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Abstract. Within its traditional range of perversity parameters, intersection coho-
mology is a topological invariant of pseudomanifolds. This is no longer true once
one allows superperversities, perversities with p̄(2) > 0. In this case, intersection
cohomology may depend on the choice of the stratification by which it is defined.
Topological invariance also does not hold if one allows stratifications with codimen-
sion one strata. Nonetheless, both errant situations arise in important situations, the
former in the Cappell-Shaneson superduality theorem and the latter in any discus-
sion of pseudomanifold bordism. We show that while full invariance of intersection
cohomology under restratification does not hold in this generality, it does hold up
to restratifications that fix the the top stratum.

Mathematics Subject Classification (2000): 55N33, 57N80, 32S60

1. Introduction

Intersection cohomology1 is a powerful tool in the study of stratified spaces; it
provides one of the rare examples of an algebraic invariant that is not a homot-
opy invariant but which nonetheless possesses important duality properties. As a

1 “Intersection cohomology” is essentially the same as what is also referred to as "inter-
section homology”. The differences in usage stem primarily from choice of indexing
convention; for the sheaf theoretic version of the theory, which will be the focus of this
paper, it is more common to use upper indices and to refer to the theory as “cohomology”.

The other possible point of confusion concerns support systems. In the chain-theoretic
descriptions of the theory, which usually prefer the homological indexing, one may utilize
either chains with compact supports, as for standard singular homology, or locally-finite
chains with closed supports (Borel-Moore chains). It is the latter theory that typically agrees
with the sheaf theory (up to reindexing) unless compact supports are noted explicitly.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



50 G. Friedman

consequence, many of the important invariants of manifold theory, such as signa-
tures and characteristic classes, have been extended to stratified spaces, such as
Whitney stratified algebraic and analytic varieties. The consequences of intersec-
tion cohomology also run far beyond topology to applications to representation
theory, algebraic geometry, and analysis. Surveys on intersection cohomology can
be found in [12,1,11,13,9].

It was shown by Goresky and MacPherson [7], the inventors of intersection
cohomology theory, that intersection cohomology is a topological invariant of
pseudomanifolds for perversity parameters in the traditional range (p̄(2) = 0).
In other words, intersection cohomology modules are defined on stratified pseudo-
manifolds in terms of choices of stratification and perversity parameter function
(p̄), but for fixed perversities in the standard range, these modules turn out to
be independent of the choice of stratification. This is not true, however, for sup-
erperversities, i.e. perversities such that p̄(2) > 0. Nonetheless, superperverse
intersection cohomology arises naturally in the study of stratified spaces and em-
beddings, playing a key role in the Cappell-Shaneson superduality theorem [3] (see
below) and its applications [5,14]. We will demonstrate that, while full topological
invariance does not hold for superperverse intersection cohomology modules, they
are invariant under restratifications that fix the top stratum. Alternatively, we can
say that these modules are topological invariants of the pair (X, �), where � is the
singular locus of some stratification of X.

More specifically, suppose that X is an n-dimensional topological pseudoman-
ifold, p̄ is a set of perversity parameters, G is a system of coefficients defined
on a dense open set of X, and X is a stratification of X such that the domain of
definition of G contains the top stratum of X. Then the intersection cohomology
modules I

p̄

XH ∗(X; G) are defined. If p̄ is a traditional perversity, then these mod-
ules do not depend on the choice of stratification, and they are denoted I p̄H ∗(X; G)

[7]. However, if p̄ is a superperversity, intersection cohomology is not a topologi-
cal invariant; different choices of stratification may result in different intersection
cohomology modules. On the other hand, we show that if X and X̄ are two strat-
ifications such that the singular loci � and �̄ of the stratifications agree, then
I

p̄

XH ∗(X; G) ∼= I
p̄

X̄
H ∗(X; G). This is the conclusion of our main theorem:

Theorem 1.1 (Theorem 5.1). Let X be an n-dimensional topological pseudomani-
fold with (possibly empty) pseudoboundary. Let � be the n−1 skeleton of some topo-
logical stratification of X, and let G be a system of local coefficients on X−�. Let p̄
be a traditional perversity or superperversity. Then the Deligne sheaf P∗ ∈ Db(X)

is independent of choice of stratification of X subject to � and hence so are the
intersection cohomology modules I

p̄
�H ∗(X; G).

To clarify, we say that a stratification X of an n-dimensional topological pseudo-
manifold is subject to � if its top skeleton Xn−1 is equal to �. We define the pseudo-
boundary of a pseudomanifold to be the closure of the stratum Xn−1 −Xn−2. More
details concerning these definitions are contained in Section 2. It is worth noting
here, however, that we do allow stratifications with Xn−1 �= Xn−2, generalizing
the types of stratifications that are usually allowed in the definitions for pseudo-
manifolds. In fact, even for traditional perversities, intersection cohomology is not
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invariant if nontrivial pseudoboundaries are allowed. However, it is necessary to
allow codimension one singularities in order to study bordisms of stratified spaces
(see [15]).

We proceed as follows: In Section 2 we provide the necessary basic definitions
regarding pseudomanifolds, perversities, and intersection cohomology. In Section
3, we show that different stratifications of a topological pseudomanifold may yield
different intersection cohomology modules if we allow superperversities or non-
empty pseudoboundaries. In fact, this can be demonstrated as a consequence of the
following proposition, which shows that low-dimensional superperverse intersec-
tion cohomology modules are simply the cohomology modules of the complement
of the singular locus.

Proposition 1.2 (Proposition 3.1). Suppose that p̄(k) ≥ k−1 for all k, 1 ≤ k ≤ m.
Then I

p̄

XH ∗(X; G) ∼= H ∗(X − �; G) for ∗ ≤ m − 1.

As a corollary, we observe that perversities that are “too super” do not provide
much new information:

Corollary 1.3 (Corollary 3.2). Let X be an n-dimensional topological pseudoman-
ifold, and suppose that p̄(k) ≥ k − 1 for all k, 1 ≤ k ≤ n. Then I

p̄

XH ∗(X; G) ∼=
H ∗(X − �; G).

In Section 4, we investigate why the Goresky-MacPherson proof [7] of invari-
ance for traditional perversities does not hold in our more general setting. In Section
5, we provide the proof of Theorem 1.1, indicating the necessary modifications to
the Borel treatment in [1] of the Goresky-MacPherson proof. This involves a modifi-
cation of the Goresky-MacPherson axioms for intersection cohomology. Following
this proof, we provide an alternative axiomatic characterization of the Deligne sheaf
that allows us to recognize it as a codimension ≥ c intersection cohomology the-
ory, in the sense of Habegger and Saper [8], with certain coefficients. This permits
us to provide an alternative conclusion to the proof by invoking the topological
invariance of these theories.

We close this introduction by observing that in the setting of the Cappell-Shane-
son superduality theorem [3], our main theorem is an immediate corollary. This
theorem reads as follows:

Theorem 1.4 (Cappell-Shaneson). Let Yn be a stratified pseudomanifold, and
let L and M be local systems over Y − � with coefficients in finitely gener-
ated R-modules. Let p̄ and q̄ be a pair of perversities, one traditional and one
a superperversity, such that p̄(k) + q̄(k) = k − 1. Suppose that if y ∈ � then
the stalks Hi (I p̄C∗(Y ; M)y) are torsion modules over R. Then a perfect pairing
L ⊗R M → RY−� and an R-orientation of Y induce a canonical isomorphism
I q̄C∗(Y ; L) ∼= RHom(I p̄C∗(Y ; M), D∗

Y )[m] in the derived category Db(Y ).

In this statement, I p̄C∗ is the Deligne intersection chain sheaf (denoted in our
paper by P∗), and D∗

Y is the Verdier dualizing complex on Y over R. It follows
in this context that I q̄H ∗(Y ; L), which is the hypercohomology of I q̄C∗(Y ; L), is
determined by I p̄C∗(Y ; L). If this latter complex of sheaves carries a traditional
perversity, its isomorphism class in the derived category Db(Y ) is independent of
the stratification of Y .
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While our theorem necessitates fixing the top stratum, it applies to a much
broader range of situations.

2. Definitions

2.1. Some conventions

All rings R are assumed to be Noetherian, commutative, and of finite cohomological
dimension. Complexes of sheaves of R-modules over a space X should be consid-
ered as living in the bounded derived category Db(RX) of complexes of sheaves
of R modules. The equality sign “=” between complexes of sheaves indicates
quasi-isomorphism or, equivalently, isomorphism in the derived category.

If C∗ is a complex of sheaves or modules, C∗[m] represents the shifted com-
plex (C[m])i = Ci+m. A single sheaf or module F is identified with complex
having F in dimension 0 and the zero sheaf or module in all other dimensions. We
sometimes emphasize this by writing F [0]. For example, R[0] would be a complex
whose only non-trivial member is R in dimension 0, while R[−m] would have a
single R in dimension m. This notation is slightly counter-intuitive but conforms
with the standard shift notation in derived category theory.

