the i-th suspension of the given exact sequence in M. Exactness
at IK0(B) is classical (section 2.1).

We show exactness at IK0(C). The composition IK0(B)→ IK0(C)→ IK0(SA)
is zero because pBiB(b) = 0 for b ∈ D̃B. Let c ∈ D̃C with δ(c) = [pB(B)] = 0 in
IK0(SA) for some object B of DFB with pF (B) ∼= iC(c). Since the image of pA
is a triangulated category equivalent to the full triangulated subcategory of D̃SA
on objects with trivial class in IK0(SA) (section 2.1), there is an object A of DFA
such that pA(A) ∼= pB(B). Then there are DFB-maps B → B ′, A → B ′ with
cones b, b′ in D̃B. It follows that pF B ′ ∼= pF (b′), and so there is a distinguished
triangle c → p(b′)→ p(b)→ �c in D̃C. Hence [c] = p([b′] − [b]) in IK0(C),
so [c] is in the image of IK0(B)→ IK0(C).

We now show exactness at IK−1(A) = IK0(SA). The composition IK0(C)→
IK0(SA)→ IK0(SB) is zero, since it factors through IK0(FB), and IK0(FB) = 0.

Let A be an object of D̃SA whose class in IK0(SB) is trivial. It follows that there is
an object B in DFB such that pB(B) ∼= A. As we have pC pF (B) ∼= pS(A) = 0,
the object pF (B) lies in D̃C, and by definition we have δ(pF (B)) = [A]. 	

Corollary 1 Let f : A → B be a map in M such that D( f ) is cofinal, e.g.an
equivalence of categories. Then IKi ( f ) : IKi (A)→ IKi (B) is an isomorphism for
i ≤ 0.

Proof This follows from theorem 1 applied to the exact sequence 0→ A→ B. 	

Remark 1 (IK−1 as obstruction group) Let M be an object ofM. Then IK−1(M) = 0
if and only if for all exact sequences M → N → P in M the Verdier quotient
D̃N/D̃M is idempotent complete.

If IK−1(M) = 0, then IK0(N ) → IK0(P) is surjective which implies that
D̃N/D̃M → D̃ P is an equivalence by Thomason’s classification of dense subcat-
egories. Thus D̃N/D̃M is idempotent complete. For the other direction, we have

in particular DSM = D̃F M/D̃M idempotent complete. Thus 0 = IK0(F M)→
IK0(SM) = IK−1(M) is surjective.
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3 C-compactly generated triangulated categories

Definition 3 (compare [Nee92]) Let T be a triangulated category with countable
coproducts. We call an object X of T c-compact (short for “countably compact”)
if the functor hom(X, ) : T → Z−Mod commutes with countable coproducts.
We denote by T c the full subcategory of c-compact objects.

Clearly, T c it is a triangulated category. It is idempotent complete because a
direct factor of a c-compact object is c-compact and T is idempotent complete as
it has countable coproducts [BN93, 3.2].

3.1 Homotopy colimits

Recall from [Nee92] the definition of homotopy colimits in triangulated catego-
ries. Let T be a triangulated category with countable coproducts. Given a sequence

A0
f0→ A1

f1→ · · · of objects and maps in T indexed over the positive integers, the
homotopy colimit of this sequence is by definition the third object in the distin-
guished triangle

⊕

i Ai
1−shift �� ⊕

i Ai �� hocolimi Ai �� ⊕
i Ai [1] (3)

where the map shift, restricted to Ai , is Ai
fi→ Ai+1 → ⊕

j A j . The functor
homT (A, ) applied to the distinguished triangle yields a long exact sequence of
abelian groups. If A is a c-compact object, then this sequence decomposes into
short exact sequences giving rise to the isomorphism

colimi homT (A, Ai )
∼−→ homT (A, hocolimi Ai ). (4)

Definition 4 A triangulated category T with countable coproducts is called c-com-
pactly generated if there is a set S of c-compact objects such that every object in
T is the homotopy colimit of a (countable) sequence of objects in < S >. Here
< S > denotes the smallest triangulated subcategory of T which is closed under
isomorphisms in T and which contains S. We call S a generating set (of c-compact
objects) for T .

Note that the notion “c-compactly generated” is not the same as Neeman’s
notion “compactly generated” as Neeman requires all set indexed direct sums to
exist whereas we only require countable direct sums to exist.

Lemma 2 Let T be a c-compactly generated triangulated category with gener-
ating set S of c-compact objects, then the category T c is the smallest idempotent
complete triangulated subcategory of T which is closed under isomorphisms and
which contains S.

Proof We know that T c is idempotent complete (definition 3). Let X ∈ T be c-
compact. Write X as hocolimi Si with Si ∈< S >. It follows from the isomorphism
(4) that the identity map on X factors through some Si . Thus X is a direct factor
of some Si . 	
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Corollary 2 Let R → T be a triangle functor between c-compactly generated
triangulated categories which preserves countable coproducts and c-compact
objects. Then R → T is fully faithful if and only if Rc → T c is. It is an equiv-
alence if and only if Rc → T c is. It is trivial, i.e., every object is sent to the zero
object, if and only if Rc → T c is trivial.

Proof The triangle functor R → T preserves countable coproducts, and hence
homotopy colimits. Given two objects X , Y of R, write them as homotopy colim-
its of c-compact objects X = hocolimi Ai , Y = hocolim j B j . Applying hom( , Y )
to (3), and using (4), we get long exact sequences of homomorphism groups

(5)

�i colim j hom(Ai , B j ) −→ �i colim j hom(Ai , B j ) −→ · · ·

· · · −→ �i colim j hom(Ai [1], B j ) −→ �i colim j hom(Ai [1], B j ) −→ hom(X, Y )

The functor R → T induces a map from the long exact sequence (5) for homo-
morphism groups in R to the long exact sequence (5) for homomorphism groups
in T . By the 5-lemma, if Rc → T c is fully faithful, then so is R→ T .

If Rc → T c is an equivalence, it is fully faithful, so by the above argument,
R→ T is fully faithful. It is essentially surjective because every object of T is a
homotopy colimit of c-compact objects.

If Rc → T c is trivial, it sends all maps to zero. Let X = hocolimi Ai be an
object of R written as a homotopy colimit of objects in Rc. The exact sequence (5)
for homomorphism groups in T and Y = X shows that homT (X, X) = 0. Thus
X = 0 in T .

The other implications are trivial. 	

The following is a variant, suitable for our applications, of a theorem of Neeman

[Nee92].

Theorem 2 Let T be a c-compactly generated triangulated category. Let R ⊂ T
be a c-compactly generated full triangulated subcategory closed under countable
coproducts such that Rc ⊂ T c. Then T → T /R preserves countable coproducts,
and T /R is c-compactly generated by the image of T c in T /R. Moreover,

Rc → T c → (T /R)c

is an exact sequence of triangulated categories.

Proof The functor T → T /R preserves countable coproducts (and thus homotopy
colimits) because R ⊂ T is closed under countable coproducts. In detail, the set
of maps in T with cone in R satisfies a calculus of fractions. This implies that for
any map T →⊕

i Xi in T with cone in R, there are maps ti : Ti → Xi with cone
in R and maps Ti → T such that the composition

⊕

i T → T →⊕

i Xi equals⊕

i ti . Since R is closed under countable coproducts, and countable coproducts of
distinguished triangles are distinguished [Kel96, 8.4], the cone of

⊕

i ti is in R.
By the calculus of fractions, this proves the preservation of countable coproducts.

Next, we show that the canonical functor T c/Rc → T /R is fully faith-
ful. Let X → A be a map in T with cone, say R, in R. Suppose that A is
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in T c. As R = hocolimi Ri with Ri ∈ Rc (definition 4) and A is c-compact,
the map A → R factors over some Ri → R. Choose a distinguished triangle
B → A→ Ri → B[1] in T c. The map B → A factors through X → A and has
cone in Rc. This implies full faithfulness.

We show that T → T /R preserves c-compact objects. Let A →⊕

i Xi be a
map in T /R with A ∈ T c. Represent it by a fraction given by the T -maps X → A
with cone in R and X → ⊕

i Xi . By the previous paragraph, there is a T -map
B → X with cone in R and B in T c. The T -map B →⊕

i Xi factors through a
finite sum and so the T /R-map A→⊕

i Xi factors through this finite sum.
The functor T → T /R preserves homotopy colimits. Since T c generates T , its

image in T /R generates T /R. The exactness of the sequence of c-compact objects
follows from full faithfulness proved in the second paragraph and from lemma 2. 	

Corollary 3 Let R → S → T be a sequence of c-compactly generated trian-
gulated categories, preserving countable coproducts and c-compact objects. Then
R→ S → T is an exact sequence if and only if Rc → Sc → T c is.

Proof By theorem 2, exactness of R→ S → T implies exactness f Rc → Sc →
T c.

If Rc → Sc → T c is exact, then R → S is fully faithful, and the com-
position R → S → T is trivial (corollary 2). The Verdier quotient S/R has
countable coproducts and is c-compactly generated by Sc (theorem 2). It follows
that S/R → T preserves countable coproducts and c-compact objects. By the
exactness assumption and lemma 2, the functor (S/R)c → T c is an equivalence.
Thus S/R→ T is an equivalence (corollary 2). 	

Lemma 3 In the situation of Theorem 2, we have an exact sequence of triangulated
categories

R/Rc → T /T c → (T /R)/(T /R)c.

Proof By the universal property of Verdier quotients it is clear that the last category
is the Verdier quotient of T /T c by the full triangulated subcategory generated by
the image of R/Rc → T /T c. So we only have to show full faithfulness of the first
functor. Given a T -map R→ T with cone in T c and R in R, choose a distinguished
triangle A→ R→ T → A[1] in T . Then A is in T c. Write R as hocolimi Ri with
Ri in Rc (definition 4). Since R→ T preserves countable coproducts, and hence
homotopy colimits, and since A is c-compact, the map A → R factors through
some Ri → R. Choose a distinguished triangle Ri → R → X → Ri [1] in R.
Then the map R → X factors through T → X and R → X has cone in Rc. This
is enough to prove full faithfulness. 	

Question 1 Given a small triangulated category A, is there a fully faithful triangle
embedding of A into a c-compactly generated triangulated category T such that
A constitutes a set of c-compact generators for T ?

4 Frobenius pairs

4.1 Exact categories

Recall that an exact category is an additive category equipped with a class of short
exact sequences satisfying the axioms Ex0-Ex2op of [Kel96, 4]. These
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axioms are equivalent to Quillen’s original axioms in [Qui73] (cf. [Kel90, appen-
dix]). In [Kel96, 4] admissible monomorphisms are called inflations, admissible
epimorphisms deflations and short exact sequences conflations. We will adopt this
terminology.

