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Abstract. The structure of the ring of mod p Siegel modular forms of degree two
is determined in the cases where the prime p is 2 or 3.

1. Introduction

The theory of mod p modular forms was classically developed by Swinnerton-Dyer
[5] and Serre [4] and was applied to several fields in the theory of modular forms.
The structure theorem in the elliptic modular case was obatined by Swinnerton-
Dyer [5]. In a previous paper the author attempted to generalize this theory to the
Siegel modular case [3]. The attempt was successful in the case of degree two and
p > 5. The current paper completes the generalization for the degree two case.
That is to say, the structure of the ring of mod p Siegel modular forms of degree
two is determined in the remaining cases where p is 2 or 3.

2. Mod p Siegel modular forms of degree two

Let H denote the Siegel upper-half space of degree two and Z a point in Hy; then
'y := Sp4(Z) acts discontinously on H,. We shall denote by M (I"';) the corre-
sponding ring of modular forms. If F is an element of M (I'y), then F(Z) can be
expressed as a Fourier series of the form:

F(Zy= Y ar(Dexp [2n\/—_ltr(TZ)] ,

0<TeA,

where

Ao = (T = (t;j) € Syma(Q) | t11, 122 € Z , 2112 € Z}.
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Taking g;; := exp(2mw+/—1z;;) with Z = (z;;) € Hp, we can write

.= expl2nv/—1t(T 2)] = q152¢! 42,

where g; = ¢g;; and t; = t;; (i = 1, 2). Using this notation, we get the generalized
g-expansion:

F= Y arMq’ = Y (Y ar@as?)afaf € Clar)' . qnllar. a2

0<TeA, t,60>0

For any subring R of C, we shall denote by My (I'2) g the R-module consisting of
those F in My (I'2) (the weight k homogeneous part of M (I';)) for whicha g (T) isin
Rforevery T € Ay. Wedenoteby M (I'2) g the sumof My (I'2)grfork =0, 1,2, ...
in M (I'y); then M (I'2) g forms a graded ring over R.

Let Zp) denote the local ring at p, namely, the ring of p-integral rational num-
bers. As stated above, any element F' in M (I"2)z,,, may be regarded as an element

of Z» 415 s q121l[q1, g21. We define a subset of F, (15", g121l[g1, 921 by
(T2, = {F =Y ar(Mq” eFylar . allar. a1 | F € Mi(T)z,, |

where F = > c;zf)q means the Fourier coefficientwise reductlon mod p of
F e My (Fz)Z( " Let M(Fz)l7 denote the subring of F [q12 q121lq1, q21 gen-
erated by Mk(Fz)p fork = 0,1,2,.... We call M(Fz)p the ring of mod p
Siegel modular forms of degree 2. Let M(e)(Fz)p, the even part of M(Fz)p,
denote the subring generated by My (I'2)p fork =0,2,4,.

3. Structure of M (I'2)p for p > 5

In [2] Igusa gives a minimal set of generators of M (I"2)7 consisting of fifteen
modular forms:

Xk =4,6,10,12, 16, 18, 24, 28, 30, 35, 36, 40, 42, 48), Y12,

where the subscript denotes the weight (for the precise definition, see [2], pp. 152-
153). Each generator can be expressed as a polynomial in “theta constants” 6y, ([2],
p. 159).
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Example 1.

Xg=27% )" 0§

m:even
1+ (240q1 + 240q2) + 2160g7 + (24097, + 13440¢7," + 30240
+13440¢12 + 240g3,)q192 + 2160g5 + - - -

Xe=270 3 (00,0000

(mp,my,m3)
syzygous triple

= 1 — (5044 + 504q2) — 16632¢7 + (—504¢7,% + 44352q7, + 166320
+44352q15 — 504q12)q1q2 — 16632q2

Xi0=2""T] 0m=Gn —2+aq1912+-- .

m:even

_ 4 _
Xp=271. Z (Om,Om, + + - Oimy) =(f1121-|-10+6112)611CI2+-~ ,

(mp,my,...,mg)

where the summation is extended over the set of fifteen complements of syzygous
quadruples.

In [3] the author determined the structure of M© (I'2) p for p > 5. The main point
is to show the existence of a modular form F (2)1 eEM,_ 1(F2)Z( ) satisfying

2
F[()_)1 =1 modp

(cf. [3], Theorem A). In [3], the structure of the full ring M(Fz)p (p = 5) was not
mentioned. Considering odd weight forms, we can easily get the structure theo-
rem. Igusa constructed the modular form X35 of weight 35 with integral Fourier
coefficients ([2], Lemma 6). This is one of Igusa’s 15 generators of M (I"2)7 and
any odd weight form F' in Mk(Fz)Z(p) is divisible by X35, namely, F = X35F’
with F’ € Mk_35(F2)Z(p). Moreover the square X%S has the following polynomial
expression in X4, X¢, X10, and X17:

X35 = B(X4, X6, X10, X12),
B(xl,xz,x3,x4)=24 3x3x2+210 55x7—i—23 372. 53x2x§xf
—275 .37 3w — 277370 . 523y
427163953 x3x3 + 2715 . 370034
-23. 52x1x3x4 2.372 54x1x2xg
42773735 Txyxgadxg — 2710 37 8 xdxdny
43725 1xdadxg + 274 370 apad ]
4276.375. 52x1x§x3 27°.37 x1x3x2

—277.375. 5. 19x3xoxgxg — 271 . 370 x3 3]
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—27 M. 370 xgxg 4277377 - 3Txixgg
+271. 37 g — 270370k
+2710 370 Pxaxg + 271 37 x D]

—2716. 3_8x17x§’x4.