2.2. Spaces

We define our spaces by a hybrid of the definitions presented in Goresky-
MacPherson [7] and Borel [1]:

Definition 2.1. Topological stratifications:

• A 0-dimensional topological stratified Hausdorff space is a countable collection
of points with the discrete topology.

• An n-dimensional topological stratification of a paracompact Hausdorff space
X consists of a filtration X by closed subsets

X = Xn ⊃ Xn−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅
such that each point x ∈ Xn−k − Xn−k−1 possesses a distinguished neighbor-
hood N homeomorphic to R

n−k × cL, where cL denotes the open cone on L,
cL = L× [0, 1)/(y, 0) ∼ (z, 0), and L is a compact Hausdorff space possess-
ing a k − 1 dimensional topological stratification. Moreover, the homeomor-
phism φ : R

n−k ×cL → N should respect the filtration, i.e. φ takes R
n−k ×cLj

homeomorphically onto N ∩ Xn−k+j+1 and it takes R
n−k × {cone pt.} homeo-

morphically onto N ∩ Xn−k .
• The set Xj is called the j -skeleton of X. The sets Sj = Xj − Xj−1, which are

either empty or j -dimensional manifolds, are called the strata of X.
• The space L occurring in the definition of distinguished neighborhoods is called

the link of x. While this space is well-defined in the piecewise linear category,
it is only cL that is generally well-defined for topological stratifications.2

2 I thank the referee for noting this important point.
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Definition 2.2. Pseudomanifolds:

• A paracompact Hausdorff space X with an n-dimensional topological stratifi-
cation is an n-dimensional stratified topological pseudomanifold of dimension
n if Xn−1 = Xn−2 and Sn = X − Xn−1 = X − Xn−2 is dense in X. In this
case Xn−1 = Xn−2 is also called the singular locus and denoted �.

• A paracompact Hausdorff space X is a topological pseudomanifold of dimen-
sion n if it admits the structure of an n-dimension stratified topological pseudo-
manifold for some filtration X.

We would like to consider spaces that satisfy the density condition on their
n-dimensional strata but do not necessarily have Xn−1 = Xn−2. These arise, for
example, in the study of pseudomanifolds with boundary (see [15]). In this case,
we will call the closure of Xn−1 −Xn−2 the pseudoboundary of X. Note that in this
case the links of points in X may also be compact stratified pseudomanifolds with
pseudoboundary; when X has empty pseudoboundary, the links of points will also
have empty pseudoboundary by the strata compatibility conditions on distinguished
neighborhoods. We make the following official definitions:

Definition 2.3. • A paracompact Hausdorff space X with an n-dimensional topo-
logical stratification is an n-dimensional stratified topological pseudomanifold
with pseudoboundary if Sn = X − Xn−1 is dense in X.

• We call the closure Xn−1 − Xn−2 the pseudoboundary, and it may be empty.
We also call Xn−1 the singular locus and denote it �.

• A paracompact Hausdorff space X is an n-dimensional topological pseudoman-
ifold with pseudoboundary if it admits the structure of an n-dimension stratified
topological pseudomanifold with pseudoboundary for some filtration X.

Any topological pseudomanifold is potentially a stratified topological pseudo-
manifold with boundary, since a pseudoboundary can always arise through the
choice of stratification. To clarify the notation, we make the following remarks:
In keeping with standard terminology, we will use the term “stratified topologi-
cal pseudomanifold” only for topological pseudomanifolds stratified by filtrations
with empty pseudoboundary (Xn−1 = Xn−2). We will use the term “topological
pseudomanifold” only for those spaces that can be stratified by such filtrations.
When speaking about the more general cases for which pseudoboundaries may
be allowed, we use the terms “stratified topological pseudomanifold with pseudo-
boundary” or “topological pseudomanifold with pseudoboundary”. In the former
case, a filtration is given; in the latter case one exists. In this language, we allow the
possibility of empty pseudoboundaries. If we wish to emphasize cases where the
pseudoboundary is, is not, or might be empty, we will speak explicitly of topolog-
ical pseudomanifolds with empty, non-empty, or possibly empty pseudoboundary.
The last case will be the default.

We will be particularly interested in stratifications of pseudomanifolds with
pseudoboundary for which the singular locus has been fixed in advance. The fol-
lowing definition provides the language to express this concept.

Definition 2.4. Suppose that X is an n-dimensional topological pseudomanifold
with (possibly empty) pseudoboundary and that � is a closed subset of X. If X is
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an n-dimensional topological stratification of X such that Xn−1 = �, then we say
that X is subject to �.

Finally, we provide some notation regarding stratifications that will be of fre-
quent use. We assume that X is an n-dimensional stratified topological pseudo-
manifold with pseudoboundary. Then recall that Sn−k = Xn−k − Xn−k−1 denotes
the n − k stratum of X. We set Uk = X − Xn−k and let ik : Uk ↪→ Uk+1 and
jk : Sn−k ↪→ Uk+1 be the inclusions. We also note that Uk+1 = Uk ∪ Sn−k . If S∗
is a complex of sheaves on X, then S∗

k denotes the restriction S∗|Uk
.

2.3. Intersection cohomology

Now that we have presented the necessary definitions regarding spaces and stratifi-
cations, we can provide the construction of intersection cohomology on a stratified
topological pseudomanifold with pseudoboundary. The basic construction was first
given by Goresky and MacPherson in [7]. We include the modifications necessary
to consider superperversities and pseudoboundaries.

Intersection cohomology requires the definition of a perversity parameter p̄.
This is a function p̄ : Z

≥1 → Z satisfying the condition p̄(k) ≤ p̄(k + 1) ≤
p̄(k) + 1. We call a perversity traditional if p̄(1) = p̄(2) = 0. These were the
original perversities introduced by Goresky and MacPherson in [6] (in fact, p̄(1) is
usually not defined as it is unnecessary for pseudomanifold stratifications without
pseudoboundary, but there is no harm in setting it equal to 0 for consistency).A sup-
erperversity is a perversity such that p̄(2) > 0 (which also implies that p̄(1) ≥ 0).
We could also define subperversities with p̄(2) < 0, but these have no use in sheaf
theoretic intersection cohomology; see Remark 2.6, below.

Intersection cohomology also takes as an input a local coefficient system (locally
constant sheaf) defined on X − �. It is not necessary that these coefficients be
extendable to all of X. We allow coefficient stalks of finitely-generated R modules
for some fixed Noetherian commutative ring R of finite cohomological dimension

Given an n-dimensional topological pseudomanifold with pseudoboundary, a
traditional or superperversity p̄, and a local coefficient system G of R modules
on X − �, the associated Deligne sheaf P∗ is defined. It is an element of the
derived category Db(RX) of bounded differential sheaf complexes of R modules
on X. For simplicity and since they will remain fixed in any given discussion,
we omit X, X, p̄, and G from the notation P∗. Let Uk = X − Xn−k , and let
ik : Uk → Uk+1 = Uk ∪Sn−k denote the inclusion. Then P∗ is defined inductively
as follows: On U1, P∗

1 = G[0], the local coefficient sheaf treated as a complex of
sheaves with the only non-trivial member of the complex being G in dimension 0.
For k ≥ 1, let P∗

k+1 = τ≤p̄(k)Rik∗P∗
k , where τ≤p̄(k) is the truncation functor and

Rik∗ is the right derived functor of the pushforward ik∗. Then P∗ = P∗
n+1.

For a fixed X, X, p̄, and G, the intersection cohomology module I
p̄

XHi(X; G)

is defined to be the hypercohomology H
i (P∗). Since we will show below that

intersection cohomology depends only on X, p̄, G, and � ( not on the entire strat-
ification X), we will also use I

p̄
�H ∗(X; G) to denote intersection cohomology as

defined with respect to a stratification X subject to �.
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Remark 2.5. Intersection homology, as it is usually defined via PL or singular
chains (see [6,1,10,4]), is related to intersection cohomology by the formula
I p̄H∗(X; G) ∼= I p̄Hn−∗(X; G ⊗R O), where O is an orientation sheaf for X − �.
Care should be taken, however, since there may be many choices for O if X − �

is disconnected.

Remark 2.6. It follows immediately from the definitions that there can be no interest
in studying subperversities, those for which p̄(2) < 0, and hence also p̄(1) < 0.
In this case, P∗

2 = 0, and it follows that P∗ = 0 unless X is a manifold and X is
the trivial stratification, in which case P∗ = G∗.

3. Superperverse intersection cohomology is not stratification invariant

In this section, we demonstrate that superperverse intersection cohomology and
intersection cohomology allowing pseudoboundaries are not topological invariants
- they depend upon the stratification. We begin with the following proposition,
which shows that, in a certain range, superperverse intersection cohomology is
simply the cohomology of the top stratum.

Proposition 3.1. Suppose that p̄(k) ≥ k−1 for all k, 1 ≤ k ≤ m. Then I
p̄

XH ∗(X; G)
∼= H ∗(X − �; G) for ∗ ≤ m − 1.