4.2 The embedding E ⊂ LexE

Let E be a small exact category and let LexE be the category of left exact addi-
tive functors from Eop to 〈ab〉, the category of abelian groups. We identify E
with the representable functors via the Yoneda embedding. The category LexE is
a Grothendieck abelian category with generating set E . The Yoneda embedding
E → LexE is exact, reflects conflations, and is closed under extensions.

If E is idempotent complete, then the inclusion E ⊂ LexE is also closed under
kernels of epimorphisms. In particular, if f ◦ g is a deflation in E then so is f .

For details we refer the reader to [Kel90, Appendix A], [TT90, Appendix A].

4.3 Frobenius categories

A Frobenius category [Kel96], [Hap87] is an exact category E which has enough
projective and injective objects, and in which projectives and injectives coincide.
We write E-prinj for the full subcategory of projective-injective objects of a Frobe-
nius category E . A map of Frobenius categories is an exact functor preserving
projective-injective objects. Given a Frobenius category E , its stable category E
has the same objects as E . Morphisms are morphisms in E modulo those which
factor through an injective-projective object. The stable category is a triangulated
category [Hap87]. Its construction is functorial for maps of Frobenius categories.

Definition 5 A Frobenius pair A = (A, A0) is a fully faithful inclusion A0 → A
of small Frobenius categories. Recall (section 4.3) that by definition A0−prinj ⊂
A−prinj. A map of Frobenius pairs (A, A0) → (B, B0) is a map of Frobenius
categories A→ B such that A0 is mapped into B0.

Given a small Frobenius category A, we write A for the Frobenius pair
(A, A−prinj).

Definition 6 If A = (A, A0) is a Frobenius pair, then the map A0 → A of small
triangulated categories is fully faithful. This is because any map to an injective
object factors over any chosen inflation into an injective object. We define the
derived category DA = D(A, A0) of the Frobenius pair A to be the the Verdier
quotient [Ver96, II 2]

DA = A/A0.

A map of Frobenius pairs induces a map of derived categories by passing to stable
categories and Verdier quotients.

We refer the reader to section 6 for examples of Frobenius pairs and their
derived categories.



108 M. Schlichting

5 The functors F and S

5.1 Countable envelopes

Let E be a small exact category. We write FE for the countable envelope of E
[Kel90, Appendix B] (denoted by E∼ in loc.cit). We review definitions and basic
properties from loc.cit. The category FE is an exact category whose objects are
sequences A0 ↪→ A1 ↪→ A2 ↪→ ... of inflations in E . The morphism set from a
sequence A to B is limi colim j homE (Ai , B j ). The functor colim : FE → LexE
which sends a sequence A to colimi Ai is fully faithful and extension closed and
thus induces an exact structure on FE [Kel96, 11.7, 12.1]. A sequence in FE is a
conflation if and only if it is isomorphic to maps of sequences A→ B → C with
Ai → Bi → Ci a conflation in E . Therefore, the exact structure does not depend
on the embedding E → LexE and F defines a functor from exact categories to
exact categories.

Colimits of sequences of inflations in FE exist in FE and are exact. In partic-
ular, FE has exact, countable coproducts.

The Yoneda embedding E → LexE factors through FE and defines an exact

functor E → FE which sends an object E ∈ E to the constant sequence E
id→

E
id→ E

id→ · · · .
Lemma 4 The countable envelope FE of an exact category E is flasque, i.e., there
is an exact functor T : FE → FE and a natural equivalence T ⊕ id ∼= T of
functors.

Proof Countable direct sums exist in FE and are exact, so the functor FE → FE :
E �→ ⊕

N
E and the natural equivalence E ⊕⊕

N
E ∼= ⊕

N
E make FE into a

flasque exact category.
More precisely, we define the functor T as follows. For A = (A0 ↪→ A1 ↪→

A2 ↪→ · · · ) an object of FE , we let t A denote the object (0 ↪→ A0 ↪→ A1 ↪→
A2 ↪→ · · · ). Clearly A �→ t A is a functor, and we have a natural isomorphism
A→ t A induced by the maps Ai → Ai+1. Now the functor A �→ T A =⊕

i≥0 t i A
makes sense and is exact. We have natural isomorphisms A ⊕ T A ∼= A ⊕ tT A
= T A. 	


5.2 Definition of the functor F

Let A be a Frobenius category, then its countable envelope FA is also a Frobenius
category [Kel90, appendix B]. The projective-injective objects are the direct factors
of objects of F(A−prinj). Clearly, F defines a functor from Frobenius categories
to Frobenius categories.

Let A = (A, A0) be a Frobenius pair. Then FA0 → FA is an exact, fully faith-
ful map of small Frobenius categories. Thus the following pair defines a Frobenius
pair

FA = (FA, FA0).

Clearly, F defines a functor from Frobenius pairs to Frobenius pairs.
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The functor A→ FA (section 5.1) induces a map of Frobenius pairs A→ FA
natural in A.

Proposition 1 Let A = (A, A0) be a Frobenius pair. Then the map A → FA
induces a fully faithful map DA ↪→ DFA of triangulated categories. More-
over, DFA has countable coproducts, and it is c-compactly generated by DA. In
particular, the inclusion induces a triangle equivalence (lemma 2)

D̃A ∼−→ DcFA.

Proof We first prove the proposition for A = (A, A−prinj) a small Frobenius
category. The triangle functor A → FA is fully faithful because the fully faith-
ful map A→ FA preserves projective-injective objects. Since FA has countable
coproducts, and projective-injective objects are closed under countable coproducts,
FA has countable coproducts as well. Any object A of A is c-compact in FA
because any object in A is compact in FA ⊂ LexA.

Let colimi Ai = (A0 ↪→ A1 ↪→ A2 ↪→ · · · ) be an object of FA. The short
exact sequence

0→
⊕

i

Ai
1−shift−→

⊕

i

Ai −→ colimi Ai → 0 (6)

in FA gives rise to a triangle in FA. This identifies colimi Ai with hocolimi Ai in
FA. Thus FA is c-compactly generated by A.

Now we prove the general case. Let A = (A, A0) be a Frobenius pair. The
functor FA0 → FA is fully faithful and preserves countable coproducts because
the map FA0 → FA of Frobenius categories is fully faithful, preserves projec-
tive-injective objects and countable coproducts. It preserves c-compact objects as
it sends A0 to A. The rest follows from Theorem 2. 	

Remark 2 Let A → B be a map of Frobenius pairs. Then DFA → DFB pre-
serves countable coproducts since FA→ FB does. It preserves c-compact objects
because it sends DA into DB.

5.3 Definition of the functor S

We define a functor S, called suspension, from the category of Frobenius pairs
into itself as follows. Let A = (A, A0) be a Frobenius pair. By proposition 1, the
functor DA → DFA is fully faithful. Let SA = (FA, S0A) be the Frobenius
pair with S0A the full subcategory of FA of objects sent to zero in DFA/DA.
The natural transformation id → F makes S into a functor from Frobenius pairs
to itself. The identity functor id : FA → FA defines a map FA → SA of
Frobenius pairs which on derived categories is the localization functor DFA→
DFA/DA = DSA. In other words, the sequence of functors id → F → S is
exact.

We will show that the functors F and S preserve exact sequences.

Theorem 3 If we take M to be the category of Frobenius pairs, then the sequence
id → F → S of functors from Frobenius pairs to Frobenius pairs satisfies the
hypothesis of the set-up (section 2.2).
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Proof For A a Frobenius pair, the sequence A → FA → SA is exact by the
definition of the functors F and S (definition 5.3). We have IK0(FA) = 0 because
DFA has countable coproducts (proposition 1). The functor F preserves exact
sequences in M because of proposition 1, 2 and corollary 3. It follows from lemma
3 that the functor S also preserves exact sequences in M. 	


6 Examples of Frobenius pairs

Definition 7 Let D be a small triangulated category. We say that D admits a
Frobenius model if there is a Frobenius pair A and a triangle equivalence
DA ∼= D.

6.1 Frobenius models for D ⊂ DA and DA/D

Let A = (A, A0) be a Frobenius pair and D ⊂ DA a full triangulated subcategory.
Let B ⊂ A be the full subcategory of objects which are isomorphic in DA to an
object of D. Then B ⊂ A is closed under extensions. Declaring a sequence in B
to be exact if it is exact in A, gives B the structure of an exact category. Since B
contains all projective-injective objects of A, and since B ⊂ A is moreover closed
under kernels of deflations and cokernels of inflations, B is a Frobenius category
with B−prinj = A−prinj. Therefore, B = (B, A0) and C = (A, B) are Frobenius
pairs. The inclusions B → A → C yield a short exact sequence of Frobenius
pairs whose sequence of derived categories is equivalent to D→ DA→ DA/D.
In particular, any full triangulated subcategory and any Verdier quotient of DA
admits a Frobenius model.

6.2 Frobenius models for D(E), E an exact category

Let E be an exact category. Let Chb(E), Ch+(E), Ch−(E), Ch(E) be the category
of bounded, bounded below, bounded above, unbounded chain complexes in E .
Declare a sequence A∗ → B∗ → C∗ in Ch� E (� ∈ {b,+,−,∅}) to be a conflation
if Ai → Bi → Ci is isomorphic to the split conflation Ai → Ai ⊕ Ci → Ci

for all i ∈ Z. This makes Ch� E into an exact category. One checks that Ch� E is
a Frobenius category whose projective-injective objects are the contractible chain
complexes in Ch� E . Its stable category is the usual homotopy category K�(E) of
chain complexes where maps are chain maps up to chain homotopy.

Let Ac�(E) ⊂ Ch�(E) be the full subcategory of chain complexes which are
homotopy equivalent to acyclic chain complexes in E . Recall that a complex
(E∗, d∗) is acyclic if the differentials di admit factorizations Ei → Zi+1 → Ei+1

such that Zi → Ei → Zi+1 is a conflation in E for all i ∈ Z. The inclusion
Ac�(E) ⊂ Ch�(E) is closed under extensions, kernels of deflations and cokernels
of inflations, and Ac�(E) contains all projective-injective objects. It follows that
Ch�E = (Ch� E, Ac� E) is a Frobenius pair. Its derived category D(Ch� E, Ac� E) is
the bounded (bounded below, bounded above, unbounded) derived category D�(E)
of E as defined in [Kel96].
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Definition 8 We define the negative K -groups of an exact category E by

IKi (E) = IKi (Chb E, Acb E).

We write IKi (R) = IKi (R−proj) for R a ring and R−proj the category of finitely
generated projective R-modules.

