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Abstract We study the relationship between the deformation theory of represent-
able 1-morphisms between algebraic stacks and the cotangent complex defined by
Laumon and Moret-Bailly.

1 Introduction

Let x : X → Y be a representable morphism of algebraic stacks. In this paper
we study the relationship between the deformation theory of x and the cotangent
complex defined in ([13], 17.3).

Our interest in this relationship comes from two sources. First, a consequence
of the discussion in this paper is a construction of a canonical obstruction theory (in
the sense of ([2], 2.6)) for any algebraic stack locally of finite type over a noetherian
base, and hence we obtain the converse to (loc. cit., 5.3) alluded to in (loc. cit.,
p. 182) (see (1.7) below). Secondly, the results of this paper are used in the theory
of logarithmic geometry to understand the relationship between the logarithmic
cotangent complex and deformation theory of log schemes ([14]).

In the subsequent sections we study in turn the following three problems (1),
(2), and (3):

Problem 1 (Generalization of ([10], III.1.2.3)) Let I be a quasi-coherent sheaf
on X and define a Y-extension of X by I to be a 2-commutative diagram
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x x ′ (1.0.1)

where j is a closed immersion of algebraic stacks defined by a square zero ideal,
together with an isomorphism ι : I � Ker(OX ′ → OX ). We often write ( j : X ↪→
X ′, ι), or just X ↪→ X ′, for such an extension, and denote by ε j : x → x ′ ◦ j the
specified isomorphism in Y(X). In fact, x ′ is necessarily representable (2.1), so the
set of Y-extensions of X by I form in a natural way a category ExalY(X, I ) (2.2).
In fact, the category ExalY(X, I ) has a natural structure of a Picard category (2.12),
and hence its set of isomorphism classes of objects ExalY(X, I ) has a structure of
a group. In section 2 we prove the following (see (2.15)–(2.19) for the meaning of
the right hand side):

Theorem 1.1 There is a natural isomorphism

ExalY(X, I ) � Ext1(L X/Y, I ), (1.1.1)

where L X/Y denotes the cotangent complex of x : X → Y.

Remark 1.2 When X is a Deligne–Mumford stack, we also sometimes abuse nota-
tion and write L X/Y for the restriction to the étale site of X . By ([15], 6.14) the
restriction functor D+qcoh(X lis−et) → D+qcoh(Xet) (notation as in (loc. cit.)) is an
equivalence of categories, and the construction in ([15], §9) of the derived pull-
back functor shows that this equivalence induced by restriction is compatible with
derived pullbacks. We therefore hope that this abuse of notation does not cause
confusion.

Remark 1.3 As pointed out by the referee, when X is a Deligne–Mumford stack
(1.1) can be generalized as follows (see (2.26) for more details). Let ExalY(−, I )
be the fibered category over the étale site of X which to any étale U → X associ-
ates the groupoid of Y–extensions of U by I |U . The fibered category ExalY(−, I )
is naturally a Picard stack, and the proof of (1.1) can be generalized to show that
ExalY(−, I ) is equivalent to the Picard stack associated as in ([13], 14.4.5) to
(τ≤1 RHom(L X/Y, I ))[1].
Problem 2 (Generalization of ([10], III.2.1.7)) Suppose j : Y ↪→ Y′ is a closed
immersion of algebraic stacks defined by a quasi-coherent square–zero ideal I on
Y′, and suppose that x is flat. A flat deformation of X to Y′ is a 2-cartesian square

X
i−−−−→ X ′

x



�



�x ′

Y
j−−−−→ Y′,

where x ′ : X ′ → Y′ is flat (we often denote a flat deformation of X to Y′ simply
by x ′ : X ′ → Y′). The set of flat deformations of X to Y′ form in a natural way a
category (in fact a groupoid; (3.1)), and in section 3 we prove the following:
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Theorem 1.4 (i). There exists a canonical obstruction

o(X, j) ∈ Ext2(L X/Y, x∗ I )

(sometimes abbreviated o(X) or simply o) whose vanishing is necessary and
sufficient for the existence of a flat deformation of X to Y′.

(ii). If o(X, j) = 0, then the set of isomorphism classes of flat deformations of X
to Y′ is a torsor under Ext1(L X/Y, x∗ I ).

(iii). The automorphism group of any flat deformation of X to Y′ is canonically
isomorphic to Ext0(L X/Y, x∗ I ).

Problem 3 (Generalization of ([10], III.2.2.4)) Suppose x : X → Y fits into a
2-commutative diagram of solid arrows between algebraic stacks

X X ′

Z

Y Y′

Z ′,

�i

�

�

x
�

�
�

�
��

�
�

�
���
�

�

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

���

x ′

g g′h h′

j

k

. . . . . . . . . . . . . . . . .	
(1.4.1)

where Z and Z ′ are schemes, and i (resp. j , k) is a closed immersion defined by
a square-zero ideal I ⊂ OX ′ (resp. J ⊂ OY′ , K ⊂ OZ ′). The collection of maps
x ′ : X ′ → Y′ filling in (1.4.1) form in a natural way a category (4.1), and in section
4 we prove the following:

Theorem 1.5 Let LY/Z denote the cotangent complex of g : Y→ Z.

(i). There is a canonical class o(x, i, j) ∈ Ext1(Lx∗LY/Z , I ) (sometimes abbre-
viated o(x) or simply o) whose vanishing is necessary and sufficient for the
existence of an arrow x ′ : X ′ → Y′ filling in (1.4.1).

(ii). If o(x, i, j) = 0, then the set of isomorphism classes of maps x ′ : X ′ → Y′
filling in (1.4.1) is naturally a torsor under Ext0(Lx∗LY/Z , I ).

(iii). For any morphism x ′ : X ′ → Y′ the group of automorphisms of x ′ (as a
deformation of x) is canonically isomorphic to Ext−1(Lx∗LY/Z , I ).

Remark 1.6 It is perhaps worth remarking why the above results do not follow
immediately from the general theory of Illusie ([10]). The point is that the cotan-
gent complex of the morphism x : X → Y is not defined as the cotangent complex
of a morphism of ringed topoi (in the sense of loc. cit.), and there is not an inter-
pretation of the category ExalY(X, I ) defined in problem (1) as a category of ring
extensions in some topos associated to X . Hence one cannot apply directly the
results of (loc. cit.).
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Remark 1.7 Theorem (1.5) can be used to define an obstruction theory in the sense
of ([2], 2.6) for every algebraic stack X locally of finite type over a noetherian base
scheme S. Recall that such a theory consists of the following (in the following all
rings are over S):

(1.7.1). For every surjection of noetherian rings A→ A0 with nilpotent kernel
and a ∈ X(A), a functor

Oa : (A0-modules of finite type) −→ (A0-modules of finite type).

(1.7.2). For each surjection A′ → A with kernel M , an A0-module of finite
type, a class oa ∈ Oa(M) which is zero if and only if there exists a lifting of a to
A′.

This data is furthermore required to be functorial and linear in (A0,M).
We obtain such a theory for X by defining Oa(M) := Ext1(La∗LX/S,M), and

taking for each A′ → A as in (1.7.2) the class oa ∈ Ext1(La∗LX/S,M) to be the
class obtained from (1.5 (i)) applied to (1.4.1) with X = Spec(A), X ′ = Spec(A′),
Y = Y′ = X, and Z = Z ′ = S. Note that it follows from the construction of the
cotangent complex and ([10], II.2.3.7) that the homology groups of La∗LX/S are
coherent. From this and standard properties of cohomology it follows that the A0-
modules Ext1(La∗LX/S,M) are of finite type and that the additional conditions
([2], 4.1) on the obstruction theory hold (see (4.11)–(4.12) for functoriality).

Remark 1.8 It is natural to ask for a generalization of the work in this paper to all
morphisms of algebraic stacks X → Y. Unfortunately, the methods of this paper
do not seem applicable in this level of generality. For example, ExalY(X, I ) will
in general be a 2-category as objects of X may have infinitesimal automorphisms
inducing the identity in Y. Recently, some progress in this direction has been made
by Aoki ([1]) who studies the case when X is an algebraic stack and Y is a scheme.

1.9 (Acknowledgements) We thank O. Gabber and the referee for very help-
ful comments. In particular, the referee suggested the stack–theoretic approach
to functoriality in (2.26)–(2.33). The author was partially supported by an NSF
post–doctoral research fellowship.

1.10 Conventions

Throughout this paper we follow the conventions of ([13]) except that we do not
assume that our stacks are quasi-separated (this is important in the application to
log geometry ([14])). More precisely, by an algebraic stack we mean a stack X in
the sense of ([13], 3.1) satisfying the following:

(1.10.1). The diagonal

� : X −→ X× X

is representable and of finite type;
(1.10.2). There exists a surjective smooth morphism X → X from a scheme.
The reader should verify that the results from ([13]) used in this paper still hold

with this slightly more general notion of an algebraic stack.
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If Z and X are algebraic stacks, we write X(Z) for the groupoid of morphisms
of stacks Z→ X.

The reader should be aware that there is a problem with the functoriality of the
lisse-étale topos as defined in ([13]). The difficulties this causes in chapters 12–18
in (loc. cit.) have been worked out in ([15]).

We assume that the reader is familiar with the construction given in ([13], proof
of 17.3) and ([15], section 10) of the cotangent complex LY/Z of a morphism of
algebraic stacks Y→ Z.

We denote by� the category whose objects are the ordered sets [i] := {0, . . . , i}
(i ∈ N), and whose morphisms are order preserving set maps. A simplicial alge-
braic space is a functor

X• : �op −→ (category of algebraic spaces).

For such a functor we denote by Xi the space X•([i]), and for a morphism δ :
[i1] → [i2] in � we denote by X•(δ) : Xi2 → Xi1 the resulting morphism of
algebraic spaces. For distinct integers i1, . . . , i� ∈ {0, i}, we sometimes write

pri
01···î1···î2···i : Xi −→ Xi−�

for the map induced by the unique injective order preserving map [i − �] → [i]
whose image does not intersect {i1, . . . , i�}. For example, the map X2 → X1

obtained from the map [1] → [2] sending 0 to 0 (resp. 1) and 1 to 1 (resp. 2) will
be denoted pr2

01 (resp. pr2
12).

2 Problem (1)

We proceed with the notation of problem (1).

Lemma 2.1 For any Y–extension X ↪→ X ′ of X by I , the morphism x ′ : X ′ → Y
is representable.

Proof Let Y → Y be a smooth cover with Y a scheme, and consider the algebraic
stack X ′Y := X ′×YY . To prove that X ′Y is an algebraic space, it suffices to show that
the objects of X ′Y admit no non–trivial automorphisms ([13], 8.1.1). Let A′ → X ′Y
be the stack which to any scheme T associates the groupoid of pairs (x ′, α), where
x ′ ∈ X ′Y (T ) and α is an automorphism of x ′ in X ′Y (T ) (the “inertia stack”). The
stack A′ is isomorphic to the fiber product of the diagram

X ′Y


��

X ′Y
�−−−−→ X ′Y × X ′Y ,

and in particular is algebraic, and the morphism A′ → X ′Y is representable. To
prove the lemma it suffices to show that the map A′ → X ′Y is an isomorphism.

Set XY := X ×Y Y so that there is a closed immersion defined by a square–
zero ideal XY ↪→ X ′Y . Since x is representable, the pullback A′ ×X ′Y XY → XY

is an isomorphism. Let T ′ → X ′Y be a smooth cover with T ′ a scheme and set



30 M.C. Olsson

A′T ′ := T ′ ×X ′Y A′ and T := XY ×X ′Y T ′. By descent theory, it suffices to show that
A′T ′ → T ′ is an isomorphism. Since A′ → X ′Y is representable, A′T ′ is an algebraic
space, and since A′T ′ ×T ′ T is a scheme (in fact isomorphic to T ) it follows from
([12], III.3.6) that A′T ′ is a scheme. To prove the lemma it therefore suffices to
show that if A′T ′ → T ′ is a morphism of schemes which admits a section such
that the base change to T is an isomorphism, then A′T ′ → T ′ is an isomorphism.
Since T ↪→ T ′ is defined by a nilpotent ideal, the underlying topological spaces
of T and T ′ are equal as are the topological spaces of AT ′ and AT . In particular,
the map AT ′ → T ′ induces an isomorphism between the underlying topological
spaces. Therefore AT ′ is equal to the relative spectrum over T ′ of a quasi–coherent
sheaf of OT ′–algebras A on T ′. The section of AT ′ → T ′ induces a decomposition
A � OT ′ ⊕F for some quasi–coherent sheaf F on T ′ such that the pullback of F
to T is zero. It follows that F = ∩n I nF , and hence F = 0 since I is a nilpotent
ideal. ��
2.2 If ( ji : X ↪→ X ′i , ιi ) (i = 1, 2) are two Y-extensions of X by I , then we define
a morphism

( j1 : X ↪→ X ′1, ι1) −→ ( j2 : X ↪→ X ′2, ι2)
to be a pair (ψ, ϕ), where ψ : X ′1 → X ′2 is a morphism of stacks and ϕ : x ′1 →
x ′2 ◦ ψ is an isomorphism in Y(X ′1) such that the following hold:

(2.2 (i)). j2 = ψ ◦ j1 and if ρ denotes the induced isomorphism

Ker(OX ′1 −→ OX ) −→ Ker(OX ′2 −→ OX ),

then ρ ◦ ι1 = ι2.
(2.2 (ii)). The composite

x
ε j1−−−−→ x ′1 ◦ j1

ϕ−−−−→ x ′2 ◦ ψ ◦ j1
=−−−−→ x ′2 ◦ j2

in Y(X) equals ε j2 .
In this way the Y-extensions of X by I form a category which we denote by

ExalY(X, I ). Note that (2.2 (i)) implies that all morphisms in ExalY(X, I ) are
isomorphisms.