Before proving the proposition, we note some ramifications.
It is immediate from Proposition 3.1 that if p̄(k) ≥ k − 1 for any k ≥ 1 (and

so (̄j ) ≥ j − 1 for all j ≤ k), then I p̄H ∗(X; G) depends on the singular set �. In
particular, this will occur any time we allow non-empty pseudoboundaries since in
this case p̄(1) = 0 = 1−1. Even if we disallow pseudoboundaries, the same issues
occur whenever p̄(2) ≥ 1, as we may still alter � = Xn−2 by restratification.

We can provide some simple illustrations by considering nonstandard stratifi-
cations of manifolds. For example, the proposition tells us that if we stratify the
sphere Sn by Sn = Xn ⊃ X0 = x for some x ∈ Sn, then if p̄(k) = k − 1
for all k, I p̄H ∗(Sn; RSn) = H ∗(Sn − x; R) = H ∗(Rn; R) = R[0]. However,
if we stratify Sn with the trivial filtration, then I p̄H ∗(Sn; RSn) = H ∗(Sn; R) =
R[0] ⊕ R[−n]. Similarly, if we stratify Sn by Sn = Xn ⊃ Xn−1 = Sn−1 for the
standard embedding Sn−1 ↪→ Sn, then even for the more traditional perversity
p̄ ≡ 0, we have p̄(k) ≥ k − 1 for the only relevant value of k, k = 1. Thus in this
case I p̄H ∗(Sn; RSn) = H ∗(Sn − Sn−1; R) = R[0] ⊕ R[0]. In this case we see
dependence on the choice of pseudoboundary.

Another consequence of Proposition 3.1 is the following corollary, which shows
that perversities that are too super do not yield interesting intersection cohomology
modules.

Corollary 3.2. Let X be an n-dimensional topological pseudomanifold, and sup-
pose that p̄(k) ≥ k − 1 for all k, 1 ≤ k ≤ n. Then I

p̄

XH ∗(X; G) ∼= H ∗(X − �; G).

Proof. Since X has dimension n, only the values of p̄(k) for k ≤ n have any rele-
vance for defining the intersection cohomology of X. Therefore, since p̄(n) ≥ n−1,
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we can extend p̄ so that p̄(n+1) ≥ n without affecting the intersection cohomology.
The corollary now follows from Proposition 3.1. ��

Proof of Proposition 3.1. Recall that I
p̄

XHj(X; G) = H
j (X; P∗), where P∗ is the

Deligne sheaf associated to X, X, p̄, and G. We first claim that it suffices to show
that if i is the inclusion i : X − � ↪→ X and p̄(k) ≥ k − 1 for 1 ≤ k ≤ m,
then P∗ and Ri∗G are quasi-isomorphic up through dimension m − 1. For sup-
pose that this is so. Then it follows from the hypercohomology spectral sequences
that H

j (X; Ri∗G) ∼= H
j (X; P∗) for j ≤ m − 1 (see [2, Theorem IV.2.2]). But

H
j (X; P∗) = I

p̄

XHj(X; G), while H
j (X; Ri∗G) = H

j (X − �; G) = Hj(X −
�; G), since G is a local system on the manifold X − �. We will first show that
P∗

k+1 = Rik∗ · · · Ri1∗G for k ≤ m. To do this, it suffices to demonstrate that
τ≤p̄(k)Rik∗P∗

k = Rik∗ · · · Ri1∗G for each k ≤ m. Since the equality is in the derived
category, we need only show that for each x ∈ Uk+1, H∗(Rik∗ · · · Ri1∗G)x = 0 for
∗ > p̄(k) ≥ k − 1. We will proceed again by induction.

We begin with Ri1∗G on U2.We need to see that for all x ∈ U2, H∗(Ri1∗G)x = 0
for ∗ > p̄(1) ≥ 0. Now U2 = U1 ∪ Sn−1, and (Ri1∗G)|U1 = G. So at each
point x ∈ U1, H∗(Ri1∗G)x = H ∗(Gx) = G[0], where G is the stalk of G at
x. Next consider Sn−1. If Sn−1 is empty, there is nothing to show. If Sn−1 is not
empty and x ∈ Sn−1, then the link of x consists of a finite number of points,
L ∼= �yi , and x has a fundamental system of distinguished neighborhoods N of
the form R

n−1 ×cL. In this case, H∗(Ri1∗G)x ∼= limx∈N H
∗(N; Ri1∗G), where the

limit is taken over distinguished neighborhoods of x. But by Lemma V.3.9 of [1],
H

∗(N; Ri1∗G) ∼= H
∗(L; G|L) = H ∗(L; G|L). This lemma is stated for stratified

pseudomanifolds but the proof holds just as well for stratified pseudomanifolds
with pseudoboundary. By further results in [1, §3], it even follows that the direct
system H

∗(N; Ri1∗G) over distinguished neighborhoods N is essentially constant,
but the resulted already quoted is sufficient to demonstrate that H∗(Ri1∗G)x = 0
for ∗ > 0.

Now suppose inductively that we have shown for all j , 1 ≤ j < k, that for
x ∈ Uj+1, H∗(Rij∗ · · · Ri1∗G)x = 0 for ∗ > j − 1. We consider Rik∗ · · · Ri1∗G
on Uk+1 = Uk ∪ Sn−k . Since (Rik∗ · · · Ri1∗G)|Uk

= Rik−1∗ · · · Ri1∗G, we al-
ready know by induction that if x ∈ Uk then H∗(Rik∗ · · · Ri1∗G)x = 0 for
∗ > k − 2. Next we consider points in Sn−k . If Sn−k is empty, then there is noth-
ing to show and this induction step is finished. Suppose then that Sn−k �= ∅ and
x ∈ Sn−k . Once again, Lemma V.3.9 of [1] tells us that H∗(Rik∗ · · · Ri1∗G)x ∼=
H

∗(L; (Rik−1∗ · · · Ri1∗G)|L), where L is a link of x. To invoke this lemma, it
is only necessary to apply part (b) of the same lemma inductively to see that
Rik−1∗ · · · Ri1∗G is X-cohomologically locally constant (X-clc). But Rik−1∗ · · ·
Ri1∗G = R(ik−1∗ · · · i1∗)G, so H

∗(L; (Rik−1∗ · · · Ri1∗G)|L)=H
∗(L−Lk−2; G) =

H ∗(L−Lk−2; G). Since L−Lk−2 is a k−1 manifold, its cohomology with coeffi-
cients in the local system G is 0 for ∗ > k − 1.

Up to this point, we have established that P∗
m+1 = Rim∗ · · · Ri1∗G. So from

here it suffices to show that if S∗ is any complex of sheaves defined on Um+1, then

Hj
(
Rin∗ · · · Ri(m+1)∗S∗) = Hj

(
τ≤p̄(n)Rin∗ · · · τ≤p̄(m+1)Ri(m+1)∗S∗)
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for j ≤ m − 1. But since p̄ is a perversity and p̄(k) ≥ k − 1 for 1 ≤ k ≤ m, we
must have that p̄(k) ≥ m − 1 for k > m. So it suffices to show that if there is a
morphism φ : A∗ → B∗ between two X-clc sheaves on Uk for some k ≥ m + 1
and if φ is a quasi-isomorphism up to dimension m − 1, then the induced map
Rik∗A∗ → τ≤p̄(k)Rik∗B∗ is also a quasi-isomorphism up to dimension m − 1.
For this we need only show that Rik∗A∗ and Rik∗B∗ are quasi-isomorphic up to
dimension m − 1 since clearly Rik∗B∗ and τ≤p̄(k)Rik∗B∗ are quasi-isomorphic up
to dimension p̄(k) ≥ m − 1.

To check this last condition, we note that for x ∈ Uk and any X-clc sheaf
complex S∗, (Rik∗S∗)x = S∗

x , so by hypothesis Rik∗A∗ and Rik∗B∗ are quasi-iso-
morphic up to dimension m − 1 at each point x ∈ Uk . If x ∈ Sn−k = Uk+1 − Uk ,
then again by [1, Lemma V.3.9.a], Hj(Rik∗S∗)x = H

j (L; S∗). So we must show
that the map H

j (L; A∗|L) → H
j (L; B∗|L) induced by φ is a quasi-isomorphism

up to dimension m − 1. But once more employing [2, Theorem IV.2.2], this is true
if A∗|L and B∗|L are quasi-isomorphic up through dimension m−1, and this holds
by assumption since L ⊂ Uk .

This concludes the proof of the theorem. ��
Another consequence of Proposition 3.1 is that superperverse intersection coho-

mology modules are independent of the choice of superperversity below the point
at which p̄(k) becomes ≤ k−2. In other words, if p̄ and p̄′ are two perversities such
that p̄(k) and p̄′(k) are both ≥ k − 1 for k ≤ m and p̄(k) = p̄′(k) for k > m, then

I
p̄

XH ∗(X; G) = I
p̄′
X H ∗(X; G). This is because, as seen in the proof, the condition

p̄(k) ≥ k − 1 for k ≤ m implies that P∗
m+1 = Ri∗G, where i : X − � ↪→ Um+1 is

the inclusion. We formalize this result as a corollary.