Remark 3 Recall [BS01] that if E is idempotent complete, then so is Db(E).
In this case IK0(E) is the usual K0(E). If E is not idempotent complete, then
IK0(E) = K0(Ẽ).

Given a sequence A→ B→ C of exact categories such that DbA→ DbB→
DbC is exact, Theorem 1 yields a long exact sequence

IK0(A)→ IK0(B)→ IK0(C)→ IK−1(A)→ IK−1(B) · · ·
For example, let R be a ring, and let S ⊂ R be a multiplicative set of central
non-zero-divisors. Then one can take B = P1(R) to be the category of R-mod-
ules M of projective dimension at most 1 with S−1 M a projective S−1 R-module,
B → C = S−1 R−proj to be the localization map, and A to be the full subcat-
egory of P1(R) of S-torsion modules. Moreover, R−proj ⊂ P1(R) is a derived
equivalence by resolution. The resulting long exact sequence

IK0(A)→ IK0(R)→ IK0(S−1 R)→ IK−1(A)→ IK−1(R) · · ·
is classical [Car80].

6.3 Frobenius models for D ⊂ DA, A a Grothendieck abelian category

Let A be a Grothendieck abelian category. We claim that any small triangulated
subcategory D of the derived category D(A) of A admits a Frobenius model. But
first, a certainly well-known lemma.

Lemma 5 Let U be an abelian category in which countable filtered colimits exist
and are exact. Let A ⊂ U be a Serre subcategory closed under the formation of
countable filtered colimits. Suppose that for any epimorphism X → A from an
object X of U to an object A of A there is a subobject B ⊂ X with B an object of A
such that the composition B → A is an epimorphism. Then the following triangle
functor is fully faithful

D(A)→ D(U).

Proof (sketch) One shows that for any chain complex X in U with H∗(X) ∈ A
there is a quasi-isomorphism A → X with A a chain complex in A. To see this,
one constructs a sequence Ak → Ak+1 → · · · → X , k ∈ N, with Ak chain com-
plexes in A and H∗(Ak)→ H∗(X) surjective such that the kernel of H∗(Ak)→
H∗(X) maps to zero in H∗(Ak+1). Then colimk Ak → X is the desired quasi-
isomorphism. 	
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Let A be a Grothendieck abelian category. It is well known that D(A) has small
hom-sets [Fra01]. We review a short proof of this fact which will provide small
full triangulated subcategories D of D(A) with Frobenius models.

Let G be a generator for A. Define the size size(X) of an object X of A to be
the cardinality of homA(G, X). For a cardinal κ , let Aκ be the full subcategory of
A of objects with size ≤ κ . The categories Aκ are (essentially) small as for every
object X we have an epimorphism

⊕
G → X where the direct sum is indexed

over homA(G, X), and
⊕

κ G has only set-many quotients (up to isomorphism).
For any cardinal κ there is a cardinal κ0 ≥ κ such that Aκ0 ⊂ A is a Serre subcate-
gory closed under colimits over ordinal numbers ≤ κ0 [Fra01, 3.7]. Moreover, the
inclusion Aκ0 ⊂ A satisfies the hypothesis of lemma 5 [Fra01, 3.8]. It follows that
D(A) has small hom-sets and maps A→ B in D(A) can be calculated in D(Aκ0)
whenever A, B ∈ Aκ0 .

Any small full triangulated subcategory D of DA lies in DAκ0 for some κ0.
Since DAκ0 has a Frobenius model (section 6.2), D has also a Frobenius model
(section 6.1).

6.4 Frobenius models for D ⊂ D(A), A a dga

Let A be a differential graded algebra (dga). Its derived category D(A) is obtained
from the category of differential graded left A-modules (short: dg A-module) by
formally inverting quasi-isomorphisms, i.e., those morphisms M → N such that
H∗(M) → H∗(N ) is an isomorphism. We claim that any small full triangulated
subcategory D ⊂ D(A) has a Frobenius model.

We first review from [KM95, part III] an explicit construction of D(A). A
cell A-module is a dg A-module M which admits a filtration 0 = M0 ⊂ M1 ⊂
M2 ⊂ ... ⊂ M = ⋃

i∈N Mi by dg A-submodules such that Mi+1/Mi is a free
dg A-module, i.e.,a direct sum of the dg A-module A with generators placed in
various degrees. In particular, any cell A-module is a free A-module (forgetting
differentials). Write C(A) for the full subcategory of dg A-modules which consists
of cell A-modules. Given a dg A-module M , its cone C M is the dg A-module with
underlying A-module M ⊕ M[1], i.e., (C M)i = Mi ⊕ Mi+1 and with differential
d : (x, y) �→ (dx + (−1)i y, dy). If M is a cell A-module, then so is C M . A map
f : M → N is homotopic to zero if it factors through C M .

Denote by H(A) the homotopy category of cell A-modules. Its objects are cell
A-modules and its maps are dg A-module maps modulo those which are homotopic
to zero. The inclusion of C(A) into all dg A-modules induces an equivalence of
triangulated categories H(A)

∼→ D(A) [KM95, part III, 2.7].
The category C(A) of cell A-modules is a (large) Frobenius category when we

declare a sequence to be a conflation if it is a (split) exact sequence of A-modules
(forgetting differentials). Every dg A-module of the form C M is
projective and injective for this exact structure. This is because the A-module
maps (0 1) : M[1] → C M and (1 0) : C M → M induce isomorphisms
homdg A−mod(C M, N ) → homA−mod(M[1], N ) and homdg A−mod(N , C M) →
homA−mod(N , M) for M, N dg A-modules. Moreover, we have inclusions (1 0) :
M → C M and epimorphisms C M[−1] → M of dg A-modules. Thus the cate-
gory of cell A-modules has enough injectives and projectives and is a Frobenius
category. It is clear that its stable category is H(A) and thus is equivalent to D(A).
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For an infinite cardinal κ , let Cκ(A) be the full subcategory of C(A) consist-
ing of cell A-modules of size (cardinality of a basis as an A-module) < κ . Then
Cκ(A) ⊂ C(A) is a (essentially) small extension closed Frobenius subcategory.
Its stable category Hκ(A) is a (essentially) small full triangulated subcategory of
H(A) which admits a Frobenius model, namely (Cκ(A), Cκ(A)−prinj). Since any
small triangulated subcategory D of D(A) is contained in some Hκ(A), D has a
Frobenius model by section 6.1.

Definition 9 Let A be a dga. We define

IKi (A) = IKi (cell A−mod),

where cell A−mod is the Frobenius category of finite cell A-modules.

Remark 4 A map A → B of dg-algebras induces a map ⊗A B : cell A−mod →
cell B−mod of Frobenius pairs, and thus a map IKi (A)→ IKi (B). If A → B is
a quasi-isomorphism, then⊗A B induces an equivalence of derived categories and
thus isomorphisms IKi (A)

∼→ IKi (B) (corollary 1).

6.5 Complicial BiWaldhausen categories

A complicial BiWaldhausen category [TT90, 1.2.11] is a full subcategory C of the
category Ch(A) of complexes in some abelian category A. It comes equipped with
a set ω of maps in C called weak equivalences which we suppose to be closed under
retracts. These data are subject to certain conditions specified in [TT90, 1.2.11].
Suppose, as in [TT90, 1.9.6], that C ⊂ Ch(A) is closed under canonical homotopy
push-outs and canonical homotopy pull-backs.

Declare a sequence in C to be a conflation if it is degree-wise split exact. Then
the axioms imposed in [TT90, 1.2.11] and [TT90, 1.9.6] imply that C is a Frobenius
category, with projective-injective objects being the contractible chain complexes
in C. Let C0 be the full subcategory of C of objects X for which 0 → X is a
weak equivalence. Then C0 ⊂ C is closed under extensions, kernels of deflations,
cokernels of inflations, direct factors, and it contains all projective-injective objects
in C. It follows that (C, C0) is a Frobenius pair. Its derived category D(C, C0) is
isomorphic to the derived category ω−1C as constructed in [TT90, 1.9.6].

For examples of complicial BiWaldhausen categories we refer the reader to
[TT90, 3.1, 3.2, 3.3]. Let X be a quasi-compact and quasi-separated scheme, we
define IKi (X), i ≤ 0, to be the negative IK -groups of the Frobenius pair associated
with the complicial BiWaldhausen category of [TT90, 3.1].

Question 2 Given a stable model category, its homotopy category is a triangulated
category [Hov99, chapter 7]. Suppose that the model category is an additive cate-
gory. Does every small triangulated subcategory of the homotopy category admit
a Frobenius model?

7 Additivity and Colimits

Theorem 4 (Additivity) Let F → G : A → B be a natural transformation of
maps between Frobenius pairs. If F(A)→ G(A) is an inflation for all objects A
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of A, then G/F : A → B is a map of Frobenius pairs and IKi (F) + IKi (G/F)
= IKi (G) : IKi (A)→ IKi (B) for all i ≤ 0.

Proof It is clear that G/F is a map of Frobenius pairs.
The statement of the theorem is true for IK0. Since S i F → S i G : S iA→ S iB

also satisfy the hypothesis of the theorem, we are done. 	

Corollary 4 Let 0→ F → G → H → 0 : A→ B be an exact sequence of exact
functors between exact categories A and B. Then IKi (F) + IKi (H) = IKi (G) :
IKi (A)→ IKi (B) for all i ≤ 0.

Proof A map A→ B of Frobenius pairs which factors over B0 induces the 0 map
in K -theory. Thus theorem 4 implies that IKi (F)⊕ IKi (cone(F → G)) = IKi (G).
Let j : cone(F → G) → H be the canonical map. Additivity (theorem 4)
yields IKi (cone(F → G))⊕ IKi (cone( j)) = IKi (H). But cone( j) is acyclic, thus
IKi (cone( j)) = 0. 	


We conclude the section by showing that the functors IKi commute with filtered
colimits.

Lemma 6 Let i �→ Ai be a functor from a small, filtered index category I to the
category of Frobenius pairs. Then colimAi is a Frobenius pair and the natural
map

colimIKn(Ai )
∼−→ IKn(colimiAi )

is an isomorphism for n ≤ 0.

Proof Clearly, colimiAi is a Frobenius pair. The natural map colimDAi →
DcolimiAi is an equivalence. Since K0 commutes with filtered colimits of tri-
angulated categories, the case n = 0 follows.