It should be noted that for p > 5, all the coefficients of B are p-integral. The
structure theorem can be stated as follows:

Theorem 1. For p > 5, we have
M(Fz)p ; ]Fp[i‘h X67 i1()7 i127 §35]/(Z - l, §§5 - E),

where Z(xl, X2, X3, x4) € F [x1, x2, X3, X4] is the reduction modulo p of A(x1, x2,
X3, X4) € ZLp) [x1, X2, X3, X4] which is deNtermined by the relation Flgz_)l = A(Xy,
X6, X10, X12). (It should be noted that A € F, [x1, x2, x3, X4] is uniquely deter-
mined and is independent of the choice of F[(,z_)l.)

4. Structure of M (T)pforp=2o0r3

In this section we shall give the structure theorem of M (I'2) p in the case where
p = 2 or 3, which is the main purpose of this paper.
We begin with the following lemma:

Lemma 1. Assume that p = 2 or 3. If we take one of Igusa’s generators X,
except for X3s, then there exists a polynomial Fy , with integral coefficients satis-

fying
Xk = Fi,p(X10, Y12, X16) mod p.

Proof. If we use the result in Lemma 1 of [2] and an argument in the proof of
Lemma 2 of [2], we get the following congruences:
For p =2,
Xs=Xe=1 mod2, Xipp=Xi9 mod?2, Xig=Xi¢ mod?2,
Xo4 = X10X16 mod 2, Xog= X30= X%6 mod 2,
X36 = X10X%6 mod 2, Xyo= Xy = X?() mod 2,
Xa8 = Xis + X10X3s + XToY12 mod 2.
For p =3,
X4=Xe=1 mod3, X p=Xj90 mod3, Xi;3=Xis mod 3,
Xo4 = X10X16 mod 3, Xz = X309 = X%G mod 3,

X36 = X136 + 2X130Y12 + X10X126 mod 3, Xy = X%G + 2X%0Y12 mod 3,
Xa = X3)Y12 + X3¢ mod 3, Xag = X10X7g +2XT Y12 mod 3.
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The above congruences mean that every generator with even weight can be ex-
pressed as a polynomial of X9, Y12, and X6 under congruence modulo p (p =2
or 3). |

From this result, we get the following theorem:

Theorem 2. For p =2 or3,
M©(T2), =F,[X10, Y12, X16),
where %10, ?12, and )?16 are algebraically independent over IF,.

Proof. We assume that p = 2 or 3. If we take a modular form F in Mk(FZ)Z(p) for
even k, then the Fourier coefficients ar(T) have bounded denominators because
F has a polynomial expression in X4, Xg, X190, and Xo with rational coeffcients
(for general case, see [1]). Then we can take a constant ¢ € Z, with (c, p) = 1,
such that ¢ - F € My (I'2)z. Hence we can express ¢ - F as a polynomial of Igusa’s
generators Xy (k # 35) and Y3:

C'FZP(X47X67“')7

with P(x1,---) € Z[x1, ---]. Taking the reduction modulo p of both sides, by
Lemma 1, we have

¢-F =P(X4, Xe. ) = 0(X10, Y12, X16),
for some Q(xl, x2, x3) € F), [x1, x2, x3]. Consequently, we have
F=¢"0(X0.Y12. X16).
To prove the algebraic independence, we note the Fourier series expansions:

X100 = (g —2+q)q1q2+ -+,
Yo=qg+q@+---,
Xi6=qiq2+ -+ .

We assume that X 10, Y, 12, and X 16 have an algebraic relation
Z Vabci?oylbzgfﬁ = Z(Vabcql_QHQf—i_b—i_CQS-i—c + - ) =0
(Yabe € Fp). If (a, b, ¢) # (a’, V', '), then

—a a+b+c a+c —a' _d'+b'+c  a'+c’
a9 4 Fdn q a -

This implies that all y,;. vanish. This completes the proof of Theorem 2. |

By Igusa’s expression for X %5, we have the following lemma:
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Lemma2. (/)
Xis = X}YH X5 + X§, mod 2.
(2)
X35 = 2X10XTs + X101 X76 + 2X70X 6 + XToY 12 X1 + 2X30 V12X
+2X1 Y + X X3 +2X], mod 3.
The final result is as follows:

Theorem 3. (1) For the case p = 2,
M), = F2[§]0, Y1, X16, iss]/(igs — Py(X10, Y12, X16)).

where ﬁ2(x1, X2, X3) = x%x%x% + xl6 € Fp [x1, x2, x3].
(2) For the case p =3,

M(I)3 = Fs[f(lo, Y12, X 16, )?35]/@35 — Py(X10, Y12, X16)),
where

P3(x1, x2,x3) = 2x1x§ + xlx%xg + Zx%xg + x%x%x% + 2x]3x2x32
—|—2x‘1‘x§’ + x‘l‘x32 + ZxZ e F3 [x1, x2, x3].
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