Corollary 3.3. If p̄(k) ≥ k−1 for k ≤ m, then P∗
m+1 = Ri∗G, where i : X−� ↪→

Um+1 is the inclusion. Thus if p̄ and p̄′ satisfy p̄(k), p̄′(k) ≥ k − 1 for k ≤ m and

p̄(k) = p̄′(k) for k > m, then I
p̄

XH ∗(X; G) = I
p̄′
X H ∗(X; G).

On the other hand, if p̄(k) ≥ k − 1 for k ≤ m < n but p̄(k) ≤ k − 2 for
k > m, then we may obtain intersection cohomology modules that do not come
directly either from traditional perversity intersection cohomology or from ordinary
cohomology on complements. For examples of this phenomenon, see [3] or [5].

Remark 3.4. It follows from Corollary 3.3 that we could study all superperversities
for intersection cohomology on pseudomanifolds by limiting ourselves to the case
p̄(1) = 0. However, it may be useful in future notation or when studying more
general spaces to retain the more general concept.

4. Where topological invariance breaks down

Having seen that superperverse intersection cohomology is not a topological invari-
ant, we are led to ask where the Goresky-MacPherson proof of invariance for tra-
ditional perversities breaks down. In this section, we will identify the point of
difficulty.

Complete definitions and details of the traditional proof of invariance will be
given in the next section. For now we simply note that the idea of the proof is to
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start with one set of axioms that completely characterize the Deligne sheaf and to
progress through a series of equivalent axioms until one reaches a set that does
not depend on the choice of stratification. The successive axioms, as treated in
Borel [1], are labeled AX1p̄,X,G , AX1′

p̄,X,G , AX2p̄,X,G , and AX2p̄,G . Note that
each depends on the space X, the stratification X, the perversity p̄, and the coeffi-
cient system G, except for the last set of axioms, which does not refer to a specific
stratification.

For a differential graded sheaf S∗ on X, let S∗
k = S∗|Uk

. Then S∗ satisfies the
first set of axioms AX1p̄,X,G if the following conditions hold:

(1a) S∗ is bounded, S i = 0 for i < 0, and S∗
1 = G. (Note: since we are really

working in the derived category, these conditions can also be stated as S∗
1 is

quasi-isomorphic to G and Hi (S∗) = 0 for i < 0 and i � 0.)
(1b) For x ∈ Sn−k , k ≥ 1, Hi(S∗

x ) = 0 if i > p̄(k).
(1c) The attachment map αk : S∗

k+1 → Rik∗S∗
k , k ≥ 1, is a quasi-isomorphism up

to p̄(k), i.e. it induces isomorphisms on Hi for i ≤ p̄(k).

We have modified the axioms slightly from their standard form to allow the
cases k = 1 that arise when X has a non-empty pseudoboundary.

It follows as in [1, Section V.2] that any sheaf satisfying these axioms is quasi-
isomorphic to the Deligne sheaf with inputs X, X, p̄, and G. This remains true even
if p̄ is a superperversity or if X is a stratification with a non-empty pseudoboun-
dary. It is also true, even in these more general cases, that the axioms AX1p̄,X,G
are equivalent to the axioms AX1′

p̄,X,G (see Section 5, below). However, for super-
perversities or stratifications with non-empty pseudoboundaries, these axioms are
no longer equivalent to the following axioms AX2p̄,X,G :

(2a) S∗ is bounded, S i = 0 for i < 0, S∗
1 = G, and S∗ is X-clc.

(2b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > 0.
(2c) dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j) for all j < n.

Here q̄(k) = k − 2 − p̄(k) is also a perversity, p̄−1(j) = min{c | p̄(x) ≥ j} if
j ≤ p̄(n), and p̄−1(j) = ∞ if j > p̄(n). We similarly define q̄−1. See Section 5
for more details.

We will demonstrate that, when p̄ is a superperversity, two complexes of sheaves
that are not quasi-isomorphic may satisfy AX2p̄,X,G .

Consider the example of the previous section given by the stratified pseudo-
manifold Sn ⊃ x, n ≥ 2. Let p̄ be the superperversity p̄(k) = k − 1, and let
RSn−x be the constant coefficient system on Sn − x with stalk R. The Deligne
sheaf for this stratification is P∗ = τ≤n−1Ri∗RSn−x , where i : Sn − x ↪→ Sn is
the inclusion. As the Deligne sheaf, P∗ certainly satisfies AX1p̄,X,RSn−x

and hence
also AX1′

p̄,X,RSn−x
.

Let us check that P∗ satisfies AX2p̄,X,RSn−x
. It is clear that it satisfies (2a).

Now for y �= x ∈ Sn, H∗(P∗)y = R[0]. At x, Hj (P∗)x = limx∈U H
j (U −

x; R) ∼= Hj(Sn−1; R), which is R for j = 0, n − 1, and 0 otherwise. Thus
dim{suppHn−1(S∗)} = 0, and dim{suppHj (S∗)} = −∞ for j > 0, j �= n − 1.
Since p̄−1(n − 1) = n, we see that P∗ satisfies condition (2b).
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To check (2c), we use the adjunction exact sequence

−−−−→ Hj(f !
yP∗) −−−−→ Hj(P∗

y )
α−−−−→ Hj(Ri∗i∗P∗)y −−−−→ , (1)

where y is any point in Sn and i : Sn − y ↪→ Sn. We know from the above com-
putations that for y �= x, H ∗(P∗

y ) = R[0], while Hj(P∗
x ) = R[0] ⊕ R[−(n −

1)]. Similarly, for y �= x, Hj(Ri∗i∗P∗)y = R[0] ⊕ R[−(n − 1)]. Meanwhile,
α : Hj (P∗)x ∼= Hj (Ri∗i∗P∗)x for j ≤ p̄(n) = n − 1 by (1c). It is also not
hard to verify by direct sheaf level computations that the map α∗ : H0(P∗)y →
H0(Ri∗i∗P∗)y : R → R is also an isomorphism for y �= x. Thus we see that
Hj(f !

yP∗) = Hj(f !
xP∗) = 0 for j < n (though we do have Hn(f !

yP∗) = R for
y �= x). So for j < n, dim{y ∈ Sn | Hj(f !

yS∗) �= 0) = −∞ ≤ n − q̄−1(n − j),
and P∗ satisfies AX2p̄,X,R

On the other hand, consider the constant sheaf RSn on Sn with the same strat-
ification Sn ⊃ x and superperversity p̄. Since Sn is a manifold, this would be the
Deligne sheaf for any traditional perversity. RSn also satisfies AX2p̄,X,RSn : condi-
tion (2a) is clearly satisfied. H ∗(Ry) = limy∈U H

∗(U ; RU) ∼= H ∗(Rn; R) = R[0]
for all y in Sn. So for all j > 0, dim{suppHj (S∗)} = −∞ ≤ n − p̄−1(j), and
(2b) is satisfied. We also have, by the exact sequence (1) and the computations of
the preceding paragraph, that Hj(f !

yR
∗
Sn) = 0 for j < n and Hn(f !

yR
∗
Sn) = R.

So for j < n, dim{y ∈ Sn | Hj(f !
yR) �= 0} = −∞ ≤ n − q̄−1(n − j), and (2c)

is satisfied. Thus both P∗ and RSn satisfy AX2p̄,X,RSn−x
. However, they are not

quasi-isomorphic since Hn−1(RSn)x = 0 while Hn−1(P∗)x = R.
So we must conclude that, for superperversities, AX2p̄,X,G and AX1p̄,X,G are

not equivalent. In fact, we will see below that AX1p̄,X,G still implies AX2p̄,X,G ,
but not conversely. The issue in this example is the following: When p̄ is a tradi-
tional perversity, p̄(n) ≤ n − 2 and so taking P∗ = τ≤p̄(n)Ri∗R in the above
example yields a sheaf quasi-isomorphic to R, since the extra cohomology in
Hn−1(Ri∗R)x gets truncated off. However, if p̄(n) can be ≥ n − 1, then the
n − 1 dimensional cohomology lives on in P∗. As a result, the attachment map
Hn−1(P∗

x ) → Hn−1(Ri∗i∗P∗)x becomes an isomorphism, instead of the 0 map
that it would be with a traditional perversity, and Hn(f !

xP∗) becomes 0, instead
of R. If p̄(n) = n − 1, and hence q̄(n − 1) = −1, this fact is detected by axiom
(1′c), which says that if x ∈ Sn−k , k ≥ 1, then Hj(f !

xS∗) = 0 for j < n − q̄(k).
However, this subtlety cannot be detected by the condition (2c), since (2c) only
looks at j < n. This cannot be corrected simply by allowing j = n in (2c)

since we have seen that for y ∈ Sn − x, Hn(f !
yP∗) = R. So we always have

dim{y ∈ Sn | Hn(f !
yP∗) �= 0} = n, which won’t be ≤ n − q̄−1(0), since q̄−1(0)

must be positive.
The study of other examples indicates that the situation described represents the

generic difficulty in trying to characterize the Deligne sheaf by axioms of the form
of AX2p̄,X,G : when dealing with superperversities, Hn(f !

xP∗) must somehow be
taken into consideration, but dim{y ∈ Sn | Hn(f !

yP∗) �= 0} = n. The solution,
presented in the next section, is to consider only dim{y ∈ � | Hj(f !

yS∗) �= 0}. This
will rescue the equivalence of AX2p̄,X,G and AX1p̄,X,G at the expense of adding
an explicit dependence on the choice of � (though not a dependence on all of X).
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Remark 4.1. The problem in the case of traditional perversities on stratified pseudo-
manifolds with nonempty pseudoboundaries is exactly the same. If Xn−1 �= Xn−2,
then p̄(1) comes into play, but if p̄(1) = 0 = 1 − 1, then we run into the same
difficulties as for superperversities in the previous paragraph, those arising from a
situation where p̄(k) � k − 2.