Filtered colimits preserve exact sequences of triangulated categories, so they
preserve exact sequences of Frobenius pairs. Moreover, colimiFAi is flasque, as
the functor T and the natural equivalence id ⊕ T ∼= T of lemma 4 extend to
colimiFAi . By additivity (theorem 4), we have IKn(colimFA) = 0, n ≤ 0. The
long exact sequences 1 associated to the diagram

colimiAi �� colimiFAi

��

�� colimiSAi

��
colimiAi �� FcolimiAi �� ScolimiAi

of exact sequences of Frobenius pairs, together with the vanishing of IKi of the
middle terms yield isomorphisms IKn(colimSAi )

∼→ IKn(ScolimAi ), as both
are isomorphic, via the boundary map, to IKn−1(colimAi ) , n ≤ 0. Iterating, we
see that the maps colimIK0(SnAi )

∼→ IK0(colimSnAi )
∼→ IK0(SncolimAi ) are

isomorphisms whose composition is colimIK−n(Ai )→ IK−n(colimAi ), n ≥ 0.
	


Corollary 5 Let Ei , i ∈ I , be a diagram of exact categories and exact func-
tors indexed over a filtered category I . Then the natural map colimi IKn(Ei ) →
IKn(colimEi ) is an isomorphism for n ≤ 0.
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Proof This is because colim(Chb Ei , Acb Ei )→ (Chb colimEi , Acb colimEi ) is an
equivalence of Frobenius pairs. Now apply lemma 6. 	


8 Agreement

In this section we show that our definition of negative K -groups extends the
definitions of Bass [Bas68], Karoubi [Kar70], Pedersen [Ped84], Pedersen-Wei-
bel [PW89] and Thomason [TT90]. Agreement with Carter’s [Car80] and Yao’s
[Yao92] definitions is outlined in remark 5.

Theorem 5 Let R be a ring. Then there are natural isomorphisms between Bass’
and Pedersen’s groups Ki (R) and the groups IKi (R) defined in definition 8 for
i ≤ 0.

Let X be a quasi-compact and quasi-separated scheme. Then there are natural
isomorphisms between Thomason’s groups K B

i (X) and the groups IKi (X) defined
in section 6.5 for i ≤ 0.

Let A be an additive category. Then there are natural isomorphisms between
Karoubi’s and Pedersen-Weibel’s groups Ki (A) and the groups IKi (A) defined in
definition 8 for i ≤ 0.

Proof Thomason’s proof of the projective space bundle theorem [Tho93] only uses
exact sequences of derived categories and carries over to our framework. More pre-
cisely, let X be a quasi-compact and quasi-separated scheme, and let p : P1

X → X
be the projection from the projective line over X to X . Then the triangle maps
Lp∗ : Dparf(X) → Dparf(P

1
X ) and O(−1) ⊗ Lp∗ : Dparf(X) → Dparf(P

1
X ),

which are induced by maps of their Frobenius models, induce isomorphisms

(Lp∗, O(−1)⊗ Lp∗) : IKi (X)⊕ IKi (X)
∼→ IKi (P

1
X ), i ≤ 0.

The proof is the same as in [Tho93]. It follows from the proof of Bass’ fundamental
theorem given in [TT90, 6.6 (b)] that there is an exact sequence of abelian groups

0→ IKi (X)→ IKi (X [T ])⊕ IKi (X [T−1])
→ IKi (X [T, T−1])→ IKi−1(X)→ 0

for i ≤ 0. Since IK0(X) = K B
0 (X) for any quasi-compact and quasi-separated

scheme X , our negative K -groups coincide with Thomason’s negative K -groups,
and hence with Bass’ groups in the commutative case.

We show agreement with Karoubi’s and Pedersen-Weibel’s negative K -groups.
For A an additive category, let CA be the cone category [Kar70], [PW89], and let
SA = CA/A be the suspension category. It follows from [CP97] that the sequence
of additive categories A→ CA→ SA induces an exact sequence of triangulated
categories DbA→ DbCA→ DbSA. A more explicit proof and a generalization
to exact categories can be found in [Sch04, Proposition 2.6]. Since CA is flasque,
it follows that IKi (A) = IKi+n(SnA) for i + n ≤ 0 (theorem 1). In particular,
IK−i (A) = IK0(SiA) = K0((SiA)∼) for i ≥ 0. But the last group is Karoubi’s
and Pedersen-Weibel’s −i-th K -group of A [Kar70], [PW89].

In particular, negative K -groups as defined by Bass and Pedersen are isomor-
phic to our negative IK -groups for a (not necessarily commutative) ring. Karoubi
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[Kar71] (Pedersen [Ped84]) showed that his groups coincide with Bass groups.
Pedersen-Weibel’s definition is a generalization of Pedersen’s definition. 	

Remark 5 Alternatively, one can prove a projective space bundle theorem for the
non-commutative projective line over a non-commutative ring R or an “admissible
abelian category” [Yao92] following Thomason’s arguments for the commutative
case [Tho93]. This would lead to an alternative proof of agreement for non-com-
mutative rings and for Yao’s “admissible abelian categories”. In particular, this
would show agreement with Carter’s negative K -groups [Car80]. However, details
remain to be written down.

Remark 6 If X is a quasi-compact and quasi-separated scheme which admits an
ample family of line bundles, then the inclusion of bounded chain complexes of
vector bundles of finite rank on X into perfect complexes induces an equivalence
of triangulated categories Db(Vect(X))

∼→ Dparf(X) [TT90]. Thus IKi (Vect(X))

= IKi (X) = K B
i (X) (corollary 1, theorem 5).

9 Generators and relations

Lemma 7 Let E be an exact category and D(E) = D(Ch E, Ac E) its unbounded
derived category [Nee90], [Kel96]. Then IKi−1(E) = IKi (Ch E, Ac E), i ≤ 0. In
particular, IK−1(E) = K0(D̃(E)).

Proof Let D+(E) (resp. D−(E)) be the derived category of bounded below (resp.
bounded above) complexes in E . These are the derived categories of section 6.2.
In the diagram of derived categories

Db(E) ��

��

D+(E)

��
D−(E) �� D(E)

all functors are fully faithful, and the induced functors on quotients are equivalenc-
es. Since the diagram is induced by a commutative diagram of the corresponding
Frobenius pairs, Theorem 1 yields isomorphisms IKn−1(E) = IKn(Ch E, Ac E),
n ≤ 0, once we know that

IKn(Ch− E, Ac− E) = IKn(Ch+ E, Ac+ E) = 0, n ≤ 0.

For bounded above complexes this follows from the usual “Eilenberg swindle”:
the functor T = ⊕

n∈N[2n] satisfies T [2] ⊕ id = T , hence IKn(id) = 0 as
IKn(T [2]) = IKn(T ) by additivity. The argument for bounded below complexes is
similar. 	

Corollary 6 The group IK−1(E) is the quotient of the abelian monoid of isomor-
phism classes of idempotents in D(E), under direct sum operation modulo the
submonoid of those idempotents which split in D(E). In particular, IK−1(E) = 0
if and only if D(E) is idempotent complete.
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Proof Let T be a triangulated category, the cokernel of K0(T ) → K0(T̃ ) is
isomorphic to the quotient of the abelian monoid of isomorphism classes of
objects in T̃ , under direct sum operation, modulo the submonoid of isomorphism
classes of objects in T [Tho97, proof of 2.2]. Since we have a surjection
0 = K0(D+E) ⊕ K0(D−E) → K0(DE), we have K0(DE) = 0, and the claim
follows from lemma 7. 	


9.1 The map K−1(R)→ IK−1(R−proj) = K0(D(R−proj)∼)

In case E = R−proj, the category of finitely generated projective R-modules, we
construct a map from Bass’ group K−1(R) to K0(D(R−proj)∼). By theorem 5,
we know that these two groups are isomorphic. We leave it to the reader to check
that the map below realizes the isomorphism.

Write D(R) for D(R−proj). The map ρ : K0(R[t, t−1]) → K0(D(R)∼)

is defined as follows. Let q = ∑k
i=−k ai t i : R[t, t−1]n → R[t, t−1]n be an

idempotent, i.e.,q2 = q , representing a finitely generated projective R[t, t−1]-
module. The ai ’s are R-linear maps ai : V → V with V = Rn . Let p =
(a j−i )i, j=0,...k : V k+1 → V k+1, d = (ak+ j−i )i, j=0,...k : V k+1 → V k+1, and
h = (a−k+ j−i )i, j=0,...k : V k+1 → V k+1. The equation q = q2 implies 1)
p = p2 + dh + hd , 2) d = pd + dp and 3) 0 = d2. Hence we get an endo-
morphism of a chain complex

· · · �� V k+1

p

��

d �� V k+1

1−p
��

d �� V k+1

p

��

d �� V k+1

1−p
��

d �� V k+1

p

��

d �� · · ·

· · · �� V k+1 d �� V k+1 d �� V k+1 d �� V k+1 d �� V k+1 d �� · · · .
3) ensures that the rows are really complexes, 2) that it is a map of chain complexes
and 1) that the endomorphism is an idempotent up to homotopy. This defines an
element of K0(D(R)∼), the image under ρ of the element we started with. If a
module comes from K0(R[t]) or K0(R[t−1]), then h or d is zero and therefore
p = p2, not only up to homotopy, and we can take the image degree-wise. This
means the idempotent has image in D(R) and is thus zero in K0(D(R)∼). It follows
that ρ defines a map ρ : K−1(R)→ K0(D(R)∼) = IK−1(R).

10 Negative K -groups of abelian categories

Theorem 6 Let A be a small abelian category. Then IK−1(A) = 0.

Proof The t-structure on Db(A) of [BBD82] extends to a t-structure on D(A). The
truncations τ≤0 and τ≥1 have images in D−(A) and D+(A), respectively. Recall
that there is a distinguished triangle

τ≤0 X → X → τ≥1 X → (τ≤0 X)[1]
which is functorial in X. The t-structure extends to a t-structure on the idempotent
completion D(A)∼.



118 M. Schlichting

Suppose that X is an object of D(A)∼. The objects τ≤0 X and τ≥1 X are objects
of D−(A)∼ and D+(A)∼, respectively. The two categories D−(A) and D+(A) are
idempotent complete, by the Eilenberg swindle, which implies IK0(D−(A)) = IK0
(D+(A)) = 0, and by fact 2 of section 2.1. Thus τ≤0 X and τ≥1 X are objects of
D−(A) and D+(A), respectively. As a triangulated category, D(A) is extension
closed in its idempotent completion [BS01]. Therefore, X is an object of D(A). It
follows that D(A) is idempotent complete, hence IK−1(A) = 0 (corollary 6). 	