2.3 If u : I → J is a morphism of quasi-coherent sheaves, then there is a natural
pullback functor

u∗ : ExalY(X, I ) −→ ExalY(X, J ) (2.3.1)

obtained as follows. Given an extension ( j : X ↪→ X ′, ι), define X ′u to be the
relative spectrum over X ′ ([13], 14.2.3) of the sheaf of OX ′–algebras OX ′ ⊕I J
([7], 0IV.18.2.8). Then there is a natural map i : X ′u → X ′ which induces a
2-commutative diagram

Y.

X X ′u�

�

�
�

�
��

ju

x x ′ ◦ i (2.3.2)

This construction is compatible with morphisms in ExalY(X, I ), and hence we
obtain the functor (2.3.1).
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2.4 In order to proceed further, it is necessary to have some facts about simplicial
algebraic spaces. Suppose

p : S −→ (Schemes)

is an algebraic stack, and let s : S → S be a smooth cover. Let S• denote the
simplicial algebraic space obtained from s by applying the 0-coskeleton functor
([5], 5.1.1). For i ∈ N, Si is the (i + 1)-fold fiber product S ×S S ×S · · · ×S S
which we view as the space representing the functor which to any scheme T asso-
ciates the isomorphism classes of collections of data (t, { f j }ij=0, {ε j }ij=0), where
t ∈ S(T ), f j : T → S is a morphism of algebraic spaces, and ε j : f ∗j s → t
is an isomorphism in S(T ). If δ : [i ′] → [i] is a morphism in �, then the map
S•(δ) : Si → Si ′ is the map induced by the morphism of functors

(t, { f j }ij=0, {ε j }ij=0) 
−→ (t, { fδ( j)}i ′j=0, {εδ( j)}i ′j=0).

2.5 If x : X → S is any representable morphism of algebraic stacks, we can base
change S• to X to get a simplicial space X• over X . The space Xi is equal to
X ×S Si which we think of as representing the functor which to any scheme T
associates the set of isomorphism classes of collections ( f, ε, t, { f j }ij=0, {ε j }ij=0),

where (t, { f j }ij=0, {ε j }ij=0) ∈ Si (T ), f : T → X is a morphism of algebraic
stacks, and ε : f ∗x → t is an isomorphism in S(T ). For δ : [i ′] → [i] the
morphism X•(δ) : Xi → Xi ′ is that induced by the map

( f, ε, t, { f j }ij=0, {ε j }ij=0) 
−→ ( f, ε, t, { fδ( j)}i ′j=0, {εδ( j)}i ′j=0).

If p• : X• → S• denotes the map induced by the maps Xi → Si sending a collec-
tion ( f, ε, t, { f j }ij=0, {ε j }ij=0) to (t, { f j }ij=0, {ε j }ij=0), and if si ∈ S(Si ) denotes
the tautological element corresponding to t in a triple

(t, { f j }ij=0, {ε j }ij=0),

then for each i there is a tautological isomorphism γi : pi∗(si ) → π i∗x , where
π i : Xi → X denotes the projection. These isomorphisms are compatible in the
following sense. For each δ : [i ′] → [i] in �, there is a tautological isomorphism
σδ : S•(δ)∗(si ′)→ si , and it follows from the construction that the diagram

X•(δ)∗π i ′∗x
X•(δ)∗(γi ′ )−−−−−−→ X•(δ)∗ pi ′∗si ′

=


�



�σδ

π i∗x γi−−−−→ pi∗si

commutes.
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2.6 One can extend the stack S to the category of simplicial spaces. If

T • : �op −→ (Algebraic spaces)

is a simplicial algebraic space, define S(T •) to be the groupoid of functors F :
�op → S for which p ◦ F = T • (where S is extended to the category of algebraic
spaces in the usual way). To give an object s of S(T •) is equivalent to giving for
each i and object si ∈ S(T i ), together with an isomorphisms ρδ : T •(δ)∗si ′ � si
on T i for each morphism δ : [i ′] → [i] in �, such that if δ′ : [i ′′] → [i ′] is a
second morphism in � then the two isomorphisms

ρδ◦δ′, ρδ ◦ T •(δ)∗(ρδ′) : T •(δ ◦ δ′)∗si ′′ −→ si (2.6.1)

are equal. If s, t ∈ S(T •) are two objects then to give an isomorphism s → t is
equivalent to giving a collection of isomorphisms si → t i in S(T i ) compatible
with the ρδ .

If f • : V • → T • is a morphism of simplicial algebraic spaces, then there is a
natural pullback functor

f •∗ : S(T •) −→ S(V •)

obtained by sending a collection ({si }, {ρδ}) to the family ({ f i∗si }, { f •∗(δ)}),
where for δ : [i ′] → [i] we denote by f •∗(δ) the map

V •(δ)∗ f i ′∗si ′ = f i∗T •(δ)∗si ′
f i∗(ρδ)−−−−→ f i∗si .

Lemma 2.7 If Z is an algebraic stack and Z → Z a smooth cover with associated
simplicial algebraic space Z•, then there is a natural equivalence of categories

S(Z•) −→ S(Z). (2.7.1)

Proof Let δ0 (resp. δ1) denote the map [0] → [1] sending 0 to 0 (resp. 1). By ([13],
3.2), the category of 1-morphisms Z→ S is equivalent to the category T of pairs
(s, σ ), where s ∈ S(Z) and σ : pr1∗

0 (s) → pr1∗
1 (s) is an isomorphism in S(Z1)

such that the two isomorphisms

pr2∗
02(σ ), pr2∗

12(σ ) ◦ pr2∗
01(σ ) : pr2∗

0 s −→ pr2∗
2 s (2.7.2)

in S(Z2) are equal. Now for any object (si , ρδ) ∈ S(Z•), the pair (s0, ρ
−1
δ1
◦ ρδ0)

is an object of T; the equality of the two morphisms in (2.7.2) holds because of
the cocycle condition (2.6.1) (exercise). The functor (2.7.1) is that defined by the
association (si , ρδ) 
→ (s0, ρ

−1
δ1
◦ ρδ0).

To see that (2.7.1) is fully faithful, let (si , ρδ) and (s′i , ρ′δ) be two objects of
S(Z•). A morphism (si , ρδ)→ (s′i , ρ′δ) is a collection of isomorphisms {σi : si →
si ′ } such that for every morphism δ : [i1] → [i2] the induced diagram

Z•(δ)∗si1

ρδ−−−−→ si2

Z•(δ)∗(σi1 )



�



�σi2

Z•(δ)∗s′i1

ρ′δ−−−−→ s′i2
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commutes. In particular, the collection {σi } is determined by σ0: if δ : [0] → [i] is
any morphism, then σi must be the composite

si
ρ−1
δ−−−−→ Z•(δ)∗(s0)

Z•(δ)∗(σ0)−−−−−−→ Z•(δ)∗(s′0)
ρ′δ−−−−→ s′i .

(2.7.3)

Conversely, given a morphism σ0 : s0 → s′0 compatible with the isomorphisms
ρ−1
δ1
◦ ρδ0 and ρ′−1

δ1
◦ ρ′δ0

, we can use (2.7.3) to define the collection {σi }. To check
that the collection {σi } defines a morphism in S(Z•), it suffices to show that the
morphism σi defined by (2.7.3) is independent of the choice of δ. If δ′ : [0] → [i]
is a second morphism, then we can after possibly interchanging δ and δ′ find a
morphism δ̃ : [1] → [i] such that δ (resp. δ′) equals δ̃ ◦ δ0 (resp. δ̃ ◦ ◦δ1). We then
have a commutative diagram

si
id−−−−→ si



�ρ
−1
δ

ρ−1
δ′



�

Z•(δ̃)∗(Z•(δ0)
∗(s0))

Z•(δ̃)∗(ρ−1
δ1
◦ρδ0 )−−−−−−−−−−→ Z•(δ̃)∗(Z•(δ1)

∗(s0))


�Z•(δ̃)∗(Z•(δ0)

∗(σ0)) Z•(δ̃)∗(Z•(δ1)
∗(σ0))



�

Z•(δ̃)∗(Z•(δ0)
∗(s′0))

Z•(δ̃)∗(ρ′−1
δ1
◦ρ′δ0 )−−−−−−−−−−→ Z•(δ̃)∗(Z•(δ1)

∗(s′0))


�ρ
′
δ

ρ′
δ′


�

s′i
id−−−−→ s′i ,

where the top and bottom squares commute by (2.6.1) and the middle square com-
mutes by assumption. From this it follows that (2.7.1) is fully faithful.

To see that (2.7.1) is essentially surjective, let (s, σ ) be an object of T. For each
i > 1, define si to be pri∗

0 (s). If δ : [i1] → [i2] is any morphism, then there exists
a unique morphism δ̃ : [1] → [i2] such that Z•(δ̃ ◦ δ0) (resp. Z•(δ̃ ◦ δ1)) equals
pri2

0 (resp. pri1
0 ◦ Z•(δ)). Define ρδ to be the map

Z•(δ)∗si = Z•(δ̃)∗pr1∗
1 (s)

Z•(δ̃)∗(σ−1)−−−−−−−→ Z•(δ̃)∗pr1∗
0 (s) = pri2∗

0 (s).

To see that (si , ρδ) defines an object of S(Z•) (i.e. that (2.6.1) holds), let δ : [i ′] →
[i] and δ′ : [i ′′] → [i ′] be morphisms in �, and let δ̃ : [2] → [i] be the unique
morphism sending 0 (resp. 1, 2) to 0 (resp. δ(0), δ(δ′(0))). The fact that the two
maps in (2.6.1) are equal then amounts the equality of the map

Z•(δ ◦ δ′)∗pri ′′∗
0 s = Z•(δ̃)∗(pr2∗

02(pr1∗
1 s))

Z•(δ̃)∗(pr2∗
02(σ

−1))−−−−−−−−−−−→ Z•(δ̃)∗(pr2∗
02(pr1∗

0 s))

with the composite of

Z•(δ ◦ δ′)∗pri ′′∗
0 s = Z•(δ̃)∗(pr2∗

12(pr1∗
1 s))

Z•(δ̃)∗(pr2∗
12(σ

−1))−−−−−−−−−−−→ Z•(δ̃)∗(pr2∗
12(pr1∗

0 s))
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and

Z•(δ̃)∗(pr2∗
12(pr1∗

0 s))= Z•(δ̃)∗(pr2∗
01(pr1∗

1 s))
Z•(δ̃)∗(pr2∗

01(σ
−1))−−−−−−−−−−−→Z•(δ̃)∗(pr2∗

01(pr1∗
0 s)).

This follows from the cocycle condition (2.7.2). Moreover, it follows from the
construction that the resulting object of S(Z•) induces (s, σ ). ��
2.8 Fix a smooth cover Y → Y and let Y • denote the associated simplicial algebraic
space (2.4). For any morphism T • → Y • of simplicial algebraic spaces and quasi-
coherent sheaf J on T • ([13], page 125), we can define a category ExalY •(T

•, J ).
The objects of ExalY •(T

•, J ) are closed immersions j• : T • ↪→ T ′• of simplicial
spaces over Y • together with an isomorphism ε j• : J � Ker(OT ′• → OT •). A mor-
phism ( j•1 : T • → T ′•1 )→ ( j•2 : T • → T ′•2 ) is a Y •-morphism ψ• : T ′•1 → T ′•2
such that j•2 = ψ• ◦ j•1 which is compatible with the ε j•i .

In particular, if X• denotes the simplicial space obtained from x : X → Y by
base change to Y •, then for any quasi-coherent sheaf I on X we obtain a natural
functor

F : ExalY(X, I ) −→ ExalY •(X
•, π∗X I ), (2.8.1)

where π∗X I denotes the quasi–coherent sheaf on X•et obtained by pulling back I
as in ([13], 13.2.4) (where the functor π∗X is denoted ε∗). The functor (2.8.1) takes
a Y-extension ( j : X ↪→ X ′, ι) to the Y •-extension ( j• : X• → X ′•) obtained by
base change.