5. The main theorem

We now come to our main theorem.

Theorem 5.1. Let X be an n-dimensional topological pseudomanifold with (pos-
sibly empty) pseudoboundary. Let � be the n − 1 skeleton of some topological
stratification of X, and let G be a system of local coefficients on X − �. Let p̄ be
a traditional perversity or superperversity. Then the Deligne sheaf P∗ ∈ Db(X) is
independent of the choice of stratification of X subject to � and hence so are the
intersection cohomology modules I

p̄
�H ∗(X; G).

In other words, any two topological stratifications of X such that Xn−1 = �

yield the same Deligne sheaf P∗ up to quasi-isomorphism.
We shall discuss two proofs.
Our primary exposition basically follows that of Goresky and MacPherson [7]

for the topological invariance of intersection cohomology with traditional perversi-
ties on topological pseudomanifolds without pseudoboundaries. However, we will
follow more closely the treatment of this proof given by Borel in [1], which has
the advantage of treating some of the technical issues (particularly sheaf construc-
tibility) slightly more cleanly (see the Remarks in [1, §V.4.20]). The idea of the
proof is to describe the Deligne sheaf by a set of axioms and then progress through
several sets of equivalent axioms to one that is no longer dependent upon the spe-
cific stratification X. As we have seen in the previous sections of this paper, the
equivalence of the usual axioms breaks down when considering superperversities
or pseudoboundaries. Our main work then is to modify these axioms in order to
reinstate these equivalences. However, we have also seen that it will not be possible
to do so in a way that maintains complete stratification independence. Thus we
must introduce a dependence on the singular locus �.

Following this proof, we provide an alternative set of axioms that characterize
the Deligne sheaf as a codimension ≥ c intersection cohomology theory in the
sense of Habegger and Saper [8]. These axioms have slightly simpler support and
cosupport conditions than do the axioms AX2′

p̄,X,G that we present in our first
treatment, modified from the Goresky-MacPherson axioms AX2p̄,X,G . However,
the coefficients of the resulting codimension ≥ c intersection cohomology theory
are more complicated. In fact they are not locally-constant or even clc (though they
will be X-clc). Consequently, the two axiomatic characterizations we give are of
somewhat different character, particularly in their incorporation of the dependence
upon the singular locus �.

We begin with the approach following Goresky and MacPherson. We will focus
principally on the parts of our proof that diverge from those in [7] and [1], though
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for the purposes of readability and relative completeness, we provide at least an
outline of the entire proof. We should also warn the comparing reader that since we
are dealing with pseudomanifolds with pseudoboundaries, most of our inductions
will start with k = 1 instead of k = 2.

N.B. Following the treatment in [1], we suppress much of the derived category
notation. However, one should note that an equal sign between differential graded
sheaves, A∗ = B∗, denotes quasi-isomorphism, i.e. isomorphism in the derived
category.

We begin with the first set of axioms AX1p̄,X,G . Here we only require that X be
a filtration of X by closed subsets, not necessarily a topological stratification. Let
S∗ be a differential graded sheaf on X, and let S∗

k = S∗|Uk
, where Uk = X−Xn−k .

Then the axioms AX1p̄,X,G consist of the following conditions [1, p. 61, 86]:

(1a) S∗ is bounded, S i = 0 for i < 0, and S∗
1 = G. (Note: since we are really

working in the derived category, these conditions can also be stated as S∗
1 is

quasi-isomorphic to G and Hi (S∗) = 0 for i < 0 and i � 0.)
(1b) For x ∈ Sn−k , k ≥ 1, Hi(S∗

x ) = 0 if i > p̄(k).
(1c) The attachment map αk : S∗

k+1 → Rik∗S∗
k , k ≥ 1, is a quasi-isomorphism up

to p̄(k), i.e. it induces isomorphisms on Hi for i ≤ p̄(k).

The attachment map of condition (1c) is the composition of the natural maps
S∗

k+1 → ik∗i∗k S∗
k+1 → Rik∗i∗k S∗

k+1 = Rik∗S∗
k . It is automatically a quasi-isomor-

phism at points x ∈ Uk; the condition implies that for points x ∈ Uk+1−Uk = Sn−k ,
then Hi(S∗

k+1,x) = limx∈V H
i (V −V ∩Sn−k; S∗

k ) for i ≤ p̄(k), where V is a fun-
damental set of neighborhoods of x in Uk+1.

It is obvious from the definition of the Deligne sheaf P∗ that it satisfies this set
of axioms. If X is a topological stratification, it is also true that any sheaf S∗ satis-
fying these axioms is quasi-isomorphic to the Deligne sheaf P∗. This follows just
as in the proof of Theorem V.2.5 of [1] via [1, Lemma V.2.4], which shows that any
S∗ satisfying these axioms has S∗

k+1 = τ≤p̄(k)Rik∗S∗
k . Furthermore, continuing to

assume that X is a topological stratification, it follows from [1, §V.3] that any such
S∗ is X-cohomologically constructible (X-cc) and cohomologically constructible
(cc). In particular, S∗ is X-cohomologically locally constant (X-clc).

The next step of the proof is to show the equivalence (under suitable conditions)
of AX1p̄,X,G with another set of axioms AX1′

p̄,X,G . To state these axioms, we need
the notion of the dual perversity q̄ such that p̄(k) + q̄(k) = k − 2. Note that so
long as p̄ is actually a perversity, i.e. p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1, q̄ will also be
a perversity. It is interesting to note that if p̄ were allowed to take jumps of size
> 1 then q̄ might not be monotonic, which would cause difficulties below when
we consider q−1. For this reason, it is necessary to work with actual perversities
and not “loose perversities” (see King [10]).

Let fx : x ↪→ X denote the inclusion of the point x ∈ X, and let jk : Sn−k ↪→
Uk+1 = Sn−k ∪ Uk denote inclusion of the stratum.

AX1′
p̄,X,G reads as follows:

(1′a) S∗ is bounded, S i = 0 for i < 0, S∗
1 = G, and S∗ is X-clc.

(1′b) If x ∈ Sn−k , k ≥ 1, then Hj(S∗
x ) = 0 for j > p̄(k).

(1′c) If x ∈ Sn−k , k ≥ 1, then Hj(f !
xS∗) = 0 for j < n − q̄(k).
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Remark 5.2. The conditions k ≥ 1 in the above statements, which would read
k ≥ 2 in the standard case, are left tacit in [1] except for the first presentation of
AX1p̄,X,G on page 61. They are certainly assumed, however, if for no other reason
than that p̄(k) is not even defined for k < 2 in that source. More accurately, such
considerations of Sn are unnecessary anyway, since the first axiom tells us that
S∗|U1 = S∗

1 = G. We will be careful, however, and include the condition k ≥ 1
explicitly here, as it will be used below.

Notice that (1′b) is the same as (1b), and (1′a) is (1a) together with the condition
that S∗ be X-clc. The following proposition, a slight generalization of Proposition
V.4.3 of [1], continues to hold for superperversities or non-empty pseudoboundaries
(replacing k ≥ 1 with k ≥ 2):

Proposition 5.3 (Proposition V.4.3 of [1]). Suppose that each Sn−k is a manifold
of dimension n − k or is empty, that S∗ is X-clc, and that j !

kS∗ is cohomologically
locally constant (clc) for 1 ≤ k ≤ n. Then S∗ satisfies AX1p̄,X,G if and only if it
satisfies AX1′

p̄,X,G .

The proof of this proposition given in [1] continues to hold despite our general-
izations. The key point is the equivalence of (1c) and (1′c) in the presence of (1a),
(1b) = (1′b), and the additional hypotheses of the proposition. This equivalence is
demonstrated by showing that (1c) and (1′c) are each equivalence to (1′′c):

(1′′c) If x ∈ Sn−k , then Hj(j !
kS∗) = 0 for j ≤ p̄(k) + 1.