10.1 Noetherian abelian categories

Recall [Pop73, 5.7] that an object A of an abelian category A is called noetherian
if any ascending chain A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ A of subobjects of A eventu-
ally stops. A small abelian category is called noetherian if all of its objects are
noetherian. Any Serre subcategory of a noetherian abelian category is noetherian.
Any quotient of a noetherian abelian category by a Serre subcategory is noetherian
(exercise!). Examples of noetherian abelian categories are the abelian categories of
finitely generated R-modules for R a noetherian ring, and the category of coherent
OX -modules for X a noetherian scheme.

Theorem 7 Let A be a small noetherian abelian category. Then IKiA = 0 for
i < 0.

Proof As in section 4.2, let LexA be the Grothendieck abelian category of left
exact additive functors Aop → 〈ab〉. The Yoneda embedding A→ Lex(A) iden-
tifies A (up to equivalence of categories) with the Serre subcategory of noetherian
objects of Lex(A) [Pop73, 5.8.8], [Pop73, 5.8.9], [Gab62, Théorème 1, p. 356].

For an abelian category B, let EndB be the category of endomorphisms of B.
Objects are endomorphisms and morphisms are maps of objects in B commuting
with the respective endomorphisms. Obviously, EndB is an abelian category. For
any A ∈ A ⊂ LexA there is an object A[t] ∈ End(LexA) constructed as follows.
The underlying LexA-object is A[t] = A ⊕ At ⊕ At2..., where Ati stands for a
copy of A. The endomorphism of A[t] is “multiplication by t”, i.e., the map which
sends Ati to Ati+1 identifying them. This construction is obviously functorial in
A. Let A[t] be the full subcategory of End(LexA) of objects X for which there
is an End(LexA)-epimorphism A[t] → X for some object A ∈ A. The category
A[t] is a noetherian abelian category. The proof of this fact is a simple adaptation
of the proof that if R is a noetherian ring then so is R[t].

Let Nil ⊂ A[t] be the full subcategory of nilpotent endomorphisms. It is a
Serre subcategory, and we write A[t, t−1] for the quotient of A[t] by the Serre
subcategory Nil. The category A[t, t−1] is again an (essentially) small noetherian
abelian category. By lemma 8 below, the sequence of noetherian abelian categories
Nil → A[t] → A[t, t−1] induces a short exact sequence of triangulated categories
Db(Nil) → Db(A[t]) → Db(A[t, t−1]). Thus it induces a long exact sequence
of negative K -groups (theorem 1, theorem 3).

There is an exact functor j : A→ Nil which sends the object A to the object
A equipped with the zero endomorphism. We write i for the composition of j with
the inclusion Nil ⊂ A[t]. There is an exact functor f : A → A[t] sending A
to A[t]. We have a functorial exact sequence 0 → f → f → i → 0 which
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is 0 → A[t] ×t→ A[t] → A → 0 for A ∈ A. By additivity (corollary 4), it
follows that IKn( f ) + IKn(i) = IKn( f ) : IKn(A) → IKn(A[t]), n ≤ 0. Hence
0 = IKn(i) : IKn(A)→ IKn(A[t]), n ≤ 0.

Any object e : B → B of A[t] is noetherian in A[t]. If e = 0, then the object
B of A is noetherian in A, since e in A[t], and B in A have isomorphic posets
of subobjects. Since an object e : B → B of Nil is a finite extension of objects
equipped with the trivial endomorphism, B is an object of A. Thus we have an
exact forgetful functor Nil → A : (e : B → B) �→ B which is a retraction of
j . It follows that IKn( j) is injective. Since IKn(i) = 0, IKn(A) is a subquotient
of IKn+1(A[t, t−1]), n < 0, by the long exact sequence of negative K -groups
associated to Nil → A[t] → A[t, t−1].

Descending induction on n starting with n = −1 (theorem 6) shows that
IKn(A) = 0, n < 0, for any noetherian abelian category A. 	

Lemma 8 Let A be a noetherian abelian category. The sequence of noetherian
abelian categories Nil ⊂ A[t] → A[t, t−1] induces an exact sequence of trian-
gulated categories

Db(Nil) −→ Db(A[t]) −→ Db(A[t, t−1]).
Proof By [Kel99, 1.15 Lemma b)], we only have to show that Db(Nil) →
Db(A[t]) is fully faithful. We will verify Keller’s criterion [Kel96, 12 C2] for
the inclusion Nil ⊂ A[t].

The category End(LexA) is locally noetherian, and its category of noetherian
objects is A[t]. Let I be an indecomposable injective object in End(LexA). Then
the endomorphism ×t : I → I is an isomorphism or every noetherian subobject
of I is nilpotent. The proof is the same as in [Pop73, lemma 5.9.10].

Given an injection N ⊂ X in A[t]with N nilpotent, let X ⊂ E(X) be an injec-
tive envelope of X in LexA[t]. Since X is noetherian, E(X) is a finite direct sum
of indecomposable injectives. So we can write E(X) = I ⊕ J with ×t : J → J
an isomorphism and every noetherian subobject of I being nilpotent. The map
N → J is trivial as N is nilpotent, so N → I is injective. Let M be the image
of X → I . Since X is noetherian, M is noetherian, thus nilpotent, and the map
N → M is injective. 	

Remark 7 (Regular rings) Let R be a regular noetherian ring. Then the inclusion
of the category of finitely generated projective R-modules into the category of all
finitely generated R-modules induces an equivalence of bounded derived catego-
ries. As the latter category is noetherian abelian, it follows that Ki (R) = 0 for
i < 0 (theorem 5, theorem 7, corollary 1). This is a well-known theorem of Bass.

Remark 8 (G-theory) Let X be a noetherian scheme. Its G-theory is the K -the-
ory associated to the noetherian abelian category of coherent OX -modules. By
Theorem 7, negative G-theory is trivial.

Conjecture 1 Let A be a small abelian category. We conjecture that

IKi (A) = 0, for all i < 0.

Evidence is given in theorem 6 and theorem 7.
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Remark 9 (Gabber) Even though IKi commutes with filtered colimits (corollary
5), vanishing for noetherian abelian categories does not imply the conjecture.

Not every small abelian category is the filtered colimit of small noetherian abe-
lian categories. Take an abelian category A containing a morphism f : A → B
such that ker f ⊂ ker f 2 ⊂ ker f 3 ⊂ ... ⊂ A is a strictly increasing sequence
of subobjects. If A was a filtered colimit of noetherian categories, then the map f
(and thus the whole sequence of kernels) would have to lie in one of the noetherian
abelian categories, and the sequence of subobjects would have to stop.

11 Exact versus additive K -theory

Let E be an exact category. We write E⊕ for the split exact category which, as an
additive category, is E . The identity functor E⊕ → E is an exact functor.

If conjecture 1 is true, then the following proposition implies that

IKi (E⊕)→ IKi (E)

is an isomorphism for i < 0. This is plainly false for i ≥ 0. It is an open question
for i < 0.

Proposition 2 Let E be an exact category. There is an abelian category A and a
zigzag of Frobenius pairs between Acb(E) and (Chb(A), Acb(A)) inducing equi-
valences of derived categories. In particular, there is a long exact sequence for
i ≤ 0

IKi (A)→ IKi (E⊕)→ IKi (E)→ IKi−1(A)→ IKi−1(E⊕)→ · · ·

11.1 Effaceable functors in LexE

In the proof of proposition 2, we can assume E to be idempotent complete as
E → Ẽ and E⊕ → ˜E⊕ are IK -theory equivalences. Before proving the proposition
we recall from [Kel90, appendix A] a more precise description of the category
LexE (section 4.2). Let ModE be the category of additive functors from Eop to the
category 〈ab〉 of abelian groups. It is a Grothendieck abelian category with E a
set of small projective generators, where, as usual, E is identified with its image
in ModE via the Yoneda embedding. The full subcategory of finitely generated
projective objects in ModE is then equivalent to E , via this identification, since we
assume E to be idempotent complete.

Let C ⊂ ModE be the full subcategory of effaceable functors, i.e., those func-
tors F such that for every A ∈ E and every map A→ F in ModE there is a deflation
B → A in E such that the composition B → F is zero. The category C is a local-
izing subcategory of ModE . Moreover, LexE can be identified with the quotient
abelian category of ModE by C such that the natural embedding iE : LexE ⊂ ModE
is the section functor to the localization functor aE : ModE → LexE .

Let f pC be the full subcategory of finitely presented functors which are efface-
able, i.e., those functors F ∈ C for which there is an exact sequence A → B →
F → 0 in ModE with A and B in E .
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Lemma 9 Let E be an idempotent complete exact category. Then the category
f pC of effaceable, finitely presented functors is an abelian, extension closed sub-
category of the category C of effaceable functors in ModE .

Proof First we show that for a functor F : Eop → 〈ab〉 we have F ∈ f pC if and
only if there is an exact sequence

0→ A→ B → C → F → 0 (7)

in ModE with A→ B → C a conflation in E . Let F be in f pC. Choose an exact
sequence X

x→ C → F → 0 in ModE with X , C ∈ E . By the effaceability of
F , there is a deflation y : Y → C in E such that the composition Y → F is zero.
Then (x, y) : B := X ⊕ Y → C is a deflation in E (section 4.2) and we denote
by A its kernel. The sequence (7) is exact by construction and the left exactness of
the Yoneda embedding E → ModE .

Given an exact sequence (7) in ModE with A→ B → C a conflation in E , the
object F is easily seen to be effaceable, and thus is in f pC.

As usual, finitely presented functors are closed under cokernels and extensions.
Since this is also true for C ⊂ ModE , it is true for f pC as well.

The category f pC is also closed under kernels of epimorphisms in ModE .
Given an epimorphism F → G of objects in f pC, choose projective resolutions
for F and G as in (7). The map F → G extends to a map of resolutions and we
denote by

0→ A→ B → C → D→ 0 (8)

its cone. Note that A, B, C, D ∈ E . The surjectivity of F → G implies that (8)
is exact except, possibly, at C . Since D is projective in ModE , the map C → D
splits and therefore has a kernel E in E . The sequence 0 → A → B → E is a
resolution for the kernel of F → G.

It follows that f pC ⊂ ModE is closed under kernels as well. Hence, f pC is an
abelian category. 	

Proof (of proposition 2) Recall that we can assume E to be idempotent complete.
We will show that we can take A = f pC.

Let Ê be the full subcategory of ModE consisting of those functors F : Eop →
〈ab〉 for which there is an exact sequence 0→ A→ F → G → 0 in ModE with
A in E and G in f pC. Then Ê is extension closed in ModE .