Proposition 2.9 The functor (2.8.1) is an equivalence of categories.

Proof First we show that F is fully faithful. Suppose given two Y-extensions ji :
X ↪→ X ′i and let IF denote the map

Hom( j1 : X ↪→ X ′1, j2 : X ↪→ X ′2) −→ Hom( j•1 : X• ↪→ X ′•1 , j•2 : X• ↪→ X ′•2 )
(2.9.1)

induced by F .
By definition, the fiber product X ′i ×Y Y represents the functor which to any

scheme T associates the set of triples (t, s, ρ), where t : T → X ′i and s : T → Y
are morphisms of algebraic stacks and ρ : t∗(x ′i ) → s∗(y) is an isomorphism in
Y(T ). If (ψ, ϕ) is a morphism from j1 to j2, then the induced map

X ′1 ×Y Y −→ X ′2 ×Y Y (2.9.2)

sends (t, s, ρ) to (ψ ◦ t, s, ρ ◦ t∗(ϕ−1)).
If (ψi , ϕi ) (i = 1, 2) are two morphisms with the same image ψ• under IF ,

then ψ1 = ψ2 since by (2.7) we have X2(X1) � X2(X•1). Thus we obtain an
automorphism α of x ′1 in Y(X ′1) defined to be the composite

x ′1
ϕ2−−−−→ x ′2 ◦ ψ2

=−−−−→ x ′2 ◦ ψ1
ϕ−1

1−−−−→ x ′1.

Moreover from the functorial description of the map (2.9.2), we see that the pull-
back of α to X ′1 ×Y Y is the identity. Since X ′1 ×Y Y is a smooth cover of X ′1 it
follows that α is the identity, and so IF is injective.
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Conversely we show that every morphism ψ• : X ′•1 → X ′•2 of Y •-extensions
of X• is in the image of IF . By (2.7) applied with S = X ′2 and Z• = X ′•1 , there
exists a unique morphism ψ : X ′1 → X ′2 such that (2.2 (i)) holds and such that the
diagram

X ′•1
ψ•−−−−→ X ′•2



�



�

X ′1
ψ−−−−→ X ′2

commutes. Let y• ∈ Y(Y •) denote the tautological object corresponding to the
identity functor Y→ Y under (2.7), and let τi : π∗X ′i x ′i → p∗i y• denote the isomor-

phism discussed in (2.5), where πX ′i : X ′•i → X ′i and pi : X ′•i → Y • denote the
natural maps. Let σ • : π∗X ′1 x ′1 → ψ•∗π∗X ′2 x ′2 be the isomorphism in Y(X ′•1 )

x ′1
τ1−−−−→ p∗1 y• = ψ•∗ p∗2 y•

ψ•∗(τ−1
2 )−−−−−→ ψ•∗x ′2.

Then by (2.7) there exists a unique isomorphism ϕ : x ′1 → ψ∗x ′2 inducing σ •.
Once again by (2.7) the condition (2.2 (ii)) holds since it holds after pulling back
to X•, and hence the pair (ψ, ϕ) defines a morphism in ExalY(X, I )which induces
ψ•. Hence IF is bijective.

To prove that the functor (2.8.1) is essentially surjective, we show that any
object j• : X• ↪→ X ′• of ExalY •(X

•, π∗X I ) is in the essential image of F . Let
di : X ′1 → X ′0 (i = 0, 1) denote the projections pr1

i (i = 0, 1), and note that we
have commutative squares

X ×Y (Y ×Y Y )
j1

−−−−→ X ′1

pr1
i



�



�di

X ×Y Y
j0

−−−−→ X ′0.

(2.9.3)

It follows from the fact that the kernel of j1∗ is equal to d∗i (π∗X I |X ′0) that the
square (2.9.3) is cartesian. Since pr1

i is smooth, the same fact combined with the
local criterion for flatness ([7], 0III.10.2.1) implies that the di are flat, and hence
by ([7], IV.17.5.1) they are smooth. Similarly, the maps

pr2
01 × pr2

12 : X ′2 −→ X ′1 ×d1,X ′0,d0
X ′1,

pr2
01 × pr2

12 × pr2
23 : X ′3 −→ X ′1 ×d1,X ′0,d0

X ′1 ×d1,X ′0,d0
X ′1

(2.9.4)

are isomorphisms since they are morphisms of spaces flat over X ′0 which becomes
isomorphisms over X0. Let

µ : X ′1 ×d1,X ′0,d0
X ′1 −→ X ′1
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be the map obtained from pr2
02 : X ′2 → X ′1 and the first isomorphism in (2.9.4),

and let ε : X ′0 → X ′1 be the morphism induced by the unique morphism [1] → [0]
in �.

We claim that the data (X0′, X1′, d0, d1, µ, ε) defines a groupoid in algebraic
spaces ([13], 2.4.3). To see this, it suffices by ([6], V.1) to verify that the squares

X ′1 ×d1,X ′0,d0
X ′1 µ−−−−→ X ′1 X ′1 ×d1,X ′0,d0

X ′1 µ−−−−→ X ′1

π1



�



�d0 π2



�



�d1

X ′1 d0−−−−→ X ′0 X ′1 d1−−−−→ X ′0

(2.9.5)

are cartesian, where π1 (resp. π2) denotes the first (resp. second) projection, and
that the diagram

X ′1 ×d1,X ′0,d0
X ′1 ×d1,X ′0,d0

X ′1 µ×id−−−−→ X ′1 ×d1,X ′0,d0
X ′1

id×µ


�



�µ

X ′1 ×d1,X ′0,d0
X ′1 µ−−−−→ X ′1

(2.9.6)

commutes. But the commutativity of (2.9.5) and (2.9.6) follows immediately from
the identifications (2.9.4) and the definitions of µ and di . Moreover, the squares
(2.9.5) are cartesian since all the spaces are flat over X ′0 and the squares become
cartesian over X0. Thus (X0′, X1′, d0, d1, µ, ε) is a groupoid in algebraic spaces
with the di smooth.

Let X ′ denote the algebraic stack obtained from (X0′, X1′, d0, d1, µ, ε) ([13],
4.3.1), and let q : X ′0 → X ′ be the projection. By ([13], 13.2.4), the closed immer-
sion j• : X• ↪→ X ′• descends to a closed immersion j : X ↪→ X ′ defined by a
square zero ideal in OX ′ which is identified with I using the given isomorphism
π∗X I � Ker( j•).

If Z• denotes the 0–coskeleton of q , then there is by the universal property of
0–coskeleton a map

X ′• −→ Z•. (2.9.7)

For each i , the map X ′i → Zi is a morphism of X ′-extensions of Xi by the pull-
back of I , and hence the map (2.9.7) is an isomorphism. If p : X ′• → Y • denotes
the specified map, then there is by (2.5) a tautological isomorphism ε• : π∗X x →
j•∗(p•∗y•) in Y(X•), where y• ∈ Y(Y •) denotes the tautological object. Hence by
(2.7) we obtain an object x ′ ∈ Y(X ′) together with an isomorphism ε : x → x ′ ◦ j
defining an object in ExalY(X, I ) which induces j• : X• ↪→ X ′•. ��
2.10 Consider a 2-commutative diagram of algebraic stacks

Y,

V X�

�

�
�

�
��

g

v x (2.10.1)

where v and x are representable, and let I be a quasi-coherent sheaf on V such that
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R1g∗ I = 0 (this holds for example if g is affine). Then there is a natural functor

g∗ : ExalY(V, I ) −→ ExalY(X, g∗ I ) (2.10.2)

obtained as follows. First note that if Y → Y is a smooth cover with associated
simplicial algebraic space Y •, then by (2.9) there are equivalences

ExalY(V, I ) � ExalY •(V
•, π∗V I ), ExalY(X, g∗ I ) � ExalY •(X

•, π∗X g∗ I ),

where πV : V • → V (resp. πX : X• → X ) is the base change to Y • of V (resp.
X ). It therefore suffices to define a natural functor

g•∗ : ExalY •(V
•, π∗V I )→ ExalY •(X

•, π∗X g∗ I ),

and for this in turn it suffices to define for each i a functor

ExalY i (V i , I |V i )→ ExalY i (Xi , gi∗ I )

functorial with respect to the base change maps Y i ′ → Y i . This reduces the con-
struction of g∗ to the case when V , X , and Y are all algebraic spaces (note that
R1gi∗ I |V i = 0 on Xi

lis-et).

In this case, let Exalv−1OYet
(OX , g∗ I ) be the groupoid of v−1OYet–extensions

of OX by g∗ I in Xet ([10], III.1.1). There is a natural functor

ExalY(X, g∗ I )→ Exalv−1OYet
(OX , g∗ I ) (2.10.3)

which sends a Y–extension j : X ↪→ X ′ of X by g∗ I to

0 −−−−→ g∗ I −−−−→ j−1OX ′et
−−−−→ OX −−−−→ 0.

By (2.11) below, the functor (2.10.3) is an equivalence of categories. Hence to
define (2.10.2) it suffices to define a functor

ExalY(V, I )→ Exalv−1OYet
(OX , g∗ I ). (2.10.4)

For this let i : V ↪→ V ′ be a Y–extension of V by I inducing an exact sequence
on Vet

0 −−−−→ I −−−−→ i−1OV ′et
−−−−→ OV −−−−→ 0.

Since R1g∗ I = 0 the sequence

0 −−−−→ g∗ I −−−−→ g∗i−1OV ′et
−−−−→ g∗OV −−−−→ 0 (2.10.5)

is exact, and the functor (2.10.4) is by definition the functor sending i : V ↪→ V ′
to the extension

0 −−−−→ g∗ I −−−−→ g∗i−1OV ′et
×g∗OV OX −−−−→ OX −−−−→ 0

obtained from (2.10.5) by pullback via the map OX → g∗OV .
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Lemma 2.11 If p : X → Y is a morphism of algebraic spaces and I is a quasi-
coherent sheaf on X, then the functor

ExalY (X, I ) −→ Exalp−1OY
(OX , I ), (2.11.1)

( j : X ↪→ X ′) 
−→ (0→ I → j−1OX ′ → OX → 0)

is an equivalence of categories.

Proof Let ExalY (–, I ) (resp. Exalp−1OY
(–, I )) denote the fibered category over the

small étale site of X whose fiber over any U → X is the groupoid ExalY (U, I |U )
(resp. Exalp−1OY |U (OU , I |U )). The pullback of an object U ↪→ U ′ of ExalY (U, I )
via an étale morphism V → U is defined to be the unique lift V ′ of V to an étale
U ′-scheme ([8], I.8.3) together with the natural map V ↪→ V ′. The fibered cate-
gory ExalY (–, I ) is in fact a stack over Xet. Indeed if V → U is an étale cover and
jV : V ↪→ V ′ an object of ExalY (V, I ) together with descent datum relative to
V/U , then the pullback V ×U V ↪→ V ′2 of V to V ×U V comes equipped with two
maps d0, d1 : V ′2 → V ′ which are étale. By the same reasoning as in (proof of full
faithfulness in (2.9)) these maps define an étale equivalence relation on V ′, and the
resulting algebraic space U ′ comes equipped with a canonical closed immersion
U ↪→ U ′ defining an object of ExalY (U, I ) which pulls back to V ↪→ V ′.

The functor (2.11.1) extends naturally to a morphism of stacks

ExalY (–, I ) −→ Exalp−1OY
(–, I ), (2.11.2)

and hence to prove that (2.11.2) is an equivalence it suffices to show that it is locally
an equivalence. Hence we may replace X by an étale cover. Thus we may assume
that X and Y are schemes in which case the result follows from the invariance of
the étale site under infinitesimal thickenings ([8], I.8.3). ��
2.12 Just as in the classical case ([10], III.1.1.5), the constructions (2.3) and (2.10)
enable us to give ExalY(X, I ) the structure of a Picard category ([3], XVIII.1.4). Let
us just sketch the construction of the “sum” functor. Given two objects ji : X ↪→ X ′i
(i = 1, 2) of ExalY(X, I ), we obtain an object

(X ′1 ↪→ X ′′) = j1∗( j2 : X ↪→ X ′2) ∈ ExalY(X
′
1, I ),

and the composition X
j1−→X ′1−→X ′′ is then an object of ExalY(X, I ⊕ I ). Denot-

ing by s : I ⊕ I → I the summation map, we get an object s∗(X ↪→ X ′′) of
ExalY(X, I ).

A consequence of the fact that ExalY(X, I ) is a Picard category, is that the set of
isomorphism classes of objects in ExalY(X, I ), denoted ExalY(X, I ), has a struc-
ture of an abelian group. The category ExalY(X, I ) also has an action of the ring
�(X,OX ) for which f ∈ �(X,OX ) acts via the functor induced by × f : I → I
and (2.3). This action makes ExalY(X, I ) a �(X,OX )–module.