The equivalence of (1c) and (1′′c), given (1b), follows from the exact sequence

−−−−→ Hj (j !
kS∗)x −−−−→ Hj (S∗)x

α
j
k−−−−→ Hj (Rik∗S∗

k )x −−−−→

for x ∈ Sn−k . The equivalence of (1′c) and (1′′c) uses the equality Hj(f !
xS∗) =

Hj(�!
x(j

!
kS∗)) = Hj−n+k((j !

kS∗)x), where �x : x ↪→ Sn−k is the inclusion and
the second equality is due to [1, Proposition V.3.7.b], owing to j !

kS∗ being clc.
It follows from Proposition 5.3 that if X (with filtration X) is an n-dimensional

stratified topological pseudomanifold with pseudoboundary, then AX1p̄,X,G and
AX1′

p̄,X,G are equivalent: If X is a topological stratification then each Sn−k is a
manifold of dimension n − k (or empty). If S∗ satisfies AX1p̄,X,G , then it is X-clc
since it is quasi-isomorphic to the Deligne sheaf, while being X-clc is an explicit
condition of (1′a). Then by [1, Proposition V.3.10.d], if S∗ is X-clc then j !

kS∗ is
clc. Proposition V.3.10.d of [1] is stated for stratified pseudomanifolds, but it holds
equally well for pseudomanifolds with pseudoboundary.

Thus if X is a topological stratification, any sheaf S∗ on X satisfying AX1′
p̄,X,G

is quasi-isomorphic to the Deligne sheaf.
The next stage of the program is the one at which we must begin to make some

changes, as we have already seen that, for superperversities, AX1p̄,X,G is not equiv-
alent to AX2p̄,X,G . To state these next axioms, we need the concept of p̄−1. To
simplify somewhat our working with these inverses, let us extend the domain of the
perversity p̄ to all of Z. This extension is simply for notational convenience so that
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we do not need to be as careful with the input numbers to our perversities. Suppose
that p̄ is already defined on Z

≥1. Then for k < 1, we let p̄(k) = p̄(1) + k − 1, and
for k > n, let p̄(k) = p̄(n). If we are in the traditional case where Xn−1 = Xn−2

and our given p̄ is only defined for k ≥ 2, then take p̄(1) = p̄(2)−1 and then define
p̄ on Z as in the previous case. q̄ continues to be defined by p̄(k) + q̄(k) = k − 2
and so its domain is also extended to all of Z.

Now we can define p̄−1 on all of Z (cf. [1, p. 88]). If j ≤ p̄(n), let p̄−1(j) =
min{c | p̄(x) ≥ j}. If j > p̄(n), let p̄−1(j) = ∞. q̄−1 is defined similarly. Then
for all k ∈ Z,

p̄(k) ≥ j ⇔ k ≥ p̄−1(j). (2)

The following two useful formulas follow immediately:

j ≤ p̄(k) ⇔ n − k ≤ n − p̄−1(j) (3)

j ≥ n − q̄(k) ⇔ n − k ≤ n − q̄−1(n − j). (4)

Here we take q̄−1(j) = −∞ if j ≤ q̄(k) for all k (or, equivalently, if j ≤ q̄(1)).
The standard set of axioms AX2p̄,X,G read as follows:

(2a) S∗ is bounded, S i = 0 for i < 0, S∗
1 = G, and S∗ is X-clc.

(2b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > 0.
(2c) dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j) for all j < n.

For the intersection cohomology with traditional perversities of topological
pseudomanifolds without pseudoboundaries, these axioms are equivalent to
AX1′

p̄,X,G and hence also to AX1p̄,X,G .As we have seen in Section 4, this is not the
case for superperversities or pseudomanifolds with pseudoboundary. The difficulty
is the restriction j < n in condition (2c). In the standard proof of equivalence (see
[1, p. 89] or our modification below), it is shown that (2c) and (1′c) are equivalent
under the appropriate hypotheses. The implication (1′c) ⇒ (2c) continues to hold
in the more general case, but the reverse implication becomes insufficient since it
is no longer enough to consider what happens only when j < n. For a traditional
perversity p̄ on a topological pseudomanifold without pseudoboundary, Sn−k = ∅
for k /∈ [2, n], and, for k in this range, p̄(k) and q̄(k) are both ≥ 0. Thus the
condition j < n − q̄(k) in (1′c) implies that j < n, allowing the restriction to this
range in (2c). Conversely, this range of parameters in (2c) covers all possibilities
in (1′c). However, if p̄ is a superperversity or X has a non-empty pseudoboundary,
we might have q̄(k) < 0 for some relevant k ≥ 1, in which case n − q̄(k) ≥ n.
Thus in order to obtain condition (1′c) from (2c), it is necessary to modify (2c) to
take into account the cases j ≥ n.

Unfortunately, simply removing the condition j < n in (2c) is insufficient.
For j = n, dim{x ∈ X | Hn(f !

xS∗) �= 0} = n, since if G is the stalk of G,
Hn(f !

xS∗) = G for x in the n-manifold U1. If we let i : X − x ↪→ X be the
inclusion, this follows from the long exact sequence

−−−−→ Hj(f !
xS∗) −−−−→ Hj(S∗

x )
α−−−−→ Hj((Ri∗i∗S∗)x) −−−−→
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since we know that Hj(S∗
x ) = 0 for j > 0, x ∈ U1, and Hj((Rik∗S∗

k )x) =
limx∈U H

j (U − x; G) = Hj(Sn−1; G). Thus Hn(f !
xS∗) = G if n ≥ 2.

So we cannot hope to satisfy any analogue of (2c) that would include a con-
ditions dim{x ∈ X | Hn(f !

xS∗) �= 0} ≤ n − q̄−1(0), at least not if q̄−1(0) > 0,
which will always hold if p̄ is a superperversity. Thus we modify (2c) in such a
way to exclude this problematic dense set U1 by only looking in Xn−1. The debt
we pay is that including Xn−1 in this manner, we will not be able to remove it from
other axioms later.

We replace AX2p̄,X,G with the following modified axioms AX2′
p̄,X,G :

(2′a) S∗ is bounded, S i = 0 for i < 0, S∗
1 = G, and S∗ is X-clc.

(2′b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > 0.
(2′c) for all j �= n, dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j) ; dim{x ∈
Xn−1 | Hn(f !

xS∗) �= 0) ≤ n − q̄−1(0).

We can now prove the following:

Proposition 5.4. Suppose that X is such that each Sn−k is a manifold of dimension
n − k or empty and that S∗ is a differential graded sheaf such that j !

kS∗ is clc for
each k ≥ 1. Then S∗ satisfies AX2′

p̄,X,G if and only if it satisfies AX1′
p̄,X,G . In

particular, if X is a topological stratification, then AX2′
p̄,X,G and AX1′

p̄,X,G are
equivalent and characterize S∗ uniquely up to quasi-isomorphism as the Deligne
sheaf.

As this proposition contains the heart of our modification to the standard treat-
ment, we provide a full proof. However, the proof is almost identical to that of
[1, Proposition V.4.9]. Our main alterations are the addition of the cases j = n in
(2′c) ⇒ (1′c) and, of course, the addition of the cases k = 1.

Proof. Since (1′a) = (2′a), we need only show that (1′b) ⇔ (2′b) and (1′c) ⇔
(2′c), given the other hypotheses .

(1′b) ⇒ (2′b): For x ∈ Sn = U1, S∗
1 = G by (1′a), so H ∗(S∗

x ) = G[0]. If
x ∈ Sn−k �= ∅, k ≥ 1, and Hj(S∗

x ) �= 0, then j ≤ p̄(k) by (1′b). But if j ≤ p̄(k)

then n − k ≤ n − p̄−1(j) by equation (3). Since Sn−k �= ∅, dim Sn−k = n − k by
hypothesis, and So dim(supp Hj (S∗)) ≤ n − p̄−1(j) for j > 0.

(2′b) ⇒ (1′b): Note that p̄(k) ≥ 0, so to see that Hj(S∗
x ) = 0 for j > p̄(k),

it suffices to consider j > 0. If x ∈ Sn−k , k ≥ 1, and Hj(S∗
x ) �= 0, j > 0, then,

since S∗ is X-clc, Hj(S∗
y ) �= 0 for all y in the same n − k dimensional connected

component of Sn−k as x. Thus by (2′b) we must have n − k ≤ n − p̄−1(j), which
implies by equation (3) that j ≤ p̄(k). So if j > p̄(k) ≥ 0, Hj(S∗

x ) = 0.