To see this, let 0→ F1 → F2 → F3 → 0 be an exact sequence in ModE with
F1, F3 in Ê . Choose exact sequences 0 → Ai → Fi → Gi → 0, with Ai in E
and Gi in f pC, i = 1, 3. As A3 is projective, the injection A3 → F3 lifts to a map
A3 → F2 which is an injection as well. Let G2 be the pushout of the epimorphism
F1 → G1 along the injection F1 → F2/A3. It is an extension of G1 and G3 and
thus in f pC. The kernel of the epimorphism F2 → G2 is an extension of A1 and
A3 and thus in E . Hence, F2 is in Ê .

We make Ê into an exact category by declaring those sequences to be conflations
which are also conflations in ModE .

Standard arguments in homological algebra show that any F in Ê has a resolu-
tion as in (7) with A, B, C in E . Thus, the inclusion E⊕ → Ê induces an essentially
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surjective functor of bounded derived categories Db(E⊕) → Db(Ê). The trian-
gle functor is fully faithful by resolution or Keller’s criterion [Kel96, 11.7, 12.1].
Hence, we have an equivalence Db(E⊕)

∼→ Db(Ê).
Next the inclusion f pC → Ê satisfies the dual of Keller’s criterion [Kel96,

11.7, 12.1]. To see this, let F → G → H be a conflation in Ê with F in f pC.
Choose a conflation A→ H → K in Ê with K in f pC and A ∈ E = ModE−proj.
The inflation A → H lifts to an inclusion A → G whose cokernel, say L , is an
extension of F and K . It follows that L is in f pC and that F → L is an inflation
in f pC.

Summarizing, we have a fully faithful triangle functor Db( f pC) ↪→ Db(Ê) ∼=
Db(E⊕). Let F be an object of f pC. Choose an exact sequence in ModE as in
(7) with A → B → C a conflation in E . Then the object F , considered as a
chain complex concentrated in degree zero, is sent to the acyclic chain complex
0 → A → B → C → 0 in Db(E⊕). Such acyclic chain complexes generate
the triangulated subcategory of all acyclic chain complexes in Db(E⊕). Thus, the
inclusion Db( f pC) ↪→ Db(Ê) ∼= Db(E⊕) identifies Db( f pC) with the triangu-
lated subcategory of Db(E⊕) consisting of the acyclic chain complexes.

On the level of Frobenius pairs, the map Chb E⊕ → (Chb Ê, Acb Ê) induces an
equivalence of derived categories. Let B be the full subcategory of Chb Ê of objects
which are isomorphic in DbÊ to an object of Acb E . By the arguments above, we
have maps of Frobenius pairs

(Chb f pC, Acb f pC)→ (B, Acb Ê)← Acb E

which induce equivalences of derived categories. 	


12 Higher algebraic K -theory

In this section we will construct a functor IK from Frobenius pairs to spectra whose
negative homotopy groups are the negative IK -groups introduced in sections 2 and
5. Short exact sequences of Frobenius pairs will give rise to homotopy fibrations
of IK -theory spectra. This extends the results of the previous sections to higher
algebraic K -theory. In particular, theorem 1, remark 3, remark 4, lemma 7, and
proposition 2 also hold for higher algebraic K -groups, that is for i ∈ Z instead of
just i ≤ 0.

Without loss of generality, we will assume all additive categories (in particu-
lar, all Frobenius pairs) in this section to have a unital and associative direct sum
operation⊕. Moreover, functors of additive categories are to preserve the unit and
the direct sum operation. We can do so because there is a functorial strictification
which embeds an additive category into an equivalent additive category which has
a unital and associative coproduct [May74].

Our reference for spectra is [BF78].

Definition 10 Let A = (A, A0) be a Frobenius pair. Its associated category with
cofibrations and weak equivalences (also called Waldhausen category) [Wal85] is
the category A with cofibrations cofA the inflations in A and weak equivalences
wA the maps in A which are isomorphisms in DA. By abuse of notation we still
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write A for this category with cofibrations and weak equivalences. The K -theory
space of A is defined, according to [Wal85], as

K (A) = �|wS·A|.

The association A �→ K (A) defines a functor from Frobenius pairs to spaces.

Remark 10 The category with cofibrations and weak equivalences A is a Wald-
hausen category with factorizations (definition 11): Every map f : A → B is
the composition of an inflation ( f, i) : A → B ⊕ I and a weak equivalence
(1, 0) : B ⊕ I → B, where A ↪→ I is an inflation into an injective object.
Moreover, K (A) and K (Aop) are isomorphic.

Lemma 10 There is a contraction HA : I ∧ K (FA)→ K (FA), i.e., a map with
HA(0, ) = 0 and HA(1, ) = id, which is functorial in the Frobenius pair A.

Proof Let X be a pointed space. The co-H space structure S1 → S1 ∨ S1 induces
an H -space structure ν : �X ×�X → �X .

If µ : X× X → X is a unital and associative H -space, then the H -space struc-
ture �µ : �X ×�X → �X is homotopic to ν via a homotopy which is functorial
for unital and associative H -spaces by the following argument. The diagram

S1 ��

id×id ����
��

��
��

� S1 ∨ S1

��

f1∨ f2 �� X ∨ X

��

id∨id

����
��

��
��

�

S1 × S1
f1× f2

�� X × X µ
�� X

commutes, except for the left hand triangle which commutes up to homotopy. The
upper composition yields ν, the lower �µ. A choice of homotopy for the left hand
triangle defines a homotopy ν � �µ which is functorial for unital and associative
H -spaces.

Now we prove the claim of the lemma. The associative and unital direct sum
operation ⊕ on A induces an associative and unital H -space structure on XA =
|wS·A|, thus on K (A) = �XA, which is functorial in A. By the above, its H -
space multiplication is homotopic to ν, functorially in A. The map T : FA→ FA
of lemma 4 induces a map T : FA→ FA of Frobenius pairs. The natural equiv-
alence id ⊕ T ∼= T of lemma 4 is functorial in A (for maps preserving the unital
and associative coproduct). By the argument above, we have a functorial homotopy
K (T ) � �µ(K (T ), id) � η(K (T, id)). Since ν has an H -space inverse which is
functorial in X , there is a homotopy ∗ � idK (A) functorial in A. 	


12.1 Definition of the IK -theory spectrum

Let A be a Frobenius pair. The map A → FA of Frobenius categories induces
maps A→ FA→ SA and A→ (A, A)→ SA of Frobenius pairs whose com-
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positions coincide. Thus we obtain a commutative diagram of K -theory spaces

K (A) ��

��

K (A, A) � ∗

��
∗ � K (FA) �� K (SA)

(9)

functorial in A. By lemma 10, the space K (FA) is contractible, functorially in
A. The space K (A, A) is contractible, functorially in A, because wSn(A, A) has
an initial object, namely the unit 0, as wSn(A, A) = SnA is an additive category.

The square and the two contractions yield a map

K (A)→ �K (SA), (10)

and we define the spectrum IK (A), associated with the Frobenius pair A, to be the
sequence of spaces K (A), K (SA), K (S2A), ... together with the structure maps
given by (10).

By the functoriality of the square (9) and the functorial contractions, IK defines
a functor from Frobenius pairs to spectra.

Theorem 8 Let A be a Frobenius pair. Then the spectrum �IK (A) is an �-spec-
trum. The homotopy groups of IK (A) are given by

πi IK (A) =





πi K (A) i > 0 as defined in definition 10
IK0(A) = K0(D(A)∼) i = 0
IKi (A) i < 0 as defined in sections 2 and 5.

Proof Recall that DA ⊂ DFA → DSA is an exact sequence of triangulated
categories (theorem 3). Let B be the full subcategory of FA whose objects are zero
in DSA. Then B inherits an exact structure from FA which makes it into Frobe-
nius category. Write Aˆ for the Frobenius pair (B, FA0). The map of Frobenius
pairs A→ Aˆ induces an idempotent completion DA→ DA ,̂ because DFA is
idempotent complete, as it has countable coproducts. By cofinality (proposition 4),
the map K (A)→ K (Aˆ) is an isomorphism on πi , i > 0, and a monomorphism
on π0. By proposition 5, we have a homotopy cartesian square

K (Aˆ) ��

��

K (FA, FA) � ∗

��
∗ � K (FA) �� K (SA).

(11)

Thus, the induced maps

K (Aˆ)→ �K (SA)→ �K ((SA)ˆ) (12)

are homotopy equivalences. Since �K (A)→ �K (Aˆ) is a homotopy equivalence
as well, the spectrum �IK (A) is an �-spectrum.

The above argument actually shows that the spectrum

ˆIK (A) = {K (Aˆ), K ((SA)ˆ)K ((S2A)ˆ), ...}
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with structure maps given by (12) is an �-spectrum, and the map IK → ˆIK , induced
by A→ A ,̂ is a weak equivalence of spectra. Thus, for i > 0 we have πi IK (A) =
πi ˆIK (A) = Ki (Aˆ) = Ki (A). The last equality holds by cofinality. For i ≤ 0, we
have πi IK (A) = πi ˆIK (A) = K0((S−iA)ˆ) = K0((DS−iA)∼) = IKi (A). 	

Theorem 9 Let A → B → C be an exact sequence of Frobenius pairs. Then,
applying the IK -theory functor yields a homotopy cartesian square

IK (A) ��

��

IK (B)

��
∗ � IK (A, A) �� IK (C)

(13)

of IK -theory spectra in which the lower left corner is contractible.
In particular, there is a long exact sequence of abelian groups, i ∈ Z,

· · · → IKi (A)→ IKi (B)→ IKi (C)

δ→ IKi−1(A)→ IKi−1(B)→ IKi−1(C)→ · · ·
The square and the long exact sequence are functorial for maps of exact sequences
of Frobenius pairs.

Proof By theorem 3, SnA→ SnB→ SnC is also an exact sequence of Frobenius
pairs. Since �IK is an �-spectrum (theorem 8), it suffices to show that

�K (A) ��

��

�K (B)

��
∗ � �K (A, A) �� �K (C)

(14)

is a homotopy cartesian square of spaces. Let B1 be the full subcategory of B
of objects which are zero in DC. As usual, the exact structure on B induces an
exact structure on B1 which makes B1 into a Frobenius category with B−prinj =
B1−prinj. The claim now follows from proposition 5 and cofinality (proposition 4)
applied to A→ (B1, B0) and (B, B1)→ C. The last map may only exist when C
is saturated (i.e., if C0 consists of all the objects of C which are zero in DC), but,
replacing C with its saturation doesn’t change K -theory as both have isomorphic
associated Waldhausen categories. 	


12.2 The spectrum IK (E), E an exact category

As in definition 8 we define the IK -theory spectrum of an exact category E by

IK (E) = IK (Chb E, Acb E).