Remark 2.13 The definition of the sum functor given here is a priori asymmetric.
However, as in ([10], III.1.1.5) interchanging j1 and j2 gives canonically isomor-
phic functors. This is because ExalY(X, I ) is an “additive cofibered category” over
the additive category of quasi–coherent OX –modules in the sense of ([9], 1.2). This
amounts to the following two statements:
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(i). The category ExalY(X, 0) is equivalent to the punctual category. This is
immediate.

(ii). For any two quasi–coherent OX –modules I and J the natural functor

ExalY(X, I × J )→ ExalY(X, I )× ExalY(X, J )

is an equivalence of categories. This follows from (2.9) and the corresponding
result for ringed topoi.

2.14 As in the proof of (2.11), when X is a Deligne–Mumford stack the Picard cate-
gory ExalY(X, I ) is even the value on X of a Picard stack ([13], 14.4.2) ExalY(−, I )
on the étale site Et(X). Namely, for any étale U → X define

ExalY(−, I )(U ) := ExalY(U, I |U ).
If V → U is an étale morphism and (U ↪→ U ′) ∈ ExalY(U, I |U ), the invariance
of the étale site under infinitesimal thickenings ([8], I.8.3) implies that V → U
lifts uniquely to an étale V ′ → U ′. We therefore obtain a functor

ExalY(U, I |U )→ ExalY(V, I |V )
sending (U ↪→ U ′) to (V ↪→ V ′). This makes ExalY(−, I ) a fibered category
over Et(X) which is in fact a stack. In fact, as we discuss in (2.26) below, the
Picard category structure on each ExalY(U, I |U ) gives ExalY(−, I ) the structure
of a Picard stack.

2.15 Next we turn to the meaning of the right hand side of (1.1.1). If A is an abe-
lian category, we denote by D+(A) (resp. D−(A), Db(A)) the derived category
of complexes bounded below (resp. bounded above, bounded), and for n ∈ Z we
denote by τ≥n the “canonical truncation in degree≥ n” functor ([3], XVII.1.1.13).
Let D′(A) denote the category of projective systems

K = (· · · −→ K≥−n−1 −→ K≥−n −→ · · · −→ K≥0),

where each K≥−n ∈ D+(A) and the maps

K≥−n −→ τ≥−n K≥−n, τ≥−n K≥−n−1 −→ τ≥−n K≥−n

are all isomorphisms. We denote by D′b(A) the full subcategory of D′(A) consist-
ing of objects K for which K≥−n ∈ Db(A) for all n.

2.16 The shift functor (–)[1] : D(A)→ D(A) is extended to D′(A) by defining

K [1] := (· · · → K≥−n−1[1] → K≥−n[1] → · · · → K0[1] → (τ≥1K0)[1])
for K ∈ D′(A) ([13], 17.4 (3)). We say that a triangle of D′(A)

K1
u−−−−→ K2

v−−−−→ K3
w−−−−→ K1[1] (2.16.1)

is distinguished if for every n ≥ 0, there exists a commutative diagram

K1,≥−n
u−−−−→ K2,≥−n

v′−−−−→ L
w′−−−−→ K1,≥−n[1]

id



� id



�



�β



�

K1,≥−n
u−−−−→ K2,≥−n

v−−−−→ K3,≥−n
w−−−−→ K1,≥−n+1[1]

(2.16.2)
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where the top row is a distinguished triangle in D(A) and the map

τ≥−n L −→ K3,≥−n (2.16.3)

induced by β is an isomorphism. For example, if

L1 −−−−→ L2 −−−−→ L3 −−−−→ L1[1]
is a distinguished triangle in D(A), then

(τ≥−n L1) −−−−→ (τ≥−n L2) −−−−→ (τ≥−n L3) −−−−→ (τ≥−n L1)[1]
is distinguished in D′(A), where (τ≥−n Li ) denotes the system with

(τ≥−n Li )≥−n := τ≥−n Li .

Remark 2.17 The above definition of a distinguished triangle in D′(A) differs from
that in ([13], 17.4 (3)). In (loc. cit.), a triangle (2.16.1) is said to be distinguished
if for all n ≥ 0 and for all commutative diagrams

K1
u−−−−→ K2

v−−−−→ K3
w−−−−→ K1[1]

α1



� α2



�



�β3



�α1[1]

K1,≥−n
u−−−−→ K2,≥−n

v′−−−−→ L
w′−−−−→ K1,≥−n[1],

(2.17.1)

where the bottom row is a distinguished triangle in D(A) and α1 and α2 denote the
natural maps, the map K3,≥−n → τ≥−n L is an isomorphism. This definition is not
suitable for this paper. For example, suppose A is the category of R-modules for
some ring R, and let M ∈ A be a nonzero object. Defining K1 = 0, K2 = K3 = M
(placed in degree 0), and v to be the zero map, we obtain a triangle in D′(A)

0 −−−−→ M
0−−−−→ M −−−−→ 0[1] (2.17.2)

for which there does not exist a diagram as in (2.17.1) for any n (exercise). Hence
the triangle (2.17.2) is distinguished in D′(A) according to ([13], 17.4 (3)) even
though it is not distinguished in D(A). The reader should note, however, that
the statement of ([13], 17.4 (3)) remains correct with the notion of distinguished
triangle defined in (2.16).

2.18 Suppose now that A has enough injectives and let M be an object of A. Then
the functor

RHomDb(A)(–,M) : Db(A) −→ D+(Ab),

where Ab denotes the category of abelian groups, extends naturally to a functor
RHomD′b(A)(–,M) from D′b(A) to the category of ind–objects in Db(Ab) satis-
fying the condition dual to that defining D′(A). . For K ∈ D′b(A), define

RHomD′b(A)(K ,M)≤n := τ≤nRHomDb(A)(K≥−n,M).

There is a natural map

RHomD′b(A)(K ,M)≤n → RHomD′b(A)(K ,M)≤n+1
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which induces an isomorphism

RHomD′b(A)(K ,M)≤n � τ≤nRHomD′b(A)(K ,M)≤n+1.

We define RHomD′b(A)(K ,M) to be the ind–object {RHomD′b(A)(K ,M)≤n} in
Db(Ab). In the case when K = (τ≥−n L) for some L ∈ Db(A), the object
RHomD′b(A)(K ,M) is simply the inductive system {τ≤nRHomD(A)(L ,M)}.

For any integer i , the ind–group Hi (RHomD′b(A)(K ,M)≤n) is essentially con-
stant and we define Exti (K ,M) ∈ Ab to be the limit. For any n ≥ i the natural
map

ExtiDb(A)(K≥−n,M)→ Exti (K ,M)

is an isomorphism.
It follow from the definition of a distinguished triangle in D′(A) (2.16) that a

distinguished triangle (2.16.1) induces a long exact sequence

��� Exti+1(K3,M)→ Exti (K2,M)→ Exti (K1,M)→ Exti+1(K3,M) ��� .

2.19 In the situation of problem (1), we take A equal to the category of OX -
modules on the lisse-étale site of X , and denote D+(A) (resp. D−(A), etc.) by
D+(OX ) (resp. D−(OX ), etc.). Since the cotangent complex L X/Y by definition
is an object in D′b(OX ) ([15], section 10), we obtain groups Exti (L X/Y, I ). Note
that by construction, there is a natural isomorphism

Exti (L≥−n
X/Y , I ) −→ Exti (L X/Y, I )

for n ≥ i .

2.20 With notation as in (2.8), let X•et denote the simplicial topos defined in ([13],
12.4), and let Exalp−1OY• (OX•, π∗X I ) denote the category of p−1OY •-extensions
of OX• by π∗X I in the topos X•et ([10], III.1.1). Then there is a natural functor

ExalY •(X
•, π∗X I ) −→ Exalp−1OY• (OX•, π

∗
X I ). (2.20.1)

sending an object j• : X• ↪→ X ′• of ExalY •(X
•, π∗X I ) to

0 −−−−→ π∗X I −−−−→ j−1OX ′• −−−−→ OX• −−−−→ 0.

Lemma 2.21 The functor (2.20.1) is an equivalence of categories.

Proof Let C denote the category whose objects are pairs (i, j : Xi ↪→ Xi ′),
where i ∈ N and j : Xi ↪→ Xi ′ is an object of ExalY i (Xi , π∗X I |Xi ). A mor-
phism (i1, j1 : Xi1 ↪→ Xi1′) → (i2, j2 : Xi2 ↪→ Xi2′) is a pair (δ, ψ), where
δ : [i2] → [i1] is a morphism in � and ψ : Xi1′ → Xi2′ ×Y i2 ,Y •(δ) Y i1 is a

morphism of Y i1 -extensions of Xi1 . The category ExalY •(X
•, π∗X I ) is naturally

equivalent to the category of sections of C → �op.
Similarly, let C′ denote the category whose objects are pairs (i, π∗X I |Xi → A→

OXi ), where i ∈ N and π∗X I |Xi → A → OXi is an object of Exalp−1
i OY i

(OXi ,

π∗X I |Xi ), and whose morphisms (i1, π
∗
X I |Xi1 → A1 → OXi1 )→ (i2, π

∗
X I |Xi2 →
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A2 → OXi2 ) are pairs (δ, ψ), where δ : [i2] → [i1] is a morphism in � and ψ is
an isomorphism between A1 → OXi1 and

X (δ)−1π∗X I |Xi2 ⊗O
Y i2 ,Y (δ)

OY i1 → X (δ)−1A2 ⊗O
Y i2 ,Y (δ)

OY i1 → OXi1


�=

π∗X I |Xi1

in Exalp−1
i1

O
Y i1
(Xi1, π∗X I |Xi1 ). The category Exalp−1OY• (OX•, π∗X I ) is naturally

equivalent to the category of sections of C′ → �op, and the functor (2.20.1) is
obtained by composing a sections �op → C with the natural functor

C −→ C′, (i, j : Xi ↪→ Xi ′) 
−→ (i, j−1OXi ′ → OXi ). (2.21.1)

Hence to prove (ii) it suffices to show that (2.21.1) is an equivalence, and for this
it suffices to show that each of the functors

ExalY i (Xi , π∗X I |Xi ) −→ Exalp−1
i OY i

(OXi , π
∗
X I |X I )

is an equivalence which follows from (2.11). ��
2.22 By ([10], III.1.1.5), the category Exalp−1OY• (OX•, π∗X I ) has a natural struc-
ture of a Picard category, and it follows from the construction that the composition
of (2.8.1) and (2.20.1)

ExalY(X, I ) −→ Exalp−1OY• (OX•, π
∗
X I )

is a morphism of Picard categories ([3], XVIII.1.4.6). In particular, if

Exalp−1OY• (OX•, π
∗
X I )

denotes the isomorphism classes of objects in Exalp−1OY• (OX•, π∗X I ), then ([10],
III.1.2.3) shows that there is a natural isomorphism

Exalp−1OY• (OX•, π
∗
X I ) � Ext1(L X•/Y •, π

∗
X I ), (2.22.1)

where L X•/Y • denotes the cotangent complex of the morphism of topoi X•et → Y •et.
Hence the following two lemmas (2.23) and (2.24) complete the proof of (1.1).

Lemma 2.23 (i). For each integer n > 0, there is a natural isomorphism
π∗X L≥−n

X/Y � τ≥−n L X•/Y •, where π∗X L≥−n
X/Y denotes the restriction of L≥−n

X/Y
to the étale site of X•.

(ii). The natural map induced by (i) and restriction

ExtiX (L X/Y, I ) −→ ExtiX•(L X•/Y •, π
∗
X I ) (2.23.1)

is an isomorphism for all i . Here π∗X I denotes the sheaf on X•et defined by
the sheaf I on X ([15], 6.12).
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Proof Statement (i) follows from the construction of the cotangent complex L X/Y
([15], section 10).

To see (ii), note that (2.23.1) is induced by the maps

Exti
Db

qcoh(OX )
(L≥−n

X/Y , I ) −→ Exti
Db

qcoh(OX• )
(τ≥−n L X•/Y •, π

∗
X I ) (2.23.2)

defined by (i) and the equivalence Db
qcoh(OX ) � Db

qcoh(OX•et
) ([15], 6.19), where

Db
qcoh(OX ) (resp. Db

qcoh(OX•)) denotes the triangulated sub-category of Db(OX )

(resp. Db(OX•)) consisting of objects all of whose cohomology groups are quasi-
coherent. It follows that (2.23.1) is an isomorphism. ��
Lemma 2.24 The isomorphism (1.1.1) induced by (2.23.1) and (2.22.1) is inde-
pendent of the choice of Y → Y.