(1′c) ⇒ (2′c): For x ∈ Sn = U1, S∗
1 = G by (1′a), so H ∗(f !

xS∗) = G[−n]. If
x ∈ Sn−k �= ∅, k ≥ 1, and Hj(f !

xS∗) �= 0, then j ≥ n − q̄(k) by (1′c). But if
j ≥ n − q̄(k), then n − k ≤ n − q̄−1(n − j) by equation (4). Since Sn−k �= ∅,
dim Sn−k = n−k by hypothesis, and so for j �= n, dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤
n− q̄−1(n− j). If j = n, dim Hn(f !

xS∗) = n, but the above argument still implies
dim{x ∈ Xn−1 | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(0) since Sn−k ⊂ Xn−1 for k ≥ 1.
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(2′c) ⇒ (1′c): Suppose x ∈ Sn−k , k ≥ 1, and that �x : x ↪→ Sn−k is the inclu-
sion. Then f !

x = �!
xj

!
k . Since j !

kS∗ is clc by hypothesis, we have Hj((j !
kS∗)x) =

Hj((j !
kS∗)y) for all j and for all y in the same connected component of Sn−k as

x. Furthermore, by [1, Proposition V.3.7.b], since Sn−k is a manifold of dimension
n − k, Hj−n+k((j !

kS∗)x) = Hj(�!
xj

!
kS∗) = Hj(f !

xS∗). Thus also Hj(f !
xS∗) =

Hj(f !
yS∗) for all y in the same connected component of Sn−k as x. In particular,

if Hj(f !
xS∗) �= 0 and j �= n, then by (2′c), n − k ≤ n − q̄−1(n − j), which

implies by equation (4) that j ≥ n − q̄(k). So for j �= n and k ≥ 1, if x ∈ Sn−k ,
Hj(f !

xS∗) = 0 for j < n − q̄(k).
It remains to consider j = n. We already know that dim{x ∈ X | Hn(f !

xS∗) �=
0} = n since S∗

1 = G by (2′a). But (1′c) only concerns the case k ≥ 1, i.e. the
strata Sn−k that are contained in Xn−1. In Xn−1, the second clause of (2′c) says that
dim{x ∈ Xn−1 | Hn(f !

xS∗) �= 0} ≤ n − q̄−1(0). So by the same argument as in
the previous paragraph, if x ∈ Sn−k and Hn(f !

xS∗) �= 0, then n − k ≤ n − q̄−1(0)

and n ≥ n − q̄(k). So if x ∈ Sn−k , k ≥ 1, then Hn((f !
xS∗) = 0 for n < n − q̄(k)

(i.e. when q̄(k) < 0).
Thus (1′c) holds for all j .
Finally, if X is a topological stratification, then each Sn−k is indeed a manifold

of dimension n − k or empty and, since S∗ must be X-clc by either set of axi-
oms, each j !

kS∗ is clc for all k by [1, Proposition V.3.10.d]. Thus AX2′
p̄,X,G ⇔

AX1′
p̄,X,G ⇔ AX1p̄,X,G , which characterizes S∗ as the Deligne sheaf. ��

The next step in Borel’s treatment of topological invariance in [1] is to consider
possible coefficient systems G and stratifications of X that are adapted to G. Since
such adaptation issues concern only the dense top stratum of a stratified pseudo-
manifold, which in our case will be determined a priori by our choice of Xn−1, we
can avoid this discussion. Once we have chosen a top stratum Xn−1 = �, we are
forced to work with coefficient systems G which are defined on (or can be extended
uniquely to) X − �.

This brings us to the axioms AX2′′
p̄,�,G . We continue to assume that X is an n-

dimensional topological pseudomanifold with (possibly empty) pseudoboundary.
Let � be the n − 1 skeleton of some topological stratification of X, and let G be a
system of local coefficients on X − �. We continue to let p̄ be a traditional or sup-
erperversity. Then we define the axioms AX2′′

p̄,�,G on a differential graded sheaf
S∗ on X as follows:

(2′′a) S∗ is bounded, S i = 0 for i < 0, S∗|X−� = G, and S∗ is X-clc for some
topological stratification of X subject to �.

(2′′b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > 0.
(2′′c) for all j �= n, dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j) ; dim{x ∈
� | Hn(f !

xS∗) �= 0} ≤ n − q̄−1(0).

This is our analogue to the axioms AX2p̄,G in the standard treatments (see [7],
[1, p. 90-91]). Notice that the axioms AX2′′

p̄,�,G do not depend on any particular
X, but they do depend on �. The latter two axioms are essentially the same as those
in AX2′

p̄,X,G .
The following is our analogue of [1, Theorem 4.15]:
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Theorem 5.5. Let X, �, p̄, and G be as above. Then there exists a differential
graded sheaf P̃∗ satisfying AX2′′

p̄,�,G and AX2′
p̄,X,G for every topological strati-

fication X subject to �.

Proof. Once again, the proof consists mostly of minor modifications to that pre-
sented for [1, Theorem 4.15]. We provide an outline of the entire proof, noting our
deviations in somewhat more detail.

P̃∗ will be the Deligne sheaf associated to G, p̄, and a filtration X̃

X = X̃n ⊃ X̃n−1 = � ⊇ · · · ⊇ X̃0 ⊃ X̃−1 = ∅
that satisfies the properties (Ik) and (IIk) listed below. As for our previous notation,
let Ũk = X−X̃n−k , S̃n−k = X̃n−k−X̃n−k−1, ĩk : Ũk ↪→ Ũk+1, j̃k : S̃n−k ↪→ Ũk+1,
P̃∗

1 = G on Ũ1, P̃∗
k+1 = τ≤p̄(k)Rĩk∗P̃∗

k for k ≥ 1, and P̃∗ = P̃∗
n+1. Also note that

X̃n−1 = �. Then for each k, 0 ≤ k ≤ n, we want

(Ik) 1. S̃n−k is a manifold of dimension n − k or is empty.
2. j̃∗

k P̃∗
k+1 is clc.

3. j̃ !
kP̃∗

k+1 is clc.

(IIk) For every topological stratification X of X subject to �, S̃n−k is a union of
connected components of strata of X and Uk+1 ⊂ Ũk+1.

If such an X̃ exists, then the proof of the theorem concludes as follows: P̃∗ sat-
isfies AX1

p̄,X̃,G by construction. So by the above equivalences of axioms and by

the condition (Ik) for all k, 1 ≤ k ≤ n, P̃∗ also satisfies AX2′
p̄,X̃,G . Suppose now

that X is a topological stratification of X subject to �. Such an X exists since the
existence of � is predicated upon it. Note that � = X̃n−1 = Xn−1. By conditions
(I ) and (II ), it follows that P̃∗ is also X-clc. Therefore P̃∗ also satisfies AX2′

p̄,X,G .

Since X was an arbitrary topological stratification subject to �, it follows that P̃∗
satisfies AX2′′

p̄,�,G and AX2′
p̄,X,G for all X subject to �.

The remainder of the proof of the theorem concerns the construction of an X̃
satisfying properties (I ) and (II ). This is done precisely as in [1, pp. 92-93], given
that X̃n−1 = �. We summarize:

Since we need only consider topological stratifications X subject to �, Ũ1 =
X − � will always be the union of connected components of the n-dimensional
strata of X − Xn−1 for any such X. In fact, for any X subject to �, U1 = Ũ1 and
Sn = S̃n. It is clear then that (I0) and (II0) hold.

Assume now by induction that Ũi has been defined for 0 < i ≤ k, k > 0, that
X̃n−i = X − Ũi for 0 < i ≤ k, that S̃n−k = X̃n−i − X̃n−i−1 for 0 ≤ i < k, and
that (Ii) and (IIi) are satisfied for 0 ≤ i < k. If we now choose S̃n−k , then we can
let Ũk+1 = Ũk ∪ S̃n−k . So, we must define S̃n−k and show that (Ik) and (IIk) hold.

Since we have Ũi defined for i ≤ k, P̃∗
k is defined. If īk : Ũk → X and

j̄k : X̃n−k → X are the inclusions, define P̄∗
k+1 = τ≤p̄(k)Rīk∗P̃∗

k . Let S̃′
n−k be

the largest submanifold of X̃n−k of dimension n − k, let S̃′′
n−k be the largest open

subset of X̃n−k over which j̄∗
k P̄∗

k+1 is clc, and let S̃′′′
n−k be the largest open subset

of X̃n−k over which j̄ !
kP̄∗

k+1 is clc. Then we take S̃n−k = S̃′
n−k ∩ S̃′′

n−k ∩ S̃′′′
n−k ,
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Ũk+1 = Ũk ∪ S̃n−k , and P̃∗
k+1 = τ≤p̄(k)Rĩk∗P̃∗

k = P̄∗
k+1|Ũk+1

. It is clear from these

choices and induction that Ũk+1 is open and that (Ik) holds at this stage.
The condition (IIk) follows exactly as in the proof of [1, Lemma V.4.16], which

states that if Y is a connected component of a stratum of some topological stratifica-
tion X then the intersection of Y with each of S̃′

n−k , S̃′′
n−k , and S̃′′′

n−k is either empty

or all of Y and that if Y �⊂ Ũk and codimXY = k then Y ⊂ S̃′
n−k ∩ S̃′′

n−k ∩ S̃′′′
n−k .