We write IK (R) = IK (R−proj) for R a ring. By [TT90, 1.11.7] and theorem 8, we
have IKi (E) = IK Q

i (E), Quillen’s K -groups of E , i > 0. By theorem 5, negative
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IK -groups as defined here coincide with negative K -groups of Bass and Thomason
whenever they have defined them.

By theorem 9, a sequence A→ B→ C of exact categories such that Db(A)→
Db(B) → Db(C) is exact, induces a long exact sequence of K -groups including
the negative K -groups. For situations in which the theorem can be applied, we
refer the reader to [TT90], [Kel99], [Nee92].

12.3 The Spectrum IK (A), A a dga

Let A be a dga. As in definition 9 we define

IK (A) = IK (cell A−mod).

If A → B is a quasi-isomorphism, then ⊗A B induces an equivalence of derived
categories and thus isomorphisms (theorem 9) IKi (A)

∼→ IKi (B), i ∈ Z.
We conclude the section with 3 propositions which we needed in the proofs of

theorem 8 and theorem 9.

Proposition 3 Let F : A→ B be a map of Frobenius pairs such that DA→ DB
is a an equivalence. Then K (A)→ K (B) is a homotopy equivalence.

Proof We translate Thomason’s proof [TT90, 1.9.8.] with minor changes into the
language of Frobenius pairs in order to see that no functorial (co-) cylinders are
required.

Given an exact functor F : A → B between exact categories, let CF be the
category whose objects are data (A, i : F(A) ↪→ B) with A an object of A
and i : F(A) ↪→ B an inflation of B. A map from (A, i : F(A) → B) to
(A′, i ′ : F(A′) → B ′) is a pair of maps a : A → A′ in A and b : B → B ′
in B such that i ′F(a) = bi . Declare a sequence in CF to be a conflation if it is
a conflation when evaluated at A, B and B/F(A). This makes CF into an exact
category.

If F : A→ B is a map of Frobenius categories, then CF is a Frobenius category
as well. Its projective-injective objects are those (A, F(A) ↪→ B) with A and B
projective-injective in A and B respectively.

Let (F, F0) : A → B a map of Frobenius pairs with DA → DB an equiv-
alence. We can assume A and B to be saturated, i.e., the objects in A0, B0 are
exactly those which are zero in the derived categories. This is because the Wald-
hausen categories of a Frobenius pair and its saturation are the same.

We define a Frobenius pair C = (C, C0) as follows. The category C is the full
subcategory of CF of objects (A, F(A) ↪→ B) with B/F(A) zero in DB, or equiv-
alently, with F(A) ↪→ B a weak equivalence in B. The inclusion C ⊂ CF is closed
under extensions, kernels of deflations and cokernels of inflations. It contains all
projective-injective objects of CF . Thus, declaring a sequence in C to be a deflation
if it is a deflation in CF , makes C into a Frobenius category. We let C0 = CF0 .
Since C0 ⊂ C preserves projective-injective objects, C is a Frobenius pair. In terms
of Waldhausen categories, weak equivalences in C are exactly point-wise weak
equivalences, i.e., those maps which are weak equivalences when evaluated at A
and at B.
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The map A → C : A �→ (A, id : F(A) → F(A)) has a retraction C →
A : (A, F(A) → B) �→ A. It is a K -theory equivalence because the compo-
sition C → A → C is naturally weakly equivalent to the identity functor: let
(A, i : F(A) ↪→ B) be an object of C, the natural weak equivalence is (id, i) :
(A, id : F(A)→ F(A))→ (A, i : F(A)→ B).

The functor C → B : (A, F(A)→ B)→ B will be a K -theory equivalence
by the dual of the approximation theorem 10. Since any Frobenius pair is a Wald-
hausen category with factorization (remark 10) we only have to check definition
A.1 apprFop .

Call two maps f, g : X → Y in a Frobenius category homotopic if their
difference factors through a projective-injective object. Given maps f : X → Y ,
g : Y → Z and h : X → Z such that g f is homotopic to h, if f is an inflation,
then there is a g′, homotopic to g, such that g′ f = h.

We check apprFop . Given a diagram F(A)
∼
↪→ B

b′← B ′ in B, construct a
B-diagram as in [TT90, 1.9.8.3]

F A �� ∼ ��

F( ) ∼
��

B

∼
��

F A2
∼ �� B2

F A1

F( )

��

∼ �� B1

��

B ′∼��

b′

��

(15)

which is commutative up to homotopy. By remark 10, we can assume F A2 → B2
to be an inflation. Since F A→ B is an inflation, we can change B → B2, up to ho-
motopy, such that the upper square commutes. Next, choose inflations F A1 ↪→ I
and B ′ ↪→ J into injective objects. Since the lower square commutes up to homot-
opy, the difference of the two compositions factor through I. We can make the lower
square commutative by replacing B1 with B1⊕ I . Similarly, we can make the right
hand square commutative by replacing the new B1 with B1⊕ J without destroying
the commutativity of the lower square. So we can assume (15) to commute, and
the horizontal maps to be inflations. Choose a C-deflation (P, F(P) ↪→ Q) →
(A2, F(A2) ↪→ B2) with P, Q projective. Replacing the lower vertical maps with
the C-deflation (A1 ⊕ P, F(A1 ⊕ P) ↪→ B1 ⊕ Q) −→ (A2, F A2 ↪→ B2), we
can assume (15) to be commutative, the horizontal maps to be inflations and the
lower vertical maps to be deflations. Let A3 be the pull-back of A→ A2 along the
A-deflation A1 → A2, let B3 be the pull-back of B → B2 along the B-deflation
B1 → B2. The map F A3 → B3 is an inflation and a weak equivalence as it is a
pull back in C. The map (A3, F A3 ↪→ B3) −→ (A, F A ↪→ B) is a C deflation as
it is the pull back of a C-deflation. The universal properties of pull-backs yield a
commutative diagram

F A �� ∼ �� B

F A3

F( )

��

�� ∼ �� B3

��

B ′.∼��

b′��
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This verifies the approximation property. 	

Proposition 4 (Cofinality) Let A → B be a map of Frobenius pairs such that
DA→ DB is cofinal (section 2.1). Then K (A)→ K (B) induces isomorphisms
on πi , i > 0 and a monomorphism on π0.

Proof Let B1 ⊂ B be the full subcategory of objects which are isomorphic in DB
to an object of DA. Then DA → D(B1, B0) is an equivalence. So K (A) →
K (B1, B0) is a homotopy equivalence (proposition 3). Moreover, K (B1, B0) →
K (B) induces isomorphisms on πi , i > 0 and a monomorphism on π0 by cofinality
(theorem 12). 	

Proposition 5 Let B be a small Frobenius category and let D0 ⊂ D1 ⊂ B full
triangulated subcategories which are closed under direct factors in B. Let Bi ⊂ B
be the full subcategory of those objects which lie in Di , i = 0, 1. It is closed un-
der kernels of deflations, cokernels of inflations, extensions, and contains B−prinj.
Thus Bi inherits an exact structure from B that makes Bi into a Frobenius category.
Then the sequence of Frobenius pairs (B1, B0) → (B, B0) → (B, B1) induces a
homotopy cartesian square of K -theory spaces

K (B1, B0) ��

��

K (B, B) � ∗

��
K (B, B0) �� K (B, B1).

(16)

Proof The homotopy cartesian square is Waldhausen’s fibrations theorem for non-
functorial cylinders (theorem 11) applied to the change of weak equivalences from
(B, B0) to (B, B1). Recall (remark 10), that Frobenius pairs are Waldhausen cate-
gories with factorizations,i.e.,every map is a cofibration followed by a weak equiv-
alence. 	


A Appendix: Getting rid of cylinder functors

We give a proof of Waldhausen’s Approximation [Wal85, 1.6.7] and Fibration
theorem [Wal85, 1.6.4] and of Thomason’s Cofinality [TT90, 1.10.1] result using
slightly weaker hypotheses, replacing the existence of a cylinder functor and the
cylinder axiom by the existence of the factorization of every map into a cofibration
followed by a weak equivalence. No functoriality is required. Some of the results
in this appendix have been found independently by Denis-Charles Cisinsk.

A.1 The approximation property

Let F : A→ B be a map between categories with cofibration and weak equivalenc-
es, i.e., F is a functor preserving cofibrations, push-out diagrams along cofibrations
and weak equivalences. We say that F satisfies the approximation property if the
following is true.
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apprF : For every map b : F(A)→ B in B there are an object A′ of A, a cofibra-

tion a : A �� �� A′ in A and a weak equivalence β : F(A′) ∼→ B in B such
that b = β ◦ F(a). Moreover, a map α in A is a weak equivalence if and only
if F(α) is.

Remark that this is exactly Waldhausen’s approximation property on page 352 of
[Wal85]. Remark also that appridA means nothing else than that every morphism
in A is the composition of a cofibration followed by a weak equivalence. In this
appendix we will prove the following versions of Waldhausen’s approximation and
fibration theorems.

Theorem 10 (Approximation, compare [Wal85, 1.6.7.]) Let A and B be catego-
ries with cofibrations and weak equivalences. Suppose the weak equivalences in
A and B satisfy the saturation axiom. Suppose further that the identity functor
on A satisfies approximation, i.e., every morphism in A is the composition of a
cofibration followed by a weak equivalence. Let F : A → B be an exact functor
satisfying the approximation property. Then the induced maps wA → wB and
wS·A→ wS·B are homotopy equivalences.

The situation of the next theorem is the following (taken from [Wal85]). Sup-
pose that C is a category with cofibrations and that C is equipped with two categories
of weak equivalences, one finer than the other, vC ⊂ wC. Let Cw denote the subcat-
egory with cofibrations of C given by the objects A in C having the property that the
map ∗ → A is in wC. It inherits categories of weak equivalences vCw = Cw ∩ vC
and wCw = Cw ∩ wC.

Theorem 11 (Fibration, compare [Wal85, 1.6.4.]) If every map in C is the compo-
sition of a cofibration followed by a map in wC and if wC satisfies the saturation
and extension axiom, then the square

vS·Cw ��

��

wS·Cw � ∗

��
vS·C �� wS·C

is homotopy cartesian, and the upper right term is contractible.

Theorem 12 (Cofinality, compare [TT90, 1.10.1]) Let (C, cofC, wC) be a
category with cofibrations and weak equivalences such that every morphism in
C is a cofibration followed by a weak equivalence. Suppose that the initial object
∅ ∈ C is also a terminal object 0. Let p : K0(C) → G be a surjective group
homomorphism, and let Ĉ be the full subcategory of C of objects C whose class in
K0(C) is trivial in G. Then (Ĉ, Ĉ ∩ cofC, Ĉ ∩ wC) is a category with cofibrations
and weak equivalences and the map Ki (Ĉ)→ Ki (C) is an isomorphism for i > 0
and the monomorphism ker p ⊂ K0(C) for i = 0.