Proof Let y2 : Y2 → Y be a second smooth cover. Since any two covers of Y can
be dominated by a third, we may assume that y2 = y ◦ �, where � : Y2 → Y is a
morphism of schemes. In this case, the lemma follows from the construction and
([10], III.1.2.2) which shows that the following diagram commutes

ExalY(X, I )
id−−−−→ ExalY(X, I )

ρ1



�



�ρ2

Exalp−1O•Y (OX•, π∗X I )
t•∗−−−−→ Exalp−1

2 O•Y2
(OX•2 , t•∗π∗X I )

(2.22.1)



�



�(2.22.1)

Ext1(L X•/Y •, π∗X I )
t•∗−−−−→ Ext1(L X•2/Y •2 , t•∗π∗X I )

(2.23.1)

�



�

(2.23.1)

Ext1(L X/Y, I )
id−−−−→ Ext1(L X/Y, I ),

where p : X• → Y • (resp. p2 : X•2 → Y •2 , t• : X•2 → X•) denote the morphism
of simplicial spaces obtained from y : Y → Y (resp. y2 : Y2 → Y, � : Y2 → Y )
and ρi (i = 1, 2) denote the maps induced by the composite of (2.8.1) and (2.20.1).

��
Let us note the following corollary of the proof which will be used in the next

sections:

Corollary 2.25 The automorphism group of any object ( j : X ↪→ X ′) ∈
ExalY(X, I ) is canonically isomorphic to Ext0(L X/Y, I ).

Proof Let Y → Y be a smooth cover, and let ( j• : X• ↪→ X ′•) be the result-
ing object of ExalY •(X

•, π∗X I ). By (2.21) and ([10], II.1.2.4.3), the automorphism
group of ( j• : X• ↪→ X ′•) is canonically isomorphic to Ext0(L X•/Y •, π∗X I ).
Hence (2.9), (2.21), and (2.23 (ii)) yield an isomorphism

Aut( j : X ↪→ X ′) � Ext0(L X/Y, I ).
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The fact that this automorphism is independent of the choice of Y → Y follows
from the argument used in the proof of (2.24). ��
2.26 Following a suggestion of the referee, when X is a Deligne–Mumford stack
(in particular a scheme or algebraic space), Theorem (1.1) can be generalized as
follows.

Recall ([3], XVIII.1.4.11) that to any two–term complex K−1 → K 0 of abe-
lian sheaves on a site S, one can associate a Picard prestack pch(K •) over S. For
any U ∈ S the groupoid pch(K •) has objects the elements of K 0(U ), and for
two sections x, y ∈ K 0(U ) a morphism x → y is a section g ∈ K−1(U ) with
dg = y − x . We denote the associated Picard stack by ch(K •).

Let Y → Y be a smooth cover by a scheme, and let Y • be the associated sim-
plicial algebraic space. Denote by X• the base change of X to Y •. Recall ([13],
12.4) that the étale site Et(X•) of X• can be described as follows. The objects are
pairs (n,U ), where [n] ∈ � and U → Xn is étale. A morphism (n,U )→ (n′,U ′)
is a pair (δ, ϕ), where δ : [n′] → [n] is a morphism in � and ϕ : U → U ′ is a
morphism over δ∗ : Xn → Xn′ . Let π : X• → X be the projection, and define
Exal′Y •(−, π∗ I ) to be the Picard stack over Et(X•) which to any (n,U ) associates
the groupoid ExalY n (U, I |U ). If (δ, ϕ) : (n,U )→ (n′,U ′) is a morphism then the
pullback functor

(δ, ϕ)∗ : Exal′Y •(−, π∗ I )(n′,U ′)→ Exal′Y •(−, π∗ I )(n,U )
is the composite of the base change functor

ExalY n′ (U ′, I |U ′)→ ExalY n (U ′ ×Y n′ Y n, I |U ′×
Y n′ Y n )

with the isomorphism

ExalY n (U ′ ×Y n′ Y n, I |U ′×
Y n′ Y n ) � ExalY n (U ′ ×Xn′ Xn, I |U ′×

Xn′ Xn )

and the pullback functor

ExalY n (U ′ ×Xn′ Xn, I |U ′×
Xn′ Xn )→ ExalY n (U, I |U ).

Let π∗Exal′Y •(−, π∗ I ) be the Picard stack over Et(X) which to any V → X asso-
ciates Exal′Y •(−, π∗ I )(V ×X X•). Since V ×X X• is not an object of Et(X•)
this should be interpreted as the groupoid of morphisms of stacks V ×X X• →
Exal′Y •(−, π∗ I ), where V ×X X• denotes the sheaf obtained by pulling back the
sheaf on Xet represented by V . In the notation of (2.8), the category Exal′Y •(−, π∗ I )
(V ×X X•) is equivalent to ExalY •(V ×X X•, π∗V I ). As in (2.8), pullback defines
a morphism of Picard stacks over Et(X)

ExalY(−, I )→ π∗Exal′Y •(−, π∗ I ) (2.26.1)

which by (2.9) is an equivalence.
By (A.7), there is a natural equivalence of Picard stacks

Exal′Y •(−, π∗ I ) � ch((τ≤1 RHom(L X•/Y •, π
∗ I ))[1]).
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Applying π∗ and using (2.26.1), we obtain an equivalence of Picard stacks over
the étale site of X

ExalY(−, I ) � π∗(ch((τ≤1 RHom(L X•/Y •, π
∗ I ))[1])). (2.26.2)

By ([3], XVIII.1.4.19) and the natural isomorphism

τ≤1 Rπ∗(τ≤1 RHom(L X•/Y •, π
∗ I )) � τ≤1 Rπ∗(RHom(L X•/Y •, π

∗ I ))

the right hand side of (2.26.2) is isomorphic to

ch(τ≤1 Rπ∗(RHom(L X•/Y •, π
∗ I ))[1]).

Since for any n, τ≥−n L X•/Y • � π∗(L≥−n
X/Y |Xet ), there is by trivial duality ([3],

XVII.2.3.7) a natural isomorphism

Rπ∗RHom(L X•/Y •, π
∗ I ) � RHom(L X/Y |Xet , Rπ∗π∗ I ).

Since the map I → Rπ∗π∗ I is an isomorphism (this can be seen using the argu-
ment of ([13], 13.5.5) which is still valid in the present context), this gives a
quasi–isomorphism

τ≤1 Rπ∗RHom(L X•/Y •, π
∗ I )[1] � τ≤1 RHom(L X/Y|Xet , I )[1].

The equivalence (2.26.2) therefore induces an equivalence of Picard stacks

ExalY(−, I ) � ch((τ≤1 RHom(L X/Y, I ))[1]). (2.26.3)

It follows from the construction of the isomorphism (1.1.1) that it is obtained by
evaluating both sides of (2.26.3) on X and noting that for any two term complex
K−1 → K 0 on a site S the group of isomorphism classes of objects of ch(K •) over
an object U ∈ S is naturally isomorphic to H0(U, K •|U ) (to see this last assertion
it suffices to consider the case when K−1 is injective in which case it follows from
([3], XVIII.1.4.16 (I)) and the observation that H0(U, K •) � Coker(K−1(U )→
K 0(U ))). Note also that here we are using the fact that Ext–groups on a Deligne–
Mumford stack can be computed using either the étale or lisse-étale topology (this
is a special case of ([15], 6.19)).

Remark 2.27 In the above it seems necessary to work with the étale site of X
instead of the lisse-étale site (and hence restrict to the case when X is a Deligne–
Mumford stack). This is because the construction of pullback in (2.14) is not valid
for arbitrary (even smooth) morphisms V → U .

2.28 If � : P → P ′ is a morphism of Picard stacks, define the kernel K of �,
sometimes written Ker(� : P → P ′), as follows. For any object V ∈ S, the
groupoid K (V ) is defined to be the groupoid of pairs (p, ι), where p ∈ P(V ) and
ι : 0→ �(p) is an isomorphism in P ′(V ). For two objects (p, ι) and (p′, ι′) define
(p, ι)+ (p′, ι′) to be p + p′ ∈ P(V ) with the isomorphism

0
ι+ι′−−−−→ �(p)+�(p′) �−−−−→ �(p + p′), (2.28.1)

where the second isomorphism is the one provided by the structure of a morphism
of Picard categories on �.



46 M.C. Olsson

Lemma 2.29 Let K •, H• ∈ C [−1,0](OS) be two complexes, let f : K • → H• be
a morphism of complexes, and let Cone( f ) denote the cone of f . Then the kernel
of the induced morphism ch( f ) : ch(K •)→ ch(H•) is canonically isomorphic to
ch(τ≤0Cone( f )[−1]).
Proof Let K denote the kernel. The complex τ≤0Cone( f )[−1] is isomorphic to
the complex

K−1 → K 0 ×H0 H−1,

where K−1 is placed in degree −1 and the differential is given by the maps
d : K−1 → K 0 and f −1 : K−1 → H−1. It follows that pch(τ≤0Cone( f )[−1])
is the prestack which to any V associates the groupoid of pairs (k, ι), where
k ∈ pch(K •)(V ) and ι : 0 → f (k) is an isomorphism in pch(H•). From
this it follows that there is a natural fully faithful morphism of Picard stacks
ch(τ≤0Cone( f )[−1]) → K. To see that it is essentially surjective it suffices to
show that every object of K is locally in the image which is clear since every object
of K can locally be represented by a pair (k, ι) with k ∈ K 0(V ). ��
2.30 The equivalence of stacks (2.26.3) is functorial in I in the sense that if u :
I → I ′ is a morphism of quasi–coherent sheaves on X , then the induced square

ExalY(−, I )
(2.3)−−−−→ ExalY(−, I ′)

(2.26.3)



�



�(2.26.3)

ch((τ≤1 RHom(L X/Y|Xet , I ))[1]) −−−−→ ch((τ≤1 RHom(L X/Y|Xet , I ′))[1])
(2.30.1)

is naturally commutative. Define

ExalY(−, I → I ′) := Ker(ExalY(−, I )→ ExalY(−, I ′)). (2.30.2)

For any étale U → X , the groupoid ExalY(U, I → I ′) is the groupoid of pairs
(U ′, s), where U ′ ∈ ExalY(U, I ) and s : u∗U ′ → U is a retraction over Y of the
inclusion U ↪→ u∗U ′ (see (2.3) for the definition of u∗U ′).

The commutativity of (2.30.1) implies that (2.26.3) induces an equivalence
between ExalY(−, I → I ′) and

Ker(ch((τ≤1 RHom(L X/Y|Xet , I ))[1])→ ch((τ≤1 RHom(L X/Y|Xet , I ′))[1])).
Since in the derived category the shifted cone

Cone(RHom(L X/Y|Xet , I )→ RHom(L X/Y|Xet , I ′))[−1]
is RHom(L X/Y|Xet , I → I ′), it follows from (2.29) that there is a natural equiva-
lence

ExalY(−, I → I ′) � ch((τ≤1 RHom(L X/Y|Xet , I → I ′))[1]). (2.30.3)
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This shows in particular that if ExalY(X, I → I ′) denotes the group of isomor-
phism classes in ExalY(X, I → I ′), then ExalY(X, I → I ′) depends only on the
image of I → I ′ in the derived category and there is a canonical isomorphism

ExalY(X, I → I ′) � Ext1(L X/Y|Xet , I → I ′). (2.30.4)

In general, if I • is an object of the derived category D[0,∞[qcoh (OX ), set

ExalY(X, I •) := ExalY(X, τ≤1 I •).

Remark 2.31 Recall ([3], XVIII.1.4.17) that ch(−) induces an equivalence of cat-
egories between D[−1,0](AbX ) (the derived category of abelian sheaves on X ),
and the category whose objects are Picard stacks on Xet and whose morphisms are
isomorphism classes of morphisms of Picard stacks. If Pic denotes this second
category, then it follows from the above discussion that for I • ∈ C [−1,0](OX ) the
object of Pic defined by the Picard stack ExalY(−, I •) depends up to canonical iso-
morphism only on the image of I • in D[−1,0](OX ), and is canonically isomorphic
to the Picard stack ch((τ≤1 RHom(L X/Y|Xet , I ))[1]).
Remark 2.32 With a suitable notion of OX –linear Picard stack due to Deligne (see
(A.2) and (A.8)), the above discussion can be generalized to OX –linear Picard
stacks. In particular the equivalence (2.26.3) extends naturally to an equivalence
of OX –linear Picard stacks. Because there is no published reference for the notion
of OX –linear Picard stack, however, we limit ourselves to the above equivalence
on the level of Picard stacks.

2.33 The above discussion enables us to understand the functoriality of the iso-
morphism in (1.1) as follows. Suppose given a 2-commutative diagram of algebraic
stacks

Z
a−−−−→ X

z


�



�x

W −−−−→ Y

with Z and X Deligne–Mumford stacks and z and x representable. Let I (resp. J )
be a quasi-coherent sheaf on X (resp. Z ), and suppose given a map ε : I → a∗ J .