This lemma is proven by working locally in distinguished neighborhoods to show
that if y ∈ Y , then y has a neighborhood in Y that is either contained completely
in S̃′

n−k or is disjoint from it and similarly for S̃′′
n−k and S̃′′′

n−k . See [1, pp. 93-4]. ��
The rest of the proof of Theorem 5.1 follows immediately: By Theorem 5.5,

givenX,�, p̄, andG, there exists a differential graded sheaf P̃ ∗ satisfyingAX2′′
p̄,�,G

and AX2′
p̄,X,G for every topological stratification X subject to �. But we have seen

that if a differential graded sheaf satisfies AX2′
p̄,X,G , then it satisfies AX1p̄,X,G ,

which implies that it quasi-isomorphic to the Deligne sheaf associated to the input
data. In other words, P̃∗ is quasi-isomorphic to all of the Deligne sheaves P∗ over
all possible X subject to � (p̄ and G also being fixed). Thus these sheaf complexes
are all quasi-isomorphic to each other. Since intersection cohomology of a strati-
fied topological pseudomanifold is the hypercohomology of the Deligne sheaf, it
follows that intersection cohomology is independent of choice of stratification X

of X subject to �, and I
p̄
�H ∗(X; G) is well-defined. ��

An alternative characterization. Here we present an alternative set of axioms.
These allow us to provide a second conclusion to the proof of Theorem 5.1 by
invoking the codimension ≥ c intersection cohomology theory of Habegger and
Saper [8]. We will call these axioms AX3p̄,X,G , though they should not be con-
fused with the axioms AX3 of Goresky and MacPherson [7], which characterize
traditional perversity intersection cohomology in terms of its duality properties.

Let p̄ be a fixed perversity. Let cp̄, or simply c, denote q̄−1(0), which is min{k ∈
Z | p̄(k) ≤ k − 2} or ∞ if p̄(k) > k − 2 for all k. Then we let AX3p̄,X,G be the
following set of axioms:

(3a) S∗ is bounded, S i = 0 for i < 0, S∗ is X-clc, and S∗
c = (Ri∗G)|Uc , where

i : X − � ↪→ X is the inclusion.
(3b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > c − 2.
(3c) for all j < n, dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j).

In the language of [8], these conditions say that S∗ is a codimension ≥ c inter-
section cohomology theory with coefficients in Ri∗G. We will say more about this
below; first we show that on a stratified topological pseudomanifold with (possibly
empty) pseudoboundary, these axioms are equivalent to those already studied.

Proposition 5.6. If X is a topological stratification of X, then AX3p̄,X,G and
AX2′

p̄,X,G are equivalent. Hence AX3p̄,X,G characterizes S∗ uniquely up to quasi-
isomorphism as the Deligne sheaf.

Proof. We first show that AX2′
p̄,X,G implies AX3p̄,X,G .



68 G. Friedman

Since cp̄ must be ≥ 2 for any traditional perversity or superperversity, (2′b) and
(2′c) immediately imply (3b) and (3c). Also, (2′a) implies all of (3a) except for
the statement S∗

c = Ri∗G|Uc . However, if S∗ satisfies AX2′
p̄,X,G for a topological

stratification X, we already know that S∗ is quasi-isomorphic to the Deligne sheaf.
Thus S∗

c = Ri∗G|Uc , from the proof of Proposition 3.1. Note that the value m in
the statement of Proposition 3.1 must be less than c.

Next we show the reverse implication. It is clear that (3a) implies (2′a), that
(3b) implies (2′b) for j > c − 2, and that (3c) implies (2′c) for j < n.

Next we show that AX3p̄,X,G implies (2′b) for j ≤ c − 2. So suppose that
j ≤ c − 2. Then p̄(j + 1) ≥ j , so j + 1 ≥ p̄−1(j) and n − j − 1 ≤ n − p̄−1(j).
Thus it suffices to show that for j ≤ c − 2, dim{suppHj (S∗)} ≤ n − j − 1.
We first observe that since j ≤ c − 2, n − c ≤ n − j − 2. So Hj (S∗) can
take any values on Xn−c without dim{suppHj (S∗)} ≤ n − j − 1 being vio-
lated, and it suffices to show that the dimension of the intersection of the sup-
port of Hj (S∗) with Uc is ≤ n − p̄−1(j). For this, condition (3a) tells us that
S∗|Uc = Ri∗G|Uc . So if we restrict attention completely to the pseudomanifold Uc

stratified by the restriction of X, then p̄(k) ≥ k−1 for all strata Sn−k in Uc, and, by
the proof of Proposition 3.1, Ri∗G is the Deligne sheaf on Uc (where we restrict i

to i : Uc −� ↪→ Uc). Thus, in particular, AX2′
p̄,X|Uc ,G holds on Uc, which implies

that dim{suppHj (S∗)} ∩ Uc ≤ n − p̄−1(j), as desired.
Finally, we must show that dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j)

for j > n and dim{x ∈ Xn−1 | Hn(f !
xS∗) �= 0} ≤ n − q̄−1(0). The first part holds

immediately since q̄−1(k) = −∞ when k < 0. For the latter statement, recall that
q̄−1(0) = c, so n − q̄−1(0) = n − c. It follows as for the last condition that it
suffices to show that dim{x ∈ Xn−1 ∩Uc | Hn(f !

xS∗) �= 0} ≤ n−c. But again this
holds since S∗|Uc = (Ri∗G)Uc , which is the Deligne sheaf on Uc. So AX2′

p̄,X|Uc ,G
holds, which implies by (2′c) that dim{x ∈ Xn−1 ∩ Uc | Hn(f !

xS∗) �= 0} ≤ n − c.
The final claim, that AX3p̄,X,G characterizes S∗ uniquely up to quasi-isomor-

phism as the Deligne sheaf, is now a consequence of Proposition 5.4. ��

Since Proposition 5.6 implies that the Deligne sheaf satisfies AX3p̄,X,G , it fol-
lows that the Deligne sheaf is a codimension ≥ c intersection cohomology theory
with coefficients in Ri∗G, where i : X − � ↪→ X. We will not give the most
general definition of a codimension ≥ cp̄ intersection cohomology theory (c-ICT,
for short); we refer the reader to [8] for complete details. However, we do observe
that condition (3b) and (3c) constitute the theory denoted Ap̄ in [8], and it is shown
there that Ap̄ satisfies the more general axioms of a c-ICT. By Definition 6.1 of [8],
the Ap̄ intersection cohomology sheaf with coefficients in E is the unique (up to
canonical isomorphism in Db(RX)) X-cc extension of E |Uc to all of X that satisfies
Ap̄ (the uniqueness follows from the fact that Ap̄ is a c-ICT and by the definition of
a c-ICT; see [8, pp. 255-258]). Since the Deligne sheaf satisfies Ap̄, it must be the
unique X-cc extension of P∗|Uc that does so. Therefore, since P∗|Uc = (Ri∗G)|Uc ,
the coefficients of P∗ are Ri∗G (or any other X-cc extension of (Ri∗G)Uc to X).
Note that this coefficients system depends on the choice of �, but it does not depend
on further refinements of the stratification.
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The conclusion of the proof of our Theorem 5.1 is then also a consequence of
Theorem 6.2 of [8], which states that the Ap̄ intersection cohomology sheaf with
coefficients in E is independent of stratifications of X adapted to E . The requirement
of a stratification X being adapted to E means that Uc should be contained in the
domain of definition of E and E should be X-clc on Uc. In our case, the coefficients
Ri∗G are defined on all of X, and since i = in · · · i1, [1, Lemma V.3.9.b] implies
that Ri∗G will be X-clc on any stratification of X such that Xn−1 = �. ��

In this approach, dependence of the intersection cohomology modules on the
choice of � occurs right at the level of coefficients. Thus with � built into the
ground floor, we see that the support and cosupport conditions in Ap̄ can be rela-
tively limited compared to those in AX2′

p̄,X,G . On the other hand, the coefficients
of the theory are forced to be non-clc, though they are determined from our original
locally constant system G once we have fixed �.

This conclusion also allows us to formulate the analogue of AX2′′
p̄,�,G , which

we will denote AX3′′
p̄,�,G . These axioms, which characterize the Deligne sheaf

but are independent of the precise topological stratification subject to �, read as
follows:

(3′′a) S∗ is bounded, Sj = 0 for j < 0, S∗ is X-clc for some topological stratifi-
cation of X subject to �, and S∗

c = (Ri∗G)|Uc with respect to this stratification.
(3′′b) dim{suppHj (S∗)} ≤ n − p̄−1(j) for all j > c − 2.
(3′′c) for all j < n, dim{x ∈ X | Hj(f !

xS∗) �= 0} ≤ n − q̄−1(n − j).

It is clear that if S∗ satisfies AX3
p̄,X̂,G for some stratification X̂ subject to �

then it also satisfies AX3′′
p̄,�,G . Conversely, if S∗ satisfies AX3′′

p̄,�,G and X̂ is any
topological stratification of X, then by Theorem 5.1, S∗ is quasi-isomorphic to the
Deligne sheaf constructed with respect to X̂. So S∗ also satisfies AX3

p̄,X̂,G .
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