Definition 11 A Waldhausen category with factorization is a category with cofi-
brations and weak equivalences C satisfying appridC , i.e.,every map is a composi-
tion of a cofibration followed by a weak equivalence.
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A.2 Diagram categories

Let P be a finite poset considered as a category in the usual way. The fundamental
example is the poset [1] = {0 < 1}. A subposet S ⊂ P is called saturated if for
every element S ∈ S every predecessor of S in P also belongs to S.

Let C be a category with cofibrations [Wal85, 1.1]. Write CP for the category
of P diagrams in C, i.e.,of functors P → C. A map of P-diagrams is a natural
transformation φ : X0 → X1, which is the same as a functor X : [1] × P → C
whose restriction to {i}×P is Xi , i = 0, 1. Let P ∈ P be an element and S ⊂ P a
saturated subposet such that Q < P for all Q ∈ S. For example one could think of
S = S<P := {Q ∈ P | Q < P}. Write I (S, P) for the full subcategory of [1]×P
which contains precisely all objects of [1] × S and (0, P). A map of P diagrams
X : [1] × P → C yields a functor I (S, P)→ C by restriction. The map is called
a cofibration in CP if (*) is satisfied for all P ∈ P:

(*) The colimit colim I (S<P ,P) X exists in C and the canonical map

colim I (S<P ,P)X → X1(P)

is a cofibration.

As usual, an object X ∈ CP is called cofibrant if ∅ → X is a cofibration.

Lemma 11 Let X : [1] × P → C be a map in CP . Let P ∈ P be an element and
S ′ ⊂ S ⊂ S<P saturated subposets of P . If (*) is satisfied for all Q < P, then
colim I (S,P) X exists and the canonical map colim I (S′,P)X → colim I (S,P) X is a
cofibration in C. In particular, if X1 is cofibrant in CP , then colimP X1 exists.

Proof We proceed by induction on the size of S. For S = ∅ the colimit exists as
it is X0(P) and the canonical map is a cofibration as it is necessarily the identity
map (S ′ = ∅). Suppose the lemma is true for all S of cardinality < n.

Let S have cardinality n. If S ′ = S, then the canonical map (once it exists)
is obviously a cofibration and we choose Q ∈ S maximal. Otherwise we choose
Q ∈ S maximal such that Q /∈ S ′. In the diagram

colim I (S\{Q},P) X ← colim I (S<Q ,Q) X ↪→ X1(Q)

the left hand term exists by induction hypothesis, the middle term exists and the
right hand arrow is a cofibration by the assumptions of the lemma. In particular, the
pushout of the diagram exists in C. Since colimI (S,P) X has the universal property of
this pushout, it exists, and the canonical map colim I (S\{Q},P) X → colim I (S,P) X
is a cofibration. By induction hypothesis, colim I (S′,P)X → colim I (S\{Q},P) X is a
cofibration. Composition with the previous map yields a cofibration.

Let X1 ∈ CP be cofibrant, i.e., X0 = ∗ → X1 is a cofibration. Let P+ be the po-
set consisting of P and an additional maximal element+. Define X0(+) = ∗. Then
according to what was shown above, colim I (P,+)X exists. But colim I (P,+) X =
colimP X1. 	

Lemma 12 Let X : [1] × P → C be a cofibration in CP . If X0 takes values in
(cofC)P , then so does X1 and the canonical map X1(Q) → colim I (S,P) X is a
cofibration for all saturated S ⊂ S<P , Q ∈ S maximal and P ∈ P .
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Proof The pushout of the diagram

colim I (S<Q ,Q)X ← X0(Q)→ X0(P)

is colim I (S<Q ,P)X . Since X0(Q)→ X0(P) is a cofibration by assumption, the map
colim I (S<Q ,Q) X → colim I (S<Q ,P) X is a cofibration. Composing with the cofibra-
tion colim I (S<Q ,P)X ↪→ colim I (S\{Q},P) X of lemma 11 yields a cofibration. Thus
X1(Q)→ colim I (S,P) X is a cofibration as it is the pushout of the previous com-
position along colim I (S<Q ,Q)X → X1(Q). In particular, for Q ∈ S<P maximal,
we have a cofibration X1(Q)→ colim I (S<P ,P)X . Composed with the cofibration
colim I (S<P ,P) X → X1(P) yields a cofibration X1(Q)→ X1(P). It follows that
X1 takes values in (cofC)P . 	

Lemma 13 Let C be a Waldhausen category with factorization. Call a map X0 →
X1 in CP a weak equivalence if for all P ∈ P the map X0(P)→ X1(P) is a weak
equivalence in C. Then every map X → Y in CP factors as X ↪→ Z

∼→ Y with
X ↪→ Z a cofibration and Z

∼→ Y a weak equivalence.

Proof The proof proceeds by induction on the size of P . If the cardinality of
P is 1, then the claim is the factorization property in C. Let P be a finite poset.
Choose a maximal element P ∈ P . By induction hypothesis there is a factorization
X |P\{P} ↪→ Z|P\{P}

∼→ Y|P\{P} with the first map a cofibration and the last map a
weak equivalence. By lemma 11, the colimit colim I (S<P ,P)(X → Z) exists. By the
factorization property in C, the canonical map colim I (S<P ,P)(X → Z) → Y (P)

can be factored as colim I (S<P ,P)(X → Z) ↪→ Z(P)
∼→ Y (P) into a cofibration

followed by a weak equivalence. This defines Z : P → C. By construction, we
have a factorization X ↪→ Z

∼→ Y of X → Y into a cofibration followed by a
weak equivalence. 	

Lemma 14 (extracted from [Wal85]) Let C be a non-empty category such that
every functor P → C, with P a finite poset, is homotopic to zero. Then C is con-
tractible.

Proof Choose for every connected component of C a vertex lying in that compo-
nent. The choice yields a functor from the discrete category π0C to C which, by
hypothesis, is contractible. So C is connected.

Pick a zero simplex of C and call it base point. We have to show that πnC = 0,
n > 0. Every element [α] ∈ πnC is represented by a pointed map α : Sdk Sn →
N∗C for some k ∈ N. Here Sn = (�1/∂�1)∧n is the simplicial n-sphere, N∗C is
the nerve of C, and Sdk Sn is the k-th normal subdivision of Sn [FP90, 4.6]. We can
assume k ≥ 2. For any simplicial set Z , the simplicial set Sd2 Z is the nerve of a
poset [Tho80]. Since Sn , hence Sdk Sn = N∗Pk , is a finite simplicial set, Pk is a
finite poset. Moreover, N∗ : cat → �op Sets is fully faithful, so α is the nerve of
a map Pk → C. By hypothesis, this map is contractible, thus α is contractible. Every
pointed map from Sn to a topological space X , which is homotopic to zero, is also
homotopic to zero via a base point preserving homotopy. Thus α is contractible
via a base point preserving homotopy, so [α] = 0. 	
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Proof (of Approximation, theorem 10) By [Wal85, 1.6.6.], the map of Waldhausen
categories SnA → SnB satisfies the hypothesis of theorem 10 as well. We show
that F : wA → wB is a homotopy equivalence. The same argument applied to
SnA → SnB yields homotopy equivalences wSnA → wSnB for all n ∈ N and
thus a homotopy equivalence after realization wS∗A→ wS∗B.

In order to show that F is a homotopy equivalence, it suffices to show that for
every object B of wB the category (F ↓ B) is contractible [Qui73, Theorem A].
The categories (F ↓ B) are non-empty since the map ∅ = F(∅) → B admits a
factorization ∅ → F(A)

∼→ B where the latter map is a weak equivalence. Let
P be a finite poset. A functor P → (F ↓ B) is a P-diagram X in wA together
with a map F(X) → cB in (wB)P , where cB stands for the constant diagram
cB(Q ≤ P) = idB . Factor ∅ → X into ∅ ↪→ Y

∼→ X (lemma 13). Since Y
is cofibrant, the colimit colimPY exists (lemma 11). We have F(colimPY ) =
colimP F(Y ) as the colimit is a successive pushout along cofibrations and F pre-
serves them. Thus there is an induced map colimP F(Y ) → B which we can
factor as F(colimPY ) → F(Z)

∼→ B by apprF . Saturation and the condition
apprF ensure that Y → cZ is a point-wise weak equivalence. The sequence of

maps X
∼← Y

∼→ cZ in (F ↓ B)P define a null homotopy. Thus any functor
P → (F ↓ B)P is homotopic to zero. By lemma 14, (F ↓ B) is contractible. 	

Lemma 15 Let C be a Waldhausen category with factorization (definition 11) satis-
fying the saturation axiom. Let w̄C = wC∩cofC. Then the inclusion F : w̄C → wC
is a homotopy equivalence.

Proof By Quillen’s Theorem A, it suffices to show that (F ↓ B) is contractible
for every object B of wC. It is non-empty since idB is an object of (F ↓ B).

Let P → (F ↓ B) be a functor with P a finite poset. It is given by a P dia-
gram X in w̄C together with a map X → cB in (wC)P . Here cB is the constant
P-diagram associated with B. Factor X ∨ cB → cB as a cofibration followed by
a weak equivalence in CP (lemma 11): X ∨ cB ↪→ Y

∼→ cB. By lemma 12, Y
is an object of (cofC)P . By the saturation axiom applied to the maps occurring in
Y
∼→ cB, Y is in (wC)P and thus in (w̄C)P . Since X → X ∨ cB, cB → X ∨ cB

and X ∨ cB → Y are point-wise cofibrations, their compositions X → Y and
cB → Y are point-wise cofibrations. By the saturation axiom, both maps are also
point-wise weak equivalences. Thus the sequence of maps X → Y ← cB over
cB defines a null-homotopy of P → (F ↓ B). By lemma 14, we are done. 	

Proof (of Fibration, theorem 11) Replacing [Wal85, 1.6.3.] with lemma 15 in
Waldhausen’s proof of [Wal85, 1.6.4.] yields a proof of theorem 11. 	

Proof (of Cofinality, theorem 12) The proof is the same as the proof of [TT90,
1.10.1.] replacing [TT90, 1.8.2.] by theorem 11 and [TT90, 1.5.7.] by the (non-
functorial) factorization of A→ 0 as a cofibration followed by a weak equivalence
A ↪→ I

∼→ 0 and setting � A = I/A. The non-functoriality of � A is irrelevant in
the proof of [TT90, 1.10.1.]. 	
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