There is a natural map

a∗ : ExalW(Z , J ) −→ ExalY(X, Ra∗ J ) (2.33.1)

defined as follows. First there is a natural forgetful map

ExalW(Z , J ) −→ ExalY(Z , J )

so it suffices to consider the case when W = Y.
Let J → E• be an injective resolution and let u : E0 → E

1
be τ≤1 E•. We

have ExalY(Z , J ) � ExalY(Z , E0 → E
1
) and τ≤1 Ra∗ J � a∗(E0) → a∗(E

1
).

Hence to define (2.33.1) it suffices to define a map

ExalY(Z , E0 → E
1
)→ ExalY(X, a∗E0 → a∗E

1
).
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For this let (Z ′, s) be an object of ExalY(Z , E0 → E
1
). Since E0 is injective, we

can apply (2.10) to get an object a∗Z ′ ∈ ExalY(X, a∗E0). Moreover, it follows
from the construction in (2.10) that the section s induces a trivialization a∗s of the
image of a∗Z ′ under the map

ExalY(X, a∗E0)→ ExalY(X, a∗E
1
)

induced by E0 → E
1
. The map (2.33.1) is defined to be the map obtained from

the functor (Z ′, s) 
→ (a∗Z ′, a∗s).
There is by ([13], 17.3 (2)) (see also ([15], 10.1)) a natural map La∗L X/Y→

L Z/W which induces a map

Exti (L Z/W, J ) −→ Exti (La∗L X/Y, J ), (2.33.2)

and hence we obtain a diagram

Ext1(L Z/W, J )
(2.33.2)−−−−→ Ext1(La∗L X/Y, J )

τ←−−−− Ext1(L X/Y, I )

(1.1)



� (2.30.4)



�



�(1.1)

ExalW(Z , J )
a∗−−−−→ ExalY(X, Ra∗ J )

q←−−−− ExalY(X, I ),
(2.33.3)

where the map τ is the composite of

ε∗ : Ext1(L X/Y, I ) −→ Ext1(L X/Y, Ra∗ J )

with the isomorphism

Ext1(L X/Y, Ra∗ J ) � Ext1(La∗L X/Y, J )

obtained from “trivial duality” ([3], XVII.2.3.7) and q is the map induced by ε
and functoriality as in (2.3). We leave to the reader the task of verifying that the
diagram (2.33.3) commutes.

3 Problem (2)

3.1 We proceed with the notation of problem (2). If x ′ : X ′ → Y′ is a flat deforma-
tion of X to Y′, then since x ′ is flat, the kernel of OX ′ → OX is canonically isomor-
phic to x∗ I , and hence a flat deformation of X defines an object of ExalY′(X, x∗ I ).
A morphism of flat deformations ( j1 : X ↪→ X ′1) → ( j2 : X ↪→ X ′2) is defined
to be a morphism between the resulting objects of ExalY′(X, x∗ I ). By the local
criterion for flatness ([7], 0III.10.2.1), if

Y′,

X X ′�

�

�
�

�
��

j

x x ′ (3.1.1)

is an object of ExalY′(X, x∗ I ) for which the induced map
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x∗ I = x∗(Ker(OY′ → OY′))
x ′b−−−−→ Ker(OX ′ → OX ) = x∗ I (3.1.2)

is the identity, then x ′ : X ′ → Y′ is flat. Therefore, there is an equivalence be-
tween the category of flat deformations of X to Y′ and the full subcategory of
ExalY′(X, x∗ I ) whose objects are extension for which (3.1.2) is the identity.

3.2 With these observations in hand, we can prove (1.4) using the method of ([10],
proof of III.2.1.7). The distinguished triangle

Lx∗LY/Y′ −→ L X/Y′ −→ L X/Y −→ Lx∗LY/Y′ [1], (3.2.1)

induced by the composite X → Y→ Y′ and ([15], 10.1 (iii)), induces a long exact
sequence

0−→E0
X/Y

(a)−→E0
X/Y′

(b)−→E0
Y/Y′−→E1

X/Y
(c)−→E1

X/Y′
(d)−→E1

Y/Y′
(e)−→E2

X/Y,

where we have written Ei
X/Y (resp. Ei

X/Y′ , Ei
Y/Y′) for Exti (L X/Y, x∗ I ) (resp.

Exti (L X/Y′, x∗ I ), Exti (Lx∗LY/Y′, x∗ I )). Here we use the derived pullback functor
defined in ([15], section 9).

Note that since Y→ Y′ is representable, Lx∗LY/Y′ has no homology in positive
degrees, and this is why the map (a) is injective. We claim that the following lemma
(3.3) proves (1.4). Indeed (3.3 (ii)) shows that (a) is an isomorphism, and hence
(1.4 (iii)) follows from (2.25). Moreover, if o ∈ Ext2(L X/Y, x∗ I ) denotes the image
under (e) of the class in Ext1(Lx∗LY/Y′, x∗ I ) corresponding to id : x∗ I → x∗ I
via (3.3.1), then the discussion (3.1) together with (3.3 (iii)) shows that there exists
a flat deformation of x : X → Y if and only if o = 0 and hence we obtain (1.4
(i)). Finally combining (3.3 (iii)) with (3.3 (ii)) we see that if o = 0 then the map
(c) makes the set of isomorphism classes of flat deformations of X to Y′ a torsor
under Ext1(L X/Y, x∗ I ).

Lemma 3.3 (i). There is a canonical isomorphism H1(LY/Y′) � I and
H0(LY/Y′) = 0.

(ii). If J is any sheaf of OX –modules, Ext0(Lx∗LY/Y′, J ) = 0 and there is a
natural isomorphism

Ext1(Lx∗LY/Y′, J ) � Hom(x∗ I, J ). (3.3.1)

(iii). The composite

ExalY′(X, x∗ I )(1.1.1)−→ Ext1(L X/Y′, x∗ I ) (d)−→ Ext1(Lx∗LY/Y′, x∗ I )
(3.3.1)−→Hom(x∗ I, x∗ I )

is the map which sends an extension ( j : X ↪→ X ′) to the map (3.1.2).

Proof For (i), let Y ′ → Y′ be a smooth cover and let πY ′ : Y ′• → Y′ be the associ-
ated simplicial algebraic space. Denote by πY : Y • → Y the base change of Y ′• to
Y. By the construction of the cotangent complex ([15], section 10), for any n ≥ 0
there is a natural isomorphism π∗L≥−n

Y/Y′ � τ≥−n LY •/Y ′• , where π∗L≥−n
Y/Y′ denotes

the restriction of L≥−n
Y/Y′ to Y •et. On the other hand, by ([10], III.1.2.8.1) we have
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H0(LY •/Y ′•) = 0 and H1(LY •/Y ′•) � π∗Y I . From this and ([15], 6.19) assertion
(i) follows (we leave to the reader the task of verifying that the isomorphism is
independent of the choice of Y ′ → Y′).

To see (ii), note that H0(x∗LY/Y′) � x∗H0(LY/Y′) = 0 by (i), which in turn
implies that H1(x∗LY/Y′) � x∗H1(LY/Y′) � x∗ I . In particular, τ≤−1x∗LY/Y′ →
x∗LY/Y′ is a quasi–isomorphism and

Ext0(x∗LY/Y′, J ) � Hom(H0(x
∗LY/Y′), J ) = 0

and

Ext1(x∗LY/Y′, J ) � Hom(H1(x
∗LY/Y′), J ) � Hom(x∗ I, J ).

For (iii), let Y ′ → Y′ be a smooth cover as above, and let πX : X• → X be the sim-
plicial space obtained from Y ′• by base change. By construction of L X/Y and L X/Y′ ,
π∗X L X/Y � (τ≥−n L X•/Y •) and π∗X L X/Y′ � (τ≥−n L X•/Y ′•), where (τ≥−n L X•/Y •)
and (τ≥−n L X•/Y ′•) denote the systems in D′(OX•) (2.15) obtained from L X•/Y •
and L X•/Y ′• by truncation. Hence the pullback by πX of the distinguished triangle
(3.2.1) is naturally identified with the triangle induced by the distinguished triangle
in D(OX•) ([10], II.2.1.5.6)

Lp∗LY •/Y ′• −→ L X•/Y ′• −→ L X•/Y • −→ Lp∗LY •/Y ′• [1],
where p : X• → Y • denotes the map induced by x . Note also that by the same
argument as in the proof of (2.23), the natural map

Exti (Lx∗LY/Y′, x∗ I ) −→ Exti (Lp∗LY •/Y ′•, π
∗
X x∗ I )

is an isomorphism for all i . By the construction of the isomorphisms (1.1.1) and
(3.3.1), there is a natural commutative diagram

ExalY′(X, x∗ I )
π∗X−−−−→ ExalY ′•(X•, π∗X x∗ I )

(1.1.1)



�



�(2.11.1) and (2.22.1)

Ext1(L X/Y′, x∗ I )
π∗X−−−−→ Ext1(L X•/Y ′•, π∗X x∗ I )

(3.3.1)◦(d)


�



�([8], III.1.2.8)

Hom(x∗ I, x∗ I )
π∗X−−−−→ Hom(π∗X x∗ I, π∗X x∗ I ),

and hence (iii) follows from ([10], III.2.1.2). ��
3.4 The obstruction in (1.4 (i)) is functorial in the following sense. Consider a
commutative diagram of algebraic stacks

Z
f−−−−→ X

z


�



�x

W
g−−−−→ Y

jW



�



� jY

W′ h−−−−→ Y′,
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where x and z are representable and flat, and jY (resp. jW) is a closed immersion
defined by a quasi–coherent square–zero ideal I (resp. J ) on Y′ (resp. W′). Let
oX ∈ Ext2(L X/Y, x∗ I ) (resp. oZ ∈ Ext2(L Z/W, z∗ J )) be the obstruction defined
in (1.4 (i)) to the existence of a flat deformation of X (resp. Z ) to Y′ (resp. W′).
The natural maps f ∗x∗ I → z∗ J and f ∗L X/Y→ L Z/W induce a diagram

Ext2(L X/Y, x∗ I )


�

Ext2( f ∗L X/Y, f ∗x∗ I )


�

Ext2( f ∗L X/Y, z∗ J ) ←−−−− Ext2(L Z/W, z∗ J ).

Lemma 3.5 The images of oX and oZ in Ext2( f ∗L X/Y, z∗ J ) are equal.

Proof From the distinguished triangle

x∗LY/Y′ −−−−→ L X/Y′ −−−−→ L X/Y −−−−→ x∗LY/Y′ [1]
and (3.3 (ii)) we obtain a commutative diagram

Hom(x∗ I, x∗ I ) � Ext1(x∗LY/Y′, x∗ I ) → Ext2(L X/Y, x∗ I )


�



�



�

Hom( f ∗x∗ I, f ∗x∗ I ) � Ext1( f ∗x∗LY/Y′, f ∗x∗ I ) → Ext2( f ∗L X/Y, f ∗x∗ I )


�



�



�

Hom( f ∗x∗ I, z∗ J ) � Ext1( f ∗x∗LY/Y′, z∗ J )
∂−→ Ext2( f ∗L X/Y, z∗ J ).

There is also a morphism of triangles

f ∗x∗LY/Y′ −−−−→ f ∗L X/Y′ −−−−→ f ∗L X/Y −−−−→ f ∗x∗LY/Y′ [1]


�



�



�



�

z∗LW/W′ −−−−→ L Z/W′ −−−−→ L Z/W −−−−→ z∗LW/W′ [1]
which induces a commutative diagram

Hom(z∗ J, z∗ J )
�−−−−→ Ext1(z∗LW/W′, z∗ J ) −−−−→ Ext2(L Z/W, z∗ J )



�



�



�

Hom( f ∗x∗ I, z∗ J )
�−−−−→ Ext1( f ∗x∗LY/Y′, z∗ J )

∂−−−−→ Ext2( f ∗L X/Y, z∗ J ).

From this it follows that the images of both oZ and oX in Ext2( f ∗L X/Y, z∗ J ) are
equal to the image under ∂ of the class corresponding to the morphism f ∗x∗ I →
z∗ J induced by h. ��
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4 Problem (3)

4.1 Suppose given a commutative diagram of solid arrows as in (1.4.1). Define the
category of deformations of x , denoted Def(x), as follows. The objects of Def(x)
are pairs (x ′, ε), where x ′ : X ′ → Y′ is a 1-morphism over Z ′ and ε : x ′ ◦ i � j ◦ x
is an isomorphism in Y′(X). Any object (x ′, ε) ∈ Def(x) defines an object of
ExalY′(X, I ), and we define a morphism (x ′1, ε1) → (x ′2, ε2) to be a morphism
between the resulting objects of ExalY′(X, I )whose underlying morphism of alge-
braic stacks X ′ → X ′ is the identity. That is, a morphism in Def(x) is an isomor-
phism ϕ : x ′1 → x ′2 in Y′(X ′) such that the two isomorphisms ε1, ε2 ◦ i∗(ϕ) :
x ′1 ◦ i −→ j ◦ x are equal.

4.2 Let Y ′ → Y′ be a smooth cover of Y′ by a scheme, and let Y → Y denote
the pullback to Y. Denote by πY ′ : Y ′• → Y′ (resp. πY : Y • → Y) the associated
simplicial space, and choose an étale surjective morphism γ : U → X ×Y Y ,
with U an affine scheme. Since the composite u : U → X is smooth, we can
by ([8], III.5.5) lift U to a smooth morphism u′ : U ′ → X ′ with U ′ affine. Let
u• : U • → X (resp. u′• : U ′• → X ′) denote the 0–coskeleton of the morphism
u (resp. u′). The map γ induces a morphism U• → X•, where X• denotes the
0–coskeleton of the projection X ×Y Y → X . Since X• is canonically isomorphic
to the base change over Y of Y • to X , we obtain a natural map f • : U • → Y •. We
thus have a commutative diagram of solid arrows

U • U ′•

Z

Y • Y ′•

Z ′,

�iU•

�

�

f •
�

�
�

�
��

�
�

�
���
�

�

�
�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

���

f ′•

g• g′•h• h′•

j•

k

. . . . . . . . . . . . . . . . .	
(4.2.1)

where i•U (resp. j•) is a closed immersion with square-zero kernel isomorphic to
u•∗ I (resp. π∗Y J ). Denote by Def( f •) the set of dotted arrows f ′• : U ′• → Y ′•
filling in (4.2.1). We will prove (1.5) by comparing Def(x) with Def( f •).

4.3 Let y′• ∈ Y′(Y ′•) be the tautological object (2.5), and let x• ∈ Y(U •) denote
the pullback of x . Since the morphism f • : U • → Y • factors through the simplicial
space X• obtained by base change to X from Y •, there is a canonical isomorphism
τ : f •∗ j•∗y′• � x• (2.5).

If x ′ : X ′ → Y′ is an object of Def(x), denote by x ′• ∈ Y′(U •) the object
obtained from x ′ via the equivalence (2.7), and let D̃ef(x) be the category whose
objects are triples (x ′, f ′•, τ ), where x ′ is an object of Def(x), f ′• : U ′• → Y ′• is
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an object of Def( f •), and τ ′ : f ′•∗(y′•) � x ′• is an isomorphism in Y′(U ′•) such
that the induced isomorphism

f •∗ j•∗y′• � i•∗ f ′•(y′•) i•∗(τ ′)−−−−→ i•∗x ′• � x• (4.3.1)

equals τ .

Lemma 4.4 Let x ′ ∈ Def(x)be an object. To give a pair ( f ′•, τ ′)making (x ′, f ′•, τ ′)
an object of D̃ef( f •) is equivalent to giving a morphism U ′ → X ′ ×Y′ Y ′ over X ′
such that the composite U ↪→ U ′ → X ′ ×Y′ Y ′ is the composite U → X ×Y Y →
X ′ ×Y′ Y ′, where the first map is γ .

Proof Let X ′• be the simplicial algebraic space obtained by base change to Y ′•
from x ′ : X ′ → Y′. It follows from the description of X ′• in (2.5), that giving
a pair ( f ′•, τ ′) as in the lemma is equivalent to giving a morphism of simplicial
spaces U•′ → X ′• over X ′ inducing the map U• → X• obtained from γ . On
the other hand, the space X ′• is canonically isomorphic to the 0–coskeleton of the
morphism X ′0 → X ′, and hence the lemma follows from the universal property of
0–coskeleton ([5], 5.1.1). ��
Lemma 4.5 (i). The category D̃ef(x) is discrete. That is, it is equivalent to the

category defined by its set of isomorphism classes of objects D̃ef(x).
(ii). The functor D̃ef(x) → Def(x) sending (x ′, f ′•, τ ′) to x ′ is essentially sur-

jective.
(iii). The map D̃ef(x)→ Def( f •) sending (x ′, f ′•, τ ′) to f ′• is bijective.

Proof To see (i) it suffices to show that the objects of D̃ef(x) admit no non-trivial
automorphisms. But an automorphism of an object (x ′, f ′•, τ ′) ∈ D̃ef(x) is simply
an automorphism σ of x ′ ∈ Def(x) for which the induced automorphism of x ′• is
trivial. By (2.7) there are no non-trivial such automorphisms.

As for (ii), note that by (4.4) it suffices to show that for any x ′ ∈ Y′(X ′) the
resulting diagram of solid arrows

U X ′ ×Y′ Y ′

U ′ X ′,

�

�

� �




..
..
..
..
..
..
..
..

(4.5.1)

can be filled in by a dotted arrow. Since U is affine, this follows from the fact that
Y ′/Y′ is smooth.

As for (iii), note that by (2.7) the category D̃ef(x) is equivalent to the category
of quadruples (x ′•, ε, f ′•, τ ′), where x ′• ∈ Y′(U ′•), ε is an isomorphism between
the pullback of x ′• to U • and x•, f ′• : U • → Y • is an object of Def( f •), and
τ ′ : f ′•∗(y•) � x ′• is an isomorphism in Y′(U ′•) such that the induced map (4.3.1)
equals τ . This category is in turn tautologically equivalent to the category defined
by Def( f •). ��
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4.6 Let�1
Y •/Y denote the sheaf on Y • whose restriction to Y i is�1

Y i /Y
and whose

transition morphisms are those given by functoriality. By the construction of the
cotangent complex ([15], section 10), the composite Y • → Y → Z induces a
distinguished triangle

L f •∗π∗Y LY/Z −→ L f •∗LY •/Z −→ f •∗�1
Y •/Y −→ L f •∗π∗Y LY/Z [1].(4.6.1)

Lemma 4.7 (i). For all j ≥ 0, the natural map

Ext j ( f •∗�1
Y •/Y, u•∗ I ) −→ Ext j ( f 0∗�1

Y/Y, u∗ I ) (4.7.1)

is an isomorphism, and for j > 0 these groups are zero.
(ii). For j > 0, the natural map

Ext j (L f •∗LY •/Z , u•∗ I ) −→ Ext j (u•∗Lx∗LY/Z , u•∗ I )

is an isomorphism.
(iii). The sequence

Ext0( f 0∗�1
Y/Y, u∗ I )→ Ext0(L f •∗LY •/Z , u•∗ I )

→ Ext0(u•∗Lx∗LY/Z , u•∗ I )→ 0 (4.7.2)

is exact.

Proof Note first that the functor

e∗ : (OU•-modules) −→ (OU -modules), F• 
−→ F0

has an exact left adjoint e! (this is a special case of ([11], VI.5.3 and VI.5.7 (a)). If
G is a OU -module, then the restriction of e!G to Ui is defined to be

(e!G)i := ⊕m∈Hom�([0],[i])U
•(m)∗G,

and for δ : [i1] → [i2] the transition map U•(δ)∗(e!G)i2 → (e!G)i1 is the one
induced by the maps

U •(δ)∗U •(m)∗G �−−−−→ U•(δ ◦ m)∗G.
We leave it to the reader to verify that e! really defines a left adjoint to e∗.

The key observation is that the natural map

e!e∗ f •∗�1
Y •/Y −→ f •∗�1

Y •/Y (4.7.3)

is an isomorphism. To see this, note that the restriction of f •∗�1
Y •/Y to Xi is

f i∗�1
Y i /Y

and hence the fact that (4.7.3) is an isomorphism follows from ([13],
17.3 (5)) and ([13], 17.5.8).

To deduce (i) from this, note that the case j = 0 follows from the universal
property of e!. Moreover, since U is affine and �1

Y/Y is locally free, the right hand
side of (4.7.1) is zero, and hence to complete the proof of (i) it suffices to show
that any extension

0 −→ u•∗ I −→ E•1 −→ · · · −→ E•j −→ f •∗�1
Y •/Y −→ 0 (4.7.4)
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is split (here we think of Ext j ( f •∗�1
Y •/Y, u•∗ I ) as classifying Yoneda extensions).

But because of the isomorphism (4.7.3), such an extension (4.7.4) is isomorphic
to the pushout via the map e!e∗u•∗ I → u•∗ I of the extension

0 −→ u∗ I −→ E0
1 −→ · · · −→ E0

j −→ f 0∗�1
Y/Y −→ 0 (4.7.5)

and hence is trivial.
Statements (ii) and (iii) follow from (i) and the long exact sequence of Ext-

groups obtained from (4.6.1). ��
4.8 We are now ready to complete the proof of (1.5). To construct the class
o in (1.5 (i)), note that by ([10], III.2.2.4) there exists a canonical class õ ∈
Ext1( f •∗LY •/Z , u•∗ I ) whose vanishing is necessary and sufficient for Def( f •)
to be non-empty. We let o be the image of õ under the isomorphism

Ext1(L f •∗LY •/Z , u•∗ I )(4.7.1 (i i))−→ Ext1(u•∗LY/Z , u•∗ I )([15],6.19)−→ Ext1(Lx∗LY/Z , I ).

By (4.5), the class o is zero if and only if Def(x) is non-empty.
To see (1.5 (ii)), we use the following lemma:

Lemma 4.9 Let G be an abelian group, H ⊂ G a subgroup, and T a G-torsor (i.e.
a set with a simply transitive G-action). Then the set of H-orbits T/H is naturally
a G/H-torsor.

Proof If ḡ ∈ G/H and t̄ ∈ T/H , let ḡ · t̄ be the class of g · t for any liftings
g ∈ G and t ∈ T . It is immediate that this is well defined, and that it makes T/H
a G/H -torsor. ��

By ([10], III.2.2.4) and (4.5 (iii)), the set D̃ef(x) is a torsor under

Ext0(L f •∗LY •/Y, u•∗ I ),

and by the functoriality of ([10], III.2.2.4), the action of an element
∂ ∈ Ext0( f 0∗�1

Y/Y, u∗ I ) on D̃ef(x) via the map in (4.7.2) is given by sending
a pair (x ′, γ ′), where x ′ ∈ Def(x) and γ ′ : U ′ → X ′ ×x ′,Y′ Y ′ is a map as in
(4.4), to (x ′, ∂ ∗ γ ′), where ∂ ∗ γ ′ denotes the map U ′ → X ′ ×Y′ Y ′ obtained from
∂ and the torsorial action of Ext0( f 0∗�1

Y/Y, u∗ I ) on the set of such maps ([10],

III.2.2.4). Since the set of orbits of D̃ef(x) under Ext0( f 0∗�1
Y/Y, u∗ I ) is Def(x),

Lemma (4.9) combined with (4.7) implies that Def(x) is naturally a torsor under
Ext0(u•∗LY/Z , u•∗ I ). From this and the isomorphism

Ext0(u•∗LY/Z , u•∗ I ) −→ Ext0(Lx∗LY/Z , I ).

obtained from ([15], 6.9) we obtain (1.5 (ii)).
Finally to see (1.5 (iii)), note that by (2.25) the group Aut(x ′) is canonically

isomorphic to the kernel of the natural map

Ext0(L X/Y′, I ) −→ Ext0(L X/Z ′, I ),
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and from the distinguished triangle

Lx∗L j∗LY′/Z ′ −→ L X/Z ′ −→ L X/Y′ −→ Lx∗L j∗LY′/Z ′ [1]
we see that this kernel is canonically isomorphic to Ext−1(Lx∗L j∗LY′/Z ′, I ).
Hence the following lemma completes the proof of (1.5).

Lemma 4.10 The natural map

Ext−1(Lx∗LY/Z , I ) −→ Ext−1(Lx∗L j∗LY′/Z ′, I ) (4.10.1)

is an isomorphism.

Proof Let Y ′ → Y′ be a smooth cover, and let

X• i•−−−−→ X ′•

f •


�



� f ′•

Y • j•−−−−→ Y ′•

be the commutative diagram over Z ′ obtained by base change. By the construction
of the cotangent complex and ([15], 6.9), there is a natural commutative diagram

Ext−1(Lx∗LY/Z , I )
�−−−−→ Ext−1(L f •∗(LY •/Z → �1

Y •/Y), π
∗
X I )

(4.10.1)



�



�γ

Ext−1(Lx∗L j∗LY′/Z ′, I )
�−−−−→ Ext−1(L f ∗L j∗(LY ′•/Z ′ → �1

Y ′•/Y′), π
∗
X I ),

where the map γ is the one induced by functoriality ([10], II.1.2.3). Now by (loc.
cit., II.1.2.4.2), the map γ is naturally identified with the map

Hom( f •∗Coker(�1
Y •/Z → �1

Y •/Y), π
∗
X I )



�

Hom( f ′•∗Coker(�1
Y ′•/Z ′ → �1

Y ′•/Y′), π
∗
X I ),

which is an isomorphism since the formation of differentials commutes with base
change. ��
4.11 The obstruction in (1.5 (i)) is functorial in the following sense.

With the notation of (1.5), consider a 2–commutative diagram of representable
morphisms of algebraic stacks

T
�−−−−→ T ′

a



�



�a′

X
i−−−−→ X ′,
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where � is a closed immersion defined by a square–zero ideal M ⊂ OT ′ . The mor-
phism a′ induces a map a∗ I → M . If t denotes the composite T → X → Y, then
(1.5 (i)) gives an obstruction oT ∈ Ext1(Lt∗LY/Z ,M) whose vanishing is neces-
sary and sufficient for the existence of a Z ′–morphism t ′ : T ′ → Y′ extending t .
Let oX ∈ Ext1(Lx∗LY/Z , I ) denote the obstruction of (1.5 (i)).

Lemma 4.12 The image of oX under the natural map

Ext1(Lx∗LY/Z , I )→ Ext1(Lt∗LY/Z , a∗ I )→ Ext1(Lt∗LY/Z ,M) (4.12.1)

is oT .

Proof Let πY ′ : Y ′• → Y′, πY : Y • → Y, u• : U • → X , and U ′• → X ′
be as in (4.2). Choose a smooth cover T ′0 → U ′0 ×X ′ T ′ with T ′0 an affine
scheme, and let T ′• by the 0–coskeleton of the map T ′0 → T ′ so there is a mor-
phism T ′• → U ′• over a′. Denote by T • the base change of T ′• to T , and let
k• : T • → Y • be the projection. If v• : T • → T is the projection, then the natural
maps u•∗Lx∗LY/Z → L f •∗LY •/Z and v•∗Lt∗LY/Z → Lk•∗LY •/Z induce for
every j a commutative diagram

Ext j (L f •∗LY •/Z , u•∗ I ) p−−−−→ Ext j (u•∗Lx∗LY/Z , u•∗ I )


�



�s

Ext j (Lk•∗LY •/Z , v
•∗M) q−−−−→ Ext j (v•∗Lt∗LY/Z , v

•∗M).

By ([15], 6.9) there are natural isomorphisms

Ext j (u•∗Lx∗LY/Z , u•∗ I ) � Ext j (Lx∗LY/Z , I ),

Ext j (v•∗Lt∗LY/Z , v
•∗M) � Ext j (Lt∗LY/Z ,M)

which identify s with (4.12.1) and oX (resp. oT ) with the image under p (resp. q)
of the obstruction

oX• ∈ Ext1(L f •∗LY •/Z , u•∗ I ) (resp. oT • ∈ Ext1(Lk•∗LY •/Z , v
•∗M))

defined by Illusie ([10], III.2.2.4) to extending f • (resp. k•) to a morphism f ′• :
U ′• → Y ′• (resp. k′• : T ′• → Y ′•). Hence the lemma follows from the functoriality
of Illusie’s construction (loc. cit.). ��

Appendix A. Illusie’s Theorem

Let (S,OS) be a ringed site, and let Mod(OS)�
o

denote the category of simplicial
OS–modules.

For basic facts about Picard stacks we refer to ([3], XVIII.1.4).
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A.1 Let �• be a simplicial OS–module, and let I be an OS–module.
Let Ext(�•, I ) be the stack over S which to any object U of the site associates

the groupoid of extensions of simplicial OS|U –modules on the site S|U of objects
of S over U

E = (0 −−−−→ I |U α−−−−→ �̃•
β−−−−→ �•|U −−−−→ 0), (A.1.1)

where I is viewed as a constant simplicial module. If

E ′ = (0 −−−−→ I |U α′−−−−→ �̃′•
β ′−−−−→ �•|U −−−−→ 0).

is a second object then a morphism E → E ′ in Ext(�•, I ) is a morphism ρ : �̃• →
�̃′• such that the diagram

0 −−−−→ I |U α−−−−→ �̃•
β−−−−→ �•|U −−−−→ 0

id


� ρ



�



�id

0 −−−−→ I |U α′−−−−→ �̃′•
β ′−−−−→ �•|U −−−−→ 0

commutes. The stack Ext(�•, I ) has a natural Picard stack structure with addition
law given by Baer summation.

Remark A.2 It is possible to define a notion of OS–linear Picard stack which is a
Picard stack with an action of the sheaf of rings OS , generalizing the notion of OS–
module. This notion is due to Deligne (private notes), and has also been alluded
to in ([4]). The stack Ext(�•, I )(U ) is naturally an OS–linear Picard stack. For
U ∈ S and f ∈ OS(U ), the functor giving the action of f on Ext(�•, I )(U ) sends
an extension (A.1.1) to the pushout of this extension via the map× f : I |U → I |U .
Because the notion of OS–linear Picard stack has not appeared in the literature,
however, we do not emphasize this additional structure.

Proposition A.3 There is a natural equivalence of Picard stacks

Ext(�•, I )→ ch(τ≤1 RHom(N (�•), I )[1]), (A.3.1)

where N (�•) denotes the normalized complex of �•.

Proof Consider first the case when I is an injective OS–module, and let Ext′(�•, I )
be the prestack over I which to any U associates the groupoid of pairs (�̃•, s),
where �̃• is in Ext(�•, I ) and s : �0 → �̃0 is a section of the projection �̃0 → �0.
A morphism t : (�̃•, s)→ (�̃′•, s′) is a morphism �̃• → �̃′• in Ext(�•, I ). There
is a natural morphism of prestacks

Ext′(�•, I )→ Ext(�•, I ), (�̃•, s) 
→ �̃• (A.3.2)

which induces an equivalence between the associated stacks.
We define a morphism of Picard prestacks

Ext′(�•, I )→ pch(τ≤1 RHom(N (�•), I )[1]) (A.3.3)

as follows.
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Lemma A.4 For any �̃• ∈ Ext(�•, I ), the map

N (�̃•)−n → N (�•)−n (A.4.1)

is an isomorphism for n > 0.

Proof Recall ([10], I.1.3.1) that

N (�̃•)−n := ∩i>0Ker(di : �̃n → �̃n−1), (A.4.2)

where di : �̃n → �̃n−1 denotes the map induced by the unique injective order pre-
serving map [n− 1] → [n] whose image does not contain i , and N (�•) is defined
similarly. Fix an integer n > 0. If ω and ω′ are in Ker(N (�̃•)−n → N (�•)−n),
then ω − ω′ is in Ker(�̃n → �n) � I and since di (ω − ω′) = 0 for i > 0 and
di |I = id it follows that ω − ω′ = 0. Thus (A.4.1) is injective.

For surjectivity, consider first the case when n = 1. Ifω ∈ Ker(d1 : �1 → �0),
then we can choose locally a lifting ω̃ ∈ �̃1 of ω and d1(ω̃) ∈ I . Therefore,
ω̃ − d1(ω̃) is a lift of ω and in N (�̃)−1. This proves the case n = 1.

For n > 1, note that if ω̃ ∈ �̃n is a lifting of an element ω ∈ N (�•)n , then
for each i > 0 the element di (ω̃) is in I . Furthermore, for 0 < i < n we have
di (di (ω̃)) = di (di+1(ω̃)). Since di |I = id it follows that di (ω̃) = di+1(ω̃) for all
0 < i < n. Let ι ∈ I be this element. Then ω̃ − ι is a lifting of ω which is in
N (�̃•)−n . ��

Since I is injective

τ≤1 RHom(N (�•), I ) � ([�0, I ] → Ker([N (�•)−1, I ] → [N (�•)−2, I ])),
(A.4.3)

where we write [−,−] for Hom(−,−). If (�̃•, s) is an object of Ext′(�•, I ) we
obtain a section of Ker([N (�•)−1, I ] → [N (�•)−2, I ]) from the difference of the
composite

N (�•)−1
�−−−−→ N (�̃•)−1

d0−−−−→ �̃0 (A.4.4)

and the composite

N (�•)−1
d0−−−−→ �0

s−−−−→ �̃0. (A.4.5)

If λ : (�̃•, s) → (�̃′•, s′) is a morphism in Ext′(�•, I ), the difference s′ − λ ◦ s
defines an element of [�0, I ]. From this we obtain the functor (A.3.3).

To verify that the induced morphism of Picard stacks (A.3.1) is an equivalence,
note that the functor induces an isomorphism between the sheaves associated to the
presheaves of isomorphism classes of objects, and that the morphism of sheaves

AutExt(�•,I )(0)→ Autch(τ≤1 RHom(N (�•),I )[1])(0) (A.4.6)

is an isomorphism. By the construction, these statements are equivalent to the
statement that for every U ∈ S the natural map

Exti
Mod(OS|U )�

o (�•|U , I |U )→ ExtiMod(OS |U )(N (�•)|U , I |U ), i = 0, 1

(A.4.7)

is an isomorphism, which follows from ([10], I.3.2.1.15).
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This completes the proof in the case when I is injective. Note also that even if I
is not injective, then the above discussion shows that the full substack Ext(�•, I )′
(which is again a Picard stack) of Ext(�•, I ) consisting of extensions E for which
the map β0 : �̃0 → �0 locally admits a section is isomorphic to ch(Hom
(N (�•), I )[1]).

For general I , choose an injective resolution in the category of OS–modules

I → J • and set J
1 := Ker(J 1 → J 2). Pushout along the map I → J 0 defines an

equivalence of Picard categories

Ext(�•, I ) � Ker(Ext(�•, J 0)→ Ext(�•, J
1
)′),

where the right hand side is the kernel in the sense of (2.28). From above we
therefore obtain an isomorphism

Ext(�•, I ) � Ker(ch(Hom(N (�•), J 0)[1])→ ch(Hom(N (�•), J
1
)[1])).

Since τ≤1 RHom(N (�•), I )[2] is isomorphic to

τ≤0Cone(Hom(N (�•), J 0)[1] → Hom(N (�•), J
1
)[1]),

the result for general I follows from (2.29). ��
Remark A.5 The equivalence in (A.3) is even an equivalence of OS–linear Picard
stacks.

A.6 Consider a morphism A→ B of sheaves of rings on S, and let I be a sheaf of
B–modules on S. Let ExalA(B, I ) be the stack over S which to any U associates the
groupoid of A–algebra extensions B ′ → B|U of B|U by I |U ([10], III.1.1.1). The
stack ExalA(B, I ) has a natural structure of a Picard stack with additive structure
as in ([10], III.1.1.5).

Theorem A.7 ([10], III.1.2.2) Let L B/A denote the cotangent complex of A→ B.
Then there is a natural equivalence of Picard stacks

F : ExalA(B, I )→ ch(τ≤1 RHom(L B/A, I )[1]). (A.7.1)

Proof Let P• → B be the canonical free resolution of the A–algebra B ([10],
I.1.5.5.6). Recall that P• is a simplicial A–algebra. Any object

X : 0→ I → B ′ → B → 0

of ExalA(B, I ) defines an I –extension of simplicial algebras

0→ I → P• ×B B ′ → P• → 0,

where P•×B B ′ denotes the simplicial A–algebra [n] 
→ Pn×B B ′ and I is viewed
as a constant simplicial module. By ([10], III.1.1.7.1) this sequence induces an exact
sequence of simplicial P•–modules

0→ I → �1
P•×B B′/A ⊗ P• → �1

P•/A → 0
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which after applying (−)⊗P• B (with B viewed as a constant simplicial A–algebra)
gives an exact sequence of simplicial B–modules

0→ I → E → �1
P•/A ⊗ B → 0.

In this way we obtain a functor

ExalA(B, I )→ Ext(�1
P•/A ⊗ B, I ).

It follows from the construction that this extends in a natural way to a morphism
of Picard stacks. From (A.3), we therefore obtain a morphism of Picard stacks

ExalA(B, I )→ ch(τ≤1 RHom(N (�1
P•/A ⊗ B), I )[1]).

Since by definition L B/A = N (�1
P•/A ⊗ B) this defines the desired morphism of

Picard stacks (A.7.1).
To verify that this morphism is an equivalence, it suffices to show that for any

object U ∈ S the functor induces a bijection between the sets of isomorphism
classes of objects over U , and that the map of sheaves

AutExalA(B,I )
(0)→ Autch(τ≤1 RHom(L B/A,I )[1])(0)

is an isomorphism. This follows from ([10], III.1.2.3 and II.1.2.4.3). ��
Remark A.8 The stack ExalA(B, I ) is naturally a B–linear Picard stack. The mul-
tiplicative structure is given by associating to any local section f ∈ B the direct
image functor ([10], III.1.1.3)

ExalA(B, I )→ ExalA(B, I )

induced by the B–module homomorphism × f : I → I . The right hand side of
(A.7.1) is also a B–linear Picard stack with B–action induced by the action of B
on RHom(L B/A, I ), and the equivalence in (A.7) is then naturally an equivalence
of B–linear Picard stacks.

Using a suitable generalization of ([3], XVIII.1.4.17), this enables one to re-
cover τ≥−1L B/A from the B–linear Picard stack ExalA(B, I ).
